LM324是四运放集成电路
LM324运放应用电路大全
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。
lm324典型电路
LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
●反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
●同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124/LM224/LM324中文资料
LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“ ”、“-”为两个信号输入端,“V ”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi ()为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM124/LM224/LM324的引脚排列见图2。
图一图二lm324功能引脚图图3 LM324/LM124/LM224集成电路内部电路图1/4主要参数:参数名称测试条件最小典型最大单位输入失调电压
U0≈1.4V RS=0 -2.07.0mV输入失调电流- -5.050nA输入偏置电流- -45250nA大信号电压增益U =15V,
RL=5kΩ88k100k --电源电流U =30V,Uo=0,RL=∞1.53.0 -mA共模抑制比Rs≤10kΩ6570 -dB。
lm324放大电路
LM324放大电路什么是LM324LM324是一种低功耗、高性能四运放(放大器)集成电路,主要由四个独立运放组成。
它被广泛应用于各种电子设备中,包括信号处理、音频放大、传感器放大、滤波器和比较器等应用。
LM324的特性•低功耗:每个运放的静态电流消耗仅为0.8mA。
•输入偏置电流低:典型值为20nA。
•大增益带宽积:典型值为1MHz。
•单电源操作:电源电压范围为3V至32V。
•宽工作温度范围:-55°C至+125°C。
LM324放大电路原理lm324_circuit_diagramlm324_circuit_diagram图中显示了一个基本的LM324放大电路。
该电路包含一个单端输入放大器,其增益由电阻R1和R2决定。
运放的负反馈通过电阻R2连接到运放的直流输入端。
输入信号经过电阻R1进入非反相输入端,同时通过电容C1和电阻R1提供交流路径。
C1和R1一起形成一个高通滤波器,以阻止低频信号通过。
输出信号通过电容C2提供直流耦合,并通过电阻R4提供负载电压。
此外,电容C2还提供对地的路径,用于引入反相输入。
通过调整电阻R1和R2的比例,可以改变放大器的增益。
通常,增益由下式计算:增益(A)= 1 + (R2 / R1)使用LM324设计放大电路下面是一个简单的例子,展示如何使用LM324设计一个放大电路。
LM324放大电路电路元件:- LM324运放- 电阻R1 = 10kΩ- 电阻R2 = 100kΩ- 电容C1 = 1uF- 电容C2 = 10uF电路连接:- R1连接到非反相输入端- R2连接到反相输入端和输出端- C1连接到非反相输入端和地- C2连接到输出端和地电路图示:![lm324_circuit_design](lm324_circuit_design.png)电路功能:该电路是一个非反相放大器,其增益由R1和R2来决定。
输入信号经过C1和R1进入非反相输入端,经过放大后输出到C2并提供负载电压。
lm324芯片
lm324芯片LM324是一款常用的电子集成电路芯片,由四个独立的运算放大器组成。
它是低功耗、高增益、高输入阻抗和宽工作电压范围的集成电路芯片。
LM324的主要特性如下:1. 低功耗:LM324的供电电压范围是3V至32V,工作电流在0.7mA至1.4mA之间。
这使得它非常适合电池供电的应用,可以节省能源并延长电池寿命。
2. 高增益:LM324的开环增益可高达100dB。
增益是指输入信号经过放大器后输出的信号与输入信号之间的比值。
高增益意味着LM324可以放大微弱的信号,并提供更高的输出电压。
3. 高输入阻抗:LM324的输入阻抗约为2MΩ,这意味着它可以接受较高阻抗的输入信号,同时减少了对输入源的负载影响。
这对于接收传感器信号等需要高输入阻抗的应用非常重要。
4. 宽工作电压范围:LM324的工作电压范围很广,可以从低至-0.3V至高达32V。
这使得它适用于多种电源电压的应用,同时提供灵活性和方便性。
5. 外部电源补偿:LM324内置了外部电源补偿引脚。
通过连接外部电容和电阻,可以进一步提高性能和稳定性。
6. 外部频率补偿:LM324还具有外部频率补偿引脚。
通过连接外部电容和电阻,可以调整放大器的带宽,并适应不同的应用需求。
除了以上主要特性外,LM324还具有多种保护功能,如内部过温保护、短路保护和过电压保护等。
这些保护机制可以确保芯片在异常工作状态下的稳定性和安全性。
由于其良好的性能和广泛的应用范围,LM324被广泛应用于模拟信号处理、运算放大器电路、仪器仪表、音频放大器、电源管理等领域。
通过合适的连接和设计,LM324可以实现各种功能,并满足不同场合的需求。
总而言之,LM324是一款功能强大、灵活性好的集成电路芯片,具有低功耗、高增益、高输入阻抗和宽工作电压范围等特点。
通过合理应用,可以满足多种应用需求,并提供稳定、可靠的性能。
电子教材-四运放LM324的实用电路设计及电路原理
本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的 引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各 放大器电 压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LM324引脚图资料
LM324引脚图资料与电路应用LM324为四运放集成电路,采用14脚双列直插塑料封装。
,内部有四个运算放大器,有相位补偿电路。
电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
它的输入电压可低到地电位,而输出电压范围为O~Vcc。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。
每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324引脚排列见图1。
2。
lm124、lm224和lm324引脚功能及内部电路完全一致。
lm124是军品;lm224为工业品;而lm324为民品。
由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。
《lm324引脚图》《lm324管脚图》《lm324原理图》《lm324工作电压》《lm324无线.LM324应用电路图LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。
6.具有内部补偿的功能。
7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能 2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器。
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124/LM224/LM324中文资料
LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“ ”、“-”为两个信号输入端,“V ”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi ()为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM124/LM224/LM324的引脚排列见图2。
图一图二lm324功能引脚图
图3 LM324/LM124/LM224集成电路内部电路图 1/4
主要参数:
极限参数:LM124为陶瓷封装
由于LM124/LM224/LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324电路原理
LM324原理和引脚LM324是四运放集成电路,它采用14脚双列直插塑料封装,lm324原理图如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
lm324引脚图见图2。
图1图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍LM324应用实例。
--------------------------------------------------------------------------------反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co 和Ci为耦合电容。
同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
--------------------------------------------------------------------------------交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
lm324的工作原理
lm324的工作原理
LM324是一种标准的低功耗四路运算放大器,它广泛应用于
各种电路中。
其工作原理如下:
1. 内部集成电路:LM324由四个独立的运算放大器组成,每
个运算放大器都有两个输入端(非反相输入端和反相输入端)和一个输出端。
2. 输入端:每个运算放大器有两个输入端,非反相输入端
(+IN)和反相输入端(-IN)。
这两个输入端接收输入信号,并进行比较。
3. 运算放大器原理:运算放大器按照差分放大器的原理工作。
当非反相输入端的电压高于反相输入端时,输出电压为高电平,反之,输出电压为低电平。
4. 反馈:LM324的输出端通过反馈电路连接到非反相输入端,以提供放大器的增益。
可以通过改变反馈网络的电阻和电容值来调整放大器的增益。
5. 功耗:LM324具有低功耗特性,非常适合用于低电压、低
功耗应用,如便携式电子设备。
总结而言,LM324运算放大器的工作原理是将输入信号与参
考电压进行比较,并根据比较结果控制输出电压。
LM324引脚图资料全
LM324引脚图资料与电路应用LM324为四运放集成电路,采用14脚双列直插塑料封装。
,部有四个运算放大器,有相位补偿电路。
电路功耗很小,lm324工作电压围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
它的输入电压可低到地电位,而输出电压围为O~Vcc。
它的部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。
每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324引脚排列见图1。
2。
lm124、lm224和lm324引脚功能及部电路完全一致。
lm124是军品;lm224为工业品;而lm324为民品。
由于LM324四运放电路具有电源电压围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。
《lm324引脚图》《lm324管脚图》《lm324原理图》《lm324工作电压》《lm324无线.LM324应用电路图LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。
6.具有部补偿的功能。
7.共模围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能 2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器。
LM324功能应用简介
LM324功能应用简介2007/09/01 14:57LM324功能应用简介您现在的位置是:主页>>>电子元器件资料>>>正文LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
lm324芯片常用电路
LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
●反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
●同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124LM224LM324中文资料
四运算放大器芯片LM124/LM224/LM324中文资料
LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“ ”、“-”为两个信号输入端,“V ”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi ()为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM124/LM224/LM324的引脚排列见图2。
图一图二lm324功能引脚图图3 LM324/LM124/LM224集成电路内部电路图1/4主要参数:参数名称测试条件最小典型最大单位输入失调电压
U0≈1.4V RS=0 -2.07.0mV输入失调电流- -5.050nA输入偏置电流- -45250nA大信号电压增益U =15V,
RL=5kΩ88k100k --电源电流U =30V,Uo=0,RL=∞1.53.0 -mA共模抑制比Rs≤10kΩ6570 -dB。
LM324运算放大器应用电路全集
LM324 运算放大器应用电路全集LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中+、-为两个信号输入端,V+、V-为正、负电源端,Vo 为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。
LM324 的引脚排列见图2由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324 pdf:elecfans/soft/39/2008/200805053498.htmlLM324 作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2 组成1/2V+偏置,C1 是消振电容。
放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co 和Ci 为耦合电容。
LM324 作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2 组成1/2V+分压电路,通过R3 对运放进行偏置。
电路的电压放大倍数Av 也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4 的阻值范围为几千欧姆到几十千欧姆。
LM324 作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LM324及LM358用法资料
LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图。
其应用电路电压放大:LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或16V.其特点如下:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA5.每封装含四个运算放大器。
6.具有内部补偿的功能。
7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模组,音频放大器、工业控制、DC增益部件和其他所有可用单电源供电的使用运算放大器的场合。
其应用电路电压放大:其特性有:1、内部频率补偿。
2、直流电压增益高(约100dB) 。
3、单位增益频带宽(约1MHz) 。
4、电源电压范围宽:单电源(3—30V);双电源(±1.5一±15V) 。
5、低功耗电流,适合于电池供电。
6、低输入偏流。
7、低输入失调电压和失调电流。
8、共模输入电压范围宽,包括接地。
9、差模输入电压范围宽,等于电源电压范围。
10、输出电压摆幅大(0至Vcc-1.5V) 。
LM324应用
LM324应用本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LM324 是四运放集成电路
LM324 是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-” 为正、负电源端,“V o”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端V o的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。
LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器 电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数A v仅由外接电阻Ri、Rf决定:A v=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, A v=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器 见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数A v也仅由外接电阻决定:A v=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放 Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
lm324及充电器
lm324及充电器
LM324 四运放的应用
LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。
外部图
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中“+”、“-”为两个信
号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相
输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放
输出端Vo 的信号与该输入端的相位相同。
LM324 的引脚排列见图2。
图1 图 2
由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,
因此被广泛应用在各种电路中。
下面介绍其应用实例。
用lm324制作的充电器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
同相交流放大器
见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为
R3。
R4的阻值范围为几千欧姆到几十千欧姆
图5 同相交流放大器
交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同
图6 交流信号三分配放大器
R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。
测温电路见附图。
感温探头采用一只硅三极管3DG6,把它接成二极管形式。
硅晶体管发射结电压的温度系数约为-2.5mV/℃,即温度每上升1度,发射结电压变会下降2.5mV。
运放A1连接成同相直流放大形式,温度越高,晶体管BG1压降越小,运放A1同相输入端的电压就越低,输出端的电压也越低。
这是一个线性放大过程。
在A1输出端接上测量或处理电路,便可对温度
进行指示或进行其它自动控制。
图7 测温电路
有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。
这种有源带通滤波器
的中心频率
,在中心频率fo处的电压增益Ao=B3/2B1,品质因数
,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao 值,去求出带通滤波器的各元件参数值。
R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。
上式中,当fo=1KHz时,C取0.01Uf。
此电路
亦可用于一般的选频放大。
图8 有源带通滤波器
此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端
既可。
比较器当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍)。
此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。
当正输入端电压高于负输入端电压时,运放输出低电平。
图9 比较器
附图中使用两个运放组成一个电压上下限比较器,电阻R1、R1。