【湘教版】八年级数学下册:第2章复习学案设计

合集下载

数学八年级下湘教版第2章分式复习教案

数学八年级下湘教版第2章分式复习教案

数学八年级下湘教版第2章分式复习教案第一篇:数学八年级下湘教版第2章分式复习教案第2章分式复习教学目标使学生系统了解本章的知识体系及知识内容;进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分式的运算。

重点、难点重点:梳理知识内容,形成知识体系。

难点:熟练进行分式的运算。

教学过程一知识结构与知识要点1浏览第2章目录,阅读p 61---63 复习与小结2 这章学习了哪些内容?(学生交流)⎧分式的概念⎪3 你还记得下面知识要点吗?⎧约分⎪⎪分式的性质⎪⎨通分(1)什么叫分式?⎪⎪分式的符号变号法则⎪⎩设f、g都是整式,且g中含有字母,⎪分式⎨⎧乘除法⎪⎪ff分式的运算⎨乘方我们把f除以g 所得的商记作,把叫⎪gg⎪加减法⎪⎩⎪做分式。

⎧分式方程的解法⎪分式方程⎨⎪⎩分式方程的应用⎩(2)分式基本性质教师投影本章知识结构图设h≠0,则fg=f⋅hg⋅h即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,所得分式与原分式相等。

(3)分式的符号变换法则是什么?-f-g=f,f=-fg=-fgg-g 形象的理解为:分式的分子分母的符号可以移动(4)分式的运算法则①分式的乘法:fg⋅uv=f⋅ug⋅v可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。

第二篇:八年级数学(下)十六章—分式教案16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析1.P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2,P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1)y÷x⋅(-y)(2)3x÷(-3x)⋅(-1) xyx4yy2x五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)3ab322xy2⋅(-8xy9ab)⋅2)÷3x(-4b)=3ab32xy3ab32⋅(-8xy9ab⋅2-4b3x(先把除法统一成乘法运算)=2xy9ab3x⋅8xy24b(判断运算的符号)=16b9ax23(约分到最简分式)2x-6(x+3)(x-2)3-x(2)4-4x+4x2x-6⋅2÷(x+3)⋅1=4-4x+4x2x+3⋅(x+3)(x-2)3-x(先把除法统一成乘法运算)=2(x-3)(2-x)2⋅1x+31x+3⋅(x+3)(x-2)3-x(x+3)(x-2)-(x-3)(分子、分母中的多项式分解因式)2x-2=2(x-3)(x-2)2⋅⋅ =-2ab5c2ab224六、随堂练习计算(1)3(x-y)(y-x)23b216a4÷bc2a2⋅(-)(2)÷(-6abc)÷226220c331030ab(3)3⋅(x-y)÷9y-x(4)(xy-x)÷x-2xy+yxy⋅x-yx2七、课后练习计算(1)-8xy⋅y-4y+42y-62243x4y6÷(-xy6z2)(2)a-6a+94-bxyy-xy222÷3-a2+b3a-9⋅a2(3)⋅1y+3÷12-6y9-y2(4)x+xyx-xy22÷(x+y)÷16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1.P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1)()=ba2ab⋅ab=()(2)()=bana3ab⋅ab⋅ab=()(3)()=ba4ab⋅ab⋅ab⋅ab=()[提问]由以上计算的结果你能推出()(n为正整数)的结果吗?b五、例题讲解(P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1)(b32a)=2b522a(2)(-3b2a)=2-9b4a22(3)(2y-3x)=38y9x33(4)(3xx-b)=29x222x-b2.计算(1)(5x23y2)(2)(23ab-2c32)(3)(xyy3a323xy)÷(-2ay2x2)3(4)(xy-z2)÷(3-xz32)5)(-2ba22)⋅(-2x)÷(-xy)(6)(-4y2x)⋅(-23x2y)÷(-33x2ay)2七、课后练习c3计算(1)(-c43)3(2)(-ab22)n+1(3)(ab2)÷(2a-b2-a3a4222()⋅()⋅(a-b))÷()(4)3abb-acab16.2.2分式的加减(一)一、教学目标(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的1n+1n+3.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为111111.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出1,下面的计算就是=++⋅⋅⋅+=+RR1R2RnRR1R1+50异分母的分式加法的运算了,得到1R=2R1+50R1(R1+50),再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出12xy23,13xy42,19xy2的最简公分母是什么?你能说出最简公分母的确定方法吗?五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)x+3yx-y22-x+2yx-y22+2x-3yx-y22[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:x+3yx-y22-x+2yx-y1-x6+2x22+2x-3yx-y6x-9222 =(x+3y)-(x+2y)+(2x-3y)x-y22=2x-2yx-y22=2(x-y)(x-y)(x+y)=2x+y(2)1x-3+-[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:1x-3+1-x6+2x-6x-92=1x-3+1-x2(x+3)-6(x+3)(x-3)=2(x+3)+(1-x)(x-3)-122(x+3)(x-3)=-(x-6x+9)2(x+3)(x-3)2=-(x-3)22(x+3)(x-3)3a+2b5ab-2=-x-32x+6-b-a5ab2m+2nn-mnm-n2mn-m1a+36a2六随堂练习计算(1)+a+b5ab-2(2)7a-8ba-b-+(3)+-9(4)3a-6ba+b5a-6ba-b+4a-5ba+b--3b-aa-b22七、课后练习计算(1)b25a+6b3abc23b-4a3bac2a+3b3cba2(2)1-a+2ba-b22-3a-4bb-a22(3)a-b+a2b-a+a+b+1(4)16x-4y-6x-4y-3x4y-6x2216.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析1.P21例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2.P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)(x+2x-2x2-x-1x-4x+42)÷4-xx[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:(x+2x-2x2-x-1x-4x+42)÷4-xx=[xx+2x(x-2)2-x-1(x-2)22]⋅x-(x-4)⋅x1x-4x+42=[(x+2)(x-2)x(x-2)2-2x(x-1)x(x-2)2]⋅-(x-4)=x-4-x+xx(x-2)2-(x-4)=-(2)xx-y⋅yx+y-xyx-y444÷x222x+y[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:xx-y⋅y2x+y-xyx-y444÷x222x+y=xx-y⋅y2x+y-xy(x+y)(x-y)22224⋅x+yx222=xy2(x-y)(x+y)⋅-xyx-y222=xy(y-x)(x-y)(x+y)=-xyx+y六、随堂练习计算(1)(x2x-2+42-x)÷x+22x(2)(aa-b-bb-a)÷(1a-1b)(3)(3a-2-+12a-4a-12)÷(2a-2-1a+2)七、课后练习1.计算(1)(1+1x1y1zxyxy+yz+zxyx-y)(1-1xx+y-)(2)(1a-24a2a+2a-2a2a-4 a+42)⋅a-2a÷4-aa2(3)(++)⋅2.计算(a+2)÷,并求出当a=-1的值.16.2.3整数指数幂一、教学目标:1.知道负整数指数幂a-n=1an(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2.P24观察是为了引出同底数的幂的乘法:am⋅an=am+n,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3.P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数.用科学计算法表示小于1的数,运用了负整数指数幂的知识.用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幂的运算性质:mnm+n(1)同底数的幂的乘法:a⋅a=a(m,n是正整数);(2)幂的乘方:(a)=anmnmnn(m,n是正整数);n(3)积的乘方:(ab)=ab(n是正整数);(4)同底数的幂的除法:aanm÷an=am-n(a≠0,m,n是正整数,m>n);(5)商的乘方:()=n(n是正整数);bb2.回忆0指数幂的规定,即当a≠0时,a=1.3.你还记得1纳米=10-9米,即1纳米=4.计算当a≠0时,a÷a=350an11029米吗?1a2aa35=a33a⋅a=3,再假设正整数指数幂的运算性质a53-5m÷an=am-n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a÷a=a=a-2.于是得到a-2=1a2(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,a-n=1an(a≠0).五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10.判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22=(2)(-2)2=(3)(-2)0=(4)20=(5)2-3=(6)(-2)-3= 2.计算(1)(xy)(2)xy ·(xy)3-222-2-2(3)(3xy)÷(xy)2-2 2-23七、课后练习1.用科学计数法表示下列各数:0.000 04,-0.034, 0.000 000 45, 0.003 009 2.计算(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)316.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4.P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5.教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数.这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程x+24-2x-36=12.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程10020+v=6020-v.像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程 [分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程(1)3x=2x-6(2)2x+1+3x-1=6x-12(3)x+1x-1-4x-12=1(4)2x2x-1+xx-2=2七、课后练习1.解方程(1)25+x-11+x=0(2)63x-82x+9x+3=1-14x-78-3x-2x(3)2x+x2+3x-x2-4x-12=0(4)1x+1-52x+2=-342.X为何值时,代数式-x-3的值等于2?16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3 分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1路程P36例4 分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系时间是:提速前所用的时间=提速后所用的时间五、随堂练习1.学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午451时到达,求原计划行军的速度。

湘教版八年级下册数学教案:第二章四边形全章小结与复习

湘教版八年级下册数学教案:第二章四边形全章小结与复习

八年级(下册)数学教案
课题四边形全章小结与复习课时安排2课时
教学目标1、熟练掌握多边形、平行四边形、矩形、菱形、正方形性质和判定;掌握三角形中位线性质并应用解决简单几何问题。

2、本章知识的系统化和结构化。

3、培养学生小结归纳能力,逻辑推理能力,渗透相关的数学思想。

重点进一步理解本章概念、性质和判定并掌握相关推理证明方法。

难点知识的系统化和结构化。

教学过程
问题导入引入课题:四边形小结与复习
请回忆一下,本章我们学习了哪些知识?提到了哪些数学思想?。

自学指导学生自学教材P76内容,回忆相关知识。

合作交流
一、知识结构图:
二、练习应用:
1、多边形的内外角性质:
教材P77复习题2 A组T1;P78 B组T12。

2、平行四边形性质和判定:
教材P77复习题2 A组T3、T4;P78 B组T13。

3、中心对称和中心对称图形:
教材P77复习题2 A组T5、T6;P78 B组T14。

4、三角形的中位线:
教材P78复习题2 A组T7。

5、矩形、菱形、正方形性质和判定
教材P77复习题2 A组T2、T8~T10;P78 B组T14~T16;C组T17。

小结归纳学生完成(除知识点外,主要是数学的思想方法,如:类比、等)
作业布置必做:学法P49~P50 基础巩固与训练
板书设计
练习:反思回顾四边形
典型例题
1、知识点
2、思想方法
3、注意事项典型
例题
学生
板演。

【湘教版】八年级数学下册教案:第2章复习

【湘教版】八年级数学下册教案:第2章复习

第2章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯.【教学重点】1、平行四边形与各种特殊平行四边形的区别.2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法.【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用.【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件.【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕.(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米.3、顺次连结矩形ABCD各边中点所成的四边形是菱形.4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米.5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形 .(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A .对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等 (3)、如果一个四边形是中心对称图形,那么这个四边形一定( D ) A .正方形 B .菱形 C .矩形 D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为360问:菱形的对角线一定不相等吗?错,因为正方形也是菱形. (5)、正方形具有而矩形不具有的特征是( D )A. 内角为3600B. 四个角都是直角C. 两组对边分别相等D. 对角线平分对角问:那么正方形具有而菱形不具有的特征是什么?对角线相等2、集合表示,突出关系二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗已知:如图1,□ABCD 的对角线AC 、BD 交于点O , EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF . 证明: ∵变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?BC对角线互相平分的四边形是平行四边形.变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?对角线互相平分的四边形是平行四边形.变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?对角线互相平分的四边形是平行四边形.变式4.在图1中,若改为过A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形.变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什B么四边形?为什么?可由变式1可知四边形BGDH 是平行四边形, 再由对角线互相垂直可得四边形BGDH 是菱形.变式6.在变式5中,若将“□ABCD ”改为“矩形ABCD ”,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长.) 略解:∵AB=6,BC=8 ∴BD=AC=10. 设OG = x ,则BG = GD=252+x . 在Rt △ABG 中,则勾股定理得: AB 2 + AG 2 = BG 2 ,即()()22222252586+=+-+x x ,解得 415=x .∴GH = 2 x = 7.5.(二)一题多解,培养发散思维 〖例题2〗已知:如图,在正方形ABCD ,E 是BC 边上一点, F 是CD 的中点,且AE = DC + CE .求证:AF 平分∠DAE .证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)∵四边形ABCD是正方形,∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°, ∴∠C =∠GDF在△EFC 和△GFD 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠DF CF GDF C 21 ∴△EFC ≌△GFD(ASA )∴CE=DG ,EF=GFFE BCA G∵AE = DC + CE , ∴AE = AD + DG = AG , ∴AF 平分∠DAE .证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2) ∵四边形ABCD 是正方形,∴AD // BC ,DA=DC ,∠FCG=∠D=90°(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°, ∴∠FCG =∠D在△FCG 和△FDA 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠DF CF D FCG 21 ∴△△FCG 和△FDA (ASA )∴CG=DA ∵AE = DC + CE ,∴AE = CG + CE = GE , ∴∠4 =∠G ,∴∠3 =∠4, ∴AF 平分∠DAE .思考:如果用“截取法”,即在AE 上取点G ,使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?三、综合训练,总结规律 (一)综合练习,提高解题能力1. 在例2中,若将条件“AE = DC + CE ”和结论 “AF 平分∠DAE ”对换,所得命题正确吗?为什么?你有几种证法?2.已知:如图,在□ABCD中,AE⊥BD于E,CF⊥BD于F,G、H分别是BC、AD的中点.求证:四边形EGFH是平行四边形.(用两种方法)(二)课堂小结,领悟思想方法1.一题多变,举一反三.经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获.也只有这样,才能做到举一反三,提高应变能力.2.一题多解,触类旁通.在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的. 3.善于总结,领悟方法.数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力.四、课后反思。

湘教版数学八年级下册第二章《四边形》教学设计

湘教版数学八年级下册第二章《四边形》教学设计

湘教版数学八年级下册第二章《四边形》教学设计一. 教材分析湘教版数学八年级下册第二章《四边形》是学生在学习了平面几何基本概念和图形的基础上,进一步研究四边形的基本性质和判定。

本章内容包括四边形的定义、分类、性质、判定以及四边形的不稳定性等。

通过本章的学习,使学生掌握四边形的基本知识,提高他们的空间想象能力和逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。

但学生在学习过程中,可能会对四边形的判定和性质理解不够深入,需要教师在教学过程中进行引导和启发。

同时,学生对于实际生活中的四边形实例认识较少,需要教师通过举例和操作使学生更好地理解四边形的应用。

三. 教学目标1.了解四边形的定义、分类和性质,掌握四边形的判定方法。

2.培养学生的空间想象能力和逻辑思维能力。

3.能够运用四边形的知识解决实际问题,提高学生的应用能力。

四. 教学重难点1.四边形的定义和分类。

2.四边形的性质和判定。

3.四边形在实际生活中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究四边形的性质和判定。

2.利用多媒体和实物模型,直观展示四边形的形状和特点。

3.采用合作学习法,让学生在小组内讨论和分享学习心得。

4.结合实际生活中的实例,让学生感受四边形在生活中的应用。

六. 教学准备1.多媒体教学设备。

2.四边形实物模型和图片。

3.教学课件和教案。

4.练习题和测试题。

七. 教学过程1.导入(5分钟)教师通过多媒体展示四边形的实物图片,引导学生回顾平面几何的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师讲解四边形的定义、分类和性质,让学生初步了解四边形的基本知识。

3.操练(15分钟)教师提出问题,让学生结合教材示例,独立或小组合作探究四边形的判定方法。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师布置练习题,让学生运用所学知识解决问题。

教师选取部分学生的作业进行讲评,指出错误并提出改进意见。

湘教版八年级数学下册(新) 复习教案:第二章《四边形》(第2课时)

湘教版八年级数学下册(新) 复习教案:第二章《四边形》(第2课时)
教学策略
观察、分析、归纳
教学活动
课前、课中反思
四边形单元测试卷
一、填空题(每小题2分,共24分)
1.以长为8,宽为6的矩形各边中点为顶点的四边形的周长为_________.
2.已知正方形的一条对角线长为4 cm,则它的面积是_________ cm2.
3.菱形的两条对角线长为6和8,则菱形的边长为____,面积为_______.
课题
四边形复习
共2课时
第2课时
课型
复习
教学目标
1.知识与技能:掌握本章知识点及基本技能
2.过程与方法:通过观察、比较、合作、交流、探索、习题培养解题能力
3.情感态度与价值观:渗透由一般到特殊的数学思想,从而体现由一般到特殊处理问题的思想方法.
重点难点
1、重点:章知识点及基本技能
2、难点:章知识点及基本技能:
图9
25.(本小题满分8分)
已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足,求证:AP=EF.
图10
26.(本小题满分8分)
如图11,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
图11
(1)求证:△ACD≌△CBF.
A.30°B.45°C.60°D.75°
19.如图6,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()
图6
A. B. C.2D.
20.如图7,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()
A.顺时针旋转60°B.顺时针旋转120°

2020—2021年新湘教版八年级数学下册第2章复习教案(精品教学案).doc

2020—2021年新湘教版八年级数学下册第2章复习教案(精品教学案).doc

第2章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。

【教学重点】1、平行四边形与各种特殊平行四边形的区别。

2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。

【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。

【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件。

【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。

(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ?)2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5 厘米。

3、顺次连结矩形ABCD各边中点所成的四边形是菱形。

4、若正方形ABCD的对角线长10厘米,那么它的面积是50 平方厘米。

5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。

(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是( C )A.对角线相等(距、正) B. 对角线平分一组对角(菱、正)C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是( A )A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A.正方形B.菱形C.矩形D.平行四边形都是中心对称图形,A、B、C都是平行四边形(4)、矩形具有,而菱形不一定具有的性质是(B)A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。

2019-2020学年八年级数学下册 第二章 四边形(一)复习教案 (新版)湘教版.doc

2019-2020学年八年级数学下册 第二章 四边形(一)复习教案 (新版)湘教版.doc
2019-2020学年八年级数学下册第二章四边形(一)复习教案(新版)湘教版
课题
第二章四边形复习(一)
本课(章节)需16课时,本节课为第15课时,为本学期总第25课时
教学目标
知识与技能:理解四边形、平行四边形、矩形、菱形、正方形的有关概念;掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法。
过程与方法:经历探究四边形、平行四边形、矩形、菱形、正方形之间的联系与区别的过程,类比掌握平行四边形、矩形、菱形、正方形的性质与常用的判别方法。
情感态度与价值观:在回顾与思考的过程中,让学生进一步领会特殊与一般的关系,逐渐理解类比、转化等一些重要的数学思想。
重点
建立知识结构,掌握特殊四边形之间的联系与区别
A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2:1
3.平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.
4.平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()
四、小结:
在下列图表中用文字或符号语言写出判定某种特殊四边形的各种条件:
5、作业
教材P77——P78复习题3、4、7、8、9、10、11
个案修改
难点
灵活应用所学知识解决有关问题
教学方法
课型
教具
教学过程:
一、合作复习、知识梳理
1.你能试着完成下面四边形及其特殊四边形的关系图吗?
四边形
.二试添加条件__________使四边形ABCD成为平行四边形.
2.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )

数学八年级下湘教版第2章分式复习2教案设计

数学八年级下湘教版第2章分式复习2教案设计

第二章 分式 复习(2)--------可化为一元一次方程的分式方程教学目标1 使学生了解分式方程的概念,进一步掌握分式方程的解法;2 会列分式方程解应用题.重点:分式方程的解法和应用难点:分式方程的应用教学过程一 知识要点做一做:1解方程:()53122x x x x +=-- 解:两边同乘以x(x-2),得:5+3(x-2)=x去分母,得:5+3x-6=x移项,得: 2x=1所以,x=12检验:当x=12时,x(x-2)≠0,所以x=12是原方程的解. 思考:1 什么叫分式方程?分母里含有未知数的方程叫分式方程.2 解方式方程的思路是什么?有哪些步骤?解分式方程为什么会产生增根?解分式方程的思路:去分母化为整式方程.解分式方程的步骤:(1) 方程两边同乘以最简公分母去掉分母,化为整式方程;(2) 解整式方程(3) 检验(4) 下结论.解分式方程产生增根的原因:去分母后,方程中未知数的范围扩大了.2 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了两小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度分别是多少?解:设步行得速度是x 千米/时,则骑车的速度是4x/时 依题意得:719724x x-+= 两边同乘以4x ,得:28+12=8x所以,x=5,检验:当x=5时,4x ≠0,所以,x=5是原方程的解.4x=20答:步行速度是5千米/时,骑车的速度是20千米/时.思考:解分式方程有哪些步骤?(1) 审题----注意理解题意,抓关键语句.可以借助图表,(2) 设元-----注意带单位.(3) 解分式方程(4) 检验---既要检验是不是原方程的解,还要检验是否合题意.二 讲解例题例1 解方程:225103x x x x-=+- ()()51031x x x x -=+-解:方程化为:,两边同乘以x(x+3)(x-1),得:5(x-1)-(x+3)=0 去括号,得:5x-5-x-3=0,4x-8=0,4x=8,x=2,检验:当x=2时,x(x-1)(x+3)≠0,所以,x=2是原方程的解.例2 为了支援四川人民抗震救灾,某休闲用品公司主动承担了灾区生产2万顶帐篷的任务,计划10天完成.(1) 按此计划,该公司平均每天应生产帐篷______顶.(2) 生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的效率比原计划提高了25%,结果提前2天完成了任务,求该公司原计划安排多少名工人生产帐篷?解:(1)该公司原计划平均每天应生产:20000÷10=2000(顶)(2)设原来有x 名工人,每人每天生产:2000x , 依题意得:2 + 20000220002000(125%)(50)x x-⨯++=10-2, 或者:()()()20002000022000125%102250x x -⨯+=--+ 解得:x=750,经检验:x=750是原方程的解.答:该公司原计划安排750名工人生产帐篷.三 课堂练习1方程2133x m x x -=--的根为增根,则m 的值为( ) A 3 B 4 C 5 D 6解:方程两边同乘以x-3,得:2x-(x-3)=m, x=m-3因为方程的根为增根,所以,m-3=3,m=6 故选D.2 一列火车从车站开出,预计行程450千米,当它出发3小时后,因特殊情况而多停了一站,因此耽误了30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.解:设这列火车原来的速度为x 千米/时. 依题意,得:4503304503 1.260x x x-++= 解得:x=75,当x=75时,1.2x ≠0,所以,x=75是原方程的解. 答:这列火车原来的速度是75千米/时.四 反思小结,巩固提高这节课你有什么收获?这节课我们主要复习了分式方程的解法和应用.解分式方程时,应该主要检验.作业:P 64 复习题二A 组:6,7 B组:2。

八年级下册湘教版数学教案:第2章四边形第2章章末复习

八年级下册湘教版数学教案:第2章四边形第2章章末复习

第2章章末复习【学习目标】1.理解四边形、平行四边形、矩形、菱形、正方形的有关概念;掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法.2.能灵活运用特殊四边形的知识解决一些实际问题.【学习重点】特殊四边形的性质与判定的应用.【学习难点】灵活运用特殊四边形的性质和判定解决问题.情景导入 生成问题知识结构我能建:自学互研 生成能力知识模块一 多边形的边数与内角和、外角和【自主探究】一个多边形的某一个外角与所有内角的总和为1 350°,求边数和这个外角的度数.解:由多边形的任一个角都大于0°小于180°,则有1 350°-180°<(n -2)·180°<1 350°,解得812<n<912.因为n 为整数,∴n =9这个外角的度数为1 350°-(9-2)×180°=90°.【合作探究】一个多边形的外角和是内角和的25,这个多边形的边数是多少? 解:设这个多边形的边数为n ,依题意得,360°=(n -2)·180°×25,解得n =7. 知识模块二 中心对称和中心对称图形【自主探究】下列图形是中心对称图形而不是轴对称图形的是( A ),A ) ,B ) ,C ) ,D )【合作探究】如图所示,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请依照此图案,在图所示的网格中分别设计符合要求的图案.(注:①不得与原图案相同;②黑、白方块的个数要相同)(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;(3)是中心对称图形,但不是轴对称图形.解:设计图如图所示(不唯一)知识模块三 平行四边形、矩形、菱形、正方形的性质及判定【自主探究】顺次连接四边形ABCD 四边的中点,得到四边形EFGH ,则四边形EFGH 是平行四边形;若AC =BD ,则四边形EFGH 是菱形;若AC ⊥BD ,则四边形EFGH 是矩形;若AC =BD 且AC ⊥BD ,则四边形EFGH 是正方形.注意:直线与直线的位置关系.【合作探究】如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O.(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.分析:(1)根据平行四边形的判定与性质得到四边形BECD 为平行四边形,然后由SSS 推出两个三角形全等即可;(2)欲证明四边形BECD 为矩形,只需推知BC =ED 即可.证明:(1)在平行四边形ABCD 中,AD =BC ,AB =CD ,AB ∥CD ,则BE ∥CD.又∵AB =BE ,∴BE =DC ,∴四边形BECD 为平行四边形,∴BD =EC ,∴在△ABD 与△BEC 中,⎩⎪⎨⎪⎧AB =BE ,BD =EC ,AD =BC ,∴△ABD ≌△BEC(SSS );(2)由(1)知,四边形BECD 为平行四边形,则OD =OE ,OC =OB.∵四边形ABCD 为平行四边形,∴∠A =∠BCD ,即∠A =∠OCD.又∵∠BOD =2∠A ,∠BOD =∠OCD +∠ODC ,∴∠OCD =∠ODC ,∴OC =OD ,∴OC +OB =OD +OE ,即BC =ED ,∴平行四边形BECD 为矩形.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到小黑板上,再一次通过小组间就上述疑难问题相互解疑.2.各小组由小组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 多边形的边数与内角和、外角和知识模块二 中心对称和中心对称图形知识模块三 平行四边形、菱形、正方形的性质及判定检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

数学:第二章《分式》复习教案(二)(湘教版八年级下)

数学:第二章《分式》复习教案(二)(湘教版八年级下)

分式复习(二)学习目标:1、能熟练地解可化为一元一次方程的分式方程。

2、通过分式方程的应用,培养学生数学应用意识3. 使学生有目的的梳理知识,形成这一章完整的知识体系.4. 使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人..学习过程:(一)【我预习我会学】:1、分式方程:①什么叫分式方程? ②解分式方程的关键是什么?③解分式方程的步骤是什么? ④解分式方程应注意哪些问题?2、分式方程的应用:①要恰当的设出 ,②找出 关系列出方程,并求解,③检验,检验须考虑哪两个方面?(二)【我归纳我明了】(三)【我自测我提高】1、解方程:(1)、164412-=-x x (2)、0)1(213=-+--x x x x (3)、33132=-+--x x x2、分式方程的应用:(1)、甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2h。

试确定原来的平均速度。

(2)、一轮船往返于A、B两地之间,顺水比逆水快1小时到达。

已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度。

(3)、市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半。

后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半。

乙型挖土机单独挖这块地需要几天?(4)、工厂生产一种电子配件,每只成本为2元,利率为25%.后来通过工艺改进,降低成本,在售价不变的情况下,利率增加了15%.问这种配件每只的成本降低了多少?。

新版湘教版八年级数学下册 第2章 四边形 初二教案

新版湘教版八年级数学下册 第2章 四边形 初二教案

多边形.知识与技能:把未知转化为已知进行探究的能力,使学生认识到数学来源于实践.把三角形称为三边形成的进行探究的能力在探究活动中,进一般地,在平面内,由一如果多边形的各边都相等,各内角也都相等,则称为正多边形,、正五边形等等。

连结多边形不相邻的8.3.3 问:(1)四边形有几条对角线?(两条AC 、BD)(2)五边形有几条对角线?以A 为端点的对角线有两条AC 、AD ,同样以月为端点的对角线也有条,以C 为端点也有2条,但AC 与CA 是同一条线段,以D 条图8.3.2 图(3).多边形的内角和公式。

三角形是边数最少的多边形,它的内角和等于根据公式揭示了多边形内角和多边形把未知转化为已知进行探究的能力,2.培养学生主动探索的习惯;使学生认识到数学来源于实践、难点:。

我们知道:在平面内,不在同一直线上的三条线段首一般地,在平面内,由一些线段首尾顺次相接组成的封闭图形叫做角线,相邻两边组成的角叫作多边形的内角进行探究的能力A图8.3.2 图(3)边形的一个内角与它的相邻的外角互为补角,所以可先求出°,求这个正多边边形的各个内角都相等,那么各个外角也都相等,而多和等于课本后面练习法,必须在学习中逐步掌握平行四边形的判定对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是过程与方法:通过观察、动手自学掌握用平行四边形的定义判定一个四边形是平行四边形并掌握用二组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是平行四边形,能运这两种方法来证明一个四边形是平行四边形能力自学能力、计算能力、逻辑思如何来判定一个四边形:两组对边分别平行的四边形的平边形。

则可判定这个四边形是一个平行四边形。

C连用几何语言表达用定义法和刚才证明为正确的方法证明1BE=DF分别是平行四边形CG 学掌握用对求证:四边形(让学生板演)四.本课小结:一个四边形二组对边分别平行或者相等的四边形是平行四边形这个判定定理来判平行四边形的判定.知识与技能:掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;理解“两组对角分别相等的四边形是平行四边形”“对角线互相平分的四边形是平行四边形”角分别相等的四计算能力、、重点:理解掌握“对角、难点:判定定理课前、.用所学的判定方法一判定一个四边形的平行四边形的条件是什么?.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题??结论又是什么?探究方法做,让学生判定这判定方法三:对角线互相平分的四边形是OA=OC(较简单的)平分,可判定这个四边形是平行四边形。

《第二章复习》学案(湘教版八年级下)

《第二章复习》学案(湘教版八年级下)

第二章复习第二课时一、自主学习1、分式方程的定义:。

2、解分式方程的基本思想: ______ ;如何实现:。

3、方程的增根:。

4、解分式方程的步骤。

二、合作交流与探究:(一)填空1、若分式方程的一个解是,则。

2、已知x=1是方程的一个增根,则k=_______。

3、若关于x的分式方程无解,则m的值为__________。

4、某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天。

5、某商场降价销售一批服装,打8折后售价为120元,则原销售价是元。

6、甲、乙两人从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的倍.7、一件工作,甲单独做小时完成,乙单独做小时完成,则甲、乙合作小时完成。

8、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成需要______小时。

(二)选择1、某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()A、 B、C、 D、2、在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这段路上、下坡的平均速度是每小时()。

A、千米B、千米C、千米 D无法确定(三)列分式方程解应用题1、甲、乙两地相距19千米,某人从甲地出发,先步行7千米,然后改骑自行车,共用2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行速度和骑自行车的速度。

2、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。

问原来规定修好这条公路需多长时间?3、甲、乙两班学生植树,原计划6天完成任务,他们共同劳动了4天后,乙班另有任务调走,甲班又用6天才种完,求若甲、乙两班单独完成任务后各需多少天?4、一条船往返于甲乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆流水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.问甲乙两港相距多远?5、(1)将甲种漆3g与乙种漆4g倒入一容器内搅匀,则甲种漆占混合漆的;如从这容器内又倒出5g漆,那么这5㎏漆中有甲种漆有 g.(2)小明到姑姑家吃早点时,表妹小红很淘气,她先从一杯豆浆中,取出一勺豆浆,倒入盛牛奶的杯子中搅匀,再从盛牛奶的杯子中取出一勺混合的牛奶和豆浆,倒入盛豆浆的杯子中.小明想:现在两个杯子中都有了牛奶和豆浆,究竟是豆浆杯子中的牛奶多,还是牛奶杯子中的豆浆多呢?(两个杯子原来的牛奶和豆浆一样多).现在来看小明的分析:设混合前两个杯子中盛的牛奶和豆浆的体积相等,均为a,勺的容积为b.为便于理解,将混合前后的体积关系制成下表:②请通过计算判断:最后两个杯子中都有牛奶和豆浆,究竟是豆浆杯子中的牛奶多,还是牛奶杯子中的豆浆多呢?学]优[中═考≦,网。

最新(湘教版)数学八年级下册第2章《四边形》全章导学案

最新(湘教版)数学八年级下册第2章《四边形》全章导学案

最新教学资料·湘教版数学第十三课第二章四边形 2.1 多边形(1)---多边形的内角和学习目标:1、使学生理解多边形,多边形的顶点、边、内角和对角线等概念。

2、使学生理解多边形的内角和定理。

学习重点:多边形内角和定理及其应用。

学习难点:如何将多边形的角转化成一些三角形的角,即如何添加辅助线,把多边形化分成一些三角形。

学习过程:一、复习:1、三角形的内角和等于_________度2、四边形的内角和等于__________度.二、探知1、多边形定义。

在黑板上画一个多边形,类比四边形,边画图边讲解多边形定义。

再强调一下定义的几个要点。

(1)”在平面内“,即所有的顶点或边都在同一个平面内;(2)”一些线段”,“一些”是个笼统数,可以是3条、4条、5条……,这些数常用n表示,即n≥3;(3)多边形是个统称,n等于几,就叫几边形。

如:n=3,就是三角形;n=4,就是四边形等等。

(4)三角形、四边形都属于多边形,是“多边形”这个统称中的具体实例。

2、多边形的顶点、边、角、对角线等概念仿照四边形,以图4-9为例,指出:多边形的顶点,并读出这个多边形(如图2-2,读成五边形ABCDE。

),同样要注意按顶点的顺序;再让学生指出多边形的边、多边形的角;最后让学生画出多边形的对角线和外角3、我们利用四边形的对角线把四边形划分成两个三角形的方法,证明了四边形内角和定理,怎样求得多边形的内角和呢?提出这个问题,学生讨论。

探究操作:以五、六、七、八边形为例填写教P35的表格可以作出推理:180n,∵这n个三角形的内角和等于以O为公共顶点的n各角的和为360°=2×180°∴n边形的内角和等于n×180°-2×180°=(n-2)·180°多边形内角和定理:n边形的内角和等于_________ .三、达标练习:1、已知:如图,直线OB⊥AB,垂足为B,直线OC⊥AC,垂足为C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 四边形
【学习目标】
1.理解平行四边形与各种特殊平行四边形的区别。

2.梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。

3.在回顾与思考的过程中体会特殊与一般的关系,进一步体会类比、转化等一些重要的数学思想。

【重点难点】灵活应用所学知识解决有关问题。

【教学过程】 一.知识再现
1.下列命题中,正确的是( ) A 平行四边形的对角线相等 B 菱形的对角线不相等
C 矩形的对角线不能相互垂直
D 平行四边形的对角线可以互相垂直
2.矩形具有而平行四边形不具有的性质是( )
A.对边相等
B.对角相等
C.对角互补
D.对角线平分 3.三角形三条中位线的长分别为5米,12米,13米,则原三角形的面积是_____米 4.如图,正方形ABCD 中,E 是CD 边上的一点, F 为BC 延长线上一点,CE =CF .
(1)求证:△BEC ≌△DFC ;(2)若∠BEC =60°,求∠EFD .
二.梳理沟通(学生先自主学习,再合作交流;教师穿插于学生之中,及时引导,答疑解惑,
参与讨论并了解学生动向.)
1.建成下列框架结构,理解各特殊四边形的联系与区别。

2.结合下表中的图形,用文字语言或符号语言写出它们的性质.
图形
性质


对角线
对称性
3.学会判定方法(让学生用符号语言再以文字语言对照比较)
平行四边形(1)两组对边分别;(2)两组对边分别;(3)一组对边且(4)两条对角线;(5)两组对角
矩形
(1)有三个角是;(2)是平行四边形,并且有一个角是;
(3)是平行四边形,并且两条对角线。

菱形
(1)四条边都;(2)是平行四边形,并且有一组;
(3)是平行四边形,并且两条对角线。

正方形(1)是矩形,并且有一组邻边;(2)是菱形,并且有一个角是
(通过活动,让学生明白结构,熟悉图形语言、文字语言、符号语言的互相翻译与应用。

)由教师演示课件,师生共述,加深理解本章的知识脉络。


三.知识运用,拓展与创新(教师引导学生深度加工,习得悟得)
例题1:已知,在四边形ABCD中,AB=CD,AD=BC,点F,E
分别在BC和AD边上,AE=CF,EF和对角线AD交于点O,
求证:点O是BD的中点。

例题2、已知如图:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的
中点,求证:四边形EFGH 是平行四边形.
变式一:顺次链接矩形各边的中点得到的四边形是菱形。

变式二:顺次链接菱形各边的中点得到的四边形是矩形。

变式三:顺次链接正方形各边的中点得到的四边形是正方形。

变式四:顺次链接等腰梯形各边的中点得到的四边形是菱形。

变式五:若AC=BD,AC ┻BD,则四边形EFGH 是正方形。

变式六:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,若AB=CD,,求证:四边形EFGH 是平行四边形.
变式七:在四边形ABCD 中,E 是AB 上的一点,△ADE 与△BCE 都是等边三角形,P,Q,M,N 分别是AB,BC,CD,DA 上的中点,求证:四边形PQMN 是菱形。

四、链接中考
1.如图,E F ,是四边形ABCD 的对角线AC 上两点,
AF CE DF BE DF BE ==,,∥.求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.
2.如图.矩形ABCD 的对角线相交于点0.DE ∥AC ,
CE ∥BD .求证:四边形OCED 是菱形; 练一练
1、如图,D 、E 、F 分别是△ABC 各边的中点,(1)如果EF =4cm ,那么BC = cm ;如果AB =10cm ,那么DF =__cm ;(2)中线AD 与中位线EF 的关系是
A
B
D
E
F
C
A B
C
D
E
A
D
C
B
第2题图
2.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A .2cm B .4cm C .6cm D .8cm
3.如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则BE 的长为( )A .6 B .12
C .2
D .4
【及时反馈,激励评价】
1.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm,BC=_____cm 。

2.如图,□ABCD 中,AC .BD 为对角线,BC =6,BC 边上的高为4,则 阴影部分的面积为( ).A .3 B .6 C .12 D .24 3.如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠, 使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6, 则AF 等于 ( ) A.34 B.33 C.24 D.8
4.如图,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE=BK=AG .(1)求证:①DE=DG; ②DE⊥DG
5.如图所示,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO (2)当点O 运动到何处时,四边形
AECF 是矩形?并证明你的结论.
A B
C
D E
F 3题图。

相关文档
最新文档