LM324组成的电池电量指示电路
LM324应用电路图
LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。
6.具有内部补偿的功能。
7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1.LM324电压参考电路图2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器6.LM324维思电桥振荡器电路图7.LM324滞后比较器电路图恒流源运算放大器LM324的D单元构成恒流源,使用中为保证恒流源的线性度,应充分保证电阻R16与R17阻值不小于R14与R15的10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波的线性度,调试时有时测得的锯齿波为下凹的,这是由于R14与R15或R16与R17两个电阻之间阻值有较大的差值造成的。
本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
LM324四运放集成电路图文详解
LM324四运放集成电路图文详解LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
1.反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
2.同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
3.交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai 输入电阻高,运放 A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时 Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。
电子教材-四运放LM324的实用电路设计及电路原理
本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的 引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各 放大器电 压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LM324及其常用应用电路,用法
L M32 4 lm124、lm224和lm324引脚功能及内部电路完全一致。
324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。
6.具有内部补偿的功能。
7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:电压参考电路图多路反馈带通滤波器电路图高阻抗差动放大器电路图函数发生器电路图双四级滤波器维思电桥振荡器电路图滞后比较器电路图LM324引脚图资料与电路应用LM324引脚图资料与电路应用 LM324资料: LM324为四运放集成电路,采用14脚双列直插塑料封装。
,内部有四个运算放大器,有相位补偿电路。
电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
它的输入电压可低到地电位,而输出电压范围为O~Vcc。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。
每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324引脚排列见图1。
2。
lm124、lm224和lm324引脚功能及内部电路完全一致。
lm124是军品;lm224为工业品;而lm324为民品。
由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。
《lm324引脚图》《lm324管脚图》《lm324原理图》《lm324工作电压》《lm324无线话筒应用电路》。
四运放LM324的实用电路设计及电路原理
四运放LM324的实用电路设计及电路原理
一、实用电路设计:
1.非反向比例放大电路:
其中R1和R2为反馈电阻,Vin为输入电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:Vout = Vin * (1 + R2/R1)
2.反向比例放大电路:
其中R1和R2为反馈电阻,Vin为输入电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:Vout = -Vin * (R2/R1)
3.非反向加法器:
其中R1、R2、R3为反馈电阻,Vin1、Vin2为输入电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:Vout = (Vin1 * R2/R1) + (Vin2 * R3/R1)
4.双电源比例放大电路:
其中R1和R2为反馈电阻,Vin为输入电压,Vcc+和Vcc-为正负电源电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:
Vout = Vin * (1 + R2/R1)
二、电路原理:
运放单元的差分输入级由三个差动对组成,其输入电流可忽略不计。
电流源提供各级的偏置电流。
电压放大级通过一个交流耦合电容耦合到输出级。
输出级由一个放大电路组成,它负责提供电压放大和驱动负载。
在实际应用中,四运放LM324的内部结构能够提供高增益、宽输入电压范围、低输入偏置电流等特性。
同时,它还具有低功耗、高压电源抗干扰能力等优点,使得其成为众多电子设备中常用的模拟电路元件。
通过合理的电路设计和参数选择,可以实现各种功能的电路设计,满足不同应用需求。
LM324设计的LED电平指示器电路图
LM324设计的LED电平指示器电路图本文介绍用LM324制作的两款LED电平指示器电路。
LED电平指示器常应用于音频电路及功放电路中的输出电平指示。
LM324是四运放集成电路.1、首先介绍的LED电平指示器带有可调增益放大级,既可以接在音频功放电路的输出端,作为功放输出电平指示,也可以接在音频前置放大电路输出端(音量控制电路之前),作为前置级的电平指示器。
电路见下图电路中,由LM324运放构成一个增益可调的放大前级,可调电阻RP用来调节增益量;LED驱动电路由三极管V、电容器C3、稳压二极管VS,电阻器R1一Rn、发光二极管VLl 一VLn和二极管VD1一VDn组成。
来自功率放大器或前置放大器的音频输人信号经C2藕合加至LM324运放的5脚,经LM324和三极管放大后,从三极管的发射极输出信号电压,将VLl一V Ln逐级点亮。
音频输人信号越强,点亮发光二极管的个数也越多。
元器件选择R01-R05和R1-Rn选用1/4W碳膜电阻器或金属膜电阻器。
RP选用超小型电位器或立式可变电阻器。
C1-C3均选用耐压值为16V的铝电解电容器。
VD1-VDn选用1 N4148型硅开关二极管或2AP5VS选用1/2W、3.6V的硅稳压二极管。
VU-V Ln均选用币5mm的红色高亮度发光二极管。
V选用C8050或58050、3 DG8050型硅NPN晶体管。
IC选用LM324型运算放大集成电路。
2、下面介绍的LED电平指示器自身不带增益放大电路,可用于音频功放输出端的电平指示器。
但是本电平指示器有移动点光式和逐级点亮式两种显示方式可以选择。
电路原理图见附图所示。
当输入音频信号电平小于0.7 V时,Nl输出高电平,将VLI点亮;当输入信号电平在0.7-1.4V之间时,N2输出高电平,一方面使V L2点亮,另一方面通过V D6使N1的反相输人端变为高电平,使N1输出低电平,VLI熄灭。
同理,若输入信号电平变高,则VL1和V L4将会分别点亮,呈移动点光式的显示。
lm324芯片常用电路
LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
●反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
●同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LM324设计的LED电平指示器电路
本文介绍用LM324制作的两款LED电平指示器电路。
LED电平指示器常应用于音频电路及功放电路中的输出电平指示。
LM324是四运放集成电路.1、首先介绍的LED电平指示器带有可调增益放大级,既可以接在音频功放电路的输出端,作为功放输出电平指示,也可以接在音频前置放大电路输出端(音量控制电路之前),作为前置级的电平指示器。
电路见下图电路中,由LM324运放构成一个增益可调的放大前级,可调电阻RP用来调节增益量;LED驱动电路由三极管V、电容器C3、稳压二极管VS,电阻器R1一Rn、发光二极管VLl一VLn和二极管VD1一VDn组成。
来自功率放大器或前置放大器的音频输人信号经C2藕合加至LM324运放的5脚,经LM324和三极管放大后,从三极管的发射极输出信号电压,将VLl一V Ln逐级点亮。
音频输人信号越强,点亮发光二极管的个数也越多。
元器件选择R01-R05和R1-Rn选用1/4W碳膜电阻器或金属膜电阻器。
RP选用超小型电位器或立式可变电阻器。
C1-C3均选用耐压值为16V的铝电解电容器。
VD1-VDn选用1 N4148型硅开关二极管或2AP5VS选用1/2W、3.6V的硅稳压二极管。
VU-V Ln均选用币5mm的红色高亮度发光二极管。
V选用C8050或58050、3 DG8050型硅NPN晶体管。
IC选用LM324型运算放大集成电路。
2、下面介绍的LED电平指示器自身不带增益放大电路,可用于音频功放输出端的电平指示器。
但是本电平指示器有移动点光式和逐级点亮式两种显示方式可以选择。
电路原理图见附图所示。
当输入音频信号电平小于0.7 V时,Nl输出高电平,将VLI点亮;当输入信号电平在0.7-1.4V之间时,N2输出高电平,一方面使V L2点亮,另一方面通过V D6使N1的反相输人端变为高电平,使N1输出低电平,VLI熄灭。
同理,若输入信号电平变高,则VL1和V L4将会分别点亮,呈移动点光式的显示。
LM324应用电路图
LM324系列运算放大器就是价格便宜得带差动输入功能得四运算放大器。
可工作在单电源下,电压范围就是3、0V-32V或+16V、LM324得特点:1、短跑保护输出2、真差动输入级3、可单电源工作:3V-32V4、低偏置电流:最大100nA(LM324A)5、每封装含四个运算放大器。
6、具有内部补偿得功能。
7、共模范围扩展到负电源8、行业标准得引脚排列9、输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1、LM324电压参考电路图2、LM324多路反馈带通滤波器电路图3、LM324高阻抗差动放大器电路图4、LM324函数发生器电路图5、LM324双四级滤波器6、LM324维思电桥振荡器电路图7、LM324滞后比较器电路图恒流源运算放大器LM324得D单元构成恒流源,使用中为保证恒流源得线性度,应充分保证电阻R16与R17阻值不小于R14与R15得10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波得线性度,调试时有时测得得锯齿波为下凹得,这就是由于R14与R15或R16与R17两个电阻之间阻值有较大得差值造成得。
本文就高性能集成四运放LM324得参数,进行实用电路设计,论述电路原理。
LM324就是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它得内部包含四组形式完全相同得运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示得符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo得信号与该输入端得位相反;Vi+(+)为同相输入端,表示运放输出端Vo得信号与该输入端得相位相同。
LM324得引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
LM324运算放大器应用电路全集
LM324 运算放大器应用电路全集LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中+、-为两个信号输入端,V+、V-为正、负电源端,Vo 为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。
LM324 的引脚排列见图2由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324 pdf:elecfans/soft/39/2008/200805053498.htmlLM324 作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2 组成1/2V+偏置,C1 是消振电容。
放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co 和Ci 为耦合电容。
LM324 作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2 组成1/2V+分压电路,通过R3 对运放进行偏置。
电路的电压放大倍数Av 也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4 的阻值范围为几千欧姆到几十千欧姆。
LM324 作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LED音频电平指示器
LM324是四运放集成电路,本文介绍用LM324制作的两款LED电平指示器电路。
LED电平指示器常应用于音频电路及功放电路中的输出电平指示。
1、首先介绍的LED电平指示器带有可调增益放大级,既可以接在音频功放电路的输出端,作为功放输出电平指示,也可以接在音频前置放大电路输出端(音量控制电路之前),作为前置级的电平指示器。
电路见下图电路中,由LM324运放构成一个增益可调的放大前级,可调电阻RP用来调节增益量;LED驱动电路由三极管V、电容器C3、稳压二极管VS,电阻器R1一Rn、发光二极管VLl 一VLn和二极管VD1一VDn组成。
来自功率放大器或前置放大器的音频输人信号经C2藕合加至LM324运放的5脚,经LM324和三极管放大后,从三极管的发射极输出信号电压,将VLl一V Ln逐级点亮。
音频输人信号越强,点亮发光二极管的个数也越多。
元器件选择R01-R05和R1-Rn选用1/4W碳膜电阻器或金属膜电阻器。
RP选用超小型电位器或立式可变电阻器。
C1-C3均选用耐压值为16V的铝电解电容器。
VD1-VDn选用1 N4148型硅开关二极管或2AP5VS选用1/2W、3.6V的硅稳压二极管。
VU-V Ln均选用币5mm的红色高亮度发光二极管。
V选用C8050或58050、3 DG8050型硅NPN晶体管。
IC选用LM324型运算放大集成电路。
2、下面介绍的LED电平指示器自身不带增益放大电路,可用于音频功放输出端的电平指示器。
但是本电平指示器有移动点光式和逐级点亮式两种显示方式可以选择。
电路原理图见附图所示。
当输入音频信号电平小于0.7 V时,Nl输出高电平,将VLI点亮;当输入信号电平在0.7-1.4V之间时,N2输出高电平,一方面使V L2点亮,另一方面通过V D6使N1的反相输人端变为高电平,使N1输出低电平,VLI熄灭。
同理,若输入信号电平变高,则VL1和V L4将会分别点亮,呈移动点光式的显示。
四运放LM324的实用电路设计及电路原理
集成运放集成电路是把晶体管、必要的元件以及相互之间的连接同时制造在一个半导体芯片上(如硅片),形成具有一定电路功能的器件。
与分立元件组成的放大电路相比,具有体积小、质量轻、功耗低、工作可靠、安装方便而又价格便宜等特点。
集成电路就其集成密度而言,有小规模、中规模、大规模和超大规模之分;就其所用器材来分,有双极型(NPN、PNP管)、单极型(MOS管)和两者兼容的三种类型1.1集成运算放大器简称集成运放,是具有高放大倍数的集成电路。
它的内部是直接耦合的多级放大器,整个电路可分为输入级、中间级、输出级三部分。
输入级采用差分放大电路以消除零点漂移和抑制干扰;中间级一般采用共发射极电路,以获得足够高的电压增益;输出级一般采用互补对称功放电路,以输出足够大的电压和电流,其输出电阻小,负载能力强。
四运放LM324的实用电路设计及电路原理本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示.它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立.每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端.两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同.LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中. 下面介绍其应用实例.LM324作反相交流放大器电路见附图.此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等.电路无需调试.放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容.放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri.负号表示输出信号与输入信号相位相反.按图中所给数值, Av=-10.此电路输入电阻为Ri.一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf.Co和Ci为耦合电容.LM324作同相交流放大器见附图.同相交流放大器的特点是输入阻抗高.其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置.电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3.R4的阻值范围为几千欧姆到几十千欧姆.LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途.而对信号源的影响极小.因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同.R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出. LM324作有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小.这种有源带通滤波器的中心频率 ,在中心频率fo 处的电压增益Ao=B3/2B1,品质因数 ,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值.R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC).上式中,当fo=1KHz时,C取0.01Uf.此电路亦可用于一般的选频放大.此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可.LM324应用作测温电路见附图.感温探头采用一只硅三极管3DG6,把它接成二极管形式.硅晶体管发射结电压的温度系数约为-2.5mV/℃,即温度每上升1度,发射结电压变会下降2.5mV.运放A1连接成同相直流放大形式,温度越高,晶体管BG1压降越小,运放A1同相输入端的电压就越低,输出端的电压也越低.这是一个线性放大过程.在A1输出端接上测量或处理电路,便可对温度进行指示或进行其它自动控制.LM324应用作比较器当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍).此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地).当正输入端电压高于负输入端电压时,运放输出低电平.附图中使用两个运放组成一个电压上下限比较器,电阻R1、R1ˊ组成分压电路,为运放A1设定比较电平U1;电阻R2、R2ˊ组成分压电路,为运放A2设定比较电平U2.输入电压U1同时加到A1的正输入端和A2的负输入端之间,当Ui >U1时,运放A1输出高电平;当Ui < SPAN>时,运放A2输出高电平.运放A1、A2只要有一个输出高电平,晶体管BG1就会导通,发光二极管LED就会点亮.若选择U1>U2,则当输入电压Ui越出[U2,U1]区间范围时,LED点亮,这便是一个电压双限指示器.若选择U2 > U1,则当输入电压在[U2,U1]区间范围时,LED点亮,这是一个“窗口”电压指示器.此电路与各类传感器配合使用,稍加变通,便可用于各种物理量的双限检测、短路、断路报警等.LM324应用作单稳态触发器见附图1.此电路可用在一些自动控制系统中.电阻R1、R2组成分压电路,为运放A1负输入端提供偏置电压U1,作为比较电压基准.静态时,电容C1充电完毕,运放A1正输入端电压U2等于电源电压V+,故A1输出高电平.当输入电压Ui变为低电平时,二极管D1导通,电容C1通过D1迅速放电,使U2突然降至地电平,此时因为U1>U2,故运放A1输出低电平.当输入电压变高时,二极管D1截止,电源电压R3给电容C1充电,当C1上充电电压大于U1时,既U2>U1,A1输出又变为高电平,从而结束了一次单稳触发.显然,提高U1或增大R2、C1的数值,都会使单稳延时时间增长,反之则缩短.如果将二极管D1去掉,则此电路具有加电延时功能.刚加电时,U1>U2,运放A1输出低电平,随着电容C1不断充电,U2不断升高,当U2>U1时,A1输出才变为高电平.参考图2.。
镍氢电池充电器电路图及原理分析
镍氢电池充电器电路图及原理分析镍氢电池充电器原理图:由LM324组成,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进电行充电,电路附图所示.其工作原理是:1.基准电压Vref形成外接电源经插座X、二极管VD1后由电容C1滤波。
VD1起保护作用,防止外接电源极性反接时损坏TL431。
R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约为1.40V)。
2.大电流充电(1)工作原理接入电源,电源指示灯LED(VD2)点亮。
装入电池(参考图片,实际上是用导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。
此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。
(2)充电的指示首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。
刚开始时C2上端没有电压,则IC1-3输出高电平。
这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。
LM324直流电机调速电路
LM324组成的PWM直流电机产生电路它主要由U1(LM324)和Q1组成图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。
U1c产生6V的参考电压作为振荡器电路的虚拟地。
这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。
U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。
这个电压与U1d的输出端(14脚)的三角形波电压进行比较。
当该波形电压高于U1b 的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。
由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。
就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。
电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。
图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。
前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。
LED1的亮度变化可以用来指示电路输出的脉冲宽度。
C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。
D1是用来防止电机的反电动势损坏Q1。
当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。
而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。
参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。
当通过Q1的电流不超过1A时,Q1可不用散热器。
但如果Q1工作时电流超过1A时,需加装散热器。
如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。
更换大功率场效应管,如IRF360等可驱动10A以上直流电机。
图4.1 LM324组成的PWM直流电机产生原理图工作原理脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。