8_图形的位似_学案1【北师大版数学九年级上册】
北师大版数学九年级上册《位似图形》教案
北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。
本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。
但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。
三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。
2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。
3.培养学生的空间想象能力,提高学生的数学思维能力。
四. 教学重难点1.位似图形的概念和性质。
2.位似比的概念和计算方法。
3.位似变换的方法和应用。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。
六. 教学准备1.准备相关的教学实例和图片。
2.准备教学课件和板书设计。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。
2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。
3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。
4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。
5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。
北师大版-数学-九年级上册- 4.8图形的位似(一) 学案
三年级数学学科导学案课题:图形的位似(第 1 课时)【学习目标】课标要求:1.理解位似多边形的定义及相关性质。
2.理解相似多边形与位似多边形的联系与区别。
3.初步了解能利用图形的位似将一个图形放大或缩小的理论依据。
.目标达成:1.掌握判断两个多边形是否是位似多边形的方法,并能准确指出位似中心和相似比。
2.初步掌握把多边形按照一定比例放大或缩小的绘图方法。
学习流程:【课前展示】提出问题:九年级(1)班的同学们准备召开一次班会,他们想把下面的图样放大,使放大前后对应线段的比为1︰3,然后制成彩纸活跃气氛,请你帮助他们找到放大图样的方法。
让学生思考讨论,并发表自己的看法,分析其合理性,强调要放大图样,但不能改变图形的形状。
【创境激趣】1、让学生观察课前收集的图片,(例如:教材插图,同底片不同尺寸的照片。
)在图片①上取一点A,它与另一张图片(如图片②)上相应的点B之间的连线是否经过镜头中心P?要求学生操作得出结论。
在图片上换其他的点试一试,还有类似的规律吗?此过程在教师的引导下进行。
2、在以上的活动基础上引出位似多边形的相关概念:如果两个相似多边形每组对应点A、A′所在的直线都经过同一个点O,且OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心。
强调定义:位似多边形一定是相似多边形,反之则不然。
3、给出一组位似多边形,请学生观察,教师提问:图中位似多边形的相似比是多少?与对应点到位似中心的距离之比k有什么关系?你能证明吗?【自学导航】1、预读教材p113-115.2、争取解决书上的问题,并做适当记录。
【合作探究】1、已知△ABC,求作△DEF,使它与△ABC位似,并且相似比为2。
2、你能运用刚才的方法作一个新三角形,使其各条边长为△ABC的各条边长的一半吗?自己动手试一试。
并向同学们展示一下你的作法。
【展示提升】典例分析知识迁移回到本节课开篇时的问题,让学生们探讨一下如何帮助九年级(1)班的同学完成图样的放大。
九年级数学上册 第四章 图形的相似8 图形的位似教案 (新版)北师大版-(新版)北师大版初中九年级上
8 图形的位似1.了解位似多边形及其有关概念,了解位似与相似的联系和区别,掌握位似多边形的性质.2.掌握位似图形的画法,能够利用画位似图形的方法将一个图形放大或缩小.重点掌握位似多边形的有关概念、性质与画图.难点在直角坐标系中,以原点为位似中心的位似变换的性质.一、情境导入课件出示教材第113页图4-35,提出问题:(1)它们是相似图形吗?(2)图形位置间有什么关系?你能找出一些规律吗?引导学生得出:它们的形状相同,大小不同,是相似图形,图形上各组对应点的连线通过同一点.二、探究新知1.位似多边形的相关概念课件出示下图,提出问题:图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?学生观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,引导学生自己归纳出位似图形的概念:如果两个相似多边形任意一组对应点所在的直线都经过同一点,那么这样的两个多边形叫做位似多边形,这个点叫做位似中心.注意:每组对应点与位似中心共线;不经过位似中心的对应线段平行. 教师:位似多边形与相似多边形有什么区别与联系?学生:位似多边形任意一组对应点所在的直线都经过同一点,位似多边形是特殊的相似变换.2.位似多边形的画法 课件出示:把图①中的四边形ABCD 缩小到原来的12.分析:把原图形缩小到原来的12,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .画法一:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′,B ′,C ′,D ′,使得OA′OA =OB′OB =OC′OC =OD′OD =12; (4)顺次连接A′B′,B ′C ′,C ′D ′,D ′A ′,得到所要画的四边形A′B′C′D′,如图②.画法二:画法三:课件出示:利用下面的方法可以近似地将一个图形放大:(1)将两根长短相同的橡皮筋系在一起,联结处形成一个结点.(2)选取一个图形,在图形外取一个定点.(3)将系在一起的橡皮筋的一端固定在定点,把一支铅笔固定在橡皮筋的另一端.(4)拉动铅笔,使两根橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.这个新图形与已知图形形状相同.教师:请你用这种方法把一个已知图形放大.学生独立操作完成,教师巡视指导.3.在直角坐标系中位似多边形的性质课件出示:(1)如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).将点O,A,B的横坐标、纵坐标都乘2,得到三个点,以这三个点为顶点的三角形与△OAB 位似吗?如果位似,指出位似中心和相似比.如果将点O,A,B的横坐标、纵坐标都乘-2呢?(2)如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为O(0,0),A(5,0),B(5,3),C(2,4),将点O ,A ,B ,C 的横坐标、纵坐标都乘12,得到四个点,以这四个点为顶点的四边形与四边形OABC 位似吗?如果位似,指出位似中心和相似比.学生思考后给出答案,教师点评并引导学生得出:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比是|k|.三、举例分析例1 (课件出示教材第113页例1)学生独立完成,指名不同画法的学生板演,教师点评. 例2 (课件出示教材第117页例2) 引导学生用不同画法完成,教师巡视指导. 四、练习巩固1.教材第114页“随堂练习”. 2.教材第117页“随堂练习”. 五、小结1.通过本节课的学习,你有什么收获? 2.说说位似多边形的有关概念及其性质.3.位似多边形的画图方法有哪些?4.在直角坐标系中,以原点为位似中心的位似变换的性质是什么?六、课外作业1.,2题.2.教材第118页习题4.14第3题.图形的位似是图形相似的延伸,位似图形在实际生活中有着广泛的应用.本节课的教学,我力争面向每一位学生,营造良好的学习氛围,激发每一个学生的学习热情.从精美的图片开始吸引学生的注意力,不仅引入自然、贴切,而且激发了学生学习的积极性.不足之处在于学生动手实践图形位似的画法时,练习的时间较少,学生掌握得不够熟练,应继续加强练习.。
九年级数学上册 4.8.1 图形的位似教案 北师大版(2021年整理)
九年级数学上册4.8.1 图形的位似教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册4.8.1 图形的位似教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册4.8.1 图形的位似教案(新版)北师大版的全部内容。
课题:4。
8。
1 图形的位似教学目标:1.了解位似多边形的有关概念,会判断简单的位似图形及位似中心. 2.能够利用位似将一个图形放大或缩小,并能解决一些简单的实际问题.3.经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习的实用性,体会学习数学的快乐. 教学重、难点:重点:位似多边形的相关定义、性质的理解,绘制位似多边形方法的掌握. 难点:位似多边形的判断,从位似中心的不同方向绘制位似多边形. 课前准备:制作多媒体课件,图钉、橡皮筋、铅笔等. 教学过程:一、创设情境,导入新课导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的是形状、大小都相同的全等形(多媒体出示图1);有的是形状相同,大小不同的相似图形(多媒体出示图2);有的不但是相似图形,而且所处的位置也特殊(多媒体出示图3),这样的两个图形是位似图形.你知道如何画位似图形吗?你知道位似图形有哪些性质吗?本节课就让我们一起来探究位似图形的性质与画法.【板书课题:4.8图形的位似(1)】处理方式:教师播放媒体课件,学生观察生活中的存在的全等形、相似形、位似形,体会数学来源于生活,在相似形的基础上感知位似图形.设计意图:通过用多媒体课件展示生活的的图片,引入本章的学习内容:位似图形.初步图1图2图3感知位似图形,引发学生思考位似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知 活动1:美图赏析(多媒体出示)请同学们欣赏这幅海报,它是由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A ,A ',试问A ,A '的连线是否经过镜头中心O ?OAA O '的值与哪两条线段的比相等?在图片上换其他的点还有类似的规律吗?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)在图片①和图片②上任取一组对应点A ,A ',它们的连线是否经过镜头中心O ?(2)OAA O '的值与哪两条线段的比相等?设计意图:通过以上问题引导学生感悟出:图片①和图片②上任意一组对应点的连线都经过镜头中心O ,而且对应点A ,A '到镜头中心O 的距离比等于两个图形的相似比.便于引出位似图形的概念.活动2:动手连一连(多媒体出示)如图,是两个相似比为k 的相似五边形,设直线A A ' 与B B '相交于点O ,那么直线C C '、D D '、?OA OB OC OD OE ,,,,有什么关系?AO②A '①处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)直线CC'、DD'、EE'是否也都经过点O?(2)OA OB OC OD OEOA OB OC OD OE''''',,,,有什么关系?(多媒体演示三角形相似)设计意图:通过以上问题引导学生感悟出:直线CC'、DD'、EE'都经过点O,而且每一对应点到O的距离比等于两个图形的相似比.活动3:出示位似图形的概念(多媒体出示)一般地,如果两个相似多边形任意一组对应点P,P'所在的直线都经过同一点O,且有PO'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.处理方式:教师利用多媒体出示位似多边形及位似中心的概念.强调相关要点,明确k就是这两个位似多边形的相似比.设计意图:了解位似多边形及位似中心的概念,感悟位似图形的性质.活动4:位似图形的性质(多媒体出示)请观察下列两组图形,回答问题:每组图形中两个图形是否是位似图形?若是位似图形,请找出位似中心,对应边有什么特处理方式:学生先观察、连线、测量、计算,小组内交流,教师启发引导:①如何判断两②③个图形是否位似?如果两个图形位似,位似中心与两个图形;②每组对应点到位似中心的距离之比与对应边的比有什么关系?学生交流展示①、②位似,且相似比等于对应点到位似中心的距离之比,③相似但不位似;位似中心可能在对应点的同侧,也可能在它们之间.教师板书:位似图形的对应点的连线经过位似中心,且到位似中心的距离之比等于相似比;位似中心可能在对应点的同侧,也可能在它们之间;对应线段平行或在同一条直线上.设计意图:通过观察图形、猜想、测量、计算、验证结论,提高学生分析、归纳能力,体会分类的思想,进而掌握位似的性质,位运用位似放大或缩小图形做好铺垫.三、例题解析,应用新知例1 如图,已知△ABC ,DEF , 使它与△ABC 位似,且相似比为2.处理方式:给学生留时间,让学生先独立思考,并尝试到黑板展示,其余同学在练习本上完成,并进行相互点评,学生之间对比,教师提问作图依据及利用多媒体课件规范解题步骤,最后启发引导在O 点的另一侧作图,强调知识的应用及逆向思维.解:如图,⑴画射线OA ,OB ,OC ;⑵在射线OA ,OB ,OC 上分别取点D ,E ,F ,使OD =2OA ,OE =2OB ,OF =2OC ;⑶顺次连接D ,E ,F ,得△DEF ;则△DEF 与△ABC 位似,且相似比为2.设计意图:通过例题提供应用位似的性质的一个具体情境,加深学生位似图形的理解,掌握作图技巧,提高作图能力.让学生体会用所学的知识来解决问题的意识.导语:所作△DEF 与△ABC 位似,且相似比为2,即△ABC 被放大.利用位似的知识你能将任意图形进行放大或缩小吗?O · C B AFEDOCBA满足条件的△DEF 可以在点O 的另一侧吗?F 'E 'D '处理方式:教师演示并利用多媒体课件展示具体步骤,1.将两根长短相同的橡皮筋系在一起,联结处形成一个结点. 2.选取一个图形,在图形外取一点.3.将系在一起的橡皮筋的一端固定在定点,把一只铅笔固定在橡皮筋的另一端. 4.拉动铅笔,使两根橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.请同学们来完成“做一做”:用橡皮筋放大图形.对学生进行分组,学生根据操作步骤合作完成对已知图形的放大.设计意图:通过动手操作,拓展学生的思路,结合放大或缩小不规则图形的方法,让学生通过操作、思考,讨论,加深对前面知识的理解,感悟各种不同方法之间的内在联系,体会位似在生活中的应用.四、巩固训练,落实新知1.已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.2.如图,请把下面的五角星图样放大,使得放大前后的相似比为1∶2.要把图形放大其他的倍数应怎么办?要缩CO ·AB3.请观察:以下每组图中的两个多边形是位似多边形吗?若是,请指出位似中心.处理方式:给学生留足时间,让学生先独立完成,选代表到黑板展示,同学间相互点评.设计意图:通过练习让学生理解位似图形,能应用位似知识解决相似图形中的相关问题.五、回顾反思,提炼升华通过这节课的学习,你学习了哪些知识?你有什么收获?你有什么发现、探索? 先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:⒈位似多边形的相关概念、性质,及放大、缩小图形的方法.⒉位似多边形一定是相似多边形,但相似多边形不一定位似.⒊图形变换包括:全等变换:平移、旋转、对称;位似变换.设计意图:使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)⒈如果两个相似多边形任意一组对应顶点P ,P '所在的 ,那么这样的两个相似多边形叫做位似多边形,这个点叫做 .⒉如图,通过小孔点O 蜡烛在竖直的屏幕上形成倒立的实像,像的长度BD =2cm ,OA =20cm ,OB =5cm ,则蜡烛的长度为 .⒊已知,如图,A B ''∥AB ,B C ''∥BC ,且OA ':A A '=4:3,则△ABC 与 是位似图形,位似比为 ;△OAB 与 是位似图形,位似比为 .处理方式:,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本 115页 习题4。
8_图形的位似_学案1【北师大版数学九年级上册】
4.8图形的位似
一、教学目标
1.理解位似多边形的定义及相关性质。
2 •能利用图形的位似将一个图形放大或缩小.
二、教学过程
知识点1 :位似多边形
如果两个相似多边形每组对应点所在的直线都经过同一个点,做位
似多边形。
这个点叫做位似中心。
例1:指出下图中的图形是否是位似图形?若是,指出位似中心。
注意:位似多边满足两个条件:(1 )是相似多边形;(2)两多边形每组对应点所在的直线都经过同一点。
知识点2 :位似多边形的性质
(1)位似多边形上任意一对对应点到位似中心的距离之比等于相似比。
(2)位似多边形上对应点和位似中心在同一直线上。
(3)位似多边形上的对应线段平行或在同一条直线上。
(4)位似多边形是特殊的相似多边形,因此位似多边形具有相似多边形的一切性质。
例2:如图,ABC与A'B'C,关于点0位似,BO=3 B' 0=&
(2) 若ABC的面积为7,求A,B,C,的面积。
(2)
那么这样的两个多边形叫(1) 若AC=5,求A C'
的长;
三、针对性练习:请你利用所学知识将下图的三角形放大到原来的 2倍。
一般步骤为: (1) 确定位似中心;
(2) 确定原图形的关键点,通常是多边形的顶
点;
(3) 确定位似比;
知识点3 :位似多边形的画法
例3:把图中的四边形
B 2 : 1 )。
ABCD 以点0为位似中心沿 A0方向放大2倍(即位似比为。
九年级数学上册 第四章 图形的相似 8 图形的位似教案 (新版)北师大版
图形的位似
课题
图形的位似
课时安排
共(1)课时
课程标准
掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
学习目标
了解位似多 边形及其有关概念,了解位似与相似的联系和区别,掌握位似多边形的性质.
教学重点
位似多边形的有关概念、性质与作图.
课中作业
把图1中的四边形ABCD缩小到原来的 .
环
节
二
分析:把原图形缩小到原来的 ,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.
作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
(3)分别在射线OA,OB,OC,OD的反向延长线上取点A′、B′、C′、D′,使得 ;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,
课中作业
果两个相似多边形每组对应点所在的直线都经过同一点,那么这样的两个多边形叫做位似多边形。这个点叫做位似中心。
位似多边形是特殊的相似变换.
课后作业设计:
作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得 ;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)
北师大版数学九年级上册4.8《图形的位似》教案
北师大版数学九年级上册4.8《图形的位似》教案
教学内容:
一、教学பைடு நூலகம்容
本节课选自北师大版数学九年级上册第四章第八节《图形的位似》。教学内容主要包括以下几部分:
1.位似图形的定义与性质;
2.位似比的计算;
3.位似变换的应用;
4.利用位似变换解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
3.重点难点解析:在讲授过程中,我会特别强调位似图形的定义和位似比的计算这两个重点。对于难点部分,我会通过具体图形的变换和计算实例,帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似相关的实际问题,如地图缩放、照片放大等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示位似变换的基本原理。
难点举例:位似图形的对应角相等,对应边成比例。学生可能会混淆相似和全等的概念。
(2)位似比的计算:学生在计算位似比时,可能会忘记将对应边长度的比值化为最简形式。
难点举例:计算位似比时,应将对应边的长度比值化为最简整数比。
(3)位似变换的应用:学生可能难以将位似变换应用于解决实际问题,需要教师引导和练习。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“位似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2020九年级数学上册 第四章 图形的相似 8 图形的位似教案 (新版)北师大版
板书设计:
如果两个相似多边形每组对应点所在的直线都经过同一点,那么这样的两个多边形叫做位似多边形。这个点叫做位似中心。
位 似多边形与相似多边形区 别和联系
位似多边形每组对应边所在的直线都经过同一点。
位似多边形是特殊的相似变换.
教学反思:
教师提前掌握学生的思维导图的完成情况,请有代表性的学生投影展示并讲解,其他同学进行点评、补充。对知识内容进行回顾,对学生 感觉有一定难度的内容,鼓励学生之间进行交流、讨论,互相补充,然后教师给以适当的帮助。
课后作业设计:
作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得 ;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)
图形的位似
课题
图形的位似
课时安排
共(1)课时
课程标准
掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
学习目标
了解位似多 边形及其有关概念,了解位似与相似的联系和区别,掌握位似多边形的性质.
教学重点
位似多边形的有关概念、性质与作图.
教学难点
利用位似将一个图形放大或缩小.
教学方法
合作交流,共同探究
使得 ;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.
问:此题目还可以如何画出图形?
课中作业
随机掷一枚硬币两次,
《图形的位似》导学案 2022年北师大版九数上册
人工作者北师版九年级数学上册4.8 图形的位似【教学目标】知识与技能掌握位似图形的定义并掌握位似图形的性质;过程与方法学生经历将一个图形放大或缩小的方法,并且在学习和运用过程中发展数学应用意识。
情感、态度与价值观培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值。
【教学重难点】教学重点:能够利用作位似图形等方法将一个图形放大或缩小。
教学难点:位似图形的画法。
【导学过程】【创设情景,引入新课】展示课件:是上海高楼的画面,演示图片的缩放过程。
(回顾相似多边形的有关概念和性质,为新课引入进行铺垫,同时渗透爱国主义教育,激发学生的学习兴趣和爱国热情)【自主探究】操作实验:指导全班同学动手操作、进行实验,每位同学拿出自备的两个相似图形纸片,位置任意摆放,连接对应点,观察对应点的连线是否经过一点。
同时请三位同学上黑板前台选取不同类型的相似图形(三角形、四边形、五边形)进行演示,供班级同学参考并猜想。
这几副图片表示出了图形之间的什么特殊的关系?【课堂探究】建构新知:位似图形及其有关概念如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.2、让学生进一步操作,亲身感受位似图形与相似图形的联系与区别。
通过观察、思考、交流、讨论得出如下结论:位似图形是一种特殊的相似图形,而相似图形未必都能构成位似关系。
(引导学生动手、动脑,观察、思考,感悟知识的生成和变化)3、认一认:见课本97页图3--36,3--37(1)、(2)、辨认位似图形,并指认位似中心。
(从正反两个方面强化学生对位似图形的认识)人工作者 北师版九年级数学上册4、练一练:例1 下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等;B.两个图形如果是位似图形,那么这两个图形不一定相似;C.两个图形如果是相似图形,那么这两个图形一定位似;D.两个图形如果是位似图形,那么这两个图形一定相似。
新北师大版九年级数学上册《图形的位似》导学案
科目 数学 课题
姓名
新北师大版九年级数学上册 《图形的位似》导
备注(教师
学案
主备人 学 习 目 标 重点: .理解位似图形上任意一对对应点到位似中心的距离之比等于位似比,并能够运用这一 性质将图形放大或缩小,并培养学生数学学习的能力。 难点:理解位似图形上任意一对对应点到位似中心的距离之比等于位似比, 并能够运用这一性 A (1) D D1 备注(教师 复备栏及学 生笔记) A A1
D C D1 C1 A1 A C D1 C1 B
D
D
C B1 C1 A1 D1
装
质将图形放大或缩小,并培养学生数学学习的能力。 学法指导及使用说明: 知识链接:三角形相似的性质 一、学一学(自主探究)——展示你的身手!
C 1
D
C
D C D1 C1 A1 A B B1
D
D C
C
D C D1 C1 A1 A B B1
B1
B
A
A1
D C D1 C1 A1 A B B1
A1
D C D1 C1 A1 A B B1 D1 C1
B1
D1 C1 A1 B1
D C D1 C1 A1 A B B1
A
D C A1 A B
D C D1 C1 A1 A B B1
C D1 C1 A1 B1 B
D
A
B1
D C D1 C1 A1 A B B1
⑶已知△ABC 和△A1B1C1,如果顶点所在直线 AA1,BB1,CC1 相交于同一点 O,那么△ABC 与 2 如图,D、E 分别是 AB、AC 上的点, ⑴如果 DE∥BC,那么△ADE 和△ABC 是位似图形吗?为什么? ⑵如果△ADE 和△ABC 是位似图形,那么 DE∥BC 吗?为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.8图形的位似
一、教学目标
1.理解位似多边形的定义及相关性质。
2.能利用图形的位似将一个图形放大或缩小. 二、教学过程 知识点1:位似多边形
如果两个相似多边形每组对应点所在的直线都经过同一个点,那么这样的两个多边形叫做位似多边形。
这个点叫做位似中心。
例1:指出下图中的图形是否是位似图形?若是,指出位似中心。
注意:位似多边满足两个条件:(1)是相似多边形;(2)两多边形每组对应点所在的直线都经过同一点。
知识点2:位似多边形的性质
(1) 位似多边形上任意一对对应点到位似中心的距离之比等于相似比。
(2) 位似多边形上对应点和位似中心在同一直线上。
(3) 位似多边形上的对应线段平行或在同一条直线上。
(4) 位似多边形是特殊的相似多边形,因此位似多边形具有相似多边形的一切性质。
例2:如图,ABC ∆与,
,,C B A ∆关于点O 位似,BO=3,B ′O=6。
(1) 若AC=5,求A ′C ′的长;
(2) 若ABC ∆的面积为7,求,
,,C B A ∆的面积。
P
(1) A
D B
C
E
(2)
A B
C
O
,A
,B
,C
知识点3:位似多边形的画法
一般步骤为:(1)确定位似中心;
(2)确定原图形的关键点,通常是多边形的顶点;
(3)确定位似比;
(4)找出新多边形的对应关键点。
例3:把图中的四边形ABCD以点O为位似中心沿AO方向放大2倍(即位似比为2:1)。
三、针对性练习:请你利用所学知识将下图的三角形放大到原来的2倍。
A
B
C D
O .
A
B C。