高中数学必修三《简单随机抽样》同步教案
高二年级数学必修三教案:《简单随机抽样》
高二年级数学必修三教案:《简单随机抽样》在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。
只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。
下面是本文库带来的高二年级数学必修三教案:《简单随机抽样》。
高二年级数学必修三教案(一)1.预习教材,问题导入根据以下提纲,预习教材P54~P57,回答下列问题.(1)在教材P55的"探究"中,怎样获得样本提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.(2)最常用的简单随机抽样方法有哪些提示:抽签法和随机数法.(3)你认为抽签法有什么优点和缺点提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用.(4)用随机数法读数时可沿哪个方向读取提示:可以沿向左、向右、向上、向下等方向读数.2.归纳总结,核心必记(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种--抽签法和随机数法.(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样.(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.1[问题思考](1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关.(2)抽签法与随机数法有什么异同点提示:相同点①都属于简单随机抽样,并且要求被抽取样本的总体的个体数有限;②都是从总体中逐个不放回地进行抽取不同点①抽签法比随机数法操作简单;②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本高二年级数学必修三教案(二)[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P5,回答下列问题.(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤提示:分五步完成:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③第二步,解③,得x=b2c1-b1c2a1b2-a2b1.第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④第四步,解④,得y=a1c2-a2c1a1b2-a2b1.第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.(2)在数学中算法通常指什么2提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.归纳总结,核心必记(1)算法的概念12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤现代算法通常可以编成计算机程序,让计算机执行并解决问题(2)设计算法的目的计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的"语言"准确地描述出来,计算机才能够解决问题.[问题思考](1)求解某一个问题的算法是否是的提示:不是.(2)任何问题都可以设计算法解决吗提示:不一定.3。
人教版高中数学必修三2.1.1《简单随机抽样》教学设计
2.1.1简单随机抽样(1课时)一、教学目标:1、正确理解简单随机抽样概念,会用抽签法、随机数表法从总体中抽取样本。
2、让学生经历简单随机抽样的过程,培养学生对数据的处理能力。
3、通过对现实生活和其他学科中统计问题的提出,体会教学知识与现实世界及各学科之间的联系,认识数学的重要性。
重点:简单随机抽样的概念,抽签法几随机数表法的特点和操作步骤。
难点:灵活应用简单随机抽样法从总体中抽取样本。
二、教学过程一、随机抽样1、新课引入教师:问如何将老师手里的糖果分给班级里的同学?设计意图:通过实例让学生感受到抽样的合理性很重要,激发学生学习的热情.学生:像某些舞台效果一样,直接抓一大把扔下来,谁接到就是谁的。
教师:演示并提出问题,每个同学得到糖的机会相等吗?学生:不相等。
教师:那就意味着这种方法不合理。
若老师手里只有6块糖如何分配让每个人心里都舒服呢?这就是本节课要研究的问题。
首先阅读教材49页前4段,并回答屏幕上的问题。
2、引例1:某校高中学生900人,校医务室想对全校学生身高情况作一次调查,为了不影响正常的教学活动,如何调查?准备抽出50人作为调查对象,你能帮医务室设计一个抽取方案吗?设计意图:通过实例重温统计学中的几个相关概念。
3、重温统计学中的几个概念:总体、个体、样本、样本容量4、抽样的必要性:教师提问1 :为了了解全校高中生的身高情况,需要将全校所有高中生逐一进行检查吗?教师提问2 :要测试灯泡的寿命,需要将所有的灯泡逐一检查吗?设计意图:通过两个问题说明当样本容量非常大,或具有破坏性时有必要用样本估计总体,从而引出统计学基本思想。
5、抽样原则:教师提问:在教材开始的问题中能否从高一年级选出50名学生的身高作为样本来估计全校高中学生的身高呢?设计意图:通过学生回答引出抽样原则和随机抽样的概念。
教师:与学生一起总结并板书。
随机抽样:抽样时每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样。
人教版高中数学必修3 第二章211简单随机抽样教学设计
1.知识与技能:理解简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.过程与方法:学会利用简单随机抽样的方法从总体中抽取样本,进而解决现实生活中的统计问题。
3.情感态度与价值观:通过对现实生活问题的提出,体会数学知识与现实生活之间的联系,感受数学的重要性。
教学重点
正确理解简单随机抽样概念及运用简单随机抽样方法从总体中抽取样本
学生总结
加深知识印象
6.课后作业
P51.练习A2 P52.练习B2
认真完成作业
巩固练习
7.板书设计
2.1.1简单随机抽样
定义:抽样方法:1.抽签法课
特点:2.随机数表法
2.随机数表法:利用随机数生成器生成一张随机数表如下:
48 62 85 00 89 38 85 56 98 82 27 76 17 39 03 69 27 49 87 20 41 57 17 94 13 53 66 60 89 12 48 39 53 26 16 34 90 56 36 40 57 93 17 23 28 49 19 51 76 99 00 62 07 96 13 29 90 19 23 64 38 65 96 45 26
定义:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样。这样抽取的样本,叫做简单随机样本。
简单随机抽样的实施方法:
1.抽签法:用小字条把每个同学的学号写下来放到盒子里,均匀搅拌,然后随机从中逐个抽出5个学号,被抽到学号的同学即为取可乐人抽签法一般步骤:(1)编号(2)制签(3)搅匀(4)抽签(5)取出个体
教学设计
教学题目
必修三第二章2.1.1简单随机抽样
《简单随机抽样》教案
《简单随机抽样》教案教学目标一、知识与技能1•通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2•了解简单随机抽样的意义;二、过程与方法1•通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2•通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1•使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2•通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
人教版数学必修三2.1.1《简单随机抽样》同步教学教案
2.1.1简单随机抽样教案教学目标:1、知识与技能:理解抽样的必要性,简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
教学重点正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学难点:正确理解简单随机抽样的科学性,理解随机数表法。
教学过程:本章介绍统计学是用科学方法收集、整理、描述和分析所得数据资料,并由此进行推断或决策的学科。
如何收集数据,根据所获得的数据提取有用的信息,作出合理的决策,这就是本章所要学习的主要内容。
而统计的基本思想是用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
通过三个数据实例,引出普查及抽样调查的概念。
明确本章的核心思想是用样本估计总体。
也就是,我们可以通过考察对象中的一部分个体的情况来估计考察对象总体的情况。
一、复习回顾统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体。
个体:每一个考察的对象叫做个体。
样本:从总体中抽取的一部分个体叫做总体的一个样本。
样本容量:样本中个体的数目叫做样本的容量。
统计的基本思想:用样本去估计总体。
二、探究新知通过几个实例让学生明白生活中处处有“抽样”。
通过《买火柴》的小笑话让学生们明白许多考察带有破坏性,因此,我们往往考察总体中的一个样本,来了解总体的情况,即抽样的必要性。
通过例子,来说明简单随机抽样的抽样原则必须是搅拌均匀。
三、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
高中数学必修三《简单随机抽样》同步教案
高中数学必修三《简单随机抽样》同步教案高中数学必修三《简单随机抽样》同步教案高中数学必修三《简单随机抽样》教学设计(一)教学目标:知识与技能:理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;过程与方法:通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;情感、态度、价值观:通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。
(二)教学重点、难点重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性(三)教学基本思路一、设置情境引入:师:从这节课开始我们来学习新的一章——统计,当我们把这两个字键入“百度”或“google”的搜索栏内,呈现给我们的第一个词条就是“中华人民共和国国家统计局”(如右图)看来国家专门设置了一个统计部门,在主页上我们看到:3月份全国居民消费价格同比上涨8.3%城市上涨8.0%(如右下图),这当然是统计出的结论,关于统计你还知道那些例子吗?生:学生回答。
师:统计的例子有很多,如:产品的合格率、农作物的产量、产品的销售量、某地的气温、就业状况、电视台的收视率、我国是世界上的第13个贫水国,人均淡水占有量排世界第109位、我国土地沙漠化问题非常严重,全国沙漠化土地面积已超过174000平方公里,并以每年3400平方公里的速度扩张。
这些都是统计出来的。
可见统计是大量存在的,是与我们的日常生活息息相关,而且它反映了某种规律,而这种规律对我们来说是非常重要的,可以通过它来更好的指导我们去生活。
设计意图:让学生充分理解到统计的重要性,与现实生活联系在一起,数学来源于生活,激发学生的求知欲望。
师:统计前提得有数据,你知道这些数据是怎么来的吗?通过调查获得的。
怎么调查?是对考察对象进行全面调查还是抽样调查?带着这个问题咱们看下面的笑话:妈妈:“儿子,帮妈妈买盒火柴去。
2.1.简单随机抽样-苏教版必修3教案
2.1.简单随机抽样-苏教版必修3教案
一、教学目标
1.了解简单随机抽样的概念和特点;
2.掌握简单随机抽样的方法和步骤;
3.认识简单随机抽样的应用场景和意义;
4.培养学生独立思考和合作探究的能力。
二、教学重点
1.简单随机抽样的概念和特点;
2.简单随机抽样的方法和步骤。
三、教学难点
1.简单随机抽样的应用场景和意义;
2.学生独立思考和合作探究的能力。
四、教学过程
1. 导入(5分钟)
介绍调查调研的概念和意义,引出简单随机抽样的概念。
2. 讲解(15分钟)
•简单随机抽样的概念和特点;
•简单随机抽样的方法和步骤。
3. 分组探究(20分钟)
将学生分成小组,让他们根据教师提供的数据,在一定的条件下进行简单随机抽样,并填写实验记录表。
4. 总结(10分钟)
让学生口头汇报实验结果和心得体会。
教师对学生的表现给予评价和指导。
5. 作业布置(5分钟)
布置相关的课后习题作业和实践探究作业。
五、教学方式
采用小组探究和讲解相结合的教学方式。
六、教学工具
黑板、粉笔、多媒体课件。
七、教学反思
本课以小组探究为主要教学方式,让学生在实践中探索简单随机抽样的方法和步骤。
通过互相交流和协作,学生逐渐理解简单随机抽样的意义和重要性。
本课也注重启发学生的思维,引导学生去思考简单随机抽样在实际中的应用和拓展。
在今后的教学实践中,应当继续加强学生的实践操作和思维启发,让学生更好地掌握简单随机抽样的方法和意义。
人教版高中必修32.1.1简单随机抽样教学设计
人教版高中必修32.1.1简单随机抽样教学设计一、教学目标1.掌握简单随机抽样的基本概念和相关方法。
2.理解简单随机抽样在实际调查中的应用。
3.能够设计和实施简单随机抽样调查,并进行数据处理与分析。
二、教学重难点1.理解简单随机抽样的基本概念和原理。
2.掌握简单随机抽样的方法和步骤。
3.学会分析和解读简单随机抽样结果。
三、教学内容及学时安排1. 简单随机抽样(1)概念与基本原理•随机抽样的概念•简单随机抽样的基本原理学时安排•课堂讲解:1学时(2)方法与步骤•简单随机抽样的方法•简单随机抽样的步骤学时安排•课堂教学:2学时•教师示范:1学时•实践操作:2学时(3)实际应用•简单随机抽样在实际调查中的应用•常见抽样误差的分析与处理学时安排•课堂讲解:1学时•实践操作:2学时2. 数据处理与分析(1)数据处理•数据的整理与清洗•数据的编码与录入•数据的统计与汇总学时安排•课堂讲解:1学时•实践操作:2学时(2)数据分析•描述性统计分析•推断性统计分析学时安排•课堂讲解:1学时•实践操作:2学时四、教学方法1.讲授法:通过讲授简单随机抽样的基本概念、方法和步骤,让学生初步理解和掌握这一统计方法的基本思想和步骤。
2.示范法:通过实际调查案例展示简单随机抽样的实际应用过程,加深学生对这一方法的理解和掌握。
五、教学资源教学所需资源主要包括:教材、教学PPT、调查工具、数据分析软件等。
六、教学评价1.调查设计与实施方案:重点评价学生调查设计、实施方案是否合理、是否符合简单随机抽样的基本步骤和原则。
2.数据处理与分析报告:重点评价学生对调查数据的处理和分析能力,能否恰当运用统计方法进行数据分析。
七、教学反思本次教学中,教师选择了讲授法和示范法相结合的教学方法,让学生学习理论的同时,还要实践操作,加深对简单随机抽样的理解和掌握。
在教学过程中,学生对于部分难点的掌握还需加强,教师在后续教学中,可以针对性地加强这部分内容的讲解和实践操作。
2.1.简单随机抽样-人教A版必修三教案
2.1 简单随机抽样-人教A版必修三教案
1. 教学目标
基于对简单随机抽样的理解,了解其应用场景和意义,发现和解决相关误区。
2. 教学重难点
•掌握简单随机抽样的实现方法。
•理解简单随机抽样的意义及其在实际应用中的应用。
3. 教学内容
1.简单随机抽样的概念和定义
2.简单随机抽样的实现方法
3.简单随机抽样在实际应用中的意义和作用
4. 教学过程
4.1 导入环节
通过一个“猜数字”小游戏来引导学生探究简单随机抽样的概率特征,发现不同
的抽样方式对概率的影响。
4.2 观察体验环节
结合实际生活背景,比如:随机抽样调查住宅小区的交通状况,教师现场演示如何用 Excel 进行简单随机抽样。
4.3 分组合作环节
分组学生自行设计一个调查问题,并通过简单随机抽样来获取样本数据。
提醒学生在抽样时要保持随机性,避免“主观抽样”。
4.4 总结扩展环节
请课堂班干部汇总各小组所获得的样本数据,并进行数据分析,提取相应结论,扩展简单随机抽样在其他领域的应用。
5. 教学反思
通过本节课的教学,学生能够完成随机抽样的设计,并掌握简单随机抽样的实现方法。
同时加强了学生对于抽样误区的认知,有助于提高学生的数据调查能力和数据分析能力。
该课程内容符合人教 A 版必修三的学科标准要求,反馈情况良好。
人教版高中数学必修三 第二章 统计简单随机抽样的教学设计与反思
简单随机抽样的教学设计与反思一、教学目标:1、知识与技能目标:正确理解随机抽样的概念,会从总体中随机抽取样本。
2、过程与方法目标:在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观目标:通过对现实生活中统计问题的提出,体会数学知识与现实世界之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样,用简单的随机抽样的方法从总体中抽取样本,并能灵活应用相关知识从总体中抽取样本。
二、教学过程:1、了解简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
2、创设问题情境 ,引入新课例1:环境检测中心怎样了解一个城市的空气质量情况的?(会在这个城市中分散地选择几个点,从各地采集数据。
)例2:农科站怎样了解农田中某种病虫害的灾情?(会随意地选定几块地,仔细地检查虫卵数,然后估计一公顷农田大约平均有多少虫卵,会不会发生病虫害。
)以上的例子都不适宜做普查,那我们该怎么办呢?为什么他们可以这样做呢?二、师生互动,课堂探究要想使样本不偏向总体中的某些个性,有一个对每个个体都公平的方法,决定哪些个体进入样本。
活动一用抽签的方式确定班上的哪位同学去完成一项任务第一步:确定哪个小组;第二步:确定这个小组中的哪位同学讨论:你对这个结果有意见吗?不管是被抽中的还是没被抽中的同学,都会对结果毫无异议。
为什么呢?因为我们事先谁都不知道会抽中哪个。
这种思想的抽样方法我们把它称为简单的随机抽样。
人教版高中必修3(B版)2.1.1简单随机抽样教学设计 (2)
人教版高中必修3(B版)2.1.1简单随机抽样教学设计一、前言在数学中,当我们想要研究人群中某一特定特征的平均值时,我们可以采用抽样方式进行研究。
而其中一种最常用的抽样方式就是简单随机抽样。
本篇文档将介绍人教版高中必修3(B版)2.1.1简单随机抽样的具体内容,并提供一份教学设计供教师参考。
二、简单随机抽样简单随机抽样是指从人群中随机选择样本的方法。
它具有如下特点:1.每一个人都有同等的机会被选中;2.样本与总体中每一个人是无序的;3.产生的样本可能会有偏差。
简单随机抽样的公式如下:$$ P(A_1 \\cap A_2 \\cap \\cdots \\cap A_n)=\\frac{n!}{(n-r)!n^r} $$ 其中,n表示人群中的总人数,r表示样本数量,n!表示n的阶乘。
三、教学设计1. 教学目标通过本课的学习,学生将掌握以下几个方面的内容:1.理解简单随机抽样的概念及其公式;2.学习如何利用简单随机抽样研究人群中某一特定特征的平均值;3.培养学生逻辑思维能力,提高学生的数学素养。
2. 教学过程(1)知识导入教师可以通过提出以下问题来引起学生的兴趣:•如果你想研究全校高三学生的平均身高,你会如何做?•如果你想研究全班同学英语成绩的平均值,你会如何做?引导学生思考并探讨简单随机抽样的概念及其作用。
(2)相关知识点讲解教师可以通过讲解以下内容来帮助学生理解简单随机抽样的相关概念:1.抽样的概念及其分类;2.简单随机抽样的概念及其公式。
(3)案例分析和练习教师可以通过这部分内容来帮助学生加深理解并提高应用能力。
1.提供一组数据让学生进行简单随机抽样,并计算样本中某一特定特征的平均值;2.提供一组数据和问题,要求学生进行简单随机抽样并回答问题。
(4)归纳总结教师可以根据本课的内容,让学生进行归纳总结,并提出疑问。
教师可以在这部分内容中解答学生的疑问,并进行讨论。
3. 教学评价教师可以通过以下方法来对学生的学习效果进行评价:1.课堂小测验;2.学生个人或小组作业报告;3.班级或个人综合成绩等。
人教版高中数学必修三 第二章 统计“ 简单随机抽样”教学设计
“简单随机抽样”教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
人教版高中数学必修三(教案)2.1 随机抽样(3课时)
第一课时 2.1.1简单随机抽样教学要求:正确理解随机抽样的必要性和重要性,掌握简单随机抽样的两种方法(抽签法和随机数法)的一般步骤,能从生活实际中提出一定价值的统计问题.教学重点:掌握抽签法和随机数表法的一般步骤.教学难点:正确理解样本的随机性,合理选择抽签法与随机数法.教学过程:一、复习准备:1、讨论:如何对一批袋装牛奶质量进行检查?(普查的弱点;抽样省时、省力→抽样必要性)2、讨论:什么是总体与样本?怎样获取样本呢?什么样的样本是一个好的样本?如何通过一勺汤的味道来判断一锅汤的味道?(关键在于将总体“搅拌均匀”)阅读著名的统计调查失败的案例,思考美国总统选举的民意测验与实际选举结果为何相反?二、讲授新课:1、教学简单随机抽样的概念:①思考:如要在我们班选出五个人去参加劳动, 应当怎样选呢? 怎样选才是最公平的呢?②简单随机数法的概念: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 就把这种抽样方法叫做简随机抽样. 有抽签法与随机数法两种方法.强调三点: 不放回的抽取;样本个数n小于等于总数N;抽到的机会相等.③练习:下列抽样的方式是否属于简单随机抽样?为什么?A.从无限多个个体中抽取50个个体作为样本.B.箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.2、教学抽签法和随机数法①抽签法也叫抓阄法:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.②游戏: 给班上的每位同学编上号码,然后让同学用小纸条把号码写下来放在粉笔盒里,我把小纸条搅拌均匀,随机的抽出五个号码,被抽到的同学会有奖品.在这个游戏结束以后,由同学来总结抽签法的步骤:给个体编号→在不透明的容器里搅拌均匀→要不放回随机的抽取.③讨论:抽签法的优点和缺点?(优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,使样本代表性差的可能性很大. )④随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.⑤出示例:从800袋牛奶种抽取出60袋看一看质量是否达标.给每一袋牛奶编号. →在随机数表中任选一个数(表略),在这个向右读(也可向左),连取三位,包含它本身,比如785,因为对应的编号785<800,说明这个号码在总体内所以将它取出. 然后继续向右读916 ,因为916>800,所以舍去. 然后到末行的时候可以向上也可以向下读,直到取够60个为止. (▲带领同学反复练习,使同学学会如何使用随机数表. )⑥讨论:随机数法的优点和缺点?(优点:当个体数量较多时,个体有均等的机会被抽中.缺点:个体数量很多时,对个体编号的工作量太大;“搅拌均匀”也比较困难. )3、小结:简单随机抽样两种方法操作步骤及优、缺点. (优点:对个体数量较少时,抽取样本简便易行. 缺点:当个体数量较多时,对个体编号的工作量太大,使操作不快捷. )三、巩固练习:1、P47-1,2,3,4 2、作业:从100件产品中抽10件,试写两种操作步骤. 读报.(将100件编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.)第二课时 2.1.2系统抽样教学要求:正确理解系统抽样的概念;掌握系统抽样的步骤;正确理解系统抽样与简单随机抽样的关系;掌握系统抽样的优点和缺点.教学重点:掌握系统抽样的步骤.教学难点:系统抽样时,当分段间隔k 不是整数的时候怎么办.教学过程:一、复习准备:1. 提问:简单随机抽样应注意几点?有哪几种方法?每种方法的优点和缺点是什么?2. 分别用两种方法设计从本班学生53人中抽取5人进行调查的抽样方案.3. 引入:当个体的数量较多的时候,为了使个体的被抽中的机会均等,要用随机数法.可是数量太多,编号的工作量又太大,也很难搅拌均匀. 面对这种情况,我们今天来学一种新的抽样方法——系统抽样.二、讲授新课:1、教学系统抽样的概念及步骤:① 系统抽样概念:当总体中的个体数较多时,将总体的每个个体进行编号,并根据样本数对编号进行分段,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需样本的抽样方法.② 进行系统抽样的步骤:(1)先将总体的N 个个体编号. 有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k ,对编号进行分段.当N/n (n 是样本容量)是整数时,取kN/n ;(3)在第一段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号(l+k ),再加得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.③ 注意:分段间隔k 的确定. 当总体个数N 恰好是样本容量n 的整数倍时,取N k n;若N n 不是整数时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n 整除. 每个个体被剔除的机会相等,从而使整个抽样过程中每个个体被抽取的机会仍然相等.2、教学例题:① 出示例:我校为了了解高一年级学生对教师教学的意见,打算从高一年级的500名学生中抽取50名进行调查. 用系统抽样的方法,你怎样进行操作呢?解:第一步,编号,给500名同学编号.(注意和随机数法不同,500人、编号不一定是三位数. 如1,2,3. . . ) ; 第二步,分段,确定分段间隔k500/5010.(把500人分成了10段); 第三步,确定起始号,在第一段1~10里随机的选一个数(抽签法)比如6;第四步,抽取样本,每隔10个号码抽取一个,要选的50个数的编号是6、16、26、36、46. . . . . . . . . 496(如果第三步选的是10,则他们的编号是10、20、30. . . . 500)② 思考:当第二步的k 不是整数的时候怎么办呢? 例题变式502人. (先随机剔除几个个体)③ 练习:在2003名同学间选出100人进行有关视力的问卷调查,你怎样选取样本呢?分析:我们知道2003/100不是整数,这时我们就要随机的选出3名同学(用什么方法?)然后再重新进行编号,步骤就和能整除的时候一样了.3、小结:由同学来总结系统抽样有那些优点和缺点. (优点:可以利用个体自身的编号,对数量较多的个体操作比较便捷. 缺点:当对总体情况不是很了解的情况下,样本的代表性较差. )注意:在使用抽样方法时,总体的数量较多,但必须要对总体有个大概了解的前提下.三、巩固练习:1、练习:P49-1,2,3;读报(第30期第1版文);阅读:广告数据的可靠性.2、作业:P54-6.第三课时 2.1.3分层抽样教学要求:使学生掌握分层抽样的方法,并能结合以前学过的知识对三种抽样方法进行比较,活学活用,并能把三种抽样方法融会贯通处理一些复杂的问题,使样本有更好的代表性.教学重点:运用分层抽样的方法抽取样本.教学难点:恰当选用三种抽样方法解决实际问题.教学过程:一、复习准备:1、提问:一般在什么条件下使用系统抽样?系统抽样都有那些步骤?当分段间隔不是整数的时候怎么办?2、试设计从高一学生804人中抽取40人进行调查的抽样方案.变式:学校高一学生800人,高二640人,高三560人,从全校抽取100人,如何抽样?3、引入:当对总体情况不是很了解的情况下用系统抽样,样本的代表性可能会很差,比如抽取的可能都是男生,或都是女生. 而且有时一些问题农村和城市,老人和孩子等都有很大的差异,当总体存在很大的差异时,我们怎么办呢,今天我们来学习第三种抽样方法分层抽样.二、讲授新课:1、教学分层抽样概念及步骤:①定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样.②步骤:根据已掌握的信息,将总体分成互不相交的层;根据总体中的个体数N和样本容量n计算抽样比k=nN;确定第i层应该抽取的个体数目n i≈N i×k(N i为第i层所包含的个体数),使得诸n i之和为n;在各个层中,按第三步中确定的数目在各层中随机抽取个体,合在一起得到容量为n的样本.③出示例:一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本.分析:因为有男,女两个互不交叉的层,所以选用分层抽样. 因为总体的个数是56+4298,样本容量为28,一定的比例对该题而言样本容量除以总体的个数为28/982/7,那么在男队员中应选取的人数为56*2/716人,女队员中应选取的人数为42*2/712人.解:田径队共有人数56+4298人,样本容量为28人,则总数与样本容量的比是28:982:7,男队员中应选取的人数为56*2/716人,女队员中应选取的人数为42*2/712人.④练习:某地区想调查中小学学生的近视情况,已知高中生有2400人,初中生有10900人,小学生有11000人,如果要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?分析:因为被调查的总体有很明显的差异,所以要使用分层抽样,找到样本容量与总体个数的比例,再和每个层的个体数相乘,得到的样本数量之和就是应抽取的人数.解:因为要抽取1%,所以样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/10024,初中应抽取人数为10900*1/100109,小学应抽取人数为11000*1/100110思考:如何在2400中抽取24人呢?2、比较三种抽样方法:①简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法都建立在此基础上. 在系统抽样的各段抽样、分层抽样的各层抽样,都需简单随机抽样来实现.②分析与比较三种抽样方法的要点、共同点、不同点、联系、适应范围.(见报第30期第1版)三、巩固练习:1、练习:教材P52第1、2、3题. 2、作业:教材P54 第5题;读报(《数学周报》第30期).——————————————————————注意事项————————————————————高中数学必修教学课程教案均为word文字可编辑版,如果符合你要求,欢迎下载使用。
简单随机抽样高中数学教案
简单随机抽样高中数学教案
教学内容:随机抽样
教学目标:
1. 了解什么是随机抽样以及其重要性;
2. 掌握常见的随机抽样方法;
3. 能够应用随机抽样方法解决实际问题。
教学过程:
一、导入:引入随机抽样的概念,并讨论其在生活中的应用。
二、讲解:介绍常见的随机抽样方法,包括简单随机抽样、分层抽样、系统抽样等。
三、练习:让学生通过实例练习不同的随机抽样方法,并分析结果的可靠性。
四、应用:讨论随机抽样在统计调查和科学研究中的应用,以及如何避免抽样偏差。
五、总结:总结本节课的重点内容,并布置相关的练习作业。
教学工具:黑板、教科书、抽样工具(如抽奖箱、骰子等)
教学评估:通过练习和课堂讨论来评估学生对随机抽样的理解和应用能力。
教学延伸:引导学生深入了解随机抽样的原理和方法,以及在实际研究中的应用。
教学反思:及时收集学生的反馈意见,不断改进教学方法,提高教学效果。
人教版高中数学必修三(教案)2.1随机抽样(3课时)
教学要求:正确理解随机抽样的必要性和重要性,掌握简单随机抽样的两种方法(抽签法和随机数法)的一般步骤,能从生活实际中提出一定价值的统计问题.教学重点:掌握抽签法和随机数表法的一般步骤.教学难点:合理选择抽签法与随机数法,正确理解样本的随机性.教学过程:一、复习准备:1、讨论:如何对一批袋装牛奶质量进行检查?(普查的弱点;抽样省时、省力→抽样必要性)2、讨论:什么是总体与样本?怎样获取样本呢?什么样的样本是一个好的样本?如何通过一勺汤的味道来判断一锅汤的味道?(关键在于将总体“搅拌均匀”)阅读著名的统计调查失败的案例,思考美国总统选举的民意测验与实际选举结果为何相反?二、讲授新课:1、教学简单随机抽样的概念:①思考:如要在我们班选出五个人去参加劳动, 应当怎样选呢? 怎样选才是最公平的呢?②简单随机数法的概念: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 就把这种抽样方法叫做简随机抽样. 有抽签法与随机数法两种方法.强调三点: 不放回的抽取;样本个数n小于等于总数N;抽到的机会相等.③练习:下列抽样的方式是否属于简单随机抽样?为什么?A.从无限多个个体中抽取50个个体作为样本.B.箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.2、教学抽签法和随机数法①抽签法也叫抓阄法:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.②游戏: 给班上的每位同学编上号码,然后让同学用小纸条把号码写下来放在粉笔盒里,我把小纸条搅拌均匀,随机的抽出五个号码,被抽到的同学会有奖品.在这个游戏结束以后,由同学来总结抽签法的步骤:给个体编号→在不透明的容器里搅拌均匀→要不放回随机的抽取.③讨论:抽签法的优点和缺点?(优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,使样本代表性差的可能性很大. )④随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.⑤出示例:从800袋牛奶种抽取出60袋看一看质量是否达标.给每一袋牛奶编号. →在随机数表中任选一个数(表略),在这个向右读(也可向左),连取三位,包含它本身,比如785,因为对应的编号785<800,说明这个号码在总体内所以将它取出. 然后继续向右读916 ,因为916>800,所以舍去. 然后到末行的时候可以向上也可以向下读,直到取够60个为止. (▲带领同学反复练习,使同学学会如何使用随机数表. )⑥讨论:随机数法的优点和缺点?(优点:当个体数量较多时,个体有均等的机会被抽中. 缺点:个体数量很多时,对个体编号的工作量太大;“搅拌均匀”也比较困难. )3、小结:简单随机抽样两种方法操作步骤及优、缺点. (优点:对个体数量较少时,抽取样本简便易行. 缺点:当个体数量较多时,对个体编号的工作量太大,使操作不快捷. )三、巩固练习:1、P47-1,2,3,4 2、作业:从100件产品中抽10件,试写两种操作步骤. 读报.(将100件编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.)教学要求:正确理解系统抽样的概念;掌握系统抽样的步骤;正确理解系统抽样与简单随机抽样的关系;掌握系统抽样的优点和缺点.教学重点:掌握系统抽样的步骤.教学难点:系统抽样时,当分段间隔k不是整数的时候怎么办.教学过程:一、复习准备:1. 提问:简单随机抽样应注意几点?有哪几种方法?每种方法的优点和缺点是什么?2. 分别用两种方法设计从本班学生53人中抽取5人进行调查的抽样方案.3. 引入:当个体的数量较多的时候,为了使个体的被抽中的机会均等,要用随机数法.可是数量太多,编号的工作量又太大,也很难搅拌均匀. 面对这种情况,我们今天来学一种新的抽样方法——系统抽样.二、讲授新课:1、教学系统抽样的概念及步骤:①系统抽样概念:当总体中的个体数较多时,将总体的每个个体进行编号,并根据样本数对编号进行分段,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需样本的抽样方法.②进行系统抽样的步骤:(1)先将总体的N个个体编号. 有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k,对编号进行分段.当N/n(n是样本容量)是整数时,取k=N/n;(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本. 通常是将l加上间隔k得到第2个个体编号(l+k),再加得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.③注意:分段间隔k的确定. 当总体个数N恰好是样本容量n的整数倍时,取Nkn;若Nn不是整数时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除. 每个个体被剔除的机会相等,从而使整个抽样过程中每个个体被抽取的机会仍然相等.2、教学例题:①出示例:我校为了了解高一年级学生对教师教学的意见,打算从高一年级的500名学生中抽取50名进行调查. 用系统抽样的方法,你怎样进行操作呢?解:第一步,编号,给500名同学编号.(注意和随机数法不同,500人、编号不一定是三位数. 如1,2,3. . . ) ;第二步,分段,确定分段间隔k=500/50=10.(把500人分成了10段);第三步,确定起始号,在第一段1~10里随机的选一个数(抽签法)比如6;第四步,抽取样本,每隔10个号码抽取一个,要选的50个数的编号是6、16、26、36、46. . . . . . . . . 496(如果第三步选的是10,则他们的编号是10、20、30. . . . 500)②思考:当第二步的k不是整数的时候怎么办呢?例题变式502人. (先随机剔除几个个体)③练习:在2003名同学间选出100人进行有关视力的问卷调查,你怎样选取样本呢?分析:我们知道2003/100不是整数,这时我们就要随机的选出3名同学(用什么方法?)然后再重新进行编号,步骤就和能整除的时候一样了.3、小结:由同学来总结系统抽样有那些优点和缺点. (优点:可以利用个体自身的编号,对数量较多的个体操作比较便捷. 缺点:当对总体情况不是很了解的情况下,样本的代表性较差. )注意:在使用抽样方法时,总体的数量较多,但必须要对总体有个大概了解的前提下.三、巩固练习:1、练习:P49-1,2,3;读报(第30期第1版文);阅读:广告数据的可靠性.2、作业:P54-6. 第三课时 2.1.3分层抽样教学要求:使学生掌握分层抽样的方法,并能结合以前学过的知识对三种抽样方法进行比较,活学活用,并能把三种抽样方法融会贯通处理一些复杂的问题,使样本有更好的代表性.教学重点:运用分层抽样的方法抽取样本.教学难点:恰当选用三种抽样方法解决实际问题.教学过程:一、复习准备:1、提问:一般在什么条件下使用系统抽样?系统抽样都有那些步骤?当分段间隔不是整数的时候怎么办?2、试设计从高一学生804人中抽取40人进行调查的抽样方案.变式:学校高一学生800人,高二640人,高三560人,从全校抽取100人,如何抽样?3、引入:当对总体情况不是很了解的情况下用系统抽样,样本的代表性可能会很差,比如抽取的可能都是男生,或都是女生. 而且有时一些问题农村和城市,老人和孩子等都有很大的差异,当总体存在很大的差异时,我们怎么办呢,今天我们来学习第三种抽样方法分层抽样.二、讲授新课:1、教学分层抽样概念及步骤:①定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样.②步骤:根据已掌握的信息,将总体分成互不相交的层;根据总体中的个体数N和样本容量n计算抽样比k=nN;确定第i层应该抽取的个体数目n i≈N i×k(N i为第i层所包含的个体数),使得诸n i之和为n;在各个层中,按第三步中确定的数目在各层中随机抽取个体,合在一起得到容量为n的样本.③出示例:一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本.分析:因为有男,女两个互不交叉的层,所以选用分层抽样. 因为总体的个数是56+42=98,样本容量为28,一定的比例对该题而言样本容量除以总体的个数为28/98=2/7,那么在男队员中应选取的人数为56*2/7=16人,女队员中应选取的人数为42*2/7=12人.解:田径队共有人数56+42=98人,样本容量为28人,则总数与样本容量的比是28:98=2:7,男队员中应选取的人数为56*2/7=16人,女队员中应选取的人数为42*2/7=12人.④练习:某地区想调查中小学学生的近视情况,已知高中生有2400人,初中生有10900人,小学生有11000人,如果要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?分析:因为被调查的总体有很明显的差异,所以要使用分层抽样,找到样本容量与总体个数的比例,再和每个层的个体数相乘,得到的样本数量之和就是应抽取的人数.解:因为要抽取1%,所以样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/100=24,初中应抽取人数为10900*1/100=109,小学应抽取人数为11000*1/100=110 思考:如何在2400中抽取24人呢?2、比较三种抽样方法:①简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法都建立在此基础上. 在系统抽样的各段抽样、分层抽样的各层抽样,都需简单随机抽样来实现.②分析与比较三种抽样方法的要点、共同点、不同点、联系、适应范围.(见报第30期第1版)三、巩固练习:1、练习:教材P52第1、2、3题. 2、作业:教材P54 第5题;读报(《数学周报》第30期).。
人教版高二年级数学教科书必修三《简单随机抽样》教案
第二章统计2.1.1 简单随机抽样一、教学分析:1.教材分析:教材以质量检测为导向,逐步引入简单随机抽样的概念,并通过实例介绍了两种随机抽样的方法:抽签法和随机数法。
2.学情分析:为了使学生获得随机抽样的经验,教学时注意增加学生实践的机会。
二、三维目标:1.能从现实生活或其它学科中推出具有一定价值的统计问题,提高学生分析问题的能力。
2.了解随机抽样的必要性和重要性,提高学生学习数学的兴趣。
3.学会用抽签法和随机数法抽取样本,培养学生的应用能力。
三、重点和难点:重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本。
难点:抽签法和随机数法的实施步骤。
教具:不透明的盒子、30个乒乓球及号签。
五、教学方法:小组讨论与动手实践相结合。
六、教学过程:问题情境一:据大河网报道,河南省郑州食安办日前公布了2017年上半年郑州市乳制品调查结果,其中酸奶、纯奶合格率均为100%,但是鲜奶合格率仅为68.66% ;不合格指标主要为大肠菌群超标。
问题情境二:据《北京晚报》报道,最新调查统计显示,中国青少年学生的近视率已居世界第二位.小学生近视率为28%,初中生近视率为60%,高中生近视率为85%,大学生近视率为90%。
1.通过上述实例,了解随机抽样的必要性及原则。
①所考察的总体中个体数往往很多;②许多考察带有破坏性。
③易失误。
抽样的原则通过著名案例:在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验。
调查兰顿和罗斯福中谁将当选下一届的总统。
为了了解公众意向,调查者通过电话薄和车辆登记薄上的名单给一大批人发了调查表,(注意在1936年电话和汽车只有少数富人拥有)。
通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志社预测兰顿将在选举中获胜。
实际的选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:小组讨论,预测失败的原因。
得出如何科学地抽取样本:尽量使每个个体有同样的机会被抽中。
人教高中数学三第一课时简单随机抽样教案教学设计
人教高中数学三2课题名称简单随机抽样(人教版一般高中数学必修三2.1节随机抽样第一课时)教材分析本节的要紧内容包括:统计问题的特点、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及其三种抽样方法,分别是(1)直截了当抽选法,(2)抽签法,(3)随机数法,这三种方法的操作步骤和注意事项。
本节的地位与作用:教学目标(一)知识与技能正确明白得随机抽样的概念,把握抽签法、随机数表法的一样步骤;(二)过程与方法(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
(三)情感态度与价值感通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
教学重点、难点正确明白得简单随机抽样的概念,把握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学方法与手段方法:讲授法和引导探究法;手段:PPT;教学流程(一)回忆引入数学与生活密不可分,数学来源于生活也应用于生活,而数学与生活联系专门紧密的一个问题确实是统计问题,在我们生活中有形形色色的数据,比如说产品的合格率、农作物的产量、商品的销售量、某电视台的收视率``````等等。
在我们初中的时候,我们学习了,如何处理数据,比如说制作成图表,求平均值方差等,然而并没有告诉我们如何统计收集这些数据,那么接下来就来学习一下如何收集数据。
设计意图:初步感受生活中的数据无处不在,回忆初中时期对数据的处理,引出如何收集数据。
(二)初步感受1. 生活中有专门多需要收集数据的问题全国的人口总数某地区中小学生的视力状况一批零件的次品率全国沙漠化的总面积2021年广东高考理科数学平均分2. 像这这种类型的问题,我们称之为统计问题,那么这些统计问题的研究对象分别是什么呢?分别要收集什么数据?研究对象称之为研究总体,需要收集的数据称之为研究变量;3. 再举个例子:某批袋装牛奶的细菌含量超标情形;那个问题是不是统计问题?那么研究总体是什么呢?研究变量是什么?研究总体:这批牛奶;研究变量:细菌含量;设计意图:感受生活当中的统计问题,并了解统计问题的特点,明确研究对象和需要收集的数据。
人教版高中数学必修三《简单随机抽样》精品教案
(封面)人教版高中数学必修三《简单随机抽样》精品教案授课学科:授课年级:授课教师:授课时间:XX学校高中数学必修三《简单随机抽样》教案设计一.教学任务分析:(1)以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(2正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本.(3)通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法.二.教学重点与难点:教学重点:简单随机抽样的概念,抽签法及随机数法的操作步骤.教学难点:对样本随机性的理解.三.教学基本流程:以探究具体问题为导向,引入简单随机抽样的概念↓抽签法↓随机数法↓巩固练习,小结、作业四.1.创设情景,揭示课题问题1:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?教师引导学生交流讨论,提出检验的方法:(1)采用普查方法如何?(2)采用抽查方法如何?你如何获取有代表性的样本.问题2:假设你作为一名食品卫生工作人员,要对某食品店内的大包装箱内的小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的小包装饼干作为检验的样本.那么,应当怎样获取样本呢?2.简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样(simpierandom sampling).这样抽取的样本,叫做简单随机样本.思考1:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.思考2:概括简单随机抽样的特点(1)简单随机抽样要求被抽取的样本的总体个数N是有限的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(封面)
高中数学必修三《简单随机抽样》同步教
案
授课学科:
授课年级:
授课教师:
授课时间:
XX学校
高中数学必修三《简单随机抽样》教学设计
(一)教学目标:
知识与技能:
理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;
过程与方法:
通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其
方法的可靠性,培养分析问题,解决问题的能力;
情感、态度、价值观:
通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考
问题意识,养成良好的个性品质。
(二)教学重点、难点
重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)
难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性
(三)教学基本思路
一、设置情境
引入:
师:从这节课开始我们来学习新的一章——统计,当我们把这两个
字键入“百度”或“google”的搜索栏内,呈现给我们的第一个词条就
是“中华人民共和国国家统计局”(如右图)看来国家专门设置了一个
统计部门,在主页上我们看到:3月份全国居民消费价格同比上涨8.3%城市上涨8.0%(如右下图),这当然是统计出的结论,关于统计你还知
道那些例子吗?
生:学生回答。
师:统计的例子有很多,如:产品的合格率、农作物的产量、产品的销售量、某地的气温、就业状况、电视台的收视率、我国是世界上的第13个贫水国,人均淡水占有量排世界第109位、我国土地沙漠化问题非常严重,全国沙漠化土地面积已超过平方公里,并以每年3400平方公里的速度扩张。
这些都是统计出来的。
可见统计是大量存在的,是与我们的日常生活息息相关,而且它反映了某种规律,而这种规律对我们来说是非常重要的,可以通过它来更好的指导我们去生活。
设计意图:让学生充分理解到统计的重要性,与现实生活联系在一起,数学来源于生活,激发学生的求知欲望。
师:统计前提得有数据,你知道这些数据是怎么来的吗?通过调查获得的。
怎么调查?是对考
察对象进行全面调查还是抽样调查?带着这个问题咱们看下面的笑话:
妈妈:“儿子,帮妈妈买盒火柴去。
”
妈妈:“这次注意点,上次你买的火柴好多划不着。
”………儿子高兴地跑回来。
孩子:“妈妈,这次的火柴全划得着,我每根都试过了。
”
孩子:“妈妈,这次的火柴全划得着,我每根都试过了。
”
笑过之后,我们能得到什么样的结论呢?
生:这个调查具有破坏性,不可能每根试过,不能展开全面调查。