初中数学分章节复习资料

合集下载

初中数学复习资料合辑(初中三年)

初中数学复习资料合辑(初中三年)

实数一、知识要点概述2、数轴:规定了原点,正方向和单位长度的直线叫数轴,数轴上的点与实数是一一对应关系.3、有理数都可以表示为的形式(p、q为整数且p、q互质);任何一个分数都可以化成有限小数或循环小数.4、实数运算:在实数范围内,可以进行加、减、乘、除、乘方和开方运算,其中除数不能为0;开偶次方时被开方数不能是负数;混合运算时,先算乘方、开方,再算乘、除,最后算加、减,有括号时,按括号指明的运算顺序进行.5、实数的大小比较有三种方法:①数轴比较法:数轴上表示的两实数,右边的数大于左边的数.②差值比较法:对于实数a,b,当a-b>0时a>b;当a-b=0时,a=b;当a-b<0时a<b.③商值比较法:对于两个正数a,b,当时a>b;当时a<b;当时,a=b.6、近似数与有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确到的数位止,所有的数字都叫这个数的有效数字.7、科学记数法:把一个数记成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数,科学记数法表示的数的有效数字以a的有效数字计算.8、非负数:正数和零统称为非负数,象|a|,a2,形式的数都是表示非负数.9、非负数的性质:①最小的非负数是零;②若n个非负数的和为零,则每个非负数都为零.二、典例剖析例1、实数a,b在数轴上对应点的位置如图所示,化简.解:由数轴可知:a>0>b,|a|<|b|得b-a<0,a+b<0,所以:点评:数形结合的思想是本题的解题关键,应学会从数轴上读出足够多的信息为自己所用,同时要熟记各种法则及应用.例3、(1)如果,求2x-y+z的值.(2)若|x+2y+3|+x2+y2=2xy,求x y的值.点评:算术平方根、绝对值、平方等具有非负性,在解题时应注意运用,同时注意几个非负数的和为零时,可得绝对值内代数式为0,算术平方根的被开方数为0,平方的底数为0.例4、填空题:(1)近似数3.20×107精确到________位,有________个有效数字.(2)将908070万保留两个有效数字,用科学记数法表示为________.(3)光的速度约为3×105千米/秒,太阳光射到地球上需要的时间约为5×102秒,则地球与太阳的距离是________千米.解:(1)十万,3(2)9.1×109(3)3×105×5×102=1.5×108千米点评:科学记数法是中考中常考的题目.应根据指定的精确度或有效数字的个数用四舍五入法求实数的近似值,并会用科学记数法.例5、已知a、b是有理数,且,求a、b的值.点评:把原等式整理成有理数与无理数两部分,运用实数的性质建立关于a、b的方程组.例6、函数y=|x+1|+|x+2|+|x+3|,当x取何值时,y有最小值且最小值是多少?分析:先确定三个绝值的零点值,把x的取值范围分为四个部分,然后逐一讨论所求代数式的取值情况从而确定其最小值.解:当x≥-1时,y=x+1+x+2+x+3=3x+6≥3;当-2≤x<-1时,y=-x-1+x+2+x+3=x+4≥2;当-3≤x<-2时,y=-x-1-x-2+x+3=-x,此时无最小值;当x<-3时,y=-x-1-x-2-x-3=-3x-6,此时无最小值.所以当x=-2时,y的值最小,最小值是2.点评:解答此类题目的一般步骤是:①求零点,划分区间;②按区间分别去掉绝对值的符号.整式一、知识要点概述1、代数式的分类2、同类项:所含字母相同并且相同字母的指数也分别相同的项叫做同类项.合并同类项时,只把同类项系数相加,字母和字母的指数不变.3、整式的运算(1)整式的加减——先去括号或添括号,再合并同类项.(2)整式的乘除a.幂的运算性质①a m·a n=a m+n(a≠0,m,n为整数)②(a m)n=a mn(a≠0,m,n为整数)③(ab)n=a n b n(n为整数,a≠0,b≠0)b.零指数幂与负整数指数幂(3)乘法公式a.平方差公式(a+b)(a-b)=a2-b2b.完全平方公式:(a±b)2=a2±2ab+b24、基本规律(1)代数式的分类遵循按所给的代数式的形式分类.(2)同类项的寻找是遵循两同两无关法则(字母相同,相同字母的指数相同;与系数无关,与字母的排列顺序无关.)(3)整式的运算法则与有理数运算法则类似.5、因式分解:把一个多项式化为几个整式的积的形式叫多项式的因式分解.6、因式分解的基本方法:①提取公因式法;②公式法;③分组分解法;④十字相乘法.7、因式分解常用的公式如下:①a2-b2=(a+b)(a-b)②a2±2ab+b2=(a±b)2.二、典例剖析例1、填空题(1)如果单项式与-2x3y a+b是同类项,那么这两个单项式的积是__________.(2)m,n满足|m-2|+(n-4)2=0.分解因式:(x2+y2)-(mxy+n).例2、若3x3-x=1,求9x4+12x3-3x2-7x+2008的值.分析:此类代数式求值问题,一般采用整体代入法,即将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值.解:由3x3-x=1得3x3-x-1=0所以9x4+12x3-3x2-7x+2008=3x(3x3-x-1)+4(3x3-x-1)+2012=2012例3、已知多项式2x2+3xy-2y2-x+8y-6可分解为(x+2y+m)(2x-y+n)的形式,求的值.分析:由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6,根据多项式恒等的条件可列出关于m,n的二元一次方程组,进而求出m、n.解:由题意得:(x+2y+m)(2x-y+n)=2x2+3xy-2y2-x+8y-6又因为(x+2y+m)(2x-y+n)=2x2+3xy-2y2+(2m+n)x+(2n-m)y+mn根据多项式恒等的条件,得:点评:解此类题的关键是利用多项式恒等对应项的系数相等得到相关方程组,求待定系数.分析:本题若直接计算是很复杂的,因每个括号内都是两个数的平方差,故可利用平方差公式使计算简化.点评:涉及与乘法有关的复杂计算,要创造条件运用公式简化计算.例5、已知a、b、c,满足,求(a-b)2+(b-c)2+(c-a)2的最大值.分析:条件等式和待求代数式都涉及数的平方关系,由此联想到利用完全平方公式求其最大值.例6、若2x3-kx2+3被2x+1除后余2,求k的值.分析:要求k的值,需找到关于k的方程,由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此可得关于k的一次方程.点评:关键是利用余数定理找出关于k的方程,当f(x)能被x-a整除时,f(a)=0.例7、分解因式(1)a4+4;(2)x3-3x2+4;(3)x2+xy-6y2+x+13y-6;(4)(x+y)(x+y+2xy)+(xy+1)(xy-1)解:(1)a4+4=a4+4a2+4-4a2=(a2+2)2-(2a)2=(a2+2a+2)(a2-2a+2)点评:本题不可分组,又无法直接运用公式,但这两项都是完全平方数,因此可通过添项利用公式去分解.(2)解法一:x3-3x2+4=x3+x2-4x2+4=x2(x+1)-4(x+1)(x-1)=(x+1)(x-2)2解法2:x3-3x2+4=x3+1-3x2+3=(x+1)(x2-x+1)-3(x+1)(x-1)=(x+1)(x2-4x+4)=(x+1)(x-2)2解法3:x3-3x2+4=x3+x2-4x2-4x+4x+4=x2(x+1)-4x(x+1)+4(x+1)=(x+1)(x2-4x+4)=(x+1)(x-2)2点评:这是一个关于x的三次式,直接运用分组分解法是难以完成的,可以先将二次项或常数项进行拆项,再进行恰当的分组分解.(3)设x2+xy-6y2+x+13y-6=(x+3y+m)(x-2y+n)=x2-2xy+nx+3xy-6y2+3ny+mx-2my+my=x2+xy-6y2+(n+m)x+(3n-2m)y+mn比较左、右两边对应项系数得:∴x2+xy-6y2+x+13y-6=(x+3y-2)(x-2y+3).点评:这是一个二次六项式,运用分组分解法有困难,根据整式乘法可知,这个二次六项式可分解为两个一次三项式,且前三项二次式x2+xy-6y2=(x+3y)(x-2y),由此可知,这两个一次式的常数项待定,因此可用待定系数法分解.(4)设x+y=a,xy=b则原式=a(a+2b)+(b+1)(b-1)=a2+2ab+b2-1=(a+b)2-1=(a+b+1)(a+b-1)=(x+y+xy+1)(x+y+xy-1)=(x+1)(y+1)(x+y+xy-1)点评:整体思想,换元思想是常用的数学思想方法,此题设x+y=a,xy=b进行代换后,再运用公式法和提公因式法来分解.分式一、知识要点概述1、分式的概念和性质(1)定义:若用A、B表示两个整式,A÷B可以写成的形式,若B中含有字母,式子叫做分式.说明:1°分式的值为0的条件是:分子为零且分母不为0;2°当分母为零时,分式无意义;3°分式的基本性质是分式运算的重要依据,分式的运算方法和顺序与分数的运算类似.2、分式的运算法则说明:分式的符号变化法则是指整个分子分母和分数线前的符号,切忌只变分子或分母中第一项符号.3、约分:根据分式的基本性质,把分式的分子和分母中的公因式约去,叫做约分.4、通分:根据分式的基本性质,把异分母的分式化成和原来的分式分别相等的同分母分式,叫做通分.二、典例剖析例1、若分式的值是绝对值最小的实数.则x=________.分析:绝对值最小的实数是0,从而得出分式的值为0,则分子为零且分母不为0,故可求出x.解:说明:分式的值为0,分子为零都知道,但往往忽略分母不为0,这是此类题目的考察重点.例2、如果n为正整数,是既约分数,那么分析:n2+3n-10=(n+5)(n-2),n2+6n-16=(n+8)(n-2)分式,分母有公因式n-2,但此分数为既约分数,从而有n-2=1,易可求n,进而求出此分式值.说明:解答此题的关键在于:巧妙运用既约分数的概念确定n的取值,注意化简分式时先要分别将分子、分母分解因式,再约分.分析:先找出原式中的最简公分母,再对原式进行通分,然后将原式进行因式分解,以便约分化简.例4、若x取整数,则使分式的值为整数的x有()A.3个B.4个C.6个D.8个分析:将分式进行分析,即将它变形为一个整数部分与一个分子为整数的分式之和的形式,然后再讨论其整数的个数.解:∴当2x-1=±1或±3时,x为整数,0,1,2,-1;当2x-1=±6或±2时,x都不是整数.所以符合题意的x的取值只有4个,应选B项.说明:将分式进行分拆,关键是在于把分子中含字母的部分凑成与分母相同的公因式.分析:由已知可得到关于a、b、c的值,然后代入求值.解:由3a+2b-5=2(a-b+2)得a+4b-9=0①由2b+c-1=2(3b+2c-8)得4b+3c-17=0②由c-3a+2=2(2c+a-b)得3c+5a-14=0③解联立①②③组成的方程组得a=1,b=2,c=3..说明:对于含条件等式的分式求值问题,除考虑对欲求的分式化简外,还要对条件进行分析适当变形,并根据需要加以转化.说明:添项、拆项是分式计算与证明的常用方法.此题可抓住左边分式的分子与分母的特点进行突破,如b-c=(a-c)-(a-b)就可以进行分拆.二次根式一、知识要点概述1、二次根式:式子叫做二次根式.2、最简二次根式:满足下列两个条件的二次根式叫做最简二次根式.(1)被开方数的因数是整数,因式是整式.(2)被开方数中不含能开得尽方的因数或因式.3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式.4、二次根式的主要性质5、二次根式的运算(1)因式的外移和内移如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外;如果被开方数是多项式的形式,那么先分解因式,变形为积的形式,再移因式到根号外.反之,也可以将根号外的正因式平方后移到根号里面去.(2)有理化因式与分母有理化两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式,将分母中的根号化去,叫做分母有理化.(3)二次根式的加减法:先把二次根式化成最简二次根式,再合并同类二次根式.(4)二次根式的乘除法二次根式相乘(除),将被开方数相乘(除)所得的积(商)仍作积(商)的被开方数,并将运算结果化为最简二次根式.(5)有理数的加法交换律、结合律;乘法交换律、结合律、乘法对加法的分配律,以及多项式的乘法公式,都适用于二次根式的运算.二、典例剖析分析:因一个等式中含有两个未知量,初看似乎条件不足,仔细观察两被开方数互为相反数,不妨从二次根式定义入手.例3、已知xy>0,化简二次根式的正确结果是()A.B.-C.D.-分析:解题的关键是首先确定被开方式中字母的符号,既可以化简被开方式,又可把根号外的因式移入根号内.说明:运用二次根式性质解题时,既要注意每一性质成立的条件,又要学会性质的“正用”与“逆用”特别地字母因式由根号内(外)移到根号(外)内时必须考虑字母因式隐含的符号.例6、已知,求a+b+c的值.分析:已知条件是一个含三个未知量的等式,三个未知量,一个等式怎样才能确定未知量的值呢?考虑从配方的角度试一试.点评:应用非负数概念和性质是初中代数解题的常用方法之一,|a|,a2n,是三种重要的非负数表现形式.判断一个数是否为非负数,最关键的是看它能否通过配方得到完全平方式,如:在解多变元二次根式,复合二次根式等问题时,常用到配方法,如化简不等式与不等式组一、知识要点概述1、不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2、不等式(组)的解法(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变.(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集.(3)设a<b,那么:①不等式组的解集是x>b(大大取大);②不等式组的解集是x<a(小小取小);③不等式组的解集是a<x<b(大小、小大中间找);④不等式组的解集是空集(大大、小小题无解).3、不等式(组)的应用会列一元一次不等式(组)解决实际问题,其步骤是:(1)找出实际问题的不等关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.二、典例剖析例1、(1)已知不等式3x-a≤0的正整数解恰是1,2,3,则a的取值范围是________.(2)已知关于x的不等式组无解,则a的取值范围是________.分析:对于(1),由题意知不等式的解在x<4的范围内;对于(2),从数轴上看,原不等式组中两个不等式的解集无公共部分.解:(1)由题意得,∴9≤a<12.(2)由(1)得x>a,由(2)得x≤3,因不等式组无解,∴a≤3.说明:确定不等式(组)中参数的取值或范围常用的方法有:(1)逆用不等式(组)解集确定;(2)分类讨论确定;(3)借助数轴确定.例2、解下列关于x的不等式(组).(1)|x-2|≤2x-10;(2)(2mx+3)-n<3x.分析:对于(1)确定“零界点”x=2(令x-2=0得x=2)分x≥2和x<2,去掉绝对值后求出不等式的解集;对于(2),化为ax<b的形式,再就a的正负性讨论.说明:涉及未知系数或绝对值式子的题目,均可用零点分段讨论法解答.例3、已知3a+2b-6=ac+4b-8=0且a≥b>0求c的取值范围.分析:消去a,b得到关于c的不等式组,解不等式组得c的取值范围.分析:已知不等式组的解集,求某些字母的值(或范围)是不等式组解集确定方法的逆向应用,处理这类问题时,可先求出原不等式组含有字母的解集,然后对照已知“对号入座”,应取有针对性的方法.例6、东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠方法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的关系式;(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习本60本设计一种更省钱的购买方案.分析:(2)中比较哪种优惠办法更省钱与购买练习本的数量有关,因此应分类讨论;(3)中因为可同时用两种优惠办法购买,所以需要重新建立关于毛笔枝数的关系式求解.解:(1)依题意,可得y甲=25×10+5(x-10)=5x+200(x≥10);y乙=(25×10+5x)×90%=4.5x+225(x≥10)(2)由(1)有y甲-y乙=0.5x-25当y甲-y乙=0时,解得x=50;当y甲-y乙>0时,解得x>50;当y甲-y乙<0时,解得x<50.所以,当购买50本书法练习本时,两种优惠办法的实际付款一样,即可任选一种办法付款,当购买本数在10~50之间时,选择优惠办法甲付款更省钱;当购买本数大于50本时,选择优惠办法乙更省钱.(3)①因为60>50,由(2)知不考虑单独选用优惠办法甲购买.若只用优惠办法乙购买10支毛笔和60本书法练习本需付款(25×10+5×60)×90%=495(元)②若用优惠办法乙购买m支毛笔,则须用优惠办法甲购买(10-m)支毛笔,用优惠办法乙购买60-(10-m)=m+50本书法练习本,设付款总金额为P,则:P=25(10-m)+[25m+5(m+50)]×90%=2m+475(0≤m≤10)所以,当m=0即用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本时,P取得最小值为:2×0+475=475(元)故选用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本的方案最省钱.例7、我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5kg,乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案?请你设计出来.(2)设生产A、B两种产品的总成本为y元,其中一种生产的件数为x,试写出y与x之间的关系式,并利用关系式说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?分析:若设安排生产A种产品x件,根据题意可建立关于x的不等式组,解出不等式组得x的取值范围.由x为整数在取值范围内确定x的取值,从而得出生产方案,然后由成本的已知条件求出x与y之间的关系式,根据此关系式求出最低生产总成本.解:(1)设安排生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:解得:34≤x≤36因为x为整数,所以x只能取34或35或36.所以该工厂现有的原料能保证生产,有三种生产方案:第一种:生产A种产品34件,B种产品46件;第二种:生产A种产品35件,B种产品45件;第三种:生产A种产品36件,B种产品44件.(2)设生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:y=120x+200(80-x)即y=-80x+16000(x取34或35或36)由式子可知,当x取最大值36时,y取最小值为-80×36+16000=13120元,即第三种方案;生产A 种产品36件,B种产品44件,总成本最低,最低生产成本是13120元.说明:利用列不等式组然后求出不等式组的集,在其解集内求出符合条件(一般是整数)的值,是解方案设计型应用题的常用方法.方程与方程组一、知识要点概述1、等式和方程的有关概念、等式的基本性质.2、一元一次方程的解法及最简方程ax=b解的三种情况.(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1.(2)最简方程ax=b的解有以下三种情况:①当a≠0时,方程有唯一解;②当a=0,b≠0时,方程无解.③当a=0,b=0时,方程有无穷多解.3、一元二次方程的一般形式是ax2+bx+c=0(a≠0)其解法主要有:直接开平方法、配方法、因式分解法、求根公式法.4、一元二次方程ax2+bx+c=0(a≠0)的求根公式是:注意:求根公式成立的条件为:①a≠0;②b2-4ac≥0.5、一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac.当△>0时,方程有两个不相等的实数根.当△=0时,方程有两个相等的实数根,即;当△<0时,方程没有实根,反之成立.6、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则7、以两数α、β为根的一元二次方程(二次项系数为1)是x2-(α+β)x+αβ=0.8、解一次方程组的基本思想是消元,常用的消元方法是加减消元法和代入消元法.9、解简单的二元二次方程组的基本思想是“消元”与“降次”.①若方程组中有一个是一次方程,则一般用代入消元法求解;②若方程组中有能分解成两个一次方程的方程,则一般用“分解降次”的方法将原方程组化为两个或四个方程组求解.10、简单的分式方程组的解法,一般是用去分母或换元法将其转化为整式方程组求解,并要验解.11、方程组的解的存在性问题,一般转化为方程的解的存在性问题来研究.二、典例剖析点评:灵活解一元一次方程时常用到以下方法技巧.(1)若括号内有分数时,则由外向内先去括号,再去分母;(2)若有多重括号,则去括号与合并同类项交替进行;(3)恰当用整体思想.例2、解下列关于x的方程.(1)4x+b=ax-8(a≠4)(2)mx-1=nx(3)分析:把方程化为一般形式后,再对每个方程中字母系数可能取值的情况进行讨论.例4、已知m是整数,方程组有整数解,求m的值.分析:先求出y,运用整除的性质求出m的值,需注意所求的整数m要使得x也为整数.解:由原方程组解得,若y有整数解,则2m+9=±1或±2或±17或±34,经检验当2m+9=±1或±17时,m为整数且x也为整数,得m=4或-4或-5或-13.例5、已知关于x的一元二次方程有两个不等的实数根.(1)求m的取值范围;例7、解下列方程(2)3x2+x-7=0分析:对于(1)首先应回避复杂的小数运算,注意此时只运用分数的基本性质而未用到等式有关性质.对于(2)此方程用分解因式法难以行通,故考虑用求根公式.解:(1)原方程化简得方程两边都乘以12(即去分母)得3(35x-5)=4(5-x)-6(25x+5)去括号得:105x-15=20-4x-150x-30移项及合并同类项得:259x=5例8、如果关于x的一元二次方程kx2-2(k+2)x+k+5=0没有实根,试说明关于x的方程(k-5)x2-2(k+2)x+k=0必有实数根.分析:由一元二次方程kx2-2(k+2)x+k+5=0没有实数根,可以得出k≠0,b2-4ac<0,从而求出k的取值范围,再由k的取值范围来说明(k-5)x2-2(k+2)x+k=0必有实数根.解:∵关于kx2-2(k+2)x+k+5=0没有实数根,解得k>4当k=5时,方程(k-5)x2-2(k+2)x+k=0为一元一次方程,-14x+5=0,此时方程的根为.当k≠5时,方程(k-5)x2-2(k+2)x+k=0为一元二次方程∴△=[-2(k+2)]2-4(k-5)·k=4(9k+4)∵k>4且k≠5,∴△=4(9k+4)>0∴此时方程必有两不等实数根,综上可知方程(k-5)x2-2(k+2)x+k=0必有实数根.点评:(1)方程“有实数根”与“有两个实数根”有着质的区别.方程“有实数根”表示方程可能为一元一次方程,此时方程有一实数根,方程也可能为一元二次方程,此时方程有两个实数根,而方程“有两个实数根”,则表示此时方程一定为一元二次方程.点评:构造一元二次方程是解题的常用技巧,构造的主要方法有:(1)当已知等式具有相同的结构,就可以把两个变元看成关于某个字母的一元二次方程;(2)对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.分式方程一、知识要点概述1、分式方程:分母中含有未知数的有理方程叫分式方程.2、解分式方程的基本思想方法是:3、解分式方程必须验根.二、典型例题剖析例1、解方程.分析:根据解分式方程的一般步骤来解此题.解:方程两边同乘以(x+3)(x-2)得:10+2(x-2)=(x+3)(x-2)化简,整理得:x2-x-12=0解之得x1=-3或x2=4经检验可知:x1=-3是原方程的增根,x2=4是原方程的根.∴原方程的根是x=4.分析:用换元法解这些分式方程.解:(1)设x2-x=y,则原方程变为解这个方程得y1=-2,y2=6,当y1=-2时,x2-x=-2,此方程无解;当y2=6时,x2-x=6,∴x1=-2,x2=3.经检验可知:x1=-2,x2=3都是原方程的根.∴原方程的解为x1=-2,x2=3.例3、当m为何值时,关于x的方程无实根?分析:先将分式方程化为整式方程,如果整式方程有实根,那么这些根均是原方程的增根,这样x=0或x=1是所得整式方程的根,如果整式方程无实根,那么原方程也无实根.解:原方程去分母,整理得:x2-x+2-m=0①(1)若方程①有实根,根据题意知,方程①的根为x=0或x=1.把x=0或x=1代入方程①得m=2.而x=0或x=1是原方程的增根.∴当m=2时原方程无实根.(2)若方程(1)无实根,则△=(-1)2-4(2-m)<0解之得∴当时,原方程无实根.综合之,当m=2或时,原方程无实根.例4、若方程有增根,试求m的值.分析:分式方程将会产生增根,即最简公分母x2-4=0,故方程产生增根有两种可能:x1=2,x2=-2.由增根的定义知:x1=2,x2=-2是原分式方程去分母化成整式方程的根,由根的定义即可求出m的值.解:将原方程去分母得:2(x+2)+mx=3(x-2)整理得:(m-1)x=-10 (1)∵原方程有增根,∴x2-4=0∴x1=2,x2=-2.将x1=2代入(1)得2(m-1)=-10∴m=-4将x2=-2代入(1)得-2(m-1)=-10∴m=6所以m的值为-4或6.点评:(1)增根的求法:令最简公分母为0;(2)求有增根的方程中参数的值,应先求出可能的增根,再将其代入化简后的整式方程即可.例5、已知a2-a-1=0且求x的值.分析:为求x的值,须将x与a2分离,联想到分式的基本性质,从而原等式含,这样应从条件出发构造倒数关系.解:列方程解应用题、知识要点概述1、列方程(组)解应用题的一般步骤.审题,设未知数,找出相等关系,布列方程(组),解方程(组),检验作答,其中找出相等关系,布列方程(组)是关键,而如何设未知数又是至关重要的开端.2、几种常见应用题型的基本等量关系及解题策略.(1)和、差、倍、分的有关问题.涉及和、差、倍、分问题,一般可直接列出方程.但需要抓住关键词:大、小、多、少、增加、减小、几倍、几分之几、几折优惠等.如:将若干支铅笔分给几个同学,若每人5支,还剩3支,若每人7支,还差5支,问有学生几人?铅笔几支?若设学生有x人,依题意得方程5x+3=7x-5∴x=4,则铅笔支数5x+3=23支.(2)等积(面积、体积)问题涉及等积问题,应依变形前后体(面)积不变建立等式关系,但需注意单位的统一.如要用截面积为48mm2的圆钢条锻造成长、宽、高分别为25mm、8mm、15mm的长方体钢坯,需要这种圆钢条多少米?解:设需要这种圆钢条x mm,则48x=25×8×15解得x=62.5mm=0.0625米答:需要这种圆钢条0.0625米.(3)商品利润问题:商品利润=商品售价-商品进价(4)浓度问题:溶液质量=溶质质量+溶剂质量(5)工程问题:工程问题中通常把工作量看做“1”工作效率×工作时间=工作量(6)行程问题(又分三类)a.相遇(包括环形相遇)问题:两运动物体所走过的路程等于全程(或圈长).b.追及问题:分路程相同、时间不同的追及问题和时间相同、路程不同的追及问题,常可画行程示意图帮助分析题意,若甲为快者,则被追路程=甲走的路程-乙走的路程.c.时针问题:注意一圈为60分格则分针速度为1分格/分钟:时针速度为分格/分钟.时间×速度=路程.(7)航行(或飞行)问题这类问题要注意航行速度与水(风)速的关系顺水速度=静水速度+水速逆水速度=静水速度-水速(8)数字问题n位数(9)增长率问题:(10)投资利润问题:投资总额×投资利率=投资利润二、典型例题剖析例1、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少个月?解:设原计划完成这项工程用x个月,则实际完成这项工程用(x-3)个月.。

八下 第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】

八下  第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】

第二十章《数据的分析》《知识点教案》课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。

本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。

为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。

初中数学专题复习资料-----多项式的因式分解

初中数学专题复习资料-----多项式的因式分解
分解因式要求结果到不能再分解为止。 【例题 7】、把下列各式因式分解:
1、(08 年沈阳)
2、(08 年浙江绍兴)
3、(08 年山东)
【练习】
一、填空题:
1、分解因式 2x2 4x
; 4x2 9
; x2 4x 4

2、分解因式; a(x y)2 b( y x)2 _______________ ;
完 公 因 式 后 , 另 一 因 式 的 项 数 与 原 多 项 式 的 项 数 相 同 ); ③、将多项式写成等于两个因式相乘(公因式与余式的积)的形势。
第1页共4页
【例题 3】、把下列各式因式分解:
1、 14abc 7ab 49ab2c ;
2、 xx y yy x; 3、 mx y2 x y
①确定公因式的系数:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
②确定公因式的字母:公因式的字母取各项都含有的相同的字母(相同的多项式);
③ 确 定 公 因 式 的 指 数 :各 字 母 的 指 数 取 各 项 中 字 母 次 数 最 低 的( 多 项 式 的 次 数 取 最 低 的 )。如
(1) x2 7x 6 ;
(2) x2 13x 36 ;
(3) x2 5x 24 ;
(4) x2 2x 15 ;
(5) x2 xy 6 y2 ;
(6) (x2 x)2 8(x2 x) 12
【例题 6】、把下列各式因式分解:
(1) 12x2 5x 2
(2) 8a 4a2 4;
初中数学专题复习资料-----多项式的因式分解
【知识点归纳 1】 一、因式分解的定义:
把 一 个 多 项 式 化 为 几 个 整 式 的 积 的 形 式 ,这 种 变 形 叫 做 把 这 个 多 项 式 因 式 分 解 ,也 叫 作 分 解 因 式。

初中七年级上册数学复习定义性质(人教新目标)

初中七年级上册数学复习定义性质(人教新目标)

1.把0以外的数分为正数和负数,大于0 的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。

应用:(1)海拔高度:正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。

例如:珠穆朗玛峰的海拔高度为8844M,吐鲁番盆地的海拔高度为-155M。

(2)记录帐目时,通常用正数表示收入款额,负数表示支出款额。

(3)天气的温度:零上5度,即50,零下5度,即-50(4)相反的方向,也可用正负来表示。

例如东和西,如果东为正的话,西则为负。

同理,假设南为正的话,北则为负。

(5)水位升高可用正数表示,水位降低可用负数表示,水位不变可记作0。

正整数整数2.有理数0 或或:有理数可以写作两整数之比。

负整数分数数轴:用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向。

(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点。

分数或小数也可以用数轴上的点表示。

(4)在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

3.绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

4.符号相反且绝对值相等的数互为相反数。

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

5.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

(4)两个数相加,交换加数的位置,和不变。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

北师大版初中数学七年级上册知识讲解,巩固练习(教学资料):第17讲《基本平面图形》全章复习与巩固(提高)

北师大版初中数学七年级上册知识讲解,巩固练习(教学资料):第17讲《基本平面图形》全章复习与巩固(提高)

《基本平面图形》全章复习与巩固(提高)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2. 掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==Cba要点诠释:①线段中点的等价表述:如上图,点M 在线段AB 上,且有,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.要点二、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类:12AM AB =PNAB PB NP MN AM 41====MBA(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.要点三、多边形和圆的初步认识1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:12∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°(1)n 边形有n 个顶点、n 条边,对角线的条数为. (2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等. 2. 圆及扇形:(1)圆:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.要点诠释:圆心确定圆的位置,半径确定圆的大小.(2)扇形:由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形.如下图:要点诠释: 扇形OAB 的面积公式:;扇形OAB 的弧长公式:.【典型例题】类型一、线段、射线、直线1.下列判断错误的有( )①延长射线OA ;②直线比射线长,射线比线段长;③如果线段PA =PB ,则点P 是线段AB 的中点;④连接两点间的线段,叫做两点间的距离. A .0个 B .2个 C .3个 D .4个 【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA =PB ,只有当点P 在线段AB 上时,才是线段AB 的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.(3)2n n-180n Rl π=举一反三:【变式】平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.【答案】10, 0.类型二、角2.(2019春•南充校级期中)如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.【思路点拨】设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【答案】72°.【解析】解:设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.故答案为:72°.【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.举一反三:【变式】(2018•陆川县校级模拟)在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.【答案】25°或65°.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°,故答案为:25°或65°.3.(2018•深圳校级模拟)如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70° B.20° C.35° D.110°【思路点拨】根据两直线平行,同旁内角互补求得∠C的度数即可.【答案】A【解析】解:如图,连接AB,∵两正北方向平行,∴∠CAB+∠CBA=180°﹣45°﹣25°=110°,∴∠ACB=180°﹣110°=70°.【总结升华】本题考查了方向角,解决本题的关键是利用平行线的性质.举一反三:【变式】考点办公室设在校园中心O 点,带队老师休息室A 位于O 点的北偏东45°,某考室B 位于O 点南偏东60°,请在图(1)中画出射线OA 、OB ,并计算∠AOB 的度数.【答案】解:如图(2),以O 为顶点,正北方向线为始边向东旋转45°,得OA ;以O 为顶点,正南方向线为始边向东旋转60°,得OB ,则∠AOB =180°-(45°+60°)=75°.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x 时,与分针第一次重合,依题意有 12x =90+x 解得答:时针转过时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法9011x =9011⎛⎫⎪⎝⎭°5. 如图所示,B 、C 是线段AD 上的两点,且,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则 或于是列方程,得 解得:x =18,即AB =18(cm) 所以BC =35-x =35-18=17(cm)(cm) 所以AD =AB+BC+CD =18+17+27=62(cm)【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =DB ,AC =CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =DB ,AC =CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得(cm). 32CD AB=3cm 2CD x =(35)cm BC x =-3(44)cm 2x -335442x x -=-33182722CD x ==⨯=5995599587AB =(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得(cm).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得(cm).综上可得:AB 的长为14cm ,cm , cm .【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.类型四、多边形和圆7.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,当扇形纸板的圆心角为________时,正三角形边被纸板覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .11253AB=11253AB=8711253ECB O(a) (b)【答案与解析】解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD•分别交于点M、N,连结OA、OD.∵四边形ABCD是正方形∴OA=OD,∠AOD=90°,∠MAO=∠NDO=45°,又∠MON=90°,∠AOM=∠DON.∴△AMO与△DNO形状完全相同.∴AM=DN∴AM+AN=DN+AN=AD=a(2),所以当扇形纸板的圆心角为120°时,正三角形边被纸板覆盖部分的总长度为定值a;同理可得,当扇形纸板的圆心角为72°时,正五边形的边长被纸板覆盖部分的总长度也为定值a.【总结升华】一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值a.【巩固练习】一、选择题1.下面说法错误的是( ) .A.M是线段AB的中点,则AB=2AMB.直线上的两点和它们之间的部分叫做线段C.一条射线把一个角分成两个角,这条射线叫做这个角的平分线D.同角的补角相等2.从点O出发有五条射线,可以组成的角的个数是( ) .A. 4个B. 5个C. 7个D. 10个3.用一副三角板画角,下面的角不能画出的是().A.15°的角 B.135°的角C.145°的角 D.150°的角4.(2018•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()3601203︒︒=360n︒A .B .C .D .5.(2019•花都区一模)已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm 6. 平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m+n 等于( ).A.12B.16C.20D.以上都不对 7.一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点从开始至结束走过的路径长度为( ). A. B.C.D.8.如图,扇形的圆心角为,且半径为,分别以,为直径在扇形内作半圆,和分别表示两个阴影部分的面积,那么和的大小关系是( ).A.B.C.D.无法确定二、填空题 9.(2018秋•栾城县期中)把34.27°用度、分、秒表示,应为 ° ′ ″.B 3π24π34322+πOAB 90oR OA OB P Q P Q P Q =P Q >P Q <Q OA P C B ABC10.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.11.已知圆的面积为,若其圆周上一段弧长为,则这段弧所对的圆心角的度数为.12.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.13.如图,点B、O、C在同一条直线上,∠AOB=90°,∠AOE=∠BOD,下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠BOD;④∠COE+∠BOD=90°.其中正确的是 .14.如图,∠AOB是钝角,OC、OD、OE是三条射线,若OC⊥OA,OD平分∠AOB,OE平分∠BOC,那么∠DOE的度数是.15. 如图所示,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为.16.一根绳子弯曲成如下图1所示的形状.当用剪刀像下图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像下图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-1)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是.281cmπ3cmπ图1图2图3……a a b三、解答题17.钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分?18.19.(2019春•龙口市期中)如图,∠AOB=90°,∠AOC=30°,且OM 平分∠BOC ,ON 平分∠AOC ,(1)求∠MON 的度数;(2)若∠AOB=α其他条件不变,求∠MON 的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON 的度数; (4)从上面结果中看出有什么规律?20.(2018秋•栾城县期中)如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若AC=8,CB=6,求线段MN 的长;(2)若点C 为线段AB 上任意一点,且满足AC+BC=a ,请直接写出线段MN 的长; (3)若点C 为线段AB 延长线上任意一点,且满足AC ﹣CB=b ,求线段MN 的长.【答案与解析】一、选择题 1.【答案】C ; 2.【答案】D ;【解析】(个) . 3.【答案】C ;【解析】用三角板能画出的角应该是15的倍数,因为145°不是15的倍数,所以选B .432110+++=4.【答案】D .5.【答案】B ;【解析】解:如图1,由M 是AB 的中点,N 是BC 的中点,得 MB=AB=4cm ,BN=BC=1cm , 由线段的和差,得 MN=MB+BN=4+1=5cm ; 如图2,由M 是AB 的中点,N 是BC 的中点,得 MB=AB=4cm ,BN=BC=1cm ,由线段的和差,得 MN=MB ﹣BN=4﹣1=3cm ; 故选:B .6.【答案】B ;【解析】①6条直线相交于一点时交点最少,所以;②6条直线任意两直线相交都产生一个交点时交点最多,又因为任意三条直线不过同一点,∴ 此时交点为:. 7.【答案】B ;【解析】点从开始至结束走过的路径是两个圆心角为120°,半径为1的扇形弧长之和. 8.【答案】A ;【解析】P =S 扇OAB -S 圆+Q ,即P -Q =S 扇OAB -S 圆=,所以P =Q . 二、填空题9.【答案】34°16′12″. 10.【答案】60度或180 .【解析】分∠α在∠β内部和外部两种情况来讨论. 11.【答案】60°;【解析】根据圆的面积求出半径,再根据弧长求扇形的圆心角. 12.【答案】12;【解析】每个点都可以作3条射线,共有4个点,所以3×4=12条射线. 13.【答案】①②④; 14.【答案】45°;【解析】设∠BOC =x ,则∠DOE =∠BOD -∠BOE =.1m =12345615n =+++++=B 2211()042ππR R -=1(902)452x x ︒︒+-=15.【答案】24m ;【解析】如下图,可得每个圆中虚线部分弧所对的圆心角为120°,利用弧长公式即得答案.16.【答案】4n +1. 三、解答题 17.【解析】解:设经过x 分钟秒针第一次将分针和时针所夹的锐角平分. 6x-360(x-1)=360(x-1)-0.5x , 解得:x =(分). 答:经过分钟秒针第一次将分针和时针所夹的锐角平分. 18.【解析】144014271440142719.【解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM﹣∠CON=45°.(4)从上面的结果中,发现:∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.20.【解析】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=CB,∴MN=MC+CN,=( AC+CB)=(8+6)=7;(2)∵若M、N分别是线段AC、BC的中点,∴AM=MC,CN=BN,AM+CM+CN+NB=a,2(CM+CN)=a,CM+CN=,∴MN=a;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=(AC﹣BC)=b.。

中考数学复习资料(7篇)

中考数学复习资料(7篇)

中考数学复习资料(7篇)中考数学复习资料(7篇)它是初中毕业证发放的必要条件,中国将这几科考试科目规定为国家课程的学科,全部列入初中学业水平考试的范围。

以下是小编为大家整理的中考数学复习重点,仅供参考,希望能够帮助大家。

中考数学复习重点1中考临近,考生在复习时数学如何才能抓住要点数学复习应该重点抓好数字式、方程(组)与不等式(组)、函数及其图像、统计与概率、几何的基本概念与三角形、四边形、相似图形、特直角三角形、圆及视图与投影等10大模块。

同时,于忠翠老师强调,考生应该以轻松自信的心态应对中考,发挥出自己的真实水平。

数字式以中、低档题居多“这一板块主要包括实数、整式、因式分解、分式及二次根式等内容,中考中多以填空选择的客观题形式出现,淡化了计算难度,主要以中、低档次的题居多。

”于忠翠说,随着课改的深入,这一板块的考察形式将会多样化,一些以实际生活题材为背景、结合当今社会热点的问题将会占据主流,近似数、有效数字、科学论证法、绝对值、因式分解、规律探究及阅读理解题成为近几年的热点题型。

方程与不等式难度不大、函数突出开放性单纯求解方程的不等式问题多以填空、选择的题型出现,一般难度不大。

对于应用方程(组)与不等式(组)解决实际问题,特别是与生产生活相联系的方案设计、决策应用等问题应是中考重点,尤其是方程与函数知识、几何知识的综合运用及不等式的实际运用问题是热点问题。

“函数题越来越突出开放性,单纯求函数解析式的题型越来越少,函数中的一些动点问题,尤其是设计新颖、贴近生产生活的函数最值问题、一些开放性探索题及图表信息题将会成为中考热点问题。

”于忠翠说。

统计概率以图表信息题为主统计与概率在中考试卷中所占分数一般在10分左右,这一板块在考察基础知识和基本技能的同时,多以图表信息题为主,考察学生利用图表的信息及所求概率的大小,解决现实生活中的问题。

对于几何与三角形,于忠翠表示,这一板块主要考察结合图形探索规律,特殊三角形在实际生活中的应用及利用旋转、轴对称等知识解决实际问题,淡化了传统的推理论证题。

初中数学复习资料(可编辑修改word版)

初中数学复习资料(可编辑修改word版)
总数
方形的面积为各组频率。 (2)概率
①如果用 P 表示一个事件 A 发生的概率,则 0≤P(A)≤1; P(必然事件)=1;P(不可能事件)=0;
②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;
13、锐角三角函数:
①平均数为: x = x1 + x2 + ......+ xn ; n
②极差: 用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差, 即:极差=最大值-最小值; ③方差:
数据 x1 、 x2 ……,
xn 的方差为 s 2 ,则 s 2 =
( ) ( ) ( ) 1
9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距)
.当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降)
.特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.
10、反比例函数y= (k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向 右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数
D、E、F,则有 AB DE , AB DE , BC EF BC EF AC DF AC DF
(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
如图:△ABC 中,DE∥BC,DE 与 AB、AC 相交与点 D、E,则有:
AD DB
AE l 1,

人教版初二上册数学知识点总结(汇集6篇)

人教版初二上册数学知识点总结(汇集6篇)

人教版初二上册数学知识点总结(汇集6篇)人教版初二上册数学知识点总结(1)1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上人教版初二上册数学知识点总结(2)一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。

初中数学总复习资料.pdf.doc

初中数学总复习资料.pdf.doc

学 无 止 境初中数学总复习资料㈠数与代数⒈数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数)⑵数轴:“三要素”⑶相反数⑷绝对值:│ a │= a(a ≥ 0) │a │=-a(a<0)⑸倒数⑹指数① 零指数: 0 a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数)⑺完全平方公式: 2 2 2 2(a b) = a ab + b2 b2⑻平方差公式: (a+b )(a-b ) =a -⑼幂的运算性质:① m a · n a = m+ ② a m ÷ n a n a = m mn - n ③ (a m )n = a a ④ n (ab) = n a nb ⑤n a an( ) = ⑽n b b科学记数法: n a 10 (1≤ a <10,n 是整数)⑾算术平方根、平方根、立方根、⑿ a b c m a ===(b +d++ n0)等比性质:dnb++ c d + + + + m n =ab⒉方程与不等式⑴一元二次方程①定义及一般形式: 0( 0) ax2 + bx + c = a②解法:1. 直接开平方法.2. 配方法2- b b - 4ac 2 3. 公式法:x1 = (b - 4ac 0),22a4. 因式分解法.③根的判别式:= b 4 ac >0,有两个解。

2 -= b 4 ac <0,无解。

2 -= b 4 ac =0,有1 个解。

2 -④维达定理:bx1 + x2 = - ,x1 x2 =aca⑤常用等式: 2 2 2 2 2x1 + x = (x + x ) - 2x x (x1 - x ) = (x + x ) - 4x1x22 1 2 1 2 2 1 2⑥应用题1. 行程问题:相遇问题、追及问题、水中航行:v顺= 船速+ 水速; v逆= 船速- 水速2. 增长率问题:起始数(1+X)=终止数3. 工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

2014人教版初中数学第一轮分块复习

2014人教版初中数学第一轮分块复习

第一章数与式课时1.实数的有关概念【考点链接】一、有理数的意义:1、数轴的三要素为、和 . 数轴上的点与构成一一对应.2、的两个数叫做互为相反数,实数a的相反数为________.a = .若a,b互为相反数,则b3、非零实数a的倒数为______. 若a,b互为倒数,则ab= .4、绝对值在数轴上表示一个数的点离开的距离叫做这个数的绝对值。

即一个正数的绝对值等于它;0的绝对值是;负数的绝对值是它的。

a ( a>0 )即│a│= 0 ( a=0 )-a ( a<0 )5、科学记数法:把一个数表示成的形式,其中1≤a<10的数,n是整数.当n是正整数时,n比原数的整数位数少一,当n是负整数时,n是原数的左起第一个非零数字前面所有零的个数。

6、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.二、实数的分类1、按定义分类正整数整数零自然数有理数负整数正分数分数有限小数或无限循环小数(可以化成分数)实数负分数正无理数无理数无限不循环小数(不能化成分数)负无理数2、按正负分类正整数正有理数正实数正分数正无理数实数零(既不是正数也不是负数)负整数负有理数负实数负分数负无理数课时2. 实数的运算与大小比较【考点链接】一、实数的运算1、实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。

2、数的乘方 =n a ,其中a 叫做 ,n 叫做 .3、=0a (其中a 0 且a 是 )=-p a (其中a 0)4、实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.二、实数的大小比较1、数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.2、正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.3、实数大小比较的特殊方法⑴作差法;设a 、b 是任意两个数,若a-b>0,则a b ;若a-b=0,则a b ,若a-b<0,则a b.⑵平方法:如3>2,则;⑶商比较法:已知a>0、b>0,若b a >1,则a b ;若b a =1,则a b ;若ba <1,则a b. ⑷近似估算法;⑸找中间值法;24、n 个非负数的和为0,则这n 个非负数同时为0.例如:若a +2b +c =0,则a=b=c=0.课时3.整式及其运算[知识点链接]1、代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连 接而成的式子叫做代数式.2、代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫 做代数式的值.3、整式 (1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式). 单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数 最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4、同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 相加,所得的结果作为合并后的系数,字母和字母的指数 。

初中数学总复习提纲(全初中)

初中数学总复习提纲(全初中)

初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。

初中数学复习资料大全

初中数学复习资料大全

初中数学总复习资料㈠数与代数⒈数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素” ⑶相反数⑷绝对值:│a │= a(a≥0) │a │=-a(a<0) ⑸倒数 ⑹指数① 零指数:0a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数) ⑺完全平方公式:2222)(b ab a b a +±=± ⑻平方差公式:(a+b )(a-b )=22b a - ⑼幂的运算性质: ①ma ·na =nm a+ ②m a ÷n a =nm a- ③n m a )(=mna④nab )(=n a nb ⑤n nn ba b a =)(⑽科学记数法:na 10⨯(1≤a <10,n 是整数) ⑾算术平方根、平方根、立方根、 ⑿ban d b m c a n d b n m d c b a =++++++⇒≠+++===ΛΛΛΛ:)0(等比性质⒉方程与不等式 ⑴一元二次方程①定义及一般形式:)0(02≠=++a c bx ax ②解法: 1.直接开平方法. 2.配方法 3.公式法:)04(24222,1≥--±-=ac b aac b b x4.因式分解法.③根的判别式:ac b 42-=∆>0,有两个解。

ac b 42-=∆<0,无解。

ac b 42-=∆=0,有1个解。

④维达定理:acx x a b x x =⋅-=+2121,⑤常用等式:2122122212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=- ⑥应用题1.行程问题:相遇问题、追及问题、水中航行:水速船速顺+=v ;水速船速逆-=v2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

4.几何问题⑵分式方程(注意检验) 由增根求参数的值: ①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。

【初中数学】三角形(章节复习版)

【初中数学】三角形(章节复习版)
D
∵BD为△ABC的角平分线
∴∠ABC=2∠ABD=34°
B
Hale Waihona Puke C∴∠C=180°-47°-34°=99°
练习 如图,∠1+∠2+∠3+∠4= 300o .
∠1+∠2=180o-30o=150o ∠3+∠4=180o-30o=150o
4
1
30°
2
3
练习 如图,∠A+∠B+∠C+∠D+∠E+∠F = 360o .
考虑三角形三边关系:两边之和大于第三边.
当较小的两边之和小于最大边长时,三条线段的长不能组成 一个三角形.因此只有一种情况:6、13、13.
练习 下列长度的三条线段能否组成三角形?为什么?
(1) 3,4,8
(不能 )
(2) 2,5,6
(能 )
(3) 5,6,10
(能 )
(4) 3,5,8
( 不能)
高所在的直线是否相交
三条高所在直线的交点的 位置
锐角三角形 3
相交 相交
三角形内部
直角三角形 钝角三角形
1 相交 相交
1 不相交
相交
直角顶点 三角形外部
三角形的三条高所在直线交于一点(垂心)
练习 下列各组图形中,哪一组图形中AD是△ABC的高( )
C
A
D
B B
D
C
B
C
A
D
C B
A
A
D
(A)
(B)
(C)
初中数学
第11章 三角形
学霸兔 制作
知识网络图
三角形
线段 角
边、高、中线、角平分线

初一数学复习资料

初一数学复习资料

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解

浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解

《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。

湘教版初中数学知识点总复习资料

湘教版初中数学知识点总复习资料

教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第三单元函数第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123OM (x,y)M1(x+a,y) M2(x+a,y+b)3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.y=k2x+by=k1x+b3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线知识点四:命题与证明9.命题与证明(1)概念:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,正确的命题称为真命题;错误的命题称为假命题.(2)命题的结构:由题设和结论两部分组成,命题常写成"如果p,那么q"的形式,其中p是题设,q是结论.(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的过程.证明一个命题是假命题时,只要举出一个反例署名命题不成立就可以了.例:下列命题是假命题的有(③)①相等的角不一定是对顶角;②同角的补角相等;③如果某命题是真命题,那么它的逆命题也是真命题;④若某个命题是定理,则该命题一定是真命题.第15讲一般三角形及其性质一、知识清单梳理知识点一:三角形的分类及性质关键点拨与对应举例1.三角形的分类(1)按角的关系分类(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形失分点警示:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系.例:等腰三角形两边长分别是3和6,则该三角形的周长为15.2.三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边.3.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.利用三角形的内、外角的性质求角度时,若所给条件含比例,倍分关系等,列方程求解会更简便.有时也会结合平行、折叠、等腰(边)三角形的性质求解.4.三角形中的重要线段四线性质(1)角平分线、高结合求角度时,注意运用三角形的内角和为180°这一隐含条件.(2)当同一个三角形中出现两条高,求长度时,注意运用面积这个中间量来列方才能够求解. 角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半5.三角形中内、外角与角平分线的规律总结如图①,AD平分∠BAC,AE⊥BC,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B);如图②,BO、CO分别是∠ABC、∠ACB的平分线,则有∠O=12∠A+90°;如图③,BO、CO分别为∠ABC、∠ACD、∠OCD的平分线,则∠O=12∠A,∠O’=12∠O;如图④,BO、CO分别为∠CBD、∠BCE的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二:三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°. 2.等边三角形(1)性质:①边角关系:三边相等,三角都相等且都等于60°.即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质. (2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB. 例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,例:把长为10cm的线段进行黄金分21P COBAPCO BADABC abcDABC abcFEDCBAl5l4l3l2l1ODCBAEDCBA分割那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形FEDCBAFEDCBAFEDCBA。

初中数学平移与旋转章节复习1含答案

初中数学平移与旋转章节复习1含答案

平移与旋转章节复习1一.选择题(共50小题)1.下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是()A.B.C.D.2.在平面直角坐标系内,将M(5,2)先向上平移3个单位,再向左平移2个单位,则移动后的点的坐标是()A.(2,0)B.(3,5)C.(8,4)D.(2,3)3.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.下列各项中,不是由平移设计的是()A.B.C.D.5.已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A1B1,如果A1(a,1),B1(5,b),那么a b的值是()A.32B.16C.5D.46.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)7.△ABC三个顶点的坐标分别为A(2,1),B(4,3),C(0,2),将△ABC平移到了△A'B'C',其中A'(﹣1,3),则C'点的坐标为()A.(﹣3,6)B.(2,﹣1)C.(﹣3,4)D.(2,5)8.如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=4,将∠ACB平移使其顶点C 与I重合,则图中阴影部分的周长为()A.9B.8C.6D.49.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.14B.12C.10D.810.如图,将△ABC沿边BC向右平移2个单位长度得到△DEF,若AC的长为3个单位长度,则四边形ACFD的周长为()A.6B.10C.8D.1211.某个窗户上安装有两扇可以移动的铝合金玻璃窗ABCD和A'B'C'D',当玻璃窗ABCD和A'B'C'D'完全重合时,窗户是打开的;当玻璃窗A'B'C'D'沿着BC方向平移到如图所示的位置时,窗户是关闭的.若已知AB=10,BC=6,重叠部分四边形A'B'CD的面积是10,则该窗户关闭时两玻璃窗展开的最大面积是()A.90B.100C.110D.12012.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.013.如图,将周长为12cm的△ABC沿边BC向右平移3cm得到△A′B′C′,则四边形ABC′A′的周长为()A.17cm B.18cm C.19cm D.20cm14.如图三角形ABC平移后得到三角形DEF,若AE=11,DB=5,则平移的距离是()A.6B.3C.5D.1115.如图,两个形状、大小完全相同的三角形ABC和三角形DEF重叠在一起,固定三角形ABC不动,将三角形DEF向右平移,当点E和点C重合时,停止移动,设DE交AC于G.给出下列结论:①四边形ABEG的面积与CGDF的面积相等;②AD∥EC,且AD=EC,则()A.①,②都正确B.①正确,②错误C.①,②都错误D.①错误,②正确16.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同17.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC=∠DFE;④∠DAE=∠AEB.正确的个数为()A.4个B.3个C.2个D.1个18.如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40B.42C.45D.4819.如图,将△ABC沿BC方向平移1个单位得到△DEF,如果四边形ABFD的周长为12,则△ABC的周长为()A.8B.10C.12D.1420.如图,直角△ABC沿射线BC的方向平移3个单位长度,得到△DEF,线段DE交AC 于点H,已知AB=5,DH=2,则图中阴影部分的面积为()A.12B.24C.48D.不能确定21.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C逆时针旋转一定的角度得到Rt△A′B′C,此时点A在边B′C上,且∠BCA′=130°,则∠B′的度数为()A.25°B.30°C.35°D.50°22.如图,将△AOB绕点O按逆时针方向旋转40°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.45°B.55°C.60°D.65°23.如图,把△ABC绕点C顺时针旋转90°得到△DEC,若∠A=25°,则∠CED=()A.45°B.55°C.65°D.75°24.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠ADC=∠CEB 25.如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A.B.C.3D.26.如图,将△ABC绕点C按逆时针方向旋转60°后得到△A′B′C,若∠ACB=25°,则∠ACB′的度数为()A.25°B.35°C.60°D.85°27.如图,△ABC中∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B、C、D恰好在同一直线上,则∠E的度数为()A.50°B.75°C.65°D.60°28.如图,将△ABC绕顶点C旋转得到△DEC,点A对应点D,点B对应点E,且点B刚好落在DE边上,∠A=24°,∠BCD=48°,则∠ABD等于()A.30°B.38°C.36°D.45°29.如图,在Rt△ABC中,∠ACB=90°,∠A=31°,将△ABC绕点C按顺时针旋转后得到△EDC.此时点D在AB边上,则旋转角的大小为()A.62°B.61°C.60°D.59°30.如图,四边形AOBC绕点O顺时针方向旋转得到四边形DOEF,下列说法正确的是()A.旋转角是∠BODB.AO=EOC.若连接CO,FO,则CO=FOD.四边形AOBC和四边形DOEF可能不全等31.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BDC的度数为()A.15°B.20°C.25°D.30°32.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,其中有:①AC=AD;②AB⊥EB;③BC=DE;④∠A=∠EBC,四个结论,则结论一定正确的有()个.A.1B.2C.3D.433.如图,将直角三角形ABC绕直角顶点C按顺时针方向旋转90°后得到三角形A′B′C,连接AA′,若∠1=25°,则∠B的度数是()A.55°B.65°C.60°D.70°34.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB 上,且∠ADO的度数为()A.30°B.60°C.75°D.80°35.如图所示,Rt△ABC中,∠B=30°,AC=,点M为BC中点,将△ABC绕点C旋转,N为A1B1中点,则线段MN的最小值为()A.B.C.D.36.如图,在△ABC中,∠BAC=32°,将△ABC绕点A逆时针旋转60°得到△AB′C′,边B′C′与AC平行,则∠B的度数为()A.28°B.30°C.32°D.38°37.如图,把△ABC绕着点A顺时针旋转得到△AB′C′,点C的对应点C′落在BC边上,若∠BAB′=40°,则∠C为()A.50°B.60°C.70°D.80°38.如图,在△ABC中,以C为中心,将△ABC顺时针旋转35°得到△DEC,边ED,AC 相交于点F,若∠A=30°,则∠EFC的度数为()A.60°B.65°C.72.5°D.115°39.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D40.如图,将△ABC绕点A逆时针旋转90°得到相应的△ADE,若点D恰在线段BC的延长线上,则下列选项中错误的是()A.∠BAD=∠CAE B.∠ACB=120°C.∠ABC=45°D.∠CDE=90°41.下列图形是中心对称图形的是()A.B.C.D.42.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.43.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.44.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.45.下列图形中,是中心对称图形的是()A.B.C.D.46.下列图形中,是中心对称图形的是()A.B.C.D.47.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个48.下列四幅图案,在设计中用到了中心对称的图形是()A.B.C.D.49.下列不是中心对称图形的是()A.B.C.D.50.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.平移与旋转章节复习1参考答案与试题解析一.选择题(共50小题)1.解:A、不能看成由某一个基本图形通过平移形成的,故此选项不合题意;B、不能看成由某一个基本图形通过平移形成的,故此选项不合题意;C、能看成由某一个基本图形通过平移形成的,故此选项符合题意;D、不能看成由某一个基本图形通过平移形成的,故此选项不合题意;故选:C.2.解:把点A(5,2)先向上平移3个单位长度,再向左平移2个单位长度得到点的坐标为(3,5),故选:B.3.解:点A(1,﹣2)向左平移2个单位,横坐标变为1﹣2=﹣1,向上平移3个单位,纵坐标变为﹣2+3=1,所以所得点的坐标为(﹣1,1),在第二象限故选:B.4.解:根据平移的性质可知:A、B、C选项的图案都是由平移设计的,D选项的图案是由旋转设计的.故选:D.5.解:由题意:a=4,b=2,∴a b=42=16,故选:B.6.解:点(﹣2,﹣3)向左平移3个单位后所得点的坐标为(﹣2﹣3,﹣3),即(﹣5,﹣3),故选:C.7.解:∵△ABC三个顶点的坐标分别为A(2,1),将△ABC平移到了△A'B'C',其中A'(﹣1,3),∴横坐标减3,纵坐标加2,∴C(0,2),对应点坐标为:(﹣3,4).8.解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=8,即图中阴影部分的周长为8,故选:B.9.解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=AB+BC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.10.解:∵△ABC沿边BC向右平移2个单位长度得到△DEF,DF=AC=3,AD=CF=2,∴四边形ACFD的周长=3+3+2+2=10.故选:B.11.解:该窗户关闭时两玻璃窗展开的最大面积是10×6+10×6﹣10=110,12.解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.13.解:由题意知,BB'=CC'=AA'=3cm,则四边形ABC'A'的周长=12+3+3=18cm.故选:B.14.解:∵三角形ABC平移后得到三角形DEF,∴AB=DE,∵AE=11,DB=5,∴AD=BE=(11﹣5)=3,∴平移的距离是3,故选:B.15.解:由平移可得:△ABC的面积=△DEF的面积,所以△ABC的面积﹣△EGC的面积=△DEF的面积﹣△EGC的面积,即四边形ABEG的面积与CGDF的面积相等,故①正确;由平移可得:AD∥EC,AD=BE,故②错误;故选:B.16.解:由图和平移可得:三角板平移的方向不同,距离不同,故选:B.17.解:∵△ABC沿着某一方向平移一定的距离得到△DEF,①AD=CF,正确;②AC∥DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故选:B.18.解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48,故选:D.19.解:根据题意,将△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12,∴AB+BC+AC=10,故选:B.20.解:∵将Rt△ABC沿射线BC方向平移得到△DEF,∴DE=AB=5,∵DH=2,∴HE=DE﹣DH=3,∵∠B=90°,∴四边形ABEH是梯形,S阴影=S△DEF﹣S△CEH=S△ABC﹣S△CEH=S梯形ABEH=(AB+HE)•BE=×(5+3)×3=12.故选:A.21.解:由题意∠A′=∠CAB=90°,∠A′CB′==65°,∴∠B′=90°﹣65°=25°,故选:A.22.解:∵将△AOB绕点O按逆时针方向旋转40°后得到△COD,∴∠AOB=∠COD=15°,∠AOC=∠BOD=40°,∴∠AOD=∠AOB+∠BOD=55°,故选:B.23.解:∵把△ABC绕点C顺时针旋转90°得到△DEC,∴∠A=∠D=25°,∠ACB=∠DCE=90°,∴∠CED=90°﹣25°=65°,故选:C.24.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=∠ADC,∠CBE=∠CEB,∵∠A+∠ADC+∠ACD=180°,∠CBE+∠CEB+∠BCE=180°,∴∠ADC=∠CEB,故选:D.25.解:如图,延长DE交BC于F,∵将△ABC绕点A逆时针旋转90°,∴AE=AC=2,∠EAC=90°=∠DEA=∠ACB,∴AE∥CB,AC∥EF,∴CF=EF=2=AC,∠EFC=90°,∴BF=2,∴BE===2,故选:B.26.解:根据旋转的定义可知旋转角∠ACA′=60°,∵∠ACB=25°,∴∠A′CB′=25°,∴∠ACB′=∠ACA′+∠A′CB′=60°+25°=85°.故选:D.27.解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∠E=∠ACB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°﹣∠BAD)=15°,∴∠E=∠ACB=180°﹣∠BAC﹣∠B=180°﹣100°﹣15°=65°,故选:C.28.解:∵△ABC绕顶点C旋转得到△DEC,∴∠D=∠A=24°,∠ACB=∠DCE,∵∠BCD=48°,∴∠CBE=48°+24°=72°,∵CE=CB,∴∠E=∠CBE=72°,∴∠ECB=180°﹣72°﹣72°=36°,∵∠CBA=∠E=72°,∴∠ABD=180°﹣72°﹣72°=36°,故选:C.29.解:在Rt△ACB中,∵∠ACB=90°,∠A=31°,∴∠B=90°﹣∠A=59°,∵CB=CD,△BCD是等腰三角形,∴∠BCD=180°﹣59°﹣59°=62°,∴旋转角为62°,故选:A.30.解:∵四边形AOBC绕点O顺时针方向旋转得到四边形DOEF,∴旋转角是∠AOD,OA=OD,四边形AOBC和四边形DOEF全等,故A、B、D选项错误;若连接CO,FO,则CO=FO,故C选项正确,故选:C.31.解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故选:A.32.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①、③错误;∴∠ACD=∠BCE,∴∠A=∠ADC=(180°﹣∠ACD),∠CBE=(180°﹣∠BCE),∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误;故选:A.33.解:∵将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴AC=A'C,∠ACA'=90°,∠BAC=∠B'A'C,∴∠AA'C=∠CAA'=45°,且∠1=25°,∴∠B'A'C=20°,∴∠BAC=20°,∴∠B=90°﹣∠BAC=70°,故选:D.34.解:由题意得∠AOD=30°,OA=OD,∴.故选:C.35.解:如图,连接CN.在Rt△ABC中,∵AC=4,∠B=30°,∴AB=2AC=2,BC=AC=3,∵CM=MB=BC=,∵A1N=NB1,∴CN=A1B1=,∵MN≥CN﹣CM,∴MN≥﹣,即MN≥﹣,∴MN的最小值为﹣,故选:B.36.解:∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴∠BAB′=60°,∵∠BAC=32°,∴∠CAB′=60°﹣32°=28°,∵B′C′∥AC,∴∠B′=∠CAB′=28°,∴∠B=∠B′=28°,故选:A.37.解:由旋转的性质得:∠BAB'=∠CAC'=40°,AC'=AC,∴∠AC'C=∠C,∵∠C+∠CAC'+∠AC'C=180°,∴∠C==70°,故选:C.38.解:由旋转的性质得:∠D=∠A=30°,∠DCF=35°,∴∠EFC=∠A+∠DCF=30°+35°=65°;故选:B.39.解:如图,∵△MNP绕某点旋转一定的角度,得到△M'N'P',∴连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.40.解:∵将△ABC绕点A逆时针旋转90°得到相应的△ADE,∴∠BAD=∠CAE=90°,AB=AD,∠ABC=∠ADE,∴∠ABC=∠ADB=45°,∴∠ADE=45°,∴∠CDE=90°,得不到∠ACB=120°,故A,C,D正确,B错误,故选:B.41.解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.42.解:A、是轴对称图形,也是中心对称图形,故本选项符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.43.解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C.既不是轴对称,也不是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.44.解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:C.45.解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.46.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.47.解:第一个图形既是轴对称图形又是中心对称图形;第二个图形不是轴对称图形,是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;既是轴对称图形又是中心对称图形的有2个,故选:B.48.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意;故选:D.49.解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选:A.50.解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项不符合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学章节复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n 个实数相乘,有一个因数为0,积就为0;若n 个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法1、科学记数法:设N >0,则N= a ×n10(其中1≤a <10,n 为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

例题:例1、已知实数a 、b 在数轴上的对应点的位置如图所示,且b a 。

化简:a b b a a --+-分析:从数轴上a 、b 两点的位置可以看到:a <0,b >0且b a所以可得:解:a a b b a a =+-++-=原式例2、若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。

分析:1)34(3--= a ;01433 b b 且-⎪⎭⎫ ⎝⎛-=;c >0;所以容易得出: a <b <c 。

解:略例3、若22+-b a 与互为相反数,求a+b 的值分析:由绝对值非负特性,可知02,02≥+≥-b a ,又由题意可知:022=++-b a 所以只能是:a –2=0,b+2=0,即a=2,b= –2 ,所以a+b=0 解:略例4、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求2m cd m b a +-+的值。

解:原式=0110=+-例5、计算:(1)199********.08⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e 解:(1)原式=11)125.08(19941994==⨯(2)原式=⎪⎪⎪⎪⎭⎫ ⎝⎛--+⋅⎪⎪⎪⎪⎭⎫ ⎝⎛-++21212121e e e e e e e e =11=⋅e e 代数部分第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。

单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式1、分式定义:形如BA 的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:(1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a a a a a a ;(3)b a ab ⋅=(a ≥0,b ≥0);(4))0,0(≥≥=b a ba b a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

相关文档
最新文档