北师大版九年级数学上(新)第四章图形的相似测试练习

合集下载

北师大版九年级数学上册 第四章 图形的相似 单元测试题(有答案)

北师大版九年级数学上册 第四章 图形的相似 单元测试题(有答案)

北师大版九年级数学上册第四章图形的相似单元测试题一.选择题(共10小题,每小题3分,共30分)1.如果2x=3y,那么下列比例式中正确的是()A.=B.=C.=D.=2.如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()A.6B.7C.8D.93.自然界中存在很多自相似现象,如树木的生长,雪花的形成,土地干旱形成的地面裂纹.分形几何就是专门研究像雪花形状这样的自相似图形(即图形的局部与它的整体具有一定程度的相似关系)的一个数学分支.下列自相似图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.如图,在△ABC中,点P为AB上一点连接CP.若再添加一个条件使△APC与△ACB相似,则下列选项中不能作为添加条件的是()A.∠ACP=∠B B.∠APC=∠ACBC.AP:AC=AC:AB D.AP:AB=PC:BC5.如图,在△ABC中,D,E分别为AB、AC边上的中点,则△ADE与△ABC的面积之比是()A.1:4B.1:3C.1:2D.2:16.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处7.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S 在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为()A.40m B.60m C.120m D.180m8.若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为()A.9:25B.3:25C.3:5D.2:59.如图,△OA1B1与△OAB的形状相同,大小不同,△OA1B1是由△OAB的各顶点变化得到的,则各顶点变化情况是()A.横坐标和纵坐标都乘以2B.横坐标和纵坐标都加2C.横坐标和纵坐标都除以2D.横坐标和纵坐标都减210.在一张复印出来的纸上,一个三角形的一条边由原图中的2cm 变成了6cm ,则复印出的三角形的面积是原图中三角形面积的( )A .3倍B .6倍C .9倍D .12倍二.填空题(共8小题,每小题3分,共24分)11.已知,=,则= .12.如图,已知l 1∥l 2∥l 3,直线l 4、l 5被这组平行线所截,且直线l 4、l 5相交于点E ,已知AE =EF=1,FB =3,则= .13.如图,四边形ABCD ∽四边形EFGH ,∠A =∠D =100°,∠G =65°,则∠F = .14.如图,已知∠BAC =∠DAE ,请你再补充一个条件 ,使得△ABC ∽△ADE .15.如图,在平行四边形ABCD 中,P 是AD 边上的一个点,连接PB ,PC ,M ,N 分别是PB ,PC 的中点;已知S ▱ABCD =16,则S △PMN = .16.如图是小孔成像原理的示意图,点O 与物体AB 的距离为45厘米,与像CD 的距离是30厘米,AB ∥CD .若物体AB 的高度为27厘米,那么像CD 的高度是 厘米.17.已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为.18.如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.三.解答题(共7小题,共66分)19.已知4:x=1:75%,求x的值.20.如图,在△ABC中,AB=10,AC=8,点D在直线AB上,过点D作DE∥BC交直线AC与点E.如果BD=4,求AE的长.21.如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且相似比为1:2,求AD的长.22.(1)解方程x2﹣3x﹣18=0;(2)如图,BD、AC相交于点P,连接BC、AD,且∠1=∠2,求证:△ADP∽△BCP.23.如图,BD、AC相交于点P,连接AB、BC、CD、DA,∠1=∠2(1)求证:△ADP∽△BCP;(2)若AB=8,CD=4,DP=3,求AP的长.24.如图,矩形ABCD为台球桌面,AD=280cm,AB=140cm,球目前在E点位置,AE=35cm,如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.25.先阅读下列材料,然后解答问题.材料:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线例如:如图①,AD把△ABC分成△ABD与△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割线.解答下列问题:(1)如图②,在△ABC中,∠B=40°,AD是△ABC的完美分割线,且△ABD是以AD为底边的等腰三角形,则∠CAD=度.(2)在△ABC中,∠B=42°,AD是△ABC的完美分割线,且△ABD是等腰三角形,求∠BAC 的度数.参考答案一.选择题1.解:∵2x=3y,∴=或=或=.故选:C.2.解:∵DE∥BC,∴=,即=,∴AE=6,∴AC=AE+EC=6+2=8.故选:C.3.解:A、既是中心对称图形,也是轴对称图形,不合题意;B、既是中心对称图形,也是轴对称图形,不合题意;C、既是中心对称图形,也是轴对称图形,不合题意;D、是轴对称图形,但不是中心对称图形,符合题意.故选:D.4.解:A、当∠ACP=∠B,∠A=∠A,可得△APC∽△ACB,故该选项不符合题意;B、当∠APC=∠ACB,∠A=∠A,可得△APC∽△ACB,故该选项不符合题意;C、当AP:AC=AC:AB,∠A=∠A,可得△APC∽△ACB,故该选项不符合题意;D、当AP:AB=PC:BC,∠A=∠A,无法证明△APC∽△ACB,故该选项符合题意;故选:D.5.解:由题意可知:DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,故选:A.6.解:帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、2、4;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵==,∴马应该落在②的位置,故选:B.7.解:∵RQ⊥PS,TS⊥PS,∴RQ∥TS,∴△PQR∽△PST,∴=,即=,∴PQ=120(m).故选:C.8.解:∵相似三角形△ABC与△DEF面积的比为9:25,∴它们的相似比为3:5,∴△ABC与△DEF的周长比为3:5.故选:C.9.解:由直角平面坐标系得出A(2,1),A1(4,2),B(1,3),B1(2,6),故对应点的横坐标和纵坐标都乘以2.故选:A.10.解:由题意可知,相似多边形的边长之比=相似比=2:6=1:3,所以面积之比=(1:3)2=1:9.所以复印出的三角形的面积是原图中三角形面积的9倍.故选:C.二.填空题11.解:∵=,∴==﹣5.故答案是:﹣5.12.解:∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l 2∥l 3,∴==,∴==,故答案为.13.解:∵四边形ABCD ∽四边形EFGH , ∴∠A =∠D =∠E =∠H =100°,∴∠F =360°﹣∠E ﹣∠H ﹣∠G =360°﹣100°﹣100°﹣65°=95°.故答案为95°.14.解:∵∠BAC =∠DAE ,∠B =∠D ,∴△ABC ∽△ADE ,故答案为:∠B =∠D 等15.解:∵四边形ABCD 为平行四边形,∴S △PBC =S ▱ABCD =×16=8,∵M ,N 分别是PB ,PC 的中点,∴MN ∥BC ,MN =BC ,∴△PMN ∽△PBC ,∴=()2=,∴S △PMN =×8=2.故答案为2.16.解:∵AB ∥CD∴△ABO ∽△CDO∴=又∵AB =27∴CD =18.故答案为:18.17.解:因为两个相似三角形的相似比为4:3,所以则这两个三角形的对应高的比为4:3.故答案为4:3.18.解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).三.解答题19.解:4:x=1:75%,x=4×75%,解得:x=2.20.解:∵DE∥BC,∴=,∵AB=10,AC=8,BD=4,∴=,∴AE=.21.解:∵矩形ABFE∽矩形DEFC,且相似比为1:2,∴==,∵四边形ABCD为矩形,∴CD=AB=4∴==,∴DE =8,AE =2,∴AD =AE +DE =2+8=10.22.解:(1)(x ﹣6)(x +3)=0, ∴x =6或x =﹣3;(2)∵∠1=∠2,∠DPA =∠CPB ,∴△ADP ∽△BCP ;23.解:(1)证明:∵∠1=∠2,∠DPA =∠CPB∴△ADP ∽△BCP(2)∵△ADP ∽△BCP ,∴=,∵∠APB =∠DPC∴△APB ∽△DPC∴==,∴AP =624.(1)证明:∵∠EFG =∠DFG , ∴∠EFB =∠DFC ,又∵∠B =∠C ,∴△BEF ∽△CDF ;(2)解:∵△BEF ∽△CDF ,∴=,设FC =xcm ,则=, 解得:x =160,答:CF 的长为160cm .25.解:(1)∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=40°故答案为:40(2)若BD=AD,∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=42°∵AD=BD,∴∠ABD=∠BAD=42°∴∠BAC=∠BAD+∠CAD=84°若AB=BD,∴∠BAD=69°=∠BDA∵∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=42°∴∠BAC=∠BAD+∠CAD=42°+69°=111°若AB=AD,∴∠B=∠ADB=42°∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=42°∵∠ADB=∠DAC+∠C=42°+∠C≠42°∴不存在AB=AD,综上所述:∠BAC的度数为84°或111°。

北师大版九年级上数学《第四章图形的相似》专题练习(含答案)

北师大版九年级上数学《第四章图形的相似》专题练习(含答案)

图形的相似专题练习1.已知△ABC∽△DEF,AB=1,BC=3,EF=5,则△ABC与△DEF的面积比是()A.1∶9 B.1∶25C.9∶25 D.3∶52.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OB∶OB′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()图2A.4∶9 B.2∶5C.2∶3 D.2∶ 33.如果3A=2B(AB≠0),那么下列比例式中正确的是()A.ab=32B.ba=23C.a2=b3D.a3=b24.如图,在△ABC中,点D,E分别为边AB,AC上的点,且DE∥B C.若AD=5,BD=10,AE=3,则CE的长为()图4A.3 B.6C.9 D.125.在下面的图形中,相似的一组是(),A) ,B),C) ,D)图56.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是(),A) ,B),C) ,D)图67.为测量某河的宽度,小在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于()图7A.120 m B.67.5 mC.40 m D.30 m8.如图,在△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是(),A) ,B),C) ,D)图89.如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥B C .如果ADDB =32,AC =10,那么EC =________.图910.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处.已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_________米.图1011.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若CD =3.2 cm ,则AB 的长为_________ cm.图1112.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为__________.图1213.如图,在平面直角坐标系xOy中,以原点为位似中心,线段AB与线段A′B′是位似图形,若A(-1,2),B(-1,0),A′(-2,4),则B′的坐标为___________.图1314.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,1),B(1,-2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB的位似比为2∶1,并分别写出点A,B的对应点A1,B1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后得△O2A2B2,并写出点A,B的对应点A2,B2的坐标;(3)△OA1B1和△O2A2B2是位似图形吗?若是,请在图中标出位似中心M,并写出点M的坐标.图1415.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC =90°.(1)求证:△ADE∽△BEC;(2)若AD=1,BC=3,AE=2,求AB的长.图1516.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.(1)求证:△ABF∽△BGC;(2)若AB=2,G是CD的中点,求AF的长.图1617.如图,BD,CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F,H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.图1718.如图,一圆柱形油桶,高1.5 m,用一根2 m长的木棒从桶盖小口斜插桶内,至另一端的B处,抽出木棒后,量得上面没浸油的部分为1.2 m,求桶内油面高度.图1819.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC,DE,两杆相距30米.测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H,B,F,D,G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度.图1920.如图1,把两块全等的含45°角的直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合.把三角板ABC 固定不动,让三角板DEF绕点D旋转,两边分别与线段AB,BC相交于点P,Q,易说明△APD∽△CDQ.根据以上内容,回答下列问题:(1)如图2,将含30°角的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰△ABC(其中∠ABC=120°)的底边中点O重合,两边DF,DE分别与边AB,BC 相交于点P,Q.写出图中的相似三角形__△APD∽△CDQ__(直接填在横线上);(2)其他条件不变,将三角板DEF旋转至两边DF,DE分别与边AB的延长线、边BC相交于点P,Q.上述结论还成立吗?请你在图3上补全图形,并说明理由;(3)在(2)的条件下,连接PQ,△APD与△DPQ是否相似?请说明理由;(4)根据(1)(2)的解答过程,你能否将两三角板改为更一般的三角形,使得(1)中的结论仍然成立?若能,请说明两个三角形应满足的条件;若不能,请简要说明理由.,图1),图2),图3)图20参考答案【过关训练】1.C2.A3.C4.B5.C6.A7.A8.D 9.__4__10.__10__11._9.6__12._1+52__13.(-2,0)_14.解:(1)如答图,△OA1B1为所作,点A1,B1的坐标分别为(4,2),(2,-4);(2)如答图,△O2A2B2为所作,点A2,B2的坐标分别为(0,2),(-1,-1);(3)△OA1B1和△O2A2B2是位似图形,如答图,点M为所,位似中心M的坐标为(-4,2).15.[解:(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BE C.(2)∵△ADE∽△BEC,∴BEAD=BCAE,即BE1=32,∴BE=3 2,∴AB=AE+BE=7 2.16.解:(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCG=90°.∵BF⊥AE,∴∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG,∴△ABF∽△GB C.(2)∵△ABF∽△BG C.∴ABBG=AFBC.∵AB=2,G是CD的中点,四边形ABCD是正方形,∴BC=2,CG=1,∴BG=BC2+CG2=5,∴25=AF2,解得AF=45 5.17.证明:(1)∵BD⊥AC,DG⊥BC,∴∠BDC=∠DGC=90°,∴∠DBC+∠DCG=∠GDC+∠DCG,∴∠GDC=∠DBC,∴△BDG∽△DCG,∴BG∶DG=DG∶CG,即DG2=BG·CG.(2)同(1)中的方法,同理可证△BGH∽△FGC,∴BG∶GF=GH∶CG,∴BG·CG=GF·GH.18.解:∵DE∥BC,∴△ADE∽△ABC,∴AEAC=ADAB,即AE1.5=1.22,解得AE=0.9 m,∴EC=1.5-0.9=0.6(m),即油面高0.6 m. 19.解:设AH=x,BH=y,由题意知,△AHF∽△CBF,△AHG∽△EDG,∴BFHF=CBAH,DGHG=DEAH,∴3x=1.5×(y+3),5x=1.5×(y+30+5),解得x=24.则旗杆AH的高度为24 m.20.__△APD∽△CDQ__解:(2)成立,如答图.理由如下:∵AB=BC,∴∠BAC=∠BC A.∵∠ABC=120°,∴∠BAC=∠BCA=30°,∴∠ADP+∠APD=180°-30°=150°.∵∠EDF=30°,∴∠ADP+∠CDQ=150°,∴∠APD=∠CDQ,∴△APD∽△CDQ. (3)△APD∽△DPQ.理由如下:∵△APD∽△CDQ,∴APCD=DPDQ.∵点D为AC的中点,∴CD=AD,∴APAD=DPDQ,即APDP=ADDQ.又∵∠P AD=∠PDQ=30°,∴△APD∽△DPQ.(4)△DEF满足∠EDF=α,△ABC满足顶角为(180°-2α)的等腰三角形即可.理由:∵∠ABC=180°-2α,∴∠A=∠C=α.∵∠ADP+∠APD=180°-α,∠ADP+∠QDC=180°-α,∴∠APD=∠CDQ.又∵∠A=∠C,∴△APD∽△CDQ.。

北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

北师大版数学九年级上册《第四章图形相似》单元测试一.选择题(共12小题)1.若,则的值为()A.1 B.C.D.2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF 的面积比为()A.3:2 B.2:3 C.4:9 D.9:163.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90m B.60m C.45m D.30m 4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5 B.3:5 C.2:3 D.5:7 8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11 9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B 作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为()A.B.C.D.[来源:学] 10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.三.解答题(共6小题)18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△AB E∽△DEF;(2)若正方形的边长为4,求BG的长.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF 以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K 到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t 秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?参考答案一.选择题1.C.2.C.3.B.4.A.5.B.6.A.7.A.8.C.9.B10.D.11.D.12.B.二.填空题13.]4.14.7.5.15.].16.3.17.36.三.解答题18.(1)证明:∵AB=2,BC=4,BD=1,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△C BA,∴△ABD∽△CDE,∴DE=1.5.19.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∵DF=DC,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.20.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.21.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.22.解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,﹣2);(2)(1,0)23.解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当点K运动6秒时,点K到点F,点P还没到点B,∴点K不可能在BC边上,.综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.。

北师大版九年级数学上册第四章图形的相似单元测试(含解析)

北师大版九年级数学上册第四章图形的相似单元测试(含解析)

1北师大版九年级数学上册第四章图形的相似单元测试(含解析)一、选择题1.已知x∶y=5∶2,则下列各式中不正确的是( ) A.=B.- =C.=D.- =答案 D A.由合比性质,得=,故A 正确;B.由分比性质,得- =,故B 正确;C.由反比性质,得y∶x=2∶5,由合比性质,得 = ,再由反比性质,得 =,故C 正确;D.由反比性质,得y∶x=2∶5,由分比性质,得- =- ,再由反比性质,得 - =-,故D 错误.故选D.2.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A,B,C.直线DF 分别交l 1,l 2,l 3于点D,E,F,AC 与DF 相交于点H,且AH=2,HB=1,BC=5,则的值为( )A.B.2C.D.答案 D 由直线l 1∥l 2∥l 3,得 =.因为AH=2,HB=1,所以AB=3.因为BC=5,所以 =.所以 =. 3.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA,则下列结论一定正确的是( )A.AB 2=BC ·BD B.AB 2=AC ·BD2C.AB ·AD=BD ·BCD.AB ·AD=AD ·CD答案 A 因为△ABC ∽△DBA,所以 = =,所以AB 2=BC ·BD,AB ·AD=AC ·DB.4.在比例尺为1∶10 000的地图上,一块面积为2 cm 2的区域表示的实际面积是( ) A.2 000 000 cm 2B.20 000 m 2C.4 000 000 m 2D.40 000 m 2答案 B 设实际面积是x cm2,则 =,解得x=200 000 000,∵1 m 2=10 000 cm 2,∴200 000 000 cm 2=20 000 m 2.故选B.5.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC,BE 与CD 相交于点F,则下列结论一定正确的是( )A. =B. =C. =D. =答案 A ∵DE∥BC,∴△ADE ∽△ABC, ∴ = = ,故选项A 正确,故选A.6.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有( )A.0对B.1对C.2对D.3对 答案 D ∵四边形ABCD 是平行四边形,∴AB∥DC,AD ∥BC,∴△EAP ∽△EDC,△EAP ∽△CBP,∴△EDC ∽△CBP,故有3对相似三角形.故选D.7.如图,在△ABC 中,中线BE 、CD 相交于点O,连接DE,下列结论:① = ;② △ △= ;③ = ;④ △ △=.其中正确的个数是( )3A.1B.2C.3D.4答案 C 由中线BE 、CD 知,DE 为△ABC 的中位线,所以DE= BC,DE ∥BC,所以 =,①正确;由DE ∥BC 可得△DOE ∽△COB,则△ △= =,②错误;由DE ∥BC 易得 = , = ,所以 = ,③正确;④△ △= =,设△DOE 的高为h,则△BOC 的高为2h,△ABC 的高为6h,则△ △ = = , △ △ = ,所以 △ △ =,④正确.故选C.8.如图,点E,点F 分别在菱形ABCD 的边AB,AD 上,且AE=DF,BF 交DE 于点G,延长BF 交CD 的延长线于H,若=2,则的值为( )A.B.C.D.答案 B 设菱形ABCD 的边长为3a.因为四边形ABCD 是菱形,=2,AE=DF,所以AE=DF=a,AF=BE=2a,AB ∥CD,所以 = = =,所以HD= AB= a,HF=HB.因为AB ∥CD,所以 = ==,所以BG= HB.所以 == . 9.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=CD.下列结论:①∠BAE=30°,②△ABE ∽△AEF,③AE⊥EF,④△ADF ∽△ECF.其中正确的个数为( )A.1B.2C.3D.4答案 B ∵在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且4CF=CD,∴∠B=∠C=90°,AB∶EC=BE∶CF=2∶1.∴△ABE ∽△ECF,∴AB∶EC=AE∶EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB∶AE=BE∶EF,∠AEB+∠FEC=90°. ∴∠AEF=∠B=90°.∴△ABE ∽△AEF,AE ⊥EF.∴②③正确. 由已知条件推不出①④正确.故选B.10.如图,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E,F 在△ABC 内,顶点D,G 分别在AB,AC 上,AD=AG,DG=6,则点F 到BC 的距离为( )A.1B.2C.12 -6D.6 -6答案 D 如图,过点A 作AM ⊥BC 于点M,交DG 于点N,延长GF 交BC 于点H.∵AB=AC,AD=AG,∴AD∶AB=AG∶AC, ∵∠BAC=∠DAG,∴△ADG ∽△ABC, ∴∠ADG=∠B,∴DG∥BC,∴AN⊥DG.∵四边形DEFG 是正方形,∴FG⊥DG,∴FH⊥BC, ∵AB=AC=18,BC=12,∴BM=BC=6, ∴AM= - =12 .∵△ADG ∽△ABC,∴ =,∴=,∴AN=6 ,∴MN=AM-AN=6,∴FH=MN-GF=6-6.即点F到BC的距离为6-6.故选D.二、填空题11.若△ABC与△DEF相似且面积之比为25∶16,则△ABC与△DEF的周长之比为.答案5∶4解析相似三角形的面积比等于相似比的平方,相似三角形的周长比等于相似比.因为△ABC与△DEF相似且面积比为25∶16,所以△ABC与△DEF的周长比为5∶4.12.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则点E的坐标为.答案(,)解析∵点A的坐标为(1,0),∴点B的坐标为(1,1).又∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,∴点E的坐标为(,).13.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.答案解析∵BF⊥AC,∴∠CFB+∠FCE=90°,又∠CFB+∠CBF=90°,∴∠FCE=∠CBF.5∵AB∥CD,∴∠FCE=∠BAE.∴∠EAB=∠CBF.∵∠BCF=∠ABC,∴△FCB∽△CBA.∴CF∶CB=CB∶AB=1∶2.∴FC∶AB=1∶4.∵FC∥AB,∴△FCE∽△BAE.∴==.14.如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处恰好能看到铁塔的顶部B和底部A,设小明的手臂长l=45cm,小尺长a=15cm,点D到铁塔底部的距离AD=42m,则铁塔的高度是m.答案14解析作CH⊥AB于H,交EF于P,如图,则CH=DA=42m,由题意知,CP=45cm=0.45m,EF=15cm=0.15m.∵EF∥AB,∴△CEF∽△CBA,∴=,即=,∴AB=14m,即铁塔的高度为14m.15.如图,直线l1,l2,…,l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E,C,F.若BC=2,则EF的长是.答案56解析∵直线l1,l2,…,l6是一组等距离的平行线,∴=,∵BC∥EF,∴△ABC∽△AEF,∴==,又∵BC=2,∴EF=5.16.如图,E、F分别是平行四边形ABCD的边AD、BC的中点,若四边形AEFB与四边形ABCD相似,AB=4,则AD 的长度为.答案4解析设AE=x(x>0),则AD=2x,∵四边形ABCD与四边形ABFE相似,∴=,∴AB2=2x2,∴AB=x=4,∴x=2,∴AD=4.17.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.答案解析如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,7∴OF=OG-GF=2-=.同理,MN=,∴ON=,∴S阴影=1-××=.18.如图,矩形DEFG的边EF在△ABC的边BC上,点D在边AB上,点G在边AC上,△ADG的面积是40,△ABC 的面积是90,AM⊥BC于M交DG于N,则AN∶AM=.答案2∶3解析∵四边形DEFG是矩形,∴DG∥BC,∴△ADG∽△ABC.∵△ADG的面积是40,△ABC的面积是90,==,∴△△∴=,∵AM⊥BC于M交DG于N,DG∥BC,∴AN⊥DG,∴==.三、解答题19.如图,在平面直角坐标系内有两点A(-2,0),B,CB所在直线的方程为y=2x+b,连接AC,求证:△AOC∽△COB.8证明∵C、B在直线y=2x+b上,∴把点B的坐标代入,求得直线方程为y=2x-1,∴C(0,-1),易证OC∶OB=OA∶OC=2∶1,又∠AOC=∠COB=90°,∴△AOC∽△COB.20.如图,△ABC的三个顶点的坐标分别为A(-2,4)、B(-3,1)、C(-1,1),以坐标原点O为位似中心,2为相似比,在第二象限内将△ABC放大,放大后得到△A'B'C'.(1)画出放大后的△A'B'C',并写出点A'、B'、C'的坐标;(点A、B、C的对应点分别为A'、B'、C')(2)求△A'B'C'的面积.答案(1)如图所示,△A'B'C'即为所求.910A'(-4,8),B'(-6,2),C'(-2,2). (2)∵S △ABC =×2×3=3,又∵△A'B'C'与△ABC 的相似比为2∶1,∴△ △=4,∴S △A'B'C'=4S △ABC =12.21.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O. (1)求证:△COM ∽△CBA; (2)求线段OM 的长度.答案 (1)证明:由题意知A 与C 关于直线MN 对称, ∴AC⊥MN,∴∠COM=90°.在矩形ABCD 中,∠B=90°, ∴∠COM=∠B,又∵∠ACB=∠MCO,∴△COM ∽△CBA. (2)∵在Rt △CBA 中,AB=6,BC=8, ∴AC=10,∴OC=5,∵△COM ∽△CBA,∴ =, ∴OM=.22.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB边以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA边以每秒3cm的速度向A点运动,当P点到达B点时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,说明理由.答案(1)由题意得AP=4x cm,CQ=3x cm,AQ=(30-3x)cm,0≤x≤5.当PQ∥BC时,有=,即=-,解得x=,∴当x=时,PQ∥BC.(2)能.∵AB=CB,∴∠A=∠C,分两种情况讨论.①若△APQ∽△CBQ,则=,即=-,解得x=5或x=-10(舍去),此时AP=20cm.②若△APQ∽△CQB,则=,即=-.解得x=,此时AP=cm.综上,当AP=20cm或AP=cm时,△APQ与△CQB相似.23.请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;(2)如图,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空);11(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,AD=3,求的值.答案(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵EA=EC,∠GAE=∠C=90°,∴△EAG≌△ECF(ASA),∴EG=EF.(2)=.(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,则∠MEN=90°,EM∥BC,EN∥AB,∴==,∴==,∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,又∠FNE=∠GME=90°,12∴Rt△FNE∽Rt△GME,∴==.13。

北师大版九年级数学上册第四章图形的相似测试卷

北师大版九年级数学上册第四章图形的相似测试卷

北师大版九年级数学测试卷(考试题)第四章 图形的相似周周测3一、选择题(每小题5分,共30分)1.(贵阳中考)如果两个相似三角形对应边的比为2∶3,那么这两个相似三角形面积的比是( )A .2∶3 B.2∶ 3 C .4∶9 D .8∶272.如图,两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N3.如图,测得BD =120 m ,DC =60 m ,EC =50 m ,则河宽AB 为( )A .120 mB .100 mC .75 mD .25 m4.(武汉中考)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)5.如图,在Rt △ABC 中,∠ACB =90°,C D ⊥AB 于D ,且AD ∶BD =9∶4,则AC ∶BC 的值为( )A .9∶4B .9∶2C .3∶4D .3∶26.如图,小明用自制的直角三角形纸板DEF 测量树AB 的高度,测量时,使直角边DF 保持水平状态,其延长线交AB 于点G ;使斜边DE 所在的直线经过点A.测得边DF 离地面的高度为1 m ,点D 到AB 的距离等于7.5 m .已知DF =1.5 m ,EF =0.6 m ,那么树AB 的高度等于( )A .4 mB .4.5 mC .4.6 mD .4.8 m二、填空题(每小题5分,共20分)7.若两个相似三角形的面积之比为1∶9,则它们的周长之比为________.8.如图,在平面直角坐标系中,△A′B′C′是△ABC的以原点O为位似中心的位似图形,且相似比为1∶2,若A的坐标为(-3,4),则A′的坐标为________.9.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如图装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20 cm,光屏在距小孔30 cm处,小华测量了蜡烛的火焰高度为2 cm,则光屏上火焰所成像的高度为________cm.10.如图,小明在墙上挂了一面镜子AB,调整好标杆CD,正好通过标杆顶部在镜子上边缘A处看到旗杆的顶端E的影子,已知AB=2 m,CD=1.5 m,BD=2 m,BF=20 m,则旗杆EF的高度为________.三、解答题(共50分)11.(10分)(漳州中考改编)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2,在图中画出四边形AB′C′D′.12.(12分)已知△ABC∽△DEF,DEAB=23,△ABC的周长是12 cm,面积是30 cm2.(1)求△DEF的周长;(2)求△DEF的面积.13.(14分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.14.(14分)(镇江中考改编)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子(MF)仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).求小明原来的速度.参考答案 1.C 2.A 3.B 4.A 5.D 6.A 7.1∶3 8.(32,-2) 9.3 10.7 m 11.图略. 12.(1)∵DE AB =23,∴△DEF 的周长为12×23=8(cm).(2)∵DE AB =23,∴△DEF 的面积为30×(23)2=1313(cm 2). 13.这种测量方法可行.理由如下:设旗杆高AB =x.过F 作FG ⊥AB 于G ,交CE 于H.所以△AGF ∽△EHF.因为FD =1.5,GF =27+3=30,HF =3,所以EH =3.5-1.5=2,AG =x -1.5.由△AGF ∽△EHF ,得AG EH =GF HF ,即x -1.52=303.解得x =21.5.答:旗杆的高为21.5米. 14.设小明原来的速度为x m/s ,则CE =2x m ,AM =AF -MF =(4x -1.2)m ,EG =2×1.5x =3x(m),BM =AB -AM =12-(4x -1.2)=13.2-4x ,∵点C ,E ,G 在一条直线上,CG ∥AB ,∴△OCE ∽△OAM ,△OEG ∽△OMB.∴CE AM =OE OM,EG BM =OE OM .∴CE AM =EG BM ,即2x 4x -1.2=3x 13.2-4x.解得x =1.5,经检验,x =1.5为方程的解.∴小明原来的速度为1.5 m/s.答:小明原来的速度为1.5 m/s.附赠材料:怎样提高答题效率直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。

新北师大版九年级上第四章图形的相似检测题含答案

新北师大版九年级上第四章图形的相似检测题含答案

第四章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是(C)A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似2.已知△ABC∽△DEF,相似比为3∶1,且△ABC的周长为18,则△DEF的周长为(C)A.2B.3C.6D.543.如图,已知BC∥DE,则下列说法不正确的是(C)A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE∶AD是相似比D.点B与点E,点C与点D是对应位似点4.如图,身高为1.6m的吴格霆想测量学校旗杆的高度,当她站在C处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是(C) A.6.4mB.7.0mC.8.0mD.9.0m,第3题图),第4题图),第5题图),第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于(B)A.60mB.40mC.30mD.20m6.“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形(B)A.左上B.左下C.右上D.右下7.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是(B)A.(6,0) B.(6,3) C.(6,5) D.(4,2),第7题图),第8题图),第9题图),第10题图)8.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA 的面积比为( C )A .2∶3B .2∶5C .4∶9D.2∶ 39.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n ),则x -m y -n=__45__. 12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP .要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__AC AB__. ,第12题图),第13题图),第14题图),第15题图)14.如图,矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工出一个边长比是1∶2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其他顶点均在三角形的边上,则这个平行四边形的较短的边长为__2.4_cm 或2411_cm __. 三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.解:在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC=AD AB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.解:两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米长的两根钢筋为对应边,把50厘米分截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-1,2),B (-3,4),C (-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.解:20.(10分)如图,矩形ABCD 为台球桌面.AD =260cm ,AB =130cm.球目前在E 点位置,AE =60cm.如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)解:设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得:△BEF∽△CDF ,∴BE CD =BF CF ,即70130=260-x x,∴x =169cm ,即CF =169cm 21.(10分)已知,如图,△ABC 中,AD 是中线,且CD 2=BE ·BA .求证:ED ·AB =AD ·BD .证明:∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BD AB,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BD AB ,∴ED ·AB =AD ·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC.∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C.∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD .∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°)点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM CN的值是否随着α的变化而变化?如果不变,请求出PM CN的值;反之,请说明理由. 解:(1)由题意知:CD 是Rt △ABC 中斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30°(2)PM CN的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD=∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PD CD,又∵由(1)知AD =CD ,∴∠ACD =∠A =30°,即∠PCD =30°.在Rt △PCD 中,∠PCD =30°,∴PD CD=13=33,∴PM CN =PD CD =33。

新版北师大初中数学九年级(上)第四章图形的相似单元测试(带答案)

新版北师大初中数学九年级(上)第四章图形的相似单元测试(带答案)

九(上)第四章图形的相似单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( ) A.1250千米 B.125千米 C.12.5千米 D. 1.25千米2、【基础题】已知135=a b ,则ba ba +-的值是()★A. 32B. 23C. 49D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD =,DE =4 cm ,则BC 的长为( ) A .8 cm B .12 cm C .11 cm D .10 cm 4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是() A .1:1B .1:2C .1:3D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )★★★6、【基础题】下列结论不正确的是( ) ★ A.所有的矩形都相似B.所有的正方形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似7、【基础题】下列说法中正确的是( )★A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等 8、【综合题Ⅰ】如左下图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( )★★★ A. ∠APB =∠EPC B. ∠APE =90°C. P 是BC 的中点 D. BP ︰BC =2︰39、【综合题Ⅱ】(2008山东潍坊)如右上图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =()A.35x + B.45x -C.72D.21212525x x -10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是()A . b a c =+B . b ac =C . 222b ac =+D . 22b a c ==二、填空题 11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上AB CA BCDE P影长为50m ,那么古塔的高为. 12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是. 13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,那么AD ·BC =. ★★★ 14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF .那么AG :DH =,△ABC 与△DEF 的面积比是.★★★15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD =. ★ 17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为. ★★★ 18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =. ★ 20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为. 三、解答题21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F . 求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时,△POQ 与△AOB 相似?(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。

北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)

北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)

第四章 图形的相似第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线分别被三条平行直线l 1,l 2,l 3所截,若AB =3,BC =6,DE =2,则DF 的长为( )图1A .4B .5C .6D .73.若a b =35,则a +b b的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是( )图2A.22.5° B.30° C.36° D.45°5.如图3所示,将△ABO的三边分别扩大为原来的2倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标是( )A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)图36.如图4,已知矩形ABCD,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,则AD的长为( )图4A. 5B.5+1 C.4 D.2 37.在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图5所示,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,则像CD的长是AB长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判断8.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,则树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A.9∶4 B.3∶2 C.4∶3 D.16∶9图710.如图8,在△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D的运动速度为1 cm/s,点E的运动速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )图8A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转得到△BD ′E ′,点D 的对应点D ′落在边BC 上.已知BE ′=5,D ′C =4,则BC 的长为________.图1013.若a b =c d =e f =12,则3a -2c +e 3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移得到的,若AB =8,BE =4,DH =3,则△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)已知a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判断△ABC 的形状.18.(6分)如图14,在平面直角坐标系中,四边形OABC的顶点分别是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O为位似中心,在点O的异侧画出四边形OABC的位似图形四边形OA1B1C1,使它与四边形OABC的相似比是2∶3;(2)写出点A1,B1,C1的坐标;(3)求四边形OA1B1C1的面积.图1419.(8分)已知:在△ABC中,∠ABC=90°,AB=3,BC=4,Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图15①)或线段AB的延长线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;(2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 分别在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上任意一点,连接BD ,取BD 的中点E ,连接CE 并延长CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,若AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延长线上找出一点F ,使得A ,C ,F 三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动,点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果点P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)设△POQ的面积为y,求y关于t的函数表达式;(2)当t为何值时,△POQ与△AOB相似?图1823.(12分)如图19,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,D是BC边上的一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.图1924.(12分)如图20①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似给出“黄金分割线”的定义:一条直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线分别被三条平行直线l 1,l 2,l 3所截,∴AB BC =DE EF.∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.故选C.3.C4.C [解析] ∵点D 是线段AB 的一个黄金分割点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,则∠B =x °,∠BCD =x °, ∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.故选C.5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,则FD =x -2,EF =2,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.故选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,则OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.故选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,则∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CDAB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 本题运用方程思想,设CF =x , 则BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由已知可证得Rt △FCB ′∽Rt△B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 本题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种情况分别求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF , ∴△AED ∽△BDF ,∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4.∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503.15.43或3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种情况:(1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种情况,注意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如图所示.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y=12x +1上,∴点B ′的坐标为(4,3)或(-8,-3). 故答案为(4,3)或(-8,-3).17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如图所示,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ . 由(1)可知,△AQP ∽△ABC ,∴PA AC =PQBC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,则△CDG ∽△CAF ,∴DG AF =CD AC.∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA),∴BF =DG ,∴BF AF =CDAC.(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 因为OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6). (2)当△POQ 与△AOB 相似时,①若OQ OB =OP OA ,即6-t 6=t 12,解得t =4; ②若OQ OA =OP OB ,即6-t 12=t 6,解得t =2. 所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,则CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23).(3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE ,则AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,则DE =12CE ,即y =12(2-y ),解得y =23,即AE =23;当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不符合题意,故此种情况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金分割线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金分割线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金分割线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD, ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD , 即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x=3-5,∴BE的长为3- 5.。

北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为()A. B. C. D.2、如图,下列四个三角形中,与相似的是()A. B. C. D.3、如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C.D.4、小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.45、如图,点D是△ABC的边BC的中点,且∠CAD=∠B,若△ABC的周长为10,则△ACD的周长是()A.5B.5C.D.6、如图,△ABC 内接于⊙ O ,AD 是△ABC 边 BC 上的高,D 为垂足.若 BD = 1,AD = 3,BC = 7,则⊙O 的半径是()A. B. C. D.7、如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是( )A. B. C. D.8、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.49、如图,△ABC∽△ADE,则下列比例式正确的是()A. B. C. D.10、如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.11、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm12、在△ABC中,AB=12,BC=18,CA=24,另一个和它相似的△DEF最长的一边是36,则△DEF最短的一边是()A.72B.18C.12D.2013、如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是()A. B.1 C.2 D.314、如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1, S2, S3三部分,则S1:S2:S3=()A.1:2:3B.1:4:9C.1:3:5D.无法确定15、已知:如图,在中,,则下列等式成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2∥l3∥l4∥l5∥l6∥l7,且每相邻两条直线的距离相等.若直线l8分别与l1, l2, l5, l7相交于点A,B,C,D,则AB:BC:CD为________.17、在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=________.18、已知,则的值为________.19、把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为________.20、上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米21、如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:________.22、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.23、将矩形纸片ABCD按如下步骤进行操作:( 1 )如图1,先将纸片对折,使BC和AD重合,得到折痕EF;( 2 )如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是________.24、如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC =CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1, S2, S3,若S1+S3=20,则S1=________,S2=________.25、如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.三、解答题(共5题,共计25分)26、解方程.534%-2x=0.5627、李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.28、如图,两根电线杆相距Lm,分别在高10m的A处和15m的C处用钢索将两杆固定,求钢索AD与钢索BC的交点M离地面的高度MH.29、如图,在△PAB中,点C、D在AB上,PC=PD=CD,∠A =∠BPD,△APC 与△BPD相似吗?为什么?30、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?参考答案一、单选题(共15题,共计45分)1、B2、C4、D5、B6、C7、D8、D9、D10、B11、C12、B13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、。

北师大版九年级上册第四章 图形的相似 检测卷

北师大版九年级上册第四章 图形的相似 检测卷

北师大版九年级上册《图形的相似》检测卷一、选择题(每小题3分,共30分)1.如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=3CE,AB=8,则AD的长为()A. 3B. 4C. 5D. 62.如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A. 2B. 4C. 4.8D. 7.23.如图,在平行四边形ABCD中,E是BC上一点,BE:EC=1:2,AE与BD相交于点F,若S△BEF=2,则S△ABD=()A. 24B. 25C. 26D. 23AB,那么AC:AB等于()4.如果延长线段AB到C,使得BC= 12A. 2:1B. 2:3C. 3:1D. 3:25.如图,正方形ABCD的面积为12,M是AB的中点,连接AC、DM,则图中阴影部分的面积是()A. 6B. 4.8C. 4D. 36.如图,锐角△ABC中,BE ,CD是高,它们相交于O ,则图中与△BOD相似的三角形有()A. 4个B. 3个C. 2个D. 1个7.已知x3=y2,那么下列式子中一定成立的是()A. 2x=3yB. 3x=2yC. x=2yD. xy=68.如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F在△ABC内部,则点E到BC 的距离为()A. 1B. 2C. √21D. √299.如图为两正方形ABCD,BPQR重叠的情形,其中R点在AD上,CD与QR相交于S点.若两正方形ABCD,BPQR的面积分别为16、25,则四边形RBCS的面积为何()A. 8B. 172C. 283D. 77810.如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记△ABM和△CDN的面积和为S,则四边形MQNP的面积为()A. SB. SC. SD. S二、填空题(每小题4分,共28分)11.若两个相似多边形的对应边之比为5:2,则它们的周长比是.12.如图,在△ABC与△AED中,ABAE =BCED,添加一个条件,使△ABC与△AED相似,这个条件可以是________。

九年级数学上册第四章图形的相似单元清新版北师大版(含答案)

九年级数学上册第四章图形的相似单元清新版北师大版(含答案)

九年级数学上册新版北师大版:检测内容:第四章 图形的相似得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列结论不正确的是( C )A .所有的等腰直角三角形都相似B .所有的正方形都相似C .所有的矩形都相似D .所有的正八边形都相似2.若X 3 =Y 4 =Z 5 ,则4X +3Y -2Z X +Y +Z =( B ) A .-76 B .76 C .-67 D .673.如图,已知AD ∥BE ∥CF ,那么下列结论正确的是( B )A .BE CF =DE DFB .DE EF =AB BC C .BE CF =AB ACD .EF DE =AB BC第3题图 第5题图 第6题图4.已知△ABC ∽△A ′B ′C ′ ,AD 和A ′D ′是它们的对应中线,若AD =10,A ′D ′=6,则△ABC 与△A ′B ′C ′的周长比是( C )A .3∶5B .9∶25C .5∶3D .25∶95.如图,在△ABC 中,DE ∥BC ,AD AB =35 ,则S △ADE S 梯形DBCE的值是( B ) A .35 B .916 C .53 D .16256.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A ,再在河的这一边选点B 和点C ,使得AB ⊥BC ,然后再在河岸上选点E ,使得EC ⊥BC ,设BC 与AE 交于点D ,如图所示,测得BD =120 m ,DC =60 m ,EC =50 m ,那么这条河的大致宽度是( C )A .25 mB .75 mC .100 mD .120 m7.如图,在平面直角坐标系中,四边形ABCD 与四边形A ′B ′C ′D ′是位似图形.位似中心是( C )A .(8,0)B .(8,1)C .(10,0)D .(10,1)第7题图 第8题图 第9题图第10题图8.(邓州期中)如图,在△ABC 中,AB =AC =10,BC =12,正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD =AG ,DG =3,则点F 到BC 的距离为( A )A .3B .2C .53D .52 9.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HF BG的值为( B ) A .23 B .712 C .12 D .51210.如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H ,给出下列结论:①BE =2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH ·PC .其中正确的是( C )A .①②③④B .②③C .①②④D .①③④二、填空题(每小题3分,共15分)11.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是__∠A =∠D (答案不唯一)__.(写出一种情况即可)12.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是__2∶3__.第12题图 第13题图 第14题图 第15题图13.如图,在平面直角坐标系中,△ABC 和△A ′B ′C ′是以坐标原点O 为位似中心的位似图形,且点B (3,1),B ′(6,2),若点A ′(5,6),则A 的坐标为__(2.5,3)__.14.如图是一山谷的横断面的示意图,宽AA ′为15 m ,用曲尺(两直尺相交成直角)从山谷两侧测量出OA =5 m ,OB =10 m ,O ′A ′=3 m ,O ′B ′=12 m(A ,O ,O ′,A ′在同一条水平线上),则该山谷的深度h 为__20_m__.15.如图,在Rt △ABC 中,BC =3,AC =4,点D ,E 分别是线段AB ,AC 上的两个动点(不与点A ,B ,C 重合).沿DE 翻折△ADE ,使得点A 的对应点F 恰好落在直线BC 上,当DF 与Rt △ABC 的一条边垂直时,线段AD 的长为__209 或_207__. 三、解答题(共75分)16.(6分)已知△ABC ∽△DEF ,△ABC 和△DEF 的周长分别为20 cm 和25 cm ,且BC =5 cm ,DF =4 cm ,求EF 和AC 的长.解:∵△ABC ∽△DEF ,∴AC DF =BC EF =C △ABC C △DEF,∴AC 4 =5EF =2025 ,∴AC =165 cm ,EF =254cm17.(8分)如图,已知点O 是坐标原点,B ,C 两点的坐标分别为(3,-1),(2,1).(1)以点O 为位似中心在y 轴的左侧将△OBC 放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OB ′C ′;(2)若△OBC 内部一点M 的坐标为(a ,b ),则点M 对应点M ′的坐标是__(-2a ,-2b )__;(3)求出变化后△OB ′C ′的面积.解:(1)如图,△OB ′C ′为所作(2)点M 对应点M ′的坐标为(-2a ,-2b )(3)△OB ′C ′的面积=4S △OCB =4×(2×3-12 ×2×1-12 ×2×1-12×3×1)=1018.(8分)如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm ,球目前在E 点位置,AE =60 cm ,如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:由对称性可知∠EFG =∠DFG ,又∵GF ⊥BC ,∴∠EFB =∠DFC .又∵在矩形ABCD 中,∠B =∠C =90°,∴△BEF ∽△CDF(2)由(1)可知△BEF ∽△CDF ,∴BE CD =BF CF ,∴70130 =260-CF CF,∴CF =169 cm19.(10分)(桐柏县月考)如图,E 为▱ABCD 的边CD 延长线上的一点,连接BE 交AC 于点O ,交AD 于点F .(1)求证:△AOB ∽△COE ;(2)求证:BO 2=EO ·FO . 证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△AOB ∽△COE(2)∵△AOB ∽△COE ,∴OE OB =OC OA .∵AD ∥BC ,∴△AOF ∽△COB ,∴OB OF =OC OA,∴OB OF =OE OB,即OB 2=OF ·OE20.(10分)如图,在△ABC 中,点D ,E 分别在边BC 和AC 上,点G 是BE 上的一点,连接AD ,AG ,DG ,且∠BAD =∠BGD =∠C ,求证:(1)BD ·BC =BG ·BE ;(2)∠BGA =∠BAC .证明:(1)∵∠BGD =∠C ,∠GBD =∠CBE ,∴△BDG ∽△BEC ,∴BD BE =BG BC,∴BD ·BC =BG ·BE(2)∵∠BAD =∠C ,∠ABD =∠CBA ,∴△ABD ∽△CBA ,∴BD AB =AB BC,∴AB 2=BD ·BC .又由(1)知BD ·BC =BG ·BE ,∴AB 2=BG ·BE ,∴BG AB =AB BE.又∵∠GBA =∠ABE ,∴△GBA ∽△ABE ,∴∠BGA =∠BAC21.(10分)如图,为测量山峰AB 的高度,在相距50 m 的D 处和F 处竖立高均为2 m 的标杆DC 和FE ,且AB ,CD 和EF 在同一平面内,从标杆DC 退后2 m 到G 处可以看到山峰A 和标杆顶点C 在同一直线上,从标杆FE 退后4 m 到H 处可以看到山峰A 和标杆顶点E 在同一直线上,求山峰AB 的高度及山峰与标杆CD 的水平距离BD 的长.解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF ,∴△CDG ∽△ABG ,△EFH ∽△ABH ,∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD.又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m ,∴2AB =22+BD ,2AB =450+4+BD ,∴22+BD =44+50+BD,解得BD =50 m ,∴2AB =22+50,解得AB =52 m22.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的“完美分割线”.(1)如图①,在△ABC 中,∠A =48°,CD 是△ABC 的“完美分割线”,且△ACD 为等腰三角形,求∠ACB 的度数;(2)如图②,在△ABC 中,AC =2,BC =2 ,CD 是△ABC 的“完美分割线”,且△ACD 是以CD 为底边的等腰三角形,求“完美分割线”CD 的长.解:(1)由题意得△BDC ∽△BCA ,∴∠BCD =∠A =48°.①当AD =CD 时,∠ACD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°;②当AD =AC 时,∠ACD =∠ADC =180°-∠A 2 =180°-48°2=66°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,∠ADC =∠A =48°=∠BCD ,这与∠ADC =∠BCD +∠B 相矛盾,舍弃,∴∠ACB =96°或114°(2)由已知可知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC =CD AC.设BD =x ,则BA =x +2,由BC 2=BD ·BA 得(2 )2=x (x +2),解得x =3 -1或x =-3 -1(舍去),∴CD =BD BC ×AC =3-12×2=6 -223.(13分)如图,在△ABC 和△ADE 中,BA =BC ,DA =DE ,且∠ABC =∠ADE =α,点E 在△ABC 的内部,连接EC ,EB 和BD ,并且∠ACE +∠ABE =90°.(1)如图①,当α=60°时,线段BD 与CE 的数量关系为__BD =CE __,线段EA ,EB ,EC 的数量关系为__EA 2=BE 2+EC 2__;(2)如图②,当α=90°时,请写出线段EA ,EB ,EC 的数量关系,并说明理由;(3)在(2)的条件下,当点E 在线段CD 上时,若BC =25 ,请直接写出△BDE 的面积.图① 图② 备用图 答图解:(1)点拨:∵BA =BC ,DA =DE ,∠ABC =∠ADE =60°,∴△ABC ,△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAB =∠EAC ,∴△DAB ≌△EAC (SAS),∴BD =EC ,∠ABD =∠ACE .又∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2.又∵EA =DE ,BD =EC ,∴EA 2=BE 2+EC 2(2)EA 2=EC 2+2BE 2,理由如下:∵BA =BC ,DA =DE ,∠ABC =∠ADE =90°,∴△ABC ,△ADE 都是等腰直角三角形,∴∠DAE =∠BAC =45°,AD AE =22 ,AB AC =22,∴∠DAB =∠EAC ,AD AE =AB AC ,∴△DAB ∽△EAC ,∴DB EC =AB AC =22,∠ACE =∠ABD .∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2.又∵EA=2 DE ,BD =22 EC ,∴12 EA 2=12EC 2+BE 2,∴EA 2=EC 2+2BE 2 (3)如答图,∵∠AED =45°,∴∠AEC =135°.又∵△ADB ∽△AEC ,∴∠ADB =∠AEC =135°.又∵∠ADE =∠DBE =90°,∴∠BDE =∠BED =45°,∴BD =BE ,∴DE =2 BD .∵EC =2 BD ,∴AD =DE =EC .设AD =DE =EC =x ,∵AB =BC =25 ,∴AC =210 .∵AD 2+DC 2=AC 2,∴x 2+4x 2=40,∴x =22 (负根已经舍弃),∴AD =DE =22 ,∴BD=BE =2,∴S △BDE =12×2×2=2。

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册考生注意:本试卷共三道大题,23道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.在比例尺是1:8000的地图上,中山路的长度约为25cm,该路段实际长度约为()A.3200m B.3000m C.2400m D.2000m2.如图,用放大镜将贺兰山旅游图标放大,这两个图形之间属于以下哪种图形变换()A.相似B.平移C.轴对称D.旋转3.已知=,则下列式子中正确的是()A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)4.下列说法中,不正确的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正八边形都相似5.以下四组线段中,成比例的是()A.3,4,6,8B.2,3,4,5C.1,2,3,4D.5,6,7,8 6.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:27.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.8.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.D.(10,6)9.如图,在▱ABCD中,E是AB边的中点,则S△AEG:S平行四边形ABCD的值为()A.B.C.D.10.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.3二.填空题(6小题,每题3分,共18分)11.若,则=.12.如图,已知AC∥EF∥BD,如果AE:EB=2:3,CD=6,那么DF的长等于.13.如图,在▱ABCD中,AD=16,∠ABC的平分线交AD于点F,交CD的延长线于点E,若S△EDF:S四边形FBCD=9:55,则AB=.14.若,则k=.15.如图,△ABC∽△CBD,AB=9,BD=25,则BC=.16.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与△PDC相似,则AP=.第II卷第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.已知,求的值.18.如图,AB∥CD∥EF,BF=20.(1)若AC=3,CE=5,求DF的长;(2)若AC:CE=2:3,求DF的长.19.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.20.如图,在△ABC中,AD是角平分线,点E在边AC上,且AD2=AE•AB,连接DE.(1)求证:△ABD∽△ADE;(2)若CD=3,CE=2,求AE的长.21.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线,若∠ABE=∠C,=.(1)求证:△AEB∽△ADC.(2)求△BDE与△ABC的面积比.22.如图,在正方形ABCD中,点E在边AD上,过点D作DK⊥BE于K,且DK=.(1)若AE=ED,求正方形ABCD的周长;(2)若∠EDK=22.5°,求正方形ABCD的面积.23.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.24.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12.求的值.25.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.。

九年级数学上册第四章《图形的相似》测试卷-北师大版(含答案)

九年级数学上册第四章《图形的相似》测试卷-北师大版(含答案)

九年级数学上册第四章《图形的相似》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.若两个相似三角形的面积之比为4 :9,则它们对应角的平分线之比为()A. 49B.32C.23D.622.下列各组线段中,能成比例的是()A. 1c m,3c m,4c m,6c m,B. 1c m,3c m,4c m,12c m,C. 1c m,2c m,3c m,4c m,D. 2c m,3c m,4c m,5c m,3.下列说法中,正确的是()A.相似三角形都是全等三角形B.所有的矩形都相似C.所有的等腰三角形都相似D.所有的等腰直角三角形都相似4.如图,DE// BC ,A D = 2BD,下列结论错误的是()A. A E=2CEB. BC=2DEC. DE:BC=2:3D. C△A D E:C△ABC=2 :35.在比例尺1:10000的地图上,相距2C m的两地的实际距离是()A.200c mB.200 d mC.200 mD.200 km6.如图,l//l2//l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F,已知32ABBC=,则DEDF的值为()A. 32B.23.C.25D.357.下列四个三角形,与左图中的三角形相似的是()8.△ABC与△DEF相似,且相似比是23.,反之,△DEF与△ABC的相似比是()A. 23. B.32C.25D.499.如图,由下列条件不能判定△ABC与△A D E相似的是()A. AE ACAD AB= B.∠B=∠A D EC. AE DEAC BC= D.∠C=∠A E D10.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米二、填空题(每题4分,共28分)。

11.若1a+b,2ab b==则_____________。

北师版九年级数学上册 第4章 图形的相似 综合测试卷(含答案)

北师版九年级数学上册  第4章  图形的相似    综合测试卷(含答案)

北师版九年级数学上册 第四章 图形的相似综合测试卷第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30) 1.下面不是相似图形的是( )A B C D2.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,点O 为位似中心,若OD =12OD′,则A′B′∶AB 为( )A .2∶3B .3∶2C .1∶2D .2∶13.如图,在△ABC 中,DE ∥BC ,AD AB =35,则S △ADE S 梯形DBCE 的值是( ) A.35 B.916 C.53 D.16254.如图,在△ABC 中,DE ∥BC ,AD DB =12,则下列结论中正确的是( ) A.AE AC =12B.DE BC =12C.△ADE 的周长△ABC 的周长=13D.△ADE 的面积△ABC 的面积=135.点C 为线段AB 的黄金分割点,且AC>BC.下列说法中正确的有( ) ①AC =5-12AB ;②AC =3-52AB ;③AB ∶AC =AC ∶BC ;④AC≈0.618AB. A .1个 B .2个 C .3个 D .4个6.在平面直角坐标系中,点P(m ,n)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)7.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于( ) A .1 B .2 C .3 D .48.如图,在△ABC 中,D ,E 两点分别在边BC ,AD 上,且AD 为∠BAC 的平分线.若∠ABE =∠C ,AE ∶ED =2∶1,则△BDE 与△ABC 的面积比为( ) A .1∶6 B .1∶9 C .2∶13 D .2∶159.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HFBG 的值为( ) A.23 B.712 C.12 D.51210.(2018·达州)如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC.连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则S △ADGS △BGH 的值为( ) A.12 B.23 C.34 D .1第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在△ABC 中,AB =12 cm ,BC =18 cm ,AC =24 cm ,另一个与它相似的△A′B′C′的周长为18 cm ,则△A′B′C′各边长分别为________cm ,________cm ,________cm. 12. 如图,已知AB ∥CD ,若AB CD =14,则OAOC=________.13.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BE ,BD ,且AE ,BD 交于点F ,已知S △DEF ∶S △ABF =4∶25,则DE ∶EC =________.14.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE =________.15.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB =________.16.如图,阳光通过窗口AB 照到室内,在地面上留下一个亮区ED ,已知亮区一边到窗下的墙脚距离CE =2.7 m ,窗高AB =0.8 m ,窗口底边离地面的高度BC =1 m ,则亮区宽度ED =________.17.如图,梯形ABCD 中,AB ∥CD ,BE ∥AD ,且BE 交CD 于点E ,∠AEB =∠C.如果AB =3,CD =8,那么AD 的长是________.18.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,在Rt △MPN 中,∠MPN =90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE =2PF 时,AP =________.三.解答题(共7小题, 46分)19.(6分) 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DF CG .(1)求证:△ADF ∽△ACG ;(2)若AD AC =12,求AFFG的值.20. (6分) 如图,点D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.21. (6分) 如图,在△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.22.(6分) ) 如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.23.(6分) 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.24.(8分) 如图,为测量山峰AB的高度,在相距50 m的D处和F处分别竖立高均为2 m的标杆DC 和FE,且AB,CD和EF在同一平面内,从标杆DC退后2 m到G处可以看到山峰A和标杆顶点C 在同一直线上,从标杆FE退后4 m到H处可以看到山峰A和标杆顶点E在同一直线上,求山峰AB 的高度及山峰与标杆CD之间的水平距离BD的长.25.(8分) 如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD BC =DEAC;(2)当点E 为CD 的中点时,求证:AE 2CE 2=ABCD.参考答案1-5 ADBCC 6-10 BBDBC 11. 4,6 ,8 12. 1413. 2∶3 14. 4.5 15. 4 16. 1.2m 17. 15 18. 319. 解:(1)证明:∵∠AED =∠B ,∠DAE =∠DAE ,∴∠ADF =∠C. 又∵AD AC =DFCG ,∴△ADF ∽△ACG(2)∵△ADF ∽△ACG ,∴AD AC =AFAG .又∵AD AC =12,∴AF AG =12,∴AF FG=120. 解:在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A , ∴△ABD ∽△ACB ,∴AB AC =AD AB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=521. 证明:∵AD 是中线,∴BD =CD , 又CD 2=BE·BA ,∴BD 2=BE·BA , 即BE BD =BDAB, 又∠B =∠B ,∴△BED ∽△BDA , ∴ED AD =BDAB,∴ED·AB =AD·BD 22. 解:(1)∵AB =AC ,BD =CD ,∴AD ⊥BC ,∠B =∠C , ∵DE ⊥AB ,∴∠DEB =∠ADC ,∴△BDE ∽△CAD (2)∵AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ADB 中,AD =AB 2-BD 2=12, ∵12AD·BD =12AB·DE ,∴DE =601323. 解:(1)如图所示,线段A 1B 1即为所求(2)如图所示,线段A 2B 1即为所求(3)由图可得,四边形AA 1B 1A 2为正方形,∴四边形AA 1B 1A 2的面积是(22+42)2=(20)2=20 24. 解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF , ∴△CDG ∽△ABG ,△EFH ∽△ABH , ∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD. 又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m , ∴2AB =22+BD ,2AB =450+4+BD , ∴22+BD =44+50+BD, 解得BD =50 m , ∴2AB =22+50, 解得AB =52 m25. 证明:(1)∵∠ACD =∠B =∠BAE ,∠BAC =∠BAE +∠CAE ,∠AED =∠ACD +∠CAE , ∴∠AED =△BAC.又∵∠DAE =∠B , ∴△AED ∽△BAC ,∴AD BC =DEAC(2)∵∠ADE =∠CDA ,∠DAE =∠ACD ,∴△DAE ∽△DCA ,∴AE AC =DEAD .又∵DE =EC ,∴AE CE =AC AD ,∴AE 2CE 2=AC 2AD 2.又∵∠DAC =∠BAC ,∠ACD =∠B , ∴△ACD ∽△ABC ,∴AC 2=AD·AB , ∴AE 2CE 2=AD·AB AD 2=ABAD。

北师大版九年级数学上册第四章 图形的相似练习题

北师大版九年级数学上册第四章 图形的相似练习题

北师大版九年级数学上册第四章图形的相似练习题选择题已知2x=3y(y≠0),则下面结论成立的是()A. B. C. D.【答案】A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.选择题如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A. 2:3B.C. 4:9D. 8:27【答案】C【解析】试题分析:两个相似三角形面积的比是=4:9.故选C.选择题下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A. B. C. D.【答案】B【解析】试题分析:可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.解:根据勾股定理,AB=,BC=,所以,夹直角的两边的比为,计算各选项,只有B选项三角形符合,与所给图形的三角形相似。

故选:B.选择题如图,在△ABC中,DE∥BC,,BC=12,则DE的长是()A.3 B.4 C.5 D.6【答案】B.【解析】试题分析:∵DE∥BC,∴△ADE∽△ABC,∴=,∵BC=12,∴DE=BC=4.故选B.选择题如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是16:25,则OB′:OB为()A. 2:3B. 3:2C. 4:5D. 4:9【答案】A【解析】根据位似变换的概念得到△A′B′C′∽△ABC,根据相似三角形的性质计算.∵△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,∴△A′B′C′∽△ABC,∵△A′B′C′的面积与△ABC的面积比是16:25,∴△A′B′C′与△ABC的相似比为4:5,即OB′:OB=4:5,故选C.选择题如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1 B.P2 C.P3 D.P4【答案】C.【解析】试题∵∠BAC=∠PED=90°,,∴当=时,△ABC ∽△EPD时.∵DE=4,∴EP=6.∴点P落在P3处.故选C.填空题已知AB∥CD,AD与BC相交于点O.若,AD=10,则AO=_____.【答案】4【解析】∵AB∥CD,解得,AO=4,故答案是:4.填空题如图,在中,,分别为边、AC上的点,,,点为边上一点,添加一个条件:___________,可以使得与相似.(只需写出一个)【答案】∠A=∠BDF答案不唯一【解析】因为,, ,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.填空题如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.【答案】18.【解析】试题解析:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案为:18.填空题如图,四边形ABCD与四边形EFGH位似,位似中心点是O,,则=_____.【答案】【解析】解:∵四边形ABCD与四边形EFGH位似,∴△OEF∽△OAB,△OFG∽△OBC,∴,∴.故答案为:.解答题如图,已知∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.【答案】见解析【解析】根据:两组对应边成比例且夹角相等的两个三角形相似.可证明三角形相似.证明:∵AB=20.4,AC=48,AE=17,AD=40,∴==1.2,==1.2,∴=.又∵∠BAC=∠EAD,∴△ABC∽△AED.解答题如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)画出△ABC关于x对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并求出△A2B2C2的面积.【答案】(1)作图见解析;(2)作图见解析,28.【解析】试题分析:(1)画出A、B、C关于x轴的对称点A1、B1、C1即可解决问题;(2)连接OB延长OB到B2,使得OB=BB2,同法可得A2、C2,△A2B2C2就是所求三角形;试题解析:解:(1)如图所示,△A1B1C1就是所求三角形;(2)如图所示,△A2B2C2就是所求三角形.如图,分别过点A2、C2作y轴的平行线,过点B2作x轴的平行线,交点分别为E、F,∵A(﹣1,2),B(2,1),C(4,5),△A2B2C2与△ABC位似,且位似比为2,∴A2(﹣2,4),B2(4,2),C2(8,10),∴=8×10﹣×6×2﹣×4×8﹣×6×10=28.解答题如图,在▱ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F 为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,AE∶AD=4∶5,求AF的长.【答案】(1)见解析;(2)2.【解析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由AE∶AD=4∶5,求出AE,再由相似三角形的性质求出AF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠D+∠C=180°,∠ABF=∠BEC.∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC.(2)∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°.∵AD=5,AE∶AD=4∶5,∴AE=AD×=5×=4,在Rt△ABE中,根据勾股定理,得BE===4.在▱ABCD中,BC=AD=5.由(1)得△ABF∽△BEC,∴=,即=,∴AF=2.。

最新(北师大版)数学九年级上册(新)第四章图形的相似测试练习

最新(北师大版)数学九年级上册(新)第四章图形的相似测试练习

一、单选题1、梯形的两底AB、CD都平行于EF,CG交AD于H,则图中有相似三角形()A.1对B.2对C.3对D.4对2、如图,点F是平行四边形ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.3、一个矩形的长为a,宽为b(a>b),如果把这个矩形截去一个最大的正方形后余下的矩形与原矩形相似,则a,b应满足的关系式为()A.a2+ab﹣b2=0 B.a2+ab+b2=0 C.a2﹣ab﹣b2=0 D.a2﹣ab+b2=04、已知四边形ABCD的对角线AC、BD相交于点O,下列条件中能够判断有一组对边平行的是()A.AD:BC=AO:CO B.AD:BC=DO:CO C.AO:BO=CO:DO D.AO:BO=DO:CO5、△ABC和△A′B′C′中,AB=9cm,BC=8cm,CA=5cm,A′B′=4.5cm,B′C′=2.5cm,C′A′=4cm,则有()A.∠A=∠A′B.∠A=∠B′C.∠A=∠C′D.∠C=∠B′6、下列说法中正确的是()A.所有长方体都是形状相同的图形B.所有圆锥体都是形状相同的图形C.所有矩形都是形状相同的图形D.所有边数相等的正多边形都是形状相同的图形7、下列各组中的四条线段成比例的是( )A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10 C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=18、如图,是两个形状相同的新月形图案,则x的值为()A.6 B.10 C.12 D.189、下列各组线段(单位:cm)中,成比例线段的是()A.1、2、3、4 B.1、2、2、4 C.3、5、9、13 D.1、2、2、310、若,则下列各式中不正确的是()A.B.C.D.11、如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3.则CE的值为()A.9 B.6 C.3 D.412、已知ad=bc,下列比例不正确的是()A.B.C.D.13、在1:38000的交通旅游图上,南京玄武湖隧道长7cm,则它的实际长度是()A.26.6km B.2.66km C.0.266km D.266km14、如图,已知△ABC ,P 是边AB 上的一点,连接CP ,以下条件中不能确定△ACP与△ABC 相似的是( )A . ∠ACP=∠B B . ∠APC=∠ACBC . AC 2=AP •ABD .15、如果32=b a ,那么ba a+等于( ) A . 3﹕2 B . 2﹕5 C . 5﹕3 D . 3﹕5二、填空题16、如图,P 为Rt △ABC 斜边AB 上任意一点(除A 、B 外),过点P 作直线截△ABC ,使截得的新三角形与△ABC 相似,满足这样条件的直线的作法共有_____种.的面积=_____.18、大矩形的周长是与它相似的小矩形周长的2倍,小矩形的面积为5cm2,大矩形的面积为______cm2.19、如图,AC∥EF∥DB,若AC=8,BD=12,则EF=.20、已知,如图,△ABC中,DE∥BC,DF∥AC,则图中共有_____对相似三角形.21、如图,在△ABC中,DE∥BC,若AD=3,BD=3,AE=2,则CE=.22、如图,已知正方形ABCD的边长是1,P是CD边的中点,点Q在线段BC上,当BQ=_____时,三角形ADP与三角形QCP相似.23、如图,△ABC顶角是36°的等腰三角形(底与腰的比为的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=.24、将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.25、如图所示,AC平分∠BAD,AB=6,AD=4,则当AC=________时,△ABC∽△ACD.三、解答题26、求比例(1﹣2x):(5﹣x2)=2:x中的x的值.27、如图,梯形ABCD与梯形A′B′C′D′相似(A、B、C、D的对应点分别为A′、B′、C′、D′),则α=,β=,x=,y=,z=.28、如图所示,BC与DE相交于点O,问:(1)当∠B满足什么条件时,△ABC∽△ADE?(2)当满足什么条件时,△ABC∽△ADE?29、如图,等边△ABC沿着直线l滚动(不滑动),若△ABC滚动两周到△A2B2C2的位置,连接A2B交AC于D,试求CD∶A D的值.30、如图所示,找出图中可能相似的图形.31、已知:如图,在△ABC中,DE∥BC,AD=4,DB=3,AC=10.求AE的长.32、如图,在△ABC中,AB=6㎝,AD=4㎝,AC=5㎝,,且,①求AE的长;②等式成立吗?33、如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上.求证:△ACB∽△DCE.34、如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC 于G.(1)说明点G是线段BC的一个三等分点;(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作35、如图,正方形ABCD中,其边长为1,P是CD的中点,点Q在线段BC上,当BQ为何值时,△ADP 与△QCP相似?试卷答案一、选择题二、填空题三、解答题26,解:x(1﹣2x)=2(5﹣x2),(4分)x﹣2x2=10﹣2x2,(2分)x=10.(2分)27,解:∵梯形ABCD与梯形A′B′C′D′相似(A、B、C、D的对应点分别为A′、B′、C′、D′),∴α=∠D=180°﹣62°=118°;β=∠B′=180°﹣110°=70°;,解得:x=6,y=12,z=6.故答案为118°,70,6,12,6.28,(1)∠B=∠D;(2)=29,30,(3)与(10)相似、(4)与(7)相似、(5)与(8)相似、(9)与(12)相似31,解:在△ABC中,∵DE∥BC,∴,∴,∴AE=.32,①AE=;②成立33,证明:由图可知,BC⊥AE于点C.∴∠ACB=∠DCE=90°.在△ABC和△DEC中,,,∴.∴△ACB∽△DCE.34,∴OE∥CD.∵△OEF∽△CDF,∴.∵四边形ABCD是矩形,∴AD∥BC.∴.∴G是BC的三等分点;(2)依题意画图如右.35,解:三角形对应边比值相等,∴=或=,△ADP与△QCP相似,当=时,BQ=,∠D=∠C,所以△ADP与△QCP相似.当=时,BQ=0时,△ADP与△QCP相似.故当BQ=或0时,即可判定,△ADP与△QCP相似.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
金戈铁骑整理制作
新北师大版九年级上学期数学第三章相似形测试题
一、单选题
1、梯形的两底AB 、CD 都平行于EF ,CG 交AD 于H ,则图中有相似三角形( )A . 1对 B . 2对 C . 3对 D . 4对
2、如图,点F 是平行四边形ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E ,则下列结论错误的是( )
A
. B . C . D .
3、一个矩形的长为a ,宽为b (a >b ),如果把这个矩形截去一个最大的正方形后余下的矩形与原矩形相似,则a ,b 应满足的关系式为( )
A . a 2+ab ﹣b 2=0
B . a 2+ab+b 2=0
C . a 2﹣ab ﹣b 2=0
D . a 2﹣ab+b 2=0
4、已知四边形ABCD 的对角线AC 、BD 相交于点O ,下列条件中能够判断有一组对边平行的是( )
A .AD :BC=AO :CO
B .AD :BC=DO :CO
C .AO :BO=CO :DO
D .AO :BO=DO :CO
5、△ABC 和△A′B′C′中,AB =9cm ,BC =8cm ,CA =5cm ,A′B′=4.5cm ,B′C′=2.5cm ,C′A′=4cm ,则有( )
A .∠A=∠A′B.∠A=∠B′C.∠A=∠C′D.∠C=∠B′
6、下列说法中正确的是( )A .所有长方体都是形状相同的图形 B .所有圆锥体都是形状相同的图形 C .所有矩形都是形状相同的图形 D .所有边数相等的正多边形都是形状相同的图形
7、下列各组中的四条线段成比例的是( ) A .a=
,b=3,c=2,d=
B .a=4,b=6,c=5,d=10
C .a=2,b=
,c=2

d= D .a=2,b=3,c=4,d=1
8、如图,是两个形状相同的新月形图案,则x 的值为( ) A . 6 B . 10 C . 12 D . 18
9、下列各组线段(单位:cm )中,成比例线段的是( )
A .1、2、3、4
B .1、2、2、4
C .3、5、9、13
D .1、2、2、3 10、若
,则下列各式中不正确的是( )
A .
B .
C .
D .
11、如图所示:△ABC 中,DE∥BC,AD=5,BD=10,AE=3.则CE 的值为( ) A .9 B .6 C .3 D .4
12、已知ad =bc ,下列比例不正确的是( )
A .
B .
C .
D .
13、在1:38000的交通旅游图上,南京玄武湖隧道长7cm ,则它的实际长度是( )A . 26.6km B . 2.66km C . 0.266km D . 266km
14、如图,已知△ABC ,P 是边AB 上的一点,连接CP ,以下条件中不能确定△ACP 与△ABC 相似的是( )
A . ∠ACP=∠
B B . ∠APC=∠ACB
C . AC 2=AP •AB
D .
15、如果32=b a ,那么b
a a
+等于( )
A . 3﹕2
B . 2﹕5
C . 5﹕3
D . 3﹕5
二、填空题
16、如图,P 为Rt △ABC 斜边AB 上任意一点(除A 、B 外),过点P 作直线截△ABC ,使截得的新三角形与△ABC 相似,满足这样条件的直线的作法共有_____种.
17、平行四边形ABCD中,E是AD的中点,AC与BE相交于F,若S
=1cm2,则平行四边形
△EFC
ABCD的面积=_____.
18、大矩形的周长是与它相似的小矩形周长的2倍,小矩形的面积为5cm2,大矩形的面积为______cm2.
19、如图,AC∥EF∥DB,若AC=8,BD=12,则EF= .
20、已知,如图,△ABC中,DE∥BC,DF∥AC,则图中共有_____对相似三角形.
21、如图,在△ABC中,DE∥BC,若AD=3,BD=3,AE=2,则CE= .
22、如图,已知正方形ABCD的边长是1,P是CD边的中点,点Q在线段BC上,当
BQ=_____时,三角形ADP与三角形QCP相似.
23、如图,△ABC顶角是36°的等腰三角形(底与腰的比为
的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则
DE= .
24、将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.
25、如图所示,AC平分∠BAD,AB=6,AD=4,则当AC=________时,△ABC∽△ACD.
三、解答题
26、求比例(1﹣2x):(5﹣x2)=2:x中的x的值.
27、如图,梯形ABCD与梯形A′B′C′D′相似
(A、B、C、D的对应点分别为A′、B′、C′、D′),则α= ,β= ,x= ,
y= ,z= .
28、如图所示,BC与DE相交于点O,问:(1)当∠B满足什么条件时,△ABC∽△ADE?
(2)当满足什么条件时,△ABC∽△ADE?
29、如图,等边△ABC沿着直线l滚动(不滑动),若△ABC滚动两周到△A
2B
2
C
2
的位置,连
接A
2
B交AC于D,试求CD∶AD的值.
30、如图所示,找出图中可能相似的图形.
31、已知:如图,在△ABC中,DE∥BC,AD=4,DB=3,AC=10.求AE的长.
32、如图,在△ABC中,AB=6㎝,AD=4㎝,AC=5㎝,,且,①求AE的长;②等
式成立吗?
33、如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上.求证:△ACB∽△DCE.
34、如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC于G.
(1)说明点G是线段BC的一个三等分点;
(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).
35、如图,正方形ABCD中,其边长为1,P是CD的中点,点Q在线段BC上,当BQ为何值时,△ADP与△QCP相似?
试卷答案
一、 选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 C C D C B D C C B
C B D
B
D
B
二、 填空题
题号 16 17 18 19 20 21 22 23
24 25
答案
3 6 20
4 2 0或
4
3
6﹣25
三、 解答题 26,
解:x (1﹣2x )=2(5﹣x 2),(4分) x ﹣2x 2=10﹣2x 2,(2分) x=10.(2分) 27,
解:∵梯形ABCD 与梯形A ′B ′C ′D ′相似(A 、B 、C 、D 的对应点分别为A ′、B ′、C ′、D ′),
∴α=∠D=180°﹣62°=118°; β=∠B ′=180°﹣110°=70°;

解得:x=6,y=12,z=6.
故答案为118°,70,6,12,6. 28,
(1)∠B=∠D;(2)= 29, 1︰6 30,
(3)与(10)相似、(4)与(7)相似、(5)与(8)相似、(9)与(12)相似 31,
解:在△ABC 中, ∵DE ∥BC ,
∴,


∴AE=.
32,①AE=;②成立
33,
证明:由图可知,BC⊥AE于点C.∴∠ACB=∠DCE=90°.
在△ABC和△DEC中,


∴.
∴△ACB∽△DCE.
34,
解:(1)∵OE⊥BC,FG⊥BC,
∴OE∥CD.
∵△OEF∽△CDF,
∴.
∵四边形ABCD是矩形,
∴AD∥BC.
∴.
∴G是BC的三等分点;
(2)依题意画图如右.
35,
解:三角形对应边比值相等,
∴=或=,△ADP与△QCP相似,
当=时,BQ=,∠D=∠C,所以△ADP与△QCP相似.
当=时,BQ=0时,△ADP与△QCP相似.
故当BQ=或0时,即可判定,△ADP与△QCP相似.。

相关文档
最新文档