2020年人教版高中数学必修3全册精美教案(全套完整版)
人教高中必修3数学教案五篇
人教高中必修3数学教案五篇本节课有利于学生动手试验、合作探究能力的提升,有助于提高学生发现问题、解决问题的能力,有助于增强学生数学知识在实际问题中的应用。
下面是小编整理的人教高中必修3数学教案5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。
人教高中必修3数学教案1教学目标(1)了解算法的含义,体会算法思想.(2)会用自然语言和数学语言描述简单具体问题的算法;(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力教学重难点重点:算法的含义、解二元一次方程组的算法设计.难点:把自然语言转化为算法语言.情境导入电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手.作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:第一步:观察、等待目标出现(用望远镜或瞄准镜);第二步:瞄准目标;第三步:计算(或估测)风速、距离、空气湿度、空气密度;第四步:根据第三步的结果修正弹着点;第五步:开枪;第六步:迅速转移(或隐蔽).以上这种完成狙击任务的方法、步骤在数学上我们叫算法.●课堂探究预习提升1.定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.描述方式自然语言、数学语言、形式语言(算法语言)、框图.3.算法的要求(1)写出的算法,必须能解决一类问题,且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.4.算法的特征(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的.(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续.(5)不唯一性:解决同一问题的算法可以是不唯一的.课堂典例讲练命题方向1 对算法意义的理解例1.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为( )A.2B.3C.4D.5【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾.【答案】B[规律总结]1.正确理解算法的概念及其特点是解决问题的关键.2.针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题.【变式训练】下列对算法的理解不正确的是________①一个算法应包含有限的步骤,而不能是无限的②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤③算法中的每一步都应当有效地执行,并得到确定的结果④一个问题只能设计出一个算法【解析】由算法的有限性指包含的步骤是有限的故①正确;由算法的明确性是指每一步都是确定的故②正确;由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;由对于同一个问题可以有不同的算法故④不正确.【答案】④命题方向2 解方程(组)的算法例2.给出求解方程组的一个算法.[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组.[规范解答]方法一:算法如下:第一步,①×(-2)+②,得(-2+5)y=-14+11,即方程组可化为第二步,解方程③,可得y=-1,④第三步,将④代入①,可得2x-1=7,x=4,第四步,输出4,-1.方法二:算法如下:第一步,由①式可以得到y=7-2x,⑤第二步,把y=7-2x代入②,得x=4.第三步,把x=4代入⑤,得y=-1.第四步,输出4,-1.[规律总结]1.本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用.2.设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤.【变式训练】【解】算法如下:S1,①+2×②得5x=1;③S2,解③得x=;S3,②-①×2得5y=3;④S4,解④得y=;命题方向3 筛选问题的算法设计例3.设计一个算法,对任意3个整数a、b、c,求出其中的最小值.[思路分析]比较a,b比较m与c―→最小数[规范解答]算法步骤如下:1.比较a与b的大小,若a2.比较m与c的大小,若m[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个.【变式训练】在下列数字序列中,写出搜索89的算法:21,3,0,9,15,72,89,91,93.[解析]1.先找到序列中的第一个数m,m=21;2.将m与89比较,是否相等,如果相等,则搜索到89;3.如果m与89不相等,则往下执行;4.继续将序列中的其他数赋给m,重复第2步,直到搜索到89.命题方向4 非数值性问题的算法例4.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.(1)设计安全渡河的算法;(2)思考每一步算法所遵循的共同原则是什么?[解析](1)1.人带两只狼过河;2.人自己返回;3.人带一只狼过河;4.人自己返回;5.人带两只羚羊过河;6.人带两只狼返回;7.人带一只羚羊过河;8.人自己返回;9.人带两只狼过河.(2)在人运送动物过河的过程中,人离开岸边时必须保证每个岸边的羚羊的数目大于狼的数目.[规律总结]1.对于非数值性的问题,在设计算法时,应当先建立过程模型,也就是找到解决问题的方案,再把它细化为一步连接一步组成的步骤.从而设计出算法.2.首先应想到先运两只狼,这是唯一的首选步骤,只有这样才可避免狼吃羊,带过一只羊后,必须将狼带回来才行.【变式训练】两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳,他们如何渡河?请写出你的渡河方案及算法.[解析]因为一次只能渡过一个大人或两个小孩,而船还要回来渡其他人,所以只能让两个小孩先过河,渡河的方案算法为:1.两个小孩同船渡过河去;2.一个小孩划船回来;3.一个大人独自划船渡过河去;4.对岸的小孩划船回来;5.两个小孩再同船渡过河去;6.一个小孩划船回来;7.余下的一个大人独自划船渡过河去;8.对岸的小孩划船回来;9.两个小孩再同船渡过河去.课后习题1.以下对算法的描述正确的个数是()①对一类问题都有效;②对个别问题有效;③计算可以一步步地进行,每一步都有唯一的结果;④是一种通法,只要按部就班地做,总能得到结果.A.1个B.2个C.3个D.4个[答案]C[解析]①③④正确,均符合算法的概念与要求,②不正确.2.算法的有限性是指()A.算法的最后必包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确[答案]C[解析]由算法的要求可知,应选C.3.下列语句中是算法的个数是()①从广州到北京旅游,先坐火车,再坐飞机抵达;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果10.A.1个B.2个C.3个D.4个[答案]C[分析]解答本题可先正确理解算法的概念及其特点,然后逐一验证每个语句是否正确.[解析]①中说明了从广州到北京的行程安排,完成任务;②中给出了一元一次方程这一类问题的解决方法;④中给出了求1+2+3+4的一个过程,最终得出结果.对于③,并没有说明如何去算,故①②④是算法,③不是算法.4.设计一个算法求方程5x+2y=22的正整数解,其最后输出的结果应为________.[答案](2,6),(4,1)[解析]因为求方程的正整数解,所以应将x从1开始输入,直到方程成立.x=2时,y==6;5.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求它的总分和平均成绩的一个算法为:1.取A=89,B=96,C=99;2.____①____;3.____②____;4.输出D,E.[解析]求总分需将三个数相加,求平均分,另需让总分除以3即可.x=4时,y==1.[答案]①计算总分D=A+B+C ②计算平均成绩E=人教高中必修3数学教案2本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考):1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+②×2,得5x=1.③第二步,解③,得x= .第三步,②-①×2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y= .⑤第四步,把⑤代入③,得x=2× -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1≠0,可以写出类似的求解步骤:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n >2)是否为质数的算法.分析:对于任意的整数n( n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)•f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)•f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.[来源:学&科&网Z&X&X&K] 解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)•f(b)<0.第三步,取区间中点m= .第四步,若f(a)•f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t∈Z 是否成立,若成立执行y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.人教高中必修3数学教案3教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化. 教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计.教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f_x=-+当3x=时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12。
人教版A版高中数学必修三教案新部编本 全册
例1:(课本第9页例3)
练习1:交换两个变量A和B的值,并输出交换前后的值.
解:算法如下:程序框图:
第一步:输入A,B的值.
第二步:把A的值赋给x.
第三步:把B的值赋给A.
第四步:把x的值赋给B.
第五步:输出A,B的值.
四、条件结构
根据条件判断,决定不同流向.
2.写出解方程 的一个算法.
3.利用二分法设计一个算法求 的近似值(精确度为0.005).
4.已知 , ,写出求直线AB斜率的一个算法.
5.已知函数 设计一个算法求函数的任一函数值
1.1.2程序框图(第2课时)
【课程标准】通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
四、知识应用
例5:(课本第3页例1)(难点是由质数的定义判断一个大于1的正整数 是否为质数的基本方法)
练习1:(课本第4页练习2)任意给定一个大于1的正整数 ,设计一个算法求出 的所有因数.
解:根据因数的定义,可设计出下面的一个算法:
第一步:输入大于1的正整数 .
第二步:判断 是否等于2,若 ,则 的因数为1, ;若 ,则执行第三步.
例2:(课本第10页例4)
练习2:有三个整数 , , ,由键盘输入,输出其中最大的数.
解:算法1
第一步:输入 , , ;
第二步:若 ,且 ;则输出 ;否则,执行第三步;
第三步:若 ,则输出 ;否则,输出 .
算法2
第一步:输入 , , ;
第二步:若 ,则 ;否则, ;
第三步:若 ,则输出 ;否则,输出 .
人教版高中数学必修三教案(全套)
第一章算法初步1.1.1算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
人教版高级中学数学必修三教案集.doc
人教版高中数学必修三教案集【教案】人教版高中数学必修三几何概型及均匀随机数的产生教案人教版高中数学必修3古典概型及随机数的产生教案人教版高中数学必修3概率的基本性质教案人教新课标高一数学随机事件的概率及概率的意义教案数学必修3 用样本的数字特征估计总体的数字特征教案数学必修3用样本的频率分布估计总体分布教案新课标人教版高中数学必修 3 分层抽样教案高中数学必修3系统抽样教案(新课标人教版) 人教版高中数学必修3简单随机抽样教案人教版高中数学必修3 算法案例教案人教版高中数学必修3条件语句和循环语句教案人教版高中数学必修3 输入、输出语句和赋值语句教案.doc 人教版高中数学必修 3 程序框图教案人教版高中数学必修 3 算法的概念教案人教版高中数学必修一知识点规纳数学公式一、集合有关概念1.集合的含义2. 集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3) 元素的无序性,3.集合的表示:{ }如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
?注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z有理数集Q实数集R1)列举法:{a,b,c}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R|x-3 2},{x| x-3 2}3)语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1. 包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A 与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.相等关系:A=B (5 5,且5 5,则5=5)实例:设A={x|x2-1=0} B={-1,1} 元素相同则两集合相等即:①任何一个集合是它本身的子集。
人教版高中数学必修三精品教案全册合集
人教版高中数学必修三精品教案全册合集第一章算法初步1.1.1算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
人教版高中数学必修3全套教案
教学过程第1课时案例1 辗转相除法与更相减损术导入新课思路1(情境导入)大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.思路2(直接导入)前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.推进新课新知探究提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m,n.第二步,求余数r:计算m除以n,将所得余数存放到变量r中.第三步,更新被除数和余数:m=n,n=r.第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行.如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术. 《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 105×1+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 146×2+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 813×1+333,1 813=333×5+148,333=148×2+37,148=37×4.最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数.这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法.算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如下图:程序:INPUT m,nDOr=m MOD nm=nn=rLOOP UNTIL r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 105×1+2 146,可以化为8 251-6 105×1=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r>0r=m MOD nm=nn=rWENDPRINT mEND例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=763的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别来源于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程.变式训练用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243×1+81,243=81×3+0,则324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,则81 与135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324-243=81,243-81=162,162-81=81,则324与243的最大公约数为81.135-81=54,81-54=27,54-27=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.80÷2=40,36÷2=18.40和18都是偶数,要除公因数2.40÷2=20,18÷2=9.下面来求20与9的最大公约数,20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公约数为22×1=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.变式训练分别用辗转相除法和更相减损术求1 734,816的最大公约数.解:辗转相除法:1 734=816×2+102,816=102×8(余0),∴1 734与816的最大公约数是102.更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数.867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1 734与816的最大公约数是51×2=102.利用更相减损术可另解:1 734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1 734与816的最大公约数是102.知能训练求319,377,116的最大公约数.解:377=319×1+58,319=58×5+29,58=29×2.∴377与319的最大公约数为29,再求29与116的最大公约数.116=29×4.∴29与116的最大公约数为29.∴377,319,116的最大公约数为29.拓展提升试写出利用更相减损术求两个正整数的最大公约数的程序.解:更相减损术程序:INPUT “m,n=”;m,nWHILE m<>nIF m>n THENm=m-nELSEm=n-mEND IFWENDPRINT mEND课堂小结(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.作业分别用辗转相除法和更相减损术求261,319的最大公约数.分析:本题主要考查辗转相除法和更相减损术及其应用.使用辗转相除法可依据m=nq+r,反复执行,直到r=0为止;用更相减损术就是根据m-n=r,反复执行,直到n=r为止.解:辗转相除法:319=261×1+58,261=58×4+29,58=29×2.∴319与261的最大公约数是29.更相减损术:319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,∴319与261的最大公约数是29.设计感想数学不仅是一门科学,也是一种文化,本节的引入从东、西方文化的不同开始,逐步向学生渗透数学文化.从知识方面主要学习用两种方法求两个正整数的最大公约数,从思想方法方面,主要学习递归思想.本节设置精彩例题,不仅让学生学到知识,而且让学生进一步体会算法的思想,培养学生的爱国主义情操.第2课时案例2 秦九韶算法导入新课思路1(情境导入)大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的吃,而虫子却是先钻到苹果里面从里到外一口一口的吃,由此看来处理同一个问题的方法多种多样.怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?方法也是多种多样的,今天我们开始学习秦九韶算法.思路2(直接导入)前面我们学习了辗转相除法与更相减损术,今天我们开始学习秦九韶算法.推进新课新知探究提出问题(1)求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值有哪些方法?比较它们的特点.(2)什么是秦九韶算法?(3)怎样评价一个算法的好坏?讨论结果:(1)怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?一个自然的做法就是把5代入多项式f(x),计算各项的值,然后把它们加起来,这时,我们一共做了1+2+3+4=10次乘法运算,5次加法运算.另一种做法是先计算x2的值,然后依次计算x2·x,(x2·x)·x,((x2·x)·x)·x的值,这样每次都可以利用上一次计算的结果,这时,我们一共做了4次乘法运算,5次加法运算.第二种做法与第一种做法相比,乘法的运算次数减少了,因而能够提高运算效率,对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以采用第二种做法,计算机能更快地得到结果.(2)上面问题有没有更有效的算法呢?我国南宋时期的数学家秦九韶(约1202~1261)在他的著作《数书九章》中提出了下面的算法:把一个n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0改写成如下形式:f(x)=a n x n+a n-1x n-1+…+a1x+a0=(a n x n-1+a n-1x n-2+…+a1)x+ a0=((a n x n-2+a n-1x n-3+…+a2)x+a1)x+a0=…=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0,这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.上述方法称为秦九韶算法.直到今天,这种算法仍是多项式求值比较先进的算法.(3)计算机的一个很重要的特点就是运算速度快,但即便如此,算法好坏的一个重要标志仍然是运算的次数.如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论的算法.应用示例例1 已知一个5次多项式为f (x )=5x 5+2x 4+3.5x 3-2.6x 2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.解:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,按照从内到外的顺序,依次计算一次多项式当x=5时的值:v 0=5;v 1=5×5+2=27;v 2=27×5+3.5=138.5;v 3=138.5×5-2.6=689.9;v 4=689.9×5+1.7=3 451.2;v 5=3 415.2×5-0.8=17 255.2;所以,当x=5时,多项式的值等于17 255.2.算法分析:观察上述秦九韶算法中的n 个一次式,可见v k 的计算要用到v k-1的值,若令v 0=a n ,我们可以得到下面的公式:⎩⎨⎧=+==--).,,2,1(,10n k a x v v a v k n k kn Λ 这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现.算法步骤如下:第一步,输入多项式次数n 、最高次的系数a n 和x 的值.第二步,将v 的值初始化为a n ,将i 的值初始化为n-1.第三步,输入i 次项的系数a i .第四步,v=vx+a i ,i=i-1.第五步,判断i 是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.程序框图如下图:程序:INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0PRINT “i=”;iINPUT “ai=”;av=v*x+ai=i-1WENDPRINT vEND点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例.变式训练请以5次多项式函数为例说明秦九韶算法,并画出程序框图.解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0=((a5x3+a4x2+ a3x+a2)x+a1)x+a0=(((a5x2+a4x+ a3)x+a2)x+a1)x+a0=((((a5x+a4)x+ a3)x+a2)x+a1)x+a0.上面的分层计算,只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可.程序框图如下图:例2 已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n,如果在一种算法中,计算k x(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要__________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n -1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要___________次运算.答案:65 20点评:秦九韶算法适用一般的多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的求值问题.直接法乘法运算的次数最多可到达2)1(nn,加法最多n次.秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次.例3 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值.解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7.计算的过程可以列表表示为:最后的系数2 677即为所求的值.算法过程:v0=2;v1=2×5-5=5;v2=5×5-4=21;v3=21×5+3=108;v4=108×5-6=534;v5=534×5+7=2 677.点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算.知能训练当x=2时,用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6的值.解法一:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((3x+8)x-3)x+5)x+12)x-6.按照从内到外的顺序,依次计算一次多项式当x=2时的值.v0=3;v1=v0×2+8=3×2+8=14;v2=v1×2-3=14×2-3=25;v3=v2×2+5=25×2+5=55;v4=v3×2+12=55×2+12=122;v5=v4×2-6=122×2-6=238.∴当x=2时,多项式的值为238.解法二:f(x)=((((3x+8)x-3)x+5)x+12)x-6,则f(2)=((((3×2+8)×2-3)×2+5)×2+12)×2-6=238.拓展提升用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)+5)x+4)x+3)x+2)x+1)xv0=7;v1=7×3+6=27;v2=27×3+5=86;v3=86×3+4=262;v4=262×3+3=789;v5=789×3+2=2 369;v6=2 369×3+1=7 108;v7=7 108×3+0=21 324.∴f(3)=21 324.课堂小结1.秦九韶算法的方法和步骤.2.秦九韶算法的计算机程序框图.作业已知函数f(x)=x3-2x2-5x+8,求f(9)的值.解:f(x)=x3-2x2-5x+8=(x2-2x-5)x+8=((x-2)x-5)x+8∴f(9)=((9-2)×9-5)×9+8=530.设计感想古老的算法散发浓郁的现代气息,这是一节充满智慧的课.本节主要介绍了秦九韶算法.通过对秦九韶算法的学习,对算法本身有哪些进一步的认识?教师引导学生思考、讨论、概括,小结时要关注如下几点:(1)算法具有通用的特点,可以解决一类问题;(2)解决同一类问题,可以有不同的算法,但计算的效率是不同的,应该选择高效的算法;(3)算法的种类虽多,但三种逻辑结构可以有效地表达各种算法等等.第3课时案例3 进位制导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.推进新课新知探究提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.点评:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果.变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ii=i+1a=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).点评:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所求.解:即34(10)=100 010(2)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)点评:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.作业习题1.3A组3、4.设计感想计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时,计算机又把运算结果由二进制数转换成十进制数输出.因此学好进位制是非常必要的,另外,进位制也是高考的重点,本节设置了多种题型供学生训练,所以这节课非常实用.第2课时导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/℃261813104-1杯数202434385064接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式。
人教版高中数学必修3全套教案
在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应
用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.
本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数
学能力.因此应从三个方面把握本章:
重点难点
教学重点:算法的含义及应用.
教学难点:写出解决一类问题的算法.
课时安排
1 课时
教学过程
导入新课
第 1 页 共 141 页
思路 1(情境导入) 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候, 如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤, 解决这一问题将要用到我们今天学习的内说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路 3(直接导入) 算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成 为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算 机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法?
第二章 统计...........................................................................................................................................................77 2.1 随机抽样..................................................................................................................................................78 2.1.1 简单随机抽样.......................................................................................................................................78 2.1.2 系统抽样...............................................................................................................................................83 2.1.3 分层抽样...............................................................................................................................................87 2.2 用样本估计总体......................................................................................................................................91 2.2.1 用样本的频率分布估计总体分布.......................................................................................................91 2.2.2 用样本的数字特征估计总体的数字特征...........................................................................................99 2.3 变量间的相关关系................................................................................................................................110 2.3.1 变量之间的相关关系.........................................................................................................................110 2.3.2 两个变量的线性相关.........................................................................................................................110
2020年人教版高中数学必修三全册精品教案(完整版)
2020年人教版高中数学必修三全册精品教案(完整版)1.1 算法与程序框图(共3课时)1.1.1算法的概念(第1课时)一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例2:给出求1+2+3+4+5的一个算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+…+错误!未找到引用源。
=错误!未找到引用源。
直接计算第一步:取错误!未找到引用源。
=5;第二步:计算错误!未找到引用源。
;第三步:输出运算结果.(说明算法不唯一)例3:(课本第2页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性)例4:用“待定系数法”求圆的方程的大致步骤是:第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
或错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
人教版高中数学必修3教案
第一章算法初步1.1.1算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
2020年人教版高中数学必修3全册精美教案(全套完整版)
范文2020年人教版高中数学必修3全册精美教案(全套1/ 5完整版)2020 年人教版高中数学必修 3 全册精美教案(全套完整版)目录第一章算法初步 ........................................................ ................................................. 1 1.1.1 算法的概念 ........................................................ ......................................... 5 1.1.2 程序框图(第二、三课时)........................................................ ................ 13 1.2.1 输入、输出语句和赋值语句(第一课时). (25)1.2.2-1.2.3 条件语句和循环语句(第2、 3 课时) ............................................. 35 1.3 算法案例第1、2 课时辗转相除法与更相减损术 ..................................... 47 第 3、4 课时秦九韶算法与排序......................................................... ................ 53 第 5 课时进位制......................................................... .......................................... 59 算法初步复习课 .................................................................................................... 65 第二章统计初步 ........................................................ ............................................... 73 2.1.1 简单随机抽样 ........................................................ ........................................ 73 2.1.2 系统抽样 ........................................................ ................................................ 79 2.1.3 分层抽样 ........................................................ ............................................... 83 2.2.1 用样本的频率分布估计总体分布(2 课时) . (89)2.2.2 用样本的数字特征估计总体的数字特征(2 课时) ..................................... 97 第三章概率 ........................................................ .. (103)3/ 53.1 随机事件的概率 3.1.1 —3.1.2 随机事件的概率及概率的意义(第一、二课时) ....................................................... ........................................................... .............. 103 3.1.3 概率的基本性质(第三课时) ...................................................... ............ 109 3.2 古典概型(第四、五课时) 3.2.1 —3.2.2 古典概型及随机数的产生...... 115 3.3 几何概型 3.3.1—3.3.2 几何概型及均匀随机数的产生 (123)第一章算法初步一、课标要求: 1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
新版高中数学全套教案全册
新版高中数学全套教案全册第一册:基础知识与方法第一章:集合与函数1.1 集合的基本概念1.2 集合的运算1.3 函数的基本概念1.4 函数的性质与运算第二章:数列与数学归纳法2.1 数列的基本概念2.2 等差数列与等比数列2.3 数学归纳法的原理与应用第三章:函数的导数3.1 导数的基本概念3.2 导数的定义与性质3.3 导函数的计算与应用3.4 高阶导数与导数的应用第四章:不等式与绝对值4.1 不等式的基本概念4.2 一元不等式的求解4.3 多项式不等式的求解4.4 绝对值不等式的求解第五章:平面向量与解析几何5.1 向量的基本概念5.2 向量的坐标表示5.3 向量的运算5.4 直线与平面的方程第二册:初等函数与极限第六章:初等函数6.1 三角函数与反三角函数6.2 对数函数与指数函数6.3 幂函数与根函数6.4 复合函数与反函数第七章:数列与级数7.1 极限的概念7.2 数列的收敛性与极限7.3 级数的概念与收敛性7.4 收敛级数的性质与运算第八章:函数的极限8.1 函数的极限的定义8.2 函数极限存在的判定与性质8.3 函数的极限计算方法8.4 函数极限的应用第九章:连续函数9.1 函数的连续性概念9.2 连续函数的性质9.3 连续函数的运算9.4 连续函数与导数的关系第三册:微积分与微分方程第十章:导数的应用10.1 函数的单调性与凹凸性10.2 函数的最大最小值与最值问题10.3 弧微分与极值10.4 导数在物理问题中的应用第十一章:不定积分11.1 不定积分的基本概念11.2 基本积分法与换元积分法11.3 分部积分法与三角函数积分11.4 不定积分的应用第十二章:定积分与微分方程12.1 定积分的基本概念12.2 定积分的性质与运算12.3 微分方程的基本概念12.4 微分方程的解法及应用第十三章:常微分方程13.1 一阶常微分方程的通解与特解13.2 高阶常微分方程的解法13.3 常微分方程在实际问题中的应用以上为高中数学全套教案全册范本,希望对您的教学工作有所帮助。
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
高中数学必修3电子教案
高中数学必修3电子教案
教学目标:
1. 理解平行线的特性,能够判断两条直线是否平行;
2. 理解垂直线的特性,能够判断两条直线是否垂直;
3. 能够利用平行线和垂直线的性质解决相关问题。
教学内容:
1. 平行线的定义及平行线性质;
2. 垂直线的定义及垂直线性质;
3. 平行线和垂直线的应用。
教学步骤:
一、导入
老师通过一个实际生活中的例子引入平行线和垂直线的概念,让学生感受平行线和垂直线
在我们周围的存在。
二、讲解
1. 讲解平行线的定义及平行线性质,如平行线的任意两点间距离相等;
2. 讲解垂直线的定义及垂直线性质,如垂直线上的两个角为直角;
3. 提出相关定理和性质,引导学生理解和记忆。
三、示例
老师通过几个例题演示如何利用平行线和垂直线的性质解决问题,让学生参与讨论和思考。
四、练习
让学生在课堂上进行一些练习,巩固所学内容,并能够运用到实际问题中。
五、总结
总结平行线和垂直线的性质及应用,强调学生对于定理和性质的理解和记忆。
六、作业
布置相关练习题作业,要求学生独立完成,并在下节课检查和讲解。
教学反思:
通过这节课的教学,学生应该能够对平行线和垂直线的性质有一个清晰的认识,并能够灵活运用到解决相关问题中。
在教学过程中,要引导学生思考,培养他们的逻辑思维能力和解决问题的能力。
高中数学教案必修三
高中数学教案必修三课题:必修三第一章矩阵学习目标:1. 了解矩阵的基本概念和运算规则;2. 掌握矩阵的加法、减法和数乘运算;3. 掌握矩阵的乘法规则;4. 掌握矩阵的转置和逆矩阵;5. 能够解决实际问题中的矩阵运算。
教学步骤:1. 引入矩阵的概念,让学生了解什么是矩阵及其表示方法;2. 理解矩阵的基本运算规则,包括加法、减法和数乘;3. 学习矩阵的乘法规则,重点讲解矩阵乘法的定义和运算规则;4. 探讨矩阵的转置和逆矩阵的概念及运算方法;5. 练习矩阵运算的相关题目,让学生熟练掌握矩阵的基本运算;6. 结合实际问题,让学生应用矩阵运算解决实际问题,提高学生的问题解决能力。
教学重点和难点:重点:矩阵的乘法规则,矩阵的逆矩阵;难点:矩阵的乘法规则的理解和运用。
教学辅助手段:1. 教科书内容;2. 讲义、习题及答案;3. 多媒体教学辅助设施。
教学方式:1. 教师讲解;2. 学生主动学习;3. 小组合作学习;4. 讨论和解答疑难问题。
课堂设计:1. 通过实例引入矩阵的概念;2. 讲解矩阵的基本运算;3. 练习矩阵的加法、减法和数乘运算;4. 讲解矩阵的乘法规则;5. 练习矩阵乘法的相关题目;6. 讲解矩阵的转置和逆矩阵;7. 练习矩阵逆矩阵的计算;8. 结合实际问题进行矩阵应用练习。
作业布置:1. 完成课堂练习题;2. 自主探究相关知识,并总结提炼;3. 解决实际问题,并用矩阵方法解答。
课后反思:1. 教学效果如何,学生的掌握情况如何;2. 学生对矩阵的理解程度及问题;3. 改进的方法和措施。
人教版高中数学必修3教材全套教案(2)(K12教育文档)
人教版高中数学必修3教材全套教案(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版高中数学必修3教材全套教案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版高中数学必修3教材全套教案(2)(word版可编辑修改)的全部内容。
第一章算法初步1。
1 算法与程序框图1。
1.1 算法的概念授课时间:第周年月日(星期)教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法。
教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2。
通过例题教学,使学生体会设计算法的基本思路。
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用。
教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊。
该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念。
高中数学必修3教案完整版
第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
高中人教版必修三数学教案
高中人教版必修三数学教案教材名称:人教版必修三
教学内容:二次函数
教学目标:
1. 理解二次函数的定义和性质。
2. 掌握二次函数的图像特征和性质。
3. 能够根据二次函数的图像特征解决实际问题。
教学重点:
1. 二次函数的定义和性质。
2. 二次函数的图像特征和性质。
教学难点:
1. 判断二次函数的开口方向。
2. 解决实际问题时如何应用二次函数。
教学准备:
1. 教材:人教版必修三数学教材。
2. 教具:教学投影仪、黑板、彩色粉笔。
3. 教辅材料:练习题、实例题。
教学步骤:
1. 导入:介绍二次函数的定义和性质。
2. 发现:让学生观察二次函数的图像特征。
3. 深化:讲解二次函数的图像特征和性质。
4. 拓展:引导学生根据二次函数的图像特征解决实际问题。
5. 巩固:布置相关练习题。
教学反馈:
1. 师生互动,检查学生对二次函数的理解和应用能力。
2. 纠正学生错误,解答学生疑问。
教学评价:
学生通过本节课的学习,能够准确理解和应用二次函数的定义、性质和图像特征,解决相应的实际问题。
人教版高中数学必修3全套教案
高中数学教案(人教A版必修全套)【必修3教案|全套】目录第一章算法初步 (1)1.1.2 程序框图与算法的基本逻辑结构 (7)1.2.1 输入语句、输出语句和赋值语句 (29)1.2.2 条件语句 (36)1.2.3循环语句 (44)1.3 算法案例 (51)第二章统计 (75)2.1 随机抽样 (76)2.1.1 简单随机抽样 (76)2.1.2 系统抽样 (81)2.1.3 分层抽样 (85)2.2 用样本估计总体 (89)2.2.1 用样本的频率分布估计总体分布 (89)2.2.2 用样本的数字特征估计总体的数字特征 (97)2.3 变量间的相关关系 (107)2.3.1 变量之间的相关关系 (107)2.3.2 两个变量的线性相关 (107)第三章概率 (115)3.1 随机事件的概率 (115)3.1.1 随机事件的概率 (115)3.1.2 概率的意义 (118)3.1.3 概率的基本性质 (121)3.2.1 古典概型 (124)3.2.2 (整数值)随机数(random numbers)的产生 (128)3.3.1 几何概型 (132)3.3.2 均匀随机数的产生 (136)第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC 的方向截取线段CE=AC. 第四步,在射线上沿AC 的方向截取线段EF=AC. 第五步,在射线上沿AC 的方向截取线段FG=AC.第六步,在射线上沿AC 的方向截取线段GD=AC ,那么线段AD=5AC. 第七步,连结DB.第八步,过C 作BD 的平行线,交线段AB 于M ,这样点M 就是线段AB 的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练. 知能训练设计算法判断一元二次方程ax 2+bx+c=0是否有实数根. 解:算法步骤如下:第一步,输入一元二次方程的系数:a ,b ,c. 第二步,计算Δ=b 2-4ac 的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点. 拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t (分钟),通话费用y (元),如何设计一个程序,计算通话的费用. 解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.1.1.2 程序框图与算法的基本逻辑结构整体设计教学分析用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.程序框图用图形的方式表达算法,使算法的结构更清楚、步骤更直观也更精确.为了更好地学好程序框图,我们需要掌握程序框的功能和作用,需要熟练掌握三种基本逻辑结构. 三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.课时安排4课时教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法. 变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值. 例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式) 算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.变式训练下图所示的是一个算法的流程图,已知a1=3,输出的b=7,求a2的值.解:根据题意221aa=7,∵a1=3,∴a2=11.即a2的值为11.例3 写出通过尺轨作图确定线段AB的一个5等分点的程序框图.解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n 等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用.知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格. 解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 因此,价格的变化情况表为:年份 2004 2005 2006 2007 2008 钢琴的价格 10 00010 30010 60910 927.2711 255.09程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如下给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.作业习题1.1A 1.设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例。
人教版高中数学必修3全套教案
教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些 步骤就构成了解二元一次方程组的算法 .教学中, 应从学生非常熟悉的例子引出算法, 再通过例题加以巩固 .
三维目标
1.正确理解算法的概念 ,掌握算法的基本特点 .
2.通过例题教学,使学生体会设计算法的基本思路
3.2.1 3.2.2 3.3.1
古典概型 ........................................................................................................................................... 125 (整数值)随机数( random numbers)的产生 ............................................................................. 129 几何概型 ........................................................................................................................................... 133
3.1 随机事件的概率 ...................................................................................................................................116 3.1.1 随机事件的概率 ................................................................................................................................116
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、教学设想:
(1)创设情境:
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。
三、教学内容及课时安排:
1.1算法与程序框图 (约2课时)
1.2基本算法语句 (约3课时)
1.3算法案例 (约5课时)
复习与小结 (约2课时)
四、评价建议
1.重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2020年人教版高中数学必修3全册精美教案(全套完整版)
第一章
一、课标要求:
1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。
2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
3、通过实际问题的学习,了解构造算法的基本程序。
4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。
5、需要注意的问题
1) 从熟知的问题出发,体会算法的程序化思想,而不是简单呈现一些算法。
2) 变量和赋值是算法学习的重点之一,因为设置恰当的变量,学习给变量赋值,是构造算法的关键,应作为学习的重点。
3) 不必刻意追求最优的算法,把握算法的基本结构和程序化思想才是我们的重点。
4) 本章所指的算法基本上是能在计算机上实现的算法。
(2)探索研究
算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
2.正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法
1
一、教学目标:
1、知识与技能:(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。
二、重点与难点:
重点:算的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:
学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
二、编写意图与特色:
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。