6 凸轮机构
机械原理:第6章 凸轮机构
的压力角α ? 3.求出r0 、s 和α之间的关系式?
本题目主要考察对基圆、压力角及位移等 基本概念的理解和压力角的计算方法。 解
(1)图示位置的r0 、s 和α如图。
(2)r0 、s 与α之间的关系式为:
tan
v e
lOP e 1
r02 e2 s s r02 e2
例3 图示为摆动滚子从动件盘形凸轮机构,凸轮为偏心圆盘, 且以角速度ω逆时针方向回转。
试在图上标出: 1. 凸轮基圆;
2. 升程运动角和回程运动角;
3. 图示位置时从动件的初始位置角
0和角位移 ;
4. 图示位置从动件的压力角α;
5. 从动件的最大角位移max 。
r0min
( d s)2 e2 tan[ ]
直动滚子从动件盘 形凸轮机构
凸轮基圆半径
r0
m in
s
d2s
d 2
式中
([ dx )2 ( dy )2 ]3/ 2
d
dx
d
.
d2 y
d 2
d
dy
d
.
d2x
d 2
条件 min
直动平底从动件盘 形凸轮机构
滚子半径的设计
考虑运动失真: rr 0.8min 考虑强度要求: rr (0.1 ~ 0.5)r0
以凸轮转动中心为圆心,以凸轮理论轮廓曲线上的 最小半径为半径所画的圆。半径用r0表示。 从动件从距凸轮转动中心的最近点向最远点的运动过程。 从动件从距凸轮转动中心的最远点向最近点的运动过程。 从动件的最大运动距离。常用 h 表示行程。
基本名词术语
(5)推程角 从动件从距凸轮转动中心的最近点运动到最远点时, 凸轮所转过的角度。用Φ表示。
第6章 凸轮机构
(3)该机构的最大压力角αmax与最小压力角 αmin;
(4)从动件的推程运动角和回程运动 角;
(5)从动件的最大速度vmax。
解
第二十八页,共36页。
解 (1) rbRO A8 03 050mm
(2) A 1 B 1 (1 1 10 2 5 )2 1 5 1.5 46 0 A 0B 0 (5 0 15 2 )2 1 5 5.7 51
例1 图示偏置直动滚子从动件盘形 凸轮机构中,凸轮以角速度ω 逆时 针方向转动。
试在图上画出: (1)画出理论轮廓曲线、基圆与偏距圆;
(2)标出凸轮图示位置压力角α1和位 移s1以及转过150°时的压力角α2 和位 移 s2 。
解
第十九页,共36页。
思路与技
本题目主要考察对凸轮廓线、基圆、偏距 圆、压力角及位移等基本概念的理解和对反转
0
ω
n
第八页,共36页。
从动件运动规律的选择与设计原则
从动件的最大速度vmax应尽量小
从动件的最大加速度amin应尽量小,且无突变 从动件的最大跃度jmax应尽量小
第九页,共36页。
凸轮机构的反转法原理
-ω
1
B0
ωO
B1 B 1
2
3
()s()
结论
B 3 B 2 B 2 B3
从动件尖顶相对凸轮的运 动轨迹形成了凸轮的轮廓曲 线。
hA 1B 1A 0B 08.8 4m 5 m
(3) max mi n 45
(4) ==180°
(5)当凸轮从从动件最低位置转过90°时, 从动件与凸轮的相对瞬心P至A点的距 离达到最大
A P O2 A3 02
vma x A P 13 024.4 22 m6m
凸轮机构基本知识
余弦加速度运动规律: 余弦加速度运动规律 : 是指从动件加速度按余弦规律变化
的运动规律。 的运动规律 。 这种运动规律的运动线图如图所示。其位移曲 位移曲 线为简谐曲线,故又称为简谐运动规律,速度曲线为正弦曲 线为简谐曲线 速度曲线为正弦曲 线,加速度曲线为余弦曲线。作图方法如图所示。 加速度曲线为余弦曲线。 由图可见,在推程始末 点处仍有加速度的有限 值的突变,即存在“软 冲”,因此只适用于中、 低速。但若从动件作无 停歇的升—降—升型连 续运动,则加速度曲线 为光滑连续的余弦曲线, 消除了“软冲”,故可 用于高速。
s = s (t ) v = v(t ) a = a (t )
推程、远休止、回程、 推程、远休止、回程、近休止
当凸轮连续转动时,从动件将重复上述运动过程。
从动件的常用运动规律
2.从动件的常用运动规律 2.从动件的常用运动规律 等速运动规律: 等速运动规律:是指从动件在推程或回程的运动速度为常
数的运动规律。凸轮以等角速度转动,从动件在推程中的行程 为h。从动件作等速运动规律的运动线图如图所示。其位移曲 位移曲 线为斜直线,速度曲线为平直线,加速度曲线为零线。 线为斜直线,速度曲线为平直线,加速度曲线为零线。
凸轮机构的应用与分类
1. 组成 凸轮机构由凸轮 从动件2、 凸轮1、从动件 凸轮 从动件 机架3三个基本构件及锁合装 机架 锁合装 置组成。是一种高副机构。其 中凸轮是一个具有曲线轮廓或 凹槽的构件,通常作连续等速 转动,从动件则在凸轮轮廓的 控制下按预定的运动规律作往 复移动或摆动。
凸轮机构的应用与分类
由图可见,从动件在推程始末两点、处,速度有突 由图可见,从动件在推程始末两点、 瞬时加速度理论上为无穷大, 变,瞬时加速度理论上为无穷大,因而产生理论上 亦为无穷大的惯性力。而实际上, 亦为无穷大的惯性力。而实际上,由于构件材料的 弹性变形,加速度和惯性力不至于达到无穷大, 弹性变形,加速度和惯性力不至于达到无穷大,但 仍会对机构造成强烈的冲击 这种冲击称为“ 强烈的冲击, 仍会对机构造成强烈的冲击,这种冲击称为“刚性 冲击”或“硬冲”。因此,单独采用这种运动规律 冲击” 硬冲” 因此, 只能用于凸轮转速很低以及轻载的场合。 转速很低以及轻载的场合 时,只能用于凸轮转速很低以及轻载的场合。
机械设计基础 第六章 凸轮机构
6.2.1 凸轮机构的运动循环及基本名词术语
凸轮机构的一个运动循环大 致包括:推程、远休程、回 程、近休程四个部分
术语: 基圆 偏距 近休程 近休止角 推程 推程运动角 远休程 远休止角 回程 回程运动角 行程 推杆运动规律
6.2.2 几种常用的推杆运动规律
等速运动规律:
s h / 0 h 1 / 0 a0
凸轮廓线设计步骤: (1)划分位移曲线;
(2)取长度比例尺,绘出凸轮基圆,偏心距圆;
(3)获取基圆上的等分点; (4)绘出反转过程中的导路位置线;
(5)计算推杆的预期位移;
(6)将从动件尖顶点连成光滑曲线,即为凸轮轮廓。
理论轮廓线 实际轮廓线
尖顶从动件
滚子从动件
滚子半径的选择
滚子从动件作用: 1、化滑动摩擦为滚动摩擦; 2、降低凸轮与从动件之间的局 部接触应力。
6.3.2 压力角与凸轮机构尺寸的关系
tan
OC e
PC OP OC BC BC
BC s r02 e 2
P为凸轮和从动件的速度瞬心,故:
v OP
即: OP
v
ds d
于是:
tan
ds e d s r02 e 2
增大基圆半径或设置偏置均可减小压力角,
存在速度突变,加速 度及惯性力理论上将无穷 大,称为刚性冲击。用于 低速轻载场合。
等加速等减速运动规律:
s 2h 2 / 02 4h1 / 02 2 a 4h1 / 02
s h 2h( 0 ) 2 / 02 4h1 ( 0 ) / 02 2 a 4h1 / 02
凸轮机构的设计和计算
第四章 凸轮机构及其设计
§4-1 凸轮机构的应用和分类
一、应用: 当从动件的位移、速度、加速度必须严格按照
预定规律变化时,常用凸轮机构。
4h 2 所以 a0 t 2 2 v 2h
从动件在匀加速上升过程中的运动方程
2h 2 S h ( ) 2 4h v 2 ( ) 4 h 2 a 2
3、加速度按余弦运动规律变化
f ( x1 , y1 , ) ( x1 x) 2 ( y1 y) 2 rT2 0
dx dy f ( x1 , y1 , ) 2( x1 x) 2( y1 y ) 0 d d
联立求解x1和y1,即得滚子从动件盘形凸轮的实际廓线参数方程:
rT
rT
C
rT rT B ' O
A
'
'
滚子半径rT必须小于理论轮廓曲线外凸部分的 最曲率半径ρ min,设计时, rT 0.8 min
反转法
1
2 3
O r0
4
5
6 7 8
1、尖底直动从动件盘形凸轮 机构凸轮轮廓设计: 已知 0 , e, S , 转向
B1 C1
3 2
B0 (C0)
60°
C9 B9 C8
90°
B8 B7 C6
e K O B2 C 2 r0 C3 B3 C4
180°
C7
30°
C5 B5
机械基础习题5
第六章凸轮机构一、选择题1、凸轮机构中,主动件通常作()。
A、等速转动或移动B、变速转动C、变速移动2、凸轮与从动件接触处的运动副属于()。
A、高副B、转动副C、移动副3、内燃机的配气机构采用了()机构。
A、凸轮B、铰链四杆C、齿轮4、凸轮机构中,从动件构造最简单的是()从动件。
A、平底B、滚子C、尖顶5、从动件的运动规律决定了凸轮的()。
A、轮廓曲线B、转速C、形状6、凸轮机构中,()从动件常用于高速传动。
A、滚子B、平底C、尖顶7、凸轮机构主要由()和从动件等组成。
A、曲柄B、摇杆C、凸轮8、有关凸轮机构的论述正确的是()。
A、不能用于高速启动B、从动件只能做直线运动C、凸轮机构是高副机构二、判断题1、()在凸轮机构中,凸轮为主动件。
2、()凸轮机构广泛应用于机械自动控制中。
3、()移动凸轮相对机架作直线往复移动。
4、()在一些机器中,要求机构实现某种特殊复杂的运动规律,常采用凸轮机构。
5、()根据实际需要,凸轮机构可以任意拟定从动件的运动规律。
6、()凸轮机构中,主动件通常作等速转动或移动。
三、填空题1、凸轮机构主要有和。
2、在凸轮机构中,凸轮为。
3、在凸轮机构中,按凸轮形状分类,凸轮有、和。
4、凸轮机构工作时,凸轮轮廓与从动件之间必须始终,否则,凸轮机构就不能正常工作。
第七章轴 (一)一、选择题1、自行车前轴是()。
A、固定心轴B、转动心轴C、转轴2、在机床设备中,最常用的轴是()。
A、传动轴B、转轴C、曲轴3、车床的主轴是()。
A、传动轴B、心轴C、转轴4、传动齿轮轴是()。
A、转轴B、心轴C、传动轴5、既支承回转零件,又传递动力的轴称为()。
A、心轴B、转轴C、传动轴二、判断题1、()曲轴常用于实现旋转运动与往复直线运动转换的机械中。
2、()工作时只起支承作用的轴称为传动轴。
3、()心轴在实际应用中都是固定的。
4、()转轴是在工作中既承受弯矩又传递扭矩的轴。
5、()按轴的轴线形状不同,轴可分为曲轴和直轴。
机械原理第6章 凸轮机构及其设计
优点: 1)从动件可以实现复杂运动规律。 2)结构简单、紧凑,能准确实现预期运动,运动特性好。 3)性能稳定,故障少,维护保养方便。 4)设计简单。 缺点: 凸轮与从动件为高副接触,易于磨损。由于凸轮的轮廓 曲线通常都比较复杂,因而加工比较困难。
2.凸轮机构的分类
盘形凸轮(图6-1)
(1)按凸轮的e and follo wer displacement(凸轮转角 与从动件的位移)
Fig.6-10 Motion of the follower(凸轮机构运动循环图)
6.2 从动件的运动规律及其设计
1.从动件的基本运动规律
(1)多项式类运动规律
1)一次多项式运动规律。
移动凸轮(图6-2)
圆柱凸轮(图6-3) 尖底从动件
(2)按从动件的形状分类
(图6-4)
滚子从动件
平底从动件
曲底从动件
(3)按从动件的运动形式分类
(图6-4、图6-5)
直动从动件 摆动从动件 力封闭方式(图6-6) 形封闭方式(图6-7)
(4)按凸轮与从动件维持高副接触的方式分类
Fig.6-2 Translating cam mechanisms(移动凸轮机构)
1.凸轮机构的相对运动原理
如图6-19a所示,在直动尖底从动件盘形凸轮机构中,当凸轮 以等角速度ω作逆时针方向转动时,从动件作往复直线移动。设 想给整个凸轮机构加上一个绕凸轮回转中心O的反向转动,使反 转角速度等于凸轮的角速度,即反转角速度为-ω。此时,凸轮 将静止不动,而从动件一方面随导路绕O点以角速度-ω转动,分 别占据B′1、B′2,同时又沿其导路方向作相对移动,分别占据B1、 B2等位置。因此,从动件尖底导路的反转和从动件相对导路移动 的复合运动轨迹,便形成了凸轮的轮廓曲线,这就是凸轮机构的 相对运动原理,也称反转法原理
第6章 凸轮机构 (教案)
第6章 凸轮机构1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。
2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。
难点:“反转法原理”与压力角的概念。
3.讲授方法多媒体课件4.讲授时数8学时6.1 凸轮机构的应用及分类6.1.1凸轮机构的应用凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。
其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。
从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。
在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构。
下面我们先看两个凸轮使用的实例。
图6.1所示为内燃机的配气凸轮机构,凸轮1作等速回转,其轮廓将迫使推杆2作往复摆动,从而使气门3开启和关闭(关闭时借助于弹簧4的作用来实现的),以控制可燃物质进入气缸或废气的排出。
图6.2所示为自动机床中用来控制刀具进给运动的凸轮机构。
刀具的一个进给运动循环包括:1)刀具以较快的速度接近工件;2)刀具等速前进来切削工件;3)完成切削动作后,刀具快速退回;4)刀具复位后停留一段时间等待更换工件等动作。
然后重复上述运动循环。
这样一个复杂的运动规律是由一个作等速回转运动的圆柱凸轮通过摆动从动件来控制实现的。
其运动规律完全取决于凸轮凹槽曲线形状。
由上述例子可以看出,从动件的运动规律是由凸轮轮廓曲线决定的,只要凸轮轮廓设计得当,就可以使从动件实现任意给定的运动规律。
同时,凸轮机构的从动件是在凸轮控制下,按预定的运动规律运动的。
这种机构具有结构简单、运动可靠等优点。
但是,由于是高副机构接触应力较大,易于磨损,因此,多用于小载荷的控制或调节机构中。
6.1.2 凸轮机构的分类根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种:1.按凸轮的形状分类(1)盘形凸轮:如图6.1所示,这种凸轮是一个具有变化向径的盘形构件,当他绕固定轴转动时,可推动从动件在垂直于凸轮轴的平面内运动。
第八章 凸轮机构
第五章 凸轮机构
上一页
下一页
返 回
结 束
§6—2 凸轮机构的工作原理
二、主要参数
1、转角
推程运动角δo:从动件从最近→最远时凸轮转过的角度 远休止角δs:从动件在最远处停止不动时,凸轮的转角。
回程运动角δo′:从动件从最远→最近时凸轮的转 角。
近休止角δs′:从动件在最近处停止不动时,凸轮的转角。
上一页
下一页
返 回
结 束
原理:靠半径的变化推动从动件产生平面运动。
从动件在⊥于凸轮轴线的平面内运动。 应用:一般用于从动件行程或摆动较小的场合。
(2)移动凸轮:盘形凸轮r→∞演变而成。
*移动凸轮通常作往复直线移动 *常用于靠模仿型机械中。
上一页
下一页
返 回
结 束
当盘形凸轮的回转中心趋于无穷远时,即 成为移动凸轮,移动凸轮通常作往复直线移动。
上一页 下一页 返 回 结 束
§8—2 凸轮机构的工作原理
一、凸轮机构的工作过程和有关参数 二、从动件的常用运动规律
第五章 凸轮机构
上一页
下一页
返 回
结 束
节目录
一、凸轮机构的工作过程和有关参数 推程(升程):从动件 从最近→最远的过程。
停程:从动件在最近或 最远处停止不动的过程。 回程:从动件从最远→ 最近的过程。
第八章 凸轮机构
§8—1 凸轮机构概述 §8—2 凸轮机构的工作原理
第五章 凸轮机构
上一页
下一页
返 回
结 束
章目录
教学要求
1.了解凸轮机构的分类、应用及特点。
2.了解凸轮轮廓曲线的画法,熟悉常用 位移曲线的画法。 3、掌握基圆半径、行程、压力角等基本 参数的概念和它们对工作的影响。 4、掌握凸轮从动件的常用运动规律及其 特点和应用。
第3章 凸轮机构
应用:中速、中载。
h s2 1 cos( 1 ) 2 t h1 v2 sin( 1 ) 2 t t h 2 12 a2 cos( 1 ) 2 2 t t
24
余弦加速度运动规律
从动件回程简谐运动方程
25
从动件运动规律的选择
(1)满足机器的工作要求; (2)使凸轮机构具有良好的动力性能; (3)使凸轮轮廓便于加工,尽量采用圆弧、直线等 易加工曲线。
26
3.3 凸轮轮廓设计
根据工作要求合理地选择从动件的运动 规律后,可按照结构允许的空间等具体要求, 初步确定凸轮的基圆半径,然后绘制凸轮的 轮廓。 图解法 解析法
看其中最大值max是否超 过许用压力角[] 。如超过,
应修改,常用的办法是加大
基圆半径。
42
3.4.2 基圆半径的确定
基圆大小影响凸轮机构的尺寸,欲使结构紧 凑,应减小基圆半径;但基圆半径减小会增大压 力角。 先根据凸轮的具体结构条件试选凸轮基圆半 径,对所作的凸轮轮廓校核压力角,若不满足要 求,则增大基圆半径然后再设计校核,直至满足
8’
9’ 11’ 12’
13’ 14’ 9 11 13 15
e
ω A
k12 k11 k10 k9 kk k1314 15
-ω 1
1 3 5 78
15’ 15 14’ 14 13’
设计过程
1、选比例尺μ
l
=μ s作基圆r0,偏置圆e;
12’
k 13 k21 12 k k8 k4 3 k7k6 k5 11 10 9
27
直动从动件盘形凸轮轮廓的绘制—— 反转法原理 1 对心尖顶移动从动件盘形凸轮 2 偏置尖顶移动从动件盘形凸轮 3 对心滚子移动从动件盘形凸轮 4 偏置滚子移动从动件盘形凸轮 5 摆动从动件盘形凸轮轮廓的绘制
凸轮机构
机械基础一轮复习资料(凸轮机构)【复习要求】1.了解凸轮机构的分类、应用及特点;2.了解凸轮轮廊曲线的画法,熟悉常用位移曲线的画法;3.掌握基圆半径、行程、压力角等基本参数的概念及它们对工作的影响;4.掌握凸轮从动件的常用运动规律及其特点和应用。
【知识网络】【知识精讲】一、凸轮机构的基本概念1.凸轮:具有控制从动件运动规律的曲线轮廓的构件。
2.凸轮机构:由凸轮、从动件和机架组成的传动机构,该机构中凸轮作主动件并作等速转动(往复移动)。
3.基圆(基圆半径):以凸轮回转中心为圆心,以凸轮理论廓线的最小回转半径为半径所作的圆称为基圆。
该圆的半径称为基圆半径,用r0表示。
4.凸轮理论廓线:凸轮从动件的参考点(尖端或滚子中心或平底中点)在凸轮平面内的运动轨迹。
5.凸轮实际廓线:直接与从动件接触的凸轮廓线。
6.位移及行程:凸轮转过一个角度,从动件对应移动的距离,称为从动件的位移S。
在凸轮一转中,从动件所能达到的最大位移称为行程,用符号h表示。
7.压力角(α):凸轮理论廓线上某点的法线方向(即从动件的受力方向)和从动件运动速度方向之间所夹的锐角。
8.S—δ曲线:表达从动件位移S与凸轮转角δ关系的曲线。
9.转角(运动角)δ:凸轮转过的角度。
二、凸轮机构的应用特点1.高副机构易磨损,结构简单、紧凑,传动力较小。
2.能严格实现从动件的运动要求,从动件的运动规律可任意拟定。
3.可高速起动,但高速凸轮精确设计困难。
4.加工方便容易,广泛用于自动化机械中。
三、凸轮机构的分类(见表)四、凸轮机构从动件的常用运动规律及工作特点、应用场合(见表)五、凸轮机构有关参数对工作的影响(见表)为使运动不“失真”r T<ρmin一般取r T<0.8ρmin【边缘知识】一、运动角二、理论轮廓线与实际轮廓线的关系尖顶接触的理论轮廓线与实际轮廓线重合;平底接触两曲线接近;滚子接触两曲线为法向等距曲线(此两曲线只有在休止角区域内才是相似曲线)。
凸轮与间歇运动机构
根据工作要求选择适当的凸轮和间歇运动机构类型,进行运动学和动力学分析, 确定机构尺寸参数,进行强度、刚度和稳定性校核,优化设计方案。
凸轮与间歇运动机构选型依据
01
02
03
04
工作要求
明确机构需要实现的运动规律 、精度、速度、加速度等性能
指标。
机构特性
了解不同类型凸轮和间歇运动 机构的运动特性、优缺点及适
凸轮机构作用
通过凸轮的旋转或往复运动,推 动从动件按预定规律运动,实现 机械自动化和精确控制。
凸轮类型与特点
01
02
03
盘形凸轮
凸轮形状为圆盘形,具有 结构简单、紧凑、易于加 工和维修方便等特点。
移动凸轮
凸轮作往复直线运动,从 动件通过导轨或导槽与凸 轮接触,实现直线或曲线 运动。
圆柱凸轮
凸轮形状为圆柱形,从动 件沿凸轮轮廓作曲线运动, 适用于空间复杂运动。
凸轮与间歇运动机构
目 录
• 凸轮机构基本概念与分类 • 间歇运动机构概述及分类 • 凸轮与间歇运动机构组合设计 • 凸轮与间歇运动机构性能分析 • 凸轮与间歇运动机构应用领域探讨 • 总结与展望
01 凸轮机构基本概念与分类
凸轮机构定义及作用
凸轮机构定义
由凸轮、从动件和机架三个基本 构件组成的高副机构。
动力传递效率评估
评估凸轮机构在动力传递 过程中的效率,优化机构 设计以提高动力传递效率。
精度与稳定性评估
凸轮加工精度控制
控制凸轮的加工精度,确保凸轮轮廓曲线的准确性和一致性。
从动件定位精度评估
评估从动件在间歇运动过程中的定位精度,确保从动件能够准确地 停留在预定的位置上。
机构稳定性分析
机械设计基础第4章
如图4-25a所示,已知某对心直动尖顶从动件盘形凸轮机构的基圆
半径为r0,凸轮以角速度沿逆时针方向转动,行程为h,推程运
动角=〖120°〗^,远休止角s = 60°,回程运动角′=90°,
近休止角s′=90°,凸轮的位移曲线如图4-25b所示。下面用作
图法求凸轮轮廓。
高副接触的实例,用凸轮来控制进、排气阀门的启闭。
• 3.利用几何形状来维持接触
(1)槽凸轮机构:如图4-8a所示,凸轮轮廓曲线做成凹槽,从动件的
滚子置于凹槽中,依靠凹槽两侧的轮廓曲线使从动件与凸轮在运动过
程中始终保持接触。
(2)等宽凸轮机构:如图4-8b所示,从动件做成矩形框架形状,而凸
轮廓线上任意两条平行切线间的距离都等于框架上下两侧的宽度,因
(1)直动从动件
如图4-5所示,从动件作往复直线移动。
(2)摆动从动件
如图4-6所示,从动件作往复摆动。
• 三、凸轮与从动件维持高副接触的方式
• 1.利用重力维持接触
利用重力使从动件与凸轮轮廓始终保持接触的凸轮机构,又称为
力封闭型凸轮机构。
• 2.利用弹簧力维持接触
如图4-7所示发动机凸轮机构的基本形式,它是利用弹簧力来维持
(2)滚子从动件
如图4-5b所示,示为平底从动件,从动件与凸轮轮廓
之间为线接触,接触处易形成油膜,润滑状况好。
(4)球面从动件
如图4-5d所示,从动件为一球面。球面从动件
克服了尖底从动件的尖底易磨损的缺点。在工程中的应用也较多。
• 3.按从动件的运动形式分类
第四章
凸轮机构
第一节 凸轮机构概述
• 一、凸轮机构的组成和特点
• 1. 凸轮机构的组成
非标自动化基础-30-凸轮机构种类认识及选用
凸轮机构种类认识及选用目录1.凸轮机构认识2.常见凸轮机构约束方法3.凸轮机构简要说明4.凸轮曲线5.凸轮机构的设计6.凸轮材料7.凸轮加工8.凸轮应用9.凸轮的设计要点FollowerPressure anglePitch curveCam profile Base circle 1、凸轮机构的相关术语一、凸轮机构认识凸轮机构的相关术语说明1.凸轮理论廓线:从动件(推杆)对凸轮作相对运动时,从动件上的参考点(尖端从动件的尖端和滚子从动件的滚子中心等)在凸轮平面上所面的曲线.2.凸轮工作廓线:与从动件直接接触的凸轮轮廓曲线,也称凸轮实际廓线.3.压力角:凸轮给从动件的正压力方向(即接触点的公法线nn 方向)与从动件受力点速度v方向间所夹的锐角.4.基圆及其半径:以凸轮转动中心o为圆心,凸轮理论廓线的最小半径为半径所画的圆称为基圆,其半径称为基圆半径,以Rb表示.a)圆端直动从动杆移动凸轮b)圆端直动从动杆移动凸轮(从动型)c)圆端摆动从动杆移动凸轮d)圆端直动从动杆平面凸轮e)圆端摆动从动杆平面凸轮f )平端直动从动杆平面凸轮一、凸轮机构认识2、凸轮机构的简介一、凸轮机构认识g)平端摆动从动杆平面凸轮h)圆端直动从动杆沟槽凸轮i)圆端摆动从动杆沟槽凸轮j)等幅凸轮k)共轭凸轮(摆动从动件)l)共轭凸轮(直动从动件)一、凸轮机构认识m)平行分度凸轮n)圆端直动从动杆端面凸轮o)圆端摆动从动杆端面凸轮p)圆端直动从动杆圆柱凸轮q)圆端直动从动杆凸缘凸轮r)筒形凸轮s)弧面凸轮三.凸轮机构简要说明基圆指从动件在停留角的状态下走过的凸轮轮廓的最小半径所在的圆.φ从动件运动方向凸轮法向方向压力角指运动接触点的凸轮法向方向与从动件运动方向的夹角压力角越小越好,设计时直动的压力角应<20 °,摆动从动件可以略大四.凸轮曲线凸轮曲线指凸轮驱动的从动件的运动曲线,横轴为时间,纵轴为位移.四.凸轮曲线目前常用的2种凸轮曲线:修正梯形修正正弦四.凸轮曲线由此根据时间和位移的比例关系来确定有量纲的s,v,a,j值.例n=200rpm,stroke=3mm,MS凸轮曲线,升程角60°,圆端直动从动杆平面凸轮机构,根据无量纲参数可以求出v m,a m,j m1.凸轮转速(200/60)*360=1200°/s2.升程时间t h=60/1200=0.05s3.v m=(stroke/t h)*V m=(3/0.05)*1.76=105.6mm/s4.a m=(stroke/t h2)*A m=(3/0.052)*5.528=6633.6mm/s25.j m=(stroke/t h3)*J m=(3/0.053)*69.47=1667280mm/s3(j m是反映加速度变化快慢的参数,可以理解为接触点受力变化的程度.)五.凸轮机构设计1.顶切2.浮起凸轮设计时应注意凸轮的曲率半径的问题.1.顶切,在设计中先确定cam follower 中心的运动曲线,然后再决定凸轮的轮廓曲线时若ρ凸min <r cam follower ,发生顶切现象.2.浮起,在设计中如果ρ凹min <r cam follower , cam follower 不能到达最低段,发生浮起现象.曲率半径影响凸轮表面的接触应力,曲率半径一般取ρ凹min >2r cam follower ,越大越好.平滑的样式Rc作为设计计算时的基圆半径Rcθ*Rc可以将此凸轮曲线转化为平面凸轮圆半径五.凸轮机构设计以端子插针机为例介绍凸轮机构设计步骤:1.分析插针动作确定使用凸轮数量目前厂内端子插针有下列三个动作a.端子裁切端子与料带分离,与Holder夹紧端子b.端子插入端子插入HSGc.Holder回位holder张开保证端子脱离上述三个动作是按时间配合的独立动作,因此需要三个凸轮来完成.五.凸轮机构设计2.时序确定Punchholderinsertcam曲线的类型45 °时从动件的位置凸轮旋转方向(正时针,逆时针)凸轮基圆半径strokevAJθR10deg五.凸轮机构设计5.草图设计根据速度,加速度,跳动,求出凸轮机构所需要的动力,以裁切凸轮为例计算.a.量纲转换n=600rpm=10*2*3.14rad/sV max=6.72*10-3*3.14*10*2=0.42m/s, 裁切时的速度约为最大速度a max=26.9*10-3*(3.14*10*2)2=106m/s2b.裁切工作负载F=t*L*σ=0.2*4*53=42kgfc.惯性负载F=m*a max=0.1*106=1kgfd.裁切功率P=F*v=43*9.8*0.42=180we.裁切扭矩T=P/ω=180/(3.14*2*10)=2.9N*mf.马达选取Panasonic MSMD042G1U 400w未考虑凸轮机构约束弹簧的力,阻尼等因子,因此有必要在马达前加减速机,确保能提供所需的扭矩..五.凸轮机构设计345k=4N/mmF0=2*3*4=24N五.凸轮机构设计6.凸轮机构约束弹簧的选定约束弹簧的选定可以根据计算,也可以根据图解法得出,以裁切凸轮为例.•计算法:假设滚子刚好脱离凸轮便力平衡的方程m从动件质量a从动件加速度k弹簧系数y从动件位移F0弹簧初始张力α=F0/(k*y h)ma+ky+F0=0 (未考虑粘性阻力系数,摩擦力)0.3*106-k*1.5-2*3*k=0K=4.2N/mm 与图解法相近.Punchholderinsertcam五.凸轮机构设计7.凸轮图面图面中应该注明的要素有a.凸轮的外形尺寸b.时序c.stroked.cam follower 尺寸e.凸轮从动件运动的方式f.凸轮曲线类型g.凸轮旋转方向h.凸轮加工的技术要求i.凸轮材料,表面处理的方式六.凸轮材料凸轮和滚子的材料应该由足够的接触强度和良好的耐磨性.1.提高表面硬度可以提高接触强度2.耐磨性与材料的表面硬度有关,硬度越高,耐磨性越好.3.耐磨性与凸轮和滚子材料的搭配业有关.淬硬钢与磷青铜耐磨性好,但未淬硬钢与青铜之间的耐磨性就差.凸轮的材料有很多,目前使用的有SKD11,SCM440等,它们都应做表面处理,高频表面淬火,渗氮等.滚子一般都是外购标准品.七.凸轮加工1.直动凸轮X,Y联动工作台可以实现直动凸轮加工,刀具的直径可以比滚子直径小.七.凸轮加工2.平面凸轮X,Y轴联动加工刀具直动,凸轮旋转联动加工加工平面的沟槽凸轮时,精加工的阶段采用立铣刀的直径与滚子相同.七.凸轮加工3.圆柱凸轮直动从动件圆柱凸轮采用刀具直动,凸轮旋转联动加工,精加工的阶段采用立铣刀的直径与滚子相同.摆动从动件圆柱凸轮采用刀具X,Y联动,凸轮旋转联动加工,精加工的阶段采用立铣刀的直径与滚子相同.4. 双滚子空间凸轮实际运用:裁切.插针.夹持八.凸轮应用5. 盘形槽式凸轮实际运用:压入.辅助定位.植入一般槽凸轮均会有接触点不再同一侧的问题,这使滚子在沟槽内的运动时而正转、时而逆转,使滚子与沟槽产生相互撞击影响凸轮与滚子的寿命。
凸轮机构
第五章凸轮机构及其设计基本要求了解凸轮机构的应用及其分类。
介绍推杆常用的运动规律及其选择。
学会用图解法设计盘形凸轮的轮廓曲线。
掌握凸轮机构基本尺寸的确定。
基本概念题与答案1.什么是基圆、基圆半径?答:以凸轮理论廓线的最小向径为半径所作的圆,叫基圆,其半径称为基圆半径。
2.什么是推程、升程(又称行程)推程运动角?答:从动件由距凸轮转动中心最低位置到最远位置的过程称作推程,推程过程中从动件的最大位移称升程(行程)。
推程过程中凸轮转过的角度称为推程运动角。
3.什么是远休止角、回程运动角、近休止角?答:远休止角:从动件在距凸轮回转中心最远的位置停留不动,这时对应的凸轮转角称为远休止角。
回程运动角:从动件以一定运动规律降回初始位置,这时凸轮转过的角度。
近休止角:从动件在距凸轮回转中心最近的位置停留不动,这时对应的凸轮转角称为近休止角。
4.什么是刚性冲击和柔性冲击?答:刚性冲击:由加速度产生的惯性力突变为无穷大,致使机构产生的强烈冲击。
柔性冲击:由加速度产生的惯性力为有限值的变化,使机构产生的冲击。
5.凸轮轮廓的形状起什么作用?由什么来决定?答:作用:实现从动件的运动规律,取决于从动件的运动规律。
6.图解法设计凸轮廓线的方法是什么?什么是反转法?答:方法:反转法,凸轮不动,从动件连同机架一起按凸轮的角速度的相反方向绕凸轮回转中心转动,而从动件仍按预定的运动规律相对机架运动,从动件尖顶的轨迹即为凸轮廓线,这种方法称为凸轮廓线的反转法设计。
7.直动从动件盘形凸轮廓线设计的已知条件是什么?设计中注意什么?答:(1)从动件的运动规律,即从动件的位移线图。
(2)基圆半径。
(3)从动件导路偏距e 和位置。
(4)凸轮等角速度转动及其转向。
注意:(1)取μs、μL、μδ比例尺、按已知条件作图。
(2)反转法。
(3)从动件位移在基圆外截取。
(4)所有位移点用光滑曲线连接成凸轮廓线。
8.滚子从动件盘形凸轮廓线设计,以哪一点作为尖顶来设计理论廓线?答:以滚子中心为尖顶来进行设计。
凸轮机构02
O Φ
O
Φ
D
E
第三节 图解法设计平面凸轮轮廓
一、直动从动件盘状凸轮机构 y
B1 S
-ω ω
B0
S ϕ
x
2π π
S
ω O e
K0 K1
S0
ϕ
C1
B1
ϕ
L = bmax+b’max+(4~10)mm
• 凸轮轮廓的向径不能变化太快 3 4 5 5’
4’
2
3’
1
2’ 1’
二 摆 动 从 动 件 盘 状 凸 轮 机 构
式中, 为凸轮的转角( 式中,ϕ为凸轮的转角(rad); c0,c1,c2,… ,为 ); n+1个待定系数。 个待定系数。 个待定系数 1、n=1的运动规律 、 的运动规律 h S = ϕ s = c0+c1ϕ Φ v = hω Φ v= c1 ω ϕ=0, s=0; ϕ =Φ, s=h Φ a=0 a=0
1)应满足机器的工作要求; )应满足机器的工作要求; 2)对于高速凸轮机构,应使凸轮机构具有良好的运 )对于高速凸轮机构, 动和动力性能。 动和动力性能。 3)设计从动件运动规律,应考虑到凸轮轮廓具有良 )设计从动件运动规律, 好的工艺性。 好的工艺性。
第四节 用解析法设计平面凸轮轮廓曲线
x θA A0 一、移动从动件盘形凸轮机构 1、尖顶从动件 、
由 ∆ OO 1' A 可求得向径 rA
-ω ω B1 B x
rA = l 2 + a 2 − 2al cos(ψ 0 + ψ )
ω O rb
l +a −r cos ψ 0 = 2 al A点的极角 θ A = δ 0 + ϕ − δ 点的极角
凸轮机构的设计
(3)、许用压力角 为了提高机构的效率、改善其受力情况,通常 规 定 一 许 用 压 力 角 [α] , 使 。 推 程 : 直 动 推 杆 取 [α] = 300 ; 摆 动 推 杆 [α] = 400 ~ 500 ; 回程:通常不会引起自锁问题,但为了使推杆不至产生过大的加速 度从而引起不良后果,通常取 [α]= 700~800。 (4)、压力角校核 αmax一般出现在 1)从动件的起点位置 2)从动件最大速度位置 3)凸轮轮廓向径变化最大部分 滚子从动件按理论轮廓校核 平底从动件一般α=0,不需校核 若αmax > [α]: 增大基圆半径 偏置从动件
4、偏置直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮转动方向。凸轮转 动中心与从动件摆动中心的距离,摆动从动件的长度,已知 从动件的运动规律,试设计。(从动件的位移是角位移 )
A0
ψ0 B1 B’1 φ o ω
1
-ω
ψ1 B2 ψ2
A1
B0
B’2
2
A2
φ
三、凸轮机构基本尺寸的确定
图所示为工程上常用的诺模 图,图中上半圆的标尺代表 凸轮转角δ0,下半圆的标尺 为最大压力角α max,直径 的标尺代表从动件规律的 h/rb的值(h为从动件的行程, rb为基圆半径)。下面举例 说明该图的使用方法。
2、凸轮压力角的校核
(1)、凸轮机构的压力角定义 凸轮机构从动件作用力的方向线与从动 件上力作用点的速度方向之间所夹的锐角, 用α表示。 (2)、压力角与作用力以及机构尺寸的关系 将凸轮对从动件的作用力F分解为F1和F2 。F2为有效分力,F1为有害分力,当压力角 α越大,有害分力F1越大,如果压力角增大 ,有害分力所引起的摩擦阻力也将增大,摩 擦功耗增大,效率降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升程h——推杆的最大位移 其对应的凸轮转角t——推程角 E
S2
h
1200 1800 3000 3600
1
t B
0
t
1200 600 1200
600
EF段从动件在远处停止, 其对应的转角s——远休止角。
S2
F
E
s
h
1200 1800 3000 3600
0
t
1200
s
600 1200 600
s
h
δ
δ
ห้องสมุดไป่ตู้
0
既无刚性冲击也无柔性冲击 高速、中载场合 理论上,随着多项式次数的增多,可以满足任意复杂 的运动规律。实际上,次数过高使曲线过于复杂,导 致机加工困难,凸轮对误差敏感性增大。
2、三角函数运动规律
s
5'
4' 3' 2'
6'
余弦加速运动规律
(简谐运动规律)
简谐运动:圆周上匀速 运动的质点在其直径上的 投影构成的运动规律。
1'
1 2 3
0 v
4
5 6
δ
amax
该运动规律在推程的开 始和终止瞬时,从动件的 加速度仍有突变,故存在 柔性冲击。
适用于中、低速场合。
1 2 3
4
5
6 δ
a 4 5 6
1 2 3
-amax
δ
正弦加速度运动规律(Law of Sine Acceleration Motion) (摆线运动规律) s
s
h δ
0
δ
无穷大,凸轮机构受到极大冲击。
这种冲击称为刚性冲击。
v
δ
a
+∞
适用于低速场合。
δ
-∞
实际上,由于构件材料有弹性,加速度和惯性 力不至于达到无穷大,但仍将造成强烈冲击。当加
速度为正时,它将增大凸轮压力,使凸轮轮廓严重
磨损;加速度为负时,可能会造成用力封闭的从动
件与凸轮轮廓瞬时脱离接触,并加大力封闭弹簧的
圆弧段
基圆(rmin)——以最短向径所作的圆
600 rmin 1200 1200 600
S2
D
B 600 rmin 1200 1200 600 E
1200
1800
3000
3600
0
1200 600 1200 600
1
F
S2
1200
1800
3000
3600
0
1200 600 1200
1
600
采用圆弧、直线等易于加工的曲线作为凸轮轮廓
曲线,如气门开闭。
高速重载凸轮机构:
首先考虑动力特性,以避免产生过大的冲击。 为避免刚性冲击,位移曲线和速度曲线必须连续;
而为避免柔性冲击,加速度曲线也必须连续。
尽量减小速度和加速度的最大值。
Vmax↑→动量mv↑,若机构突然被卡住,则冲击 力将很大(F=mv/t)。 amax↑→惯性力F=-ma↑, Pn↑对强度和耐磨性 要求↑。
h 这种运动规律的速度及加 δ δ
速度曲线都是连续的,没有 任何突变,因而既没有刚性 冲击、又没有柔性冲击。 适用于高速场合。
v
0
δ
a
δ
3、组合运动规律简介
运动规律设计时应遵循以下原则: (1)对于中、低速运动的凸轮机构,要求从动件 的位移曲线在衔接处相切,以保证速度曲线的连 续。即要求在衔接处的位移和速度应分别相等。 (2)对于中、高速运动的凸轮机构,要求从动件 的速度曲线在衔接处相切,以保证加速度曲线连 续,即要求在衔接处的位移、速度和加速度应分 别相等。
偏置尖顶直动从动件 盘形凸轮机构
滚子摆动从动件盘形 凸轮机构
沟 槽 凸 轮 重力锁合凸轮
弹 力 锁 合 凸 轮
等宽凸轮
等径凸轮
3 特点
适当的凸轮廓线能保证实现任意预定的从动件运 动规律; 设计简单、结构紧凑、工作可靠,因此在自动和 半自动机械中获得广泛应用; 凸轮与从动件之间为点或线接触,易磨损,故只 宜用于传力不大的场合; 凸轮廓线精度要求高,加工成本高; 从动件行程不能太大,否则凸轮会变得笨重。
平底从动件(Flat-faced Follower) 受力比较平稳,易形成油膜,润滑好,用于高 速传动。
尖顶从动件移动 凸轮机构
平底直动从动件盘形 凸轮机构
滚子摆动从动件盘形 凸轮机构
按从动件的运动分:
直动从动件(Translating Follower ) 对心直动从动件 偏置直动从动件 摆动从动件(Translating Cam)
2.摆动从动件盘形凸轮机构
B rb 2 B
o1
1 3
o2
n
p
rb o1 O2
α v2
B rb
v2 n K 2 A p n 且 l cos B rb o1 O2
o1
1
p a
3
1
K α
L
0
o2
2 lo p a lo p 1 lo p lo p
2 2 2
lo2 p cos( 0 )
s
2
s
2
O
S
S
O
S
(1)升-停-回-停型(RDRD型) (2)升-回-停型(RRD型)
s
2
s
2
O
S
O
(3)升-停-回型(RDR型)
(4)升-回型(RR型)
(二)从动件的常用运动规律
凸轮的轮廓曲线取决于要实现的从动件运动规 律。因此,凸轮机构设计前,首先应根据工作要求 确定从动件的运动规律。 推杆在推程或回程时,其位移S、速度V、和 加速度a 随时间t 的变化规律。 多项式运动规律
盘形凸轮(Disk Cam)-----最基本形式,凸轮是一个 绕固定轴转动且具有变化半径的盘形零件。
移动凸轮(Translating Cam) -----当盘形凸轮的回 转中心趋于无穷远时,凸轮相对机架做直线运动。 圆柱凸轮(Cylinder Cam) -----将移动凸轮卷成圆柱 体即是圆柱凸轮。
§6-2 凸轮机构的特性
6.2.1 凸轮机构的运动特性
由于凸轮是作匀速转动或匀速移动,凸轮机构的 运动特性实际上是从动件的运动特性。 (一)基本术语和功能的实现
对主动件凸轮而言
对从动件而言
推程运动角t
远休止角s 息 回程运动角h 近休止角s`
推程S 升程h 远程休
回程S 近程休
圆弧段
圆弧段
(1) 修正梯形组合运动规律
a
0
a
o 1 2 3 4 5 6 7 8
等加速等减速运动规律
amax=(h2/2)×4.00
正弦加速度运动规律 amax=(h2/2)×6.28
a
0.5 0.125 0.875
=1 修正梯形组合运动规律
在加速度突变处以正弦加 速度曲线过渡而组成,既 具有等加速等减速运动其 理论最大加速度最小的优 点,又消除了柔性冲击。
v 在运动规律推程的始末点和 前后半程的交接处,加速度在 开始、终止、转折处有突变, 0 不过这一突变为有限值,由此 a 引起的冲击为有限值,称为柔 0 性冲击。 适用于中、低速场合。
/2
δ
/2
δ
3-4-5多项式运动规律
s 10h
3 0
3
15h
4 0
4
6h
5 0
5
v a
负荷。因此这种运动规律只适用于低速,如自动机 床刀具进给机构以及在低速下工作的一些凸轮控制
机构。
二次多项式运动规律(等加速等减速运动规律)
从动件在推程(或回程) 中,前半段作等加速运动,后 半段作等减速运动,加速度为 常数。位移曲线为一抛物线。
0 1 4 9 4 1 0 1
s
2
3 4
5
6
δ
6 凸轮机构及其设计
§ 6-1
§ 6-2
凸轮机构的类型及应用
凸轮机构的特性
§ 6-3
§ 6-4
凸轮轮廓曲线的设计
高速凸轮机构简介
1 组成
凸轮机构(Cams ) 是由凸轮、从动件和 机架组成的高副机构。
作用:将连续回转(或移动) => 从动件直线移动或摆动。
机架3 从动件2 1 O1
2 分类 按凸轮的形状分:
∞
4.0 5.77 4.93 6.28 5.53
刚性
柔性 无 柔性 无 无
低速轻载
中速轻载 高速中载 中速中载 高速轻载 高速重载
(三)从动件运动规律设计应考虑的问题 选择推杆运动规律的基本要求
满足机器的工作要求; 使凸轮机构具有良好的动力特性; 使所设计的凸轮便于加工。
低速轻载凸轮机构:
S2 h
1200 1800 3000 3600
s'
0
t
1200
s
0
s'
600
600 1200
1
t——推程角;s——远休止角 h——回程角;s——近休止角
S2 h
1200 1800 3000 3600
0
t
1200
s
600
0
1200
s'
600
1
按照从动件在一个循环中是否需要停歇及停在何 处等,可将凸轮机构从动件的位移曲线分成如下四 种类型:
三角函数运动规律