苯并噻唑-荧光
【国家自然科学基金】_苯并噻唑衍生物_基金支持热词逐年推荐_【万方软件创新助手】_20140730
科研热词 苯并噻唑 荧光化合物 吡唑啉 合成 阿尔茨海默病(ad) 苯并咪唑 芳基苯并噻唑类试剂 红外光谱 硫桥杯[4]芳烃 热膜 晶体结构 摩擦膜 呋喃 化学发光 β -淀粉样蛋白 x光吸收近边结构谱 2-巯基苯并嚷唑 11c标记
2011年 科研热词 合成 阿尔茨海默病 荧光 苯并噻唑衍生物 苯并噻唑 显像剂 噻唑 嘧啶 含氮杂环化合物 吡唑啉 农药 推荐指数 2 1 1 1 1 1 1 1 1 1 1
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
推荐指数 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
科研热词 荧光化合物 苯并噻唑 吲哚 吡唑啉 表征 萘酰亚胺 甲脒 热力学性质 杂环 密度泛函理论 噻唑 呋喃 合成 光谱
推荐指数 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11
科研热词 阿尔茨海默病 苯并噻唑 海洋细菌 次生代谢产物 杂环 显像剂 定量构效关系 含硫化合物 含氮化合物 bacillus sp. aβ 斑块
推荐指数 1 1 1 4 5 6 7 8 9 10 11
科研热词 推荐指数 苯并噻唑 8 双酰胺 7 合成 5 生物活性 4 氟 2 抗菌活性 2 铜配合物 1 铁离子 1 邻甲酰氨基苯甲酰胺 1 荧光分子探针 1 苯氧乙酸衍生物 1 缓蚀剂 1 硒杂环衍生物 1 电化学 1 甲氧基 1 烟草花叶病毒 1 晶体结构 1 抗肿瘤活性 1 抗癌活性 1 抗氧化活性 1 抑菌活性 1 对氯苯基 1 吡啶 1 医药与日化原料 1 分子自组装膜 1 凋亡 1 dna相互作用 1 2-吡啶甲基胺衍生物 1 2-(4-氨基苯基)苯并噻唑 1
新型杂环三氮烯荧光试剂1,8-双(2-苯并噻唑重氮氨基)萘的合成及其分析应用
收稿 日期 : 0 8 1 9 20- - . 0 2 基金项 目: 国家 自 然科学基金 ( 准号 : 0 70 7 和山西省重点学科建设基金( 批 2 5 55 ) 批准号 : 0 4 0 7 资助. 20 5 3 ) 联系人简介 : 冯 锋, , 男 博士 , 教授 , 主要从事有机合 成及光化学传感器 的研究.Em i f f g4 6 . e — a :e e 6 @2 3 nt l n n
关键词
1 8双 ( 一 ,- 2苯并噻唑重氮氨基 ) ; 萘 荧光增强 ;铜离子测定
0 2 0 5 66; 6 7 文献标识码 A 文章编 号 0 5 -70 2 0 ) 816 4 2 1 9 ( 0 8 0 —5 03 0 4
中图分类号
铜是人体 中必要的微量元素_ , 1 也是环境及食 品工业等领域 中重金属离子检测 的重要指标之一 . ] 目前 检测 C (Ⅱ) u 的主要 方法 有 : 子 吸收 法心 、分 光 光 度 法 和荧 光 分 析法 等 .荧 光分 析 法 具 有 原 ] 灵敏度高、 选择性高、 取样少及简便快速等特点 ,因而研究新型的荧光分析试剂具有 重要 的意义. J 苯并 噻唑 具有 较强 的吸 电 子或 给 电 子 能力 ,是 一 种 很 好 的荧 光 基 团 J .三 氮 烯试 剂 是镉 、汞 和
1 实验部分
1 1 仪器 与试 剂 .
P r nEm r 8 红外光谱仪 ( B 压片) Bue A — 30型核磁共振仪( D S e i le 62 k— Kr ; rkr CP 0 以 M O为溶剂 , M TS
荧光探针的合成及自由基检测研究要点
荧光探针的合成及自由基检测研究摘要荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增,其原因在于荧光分析法具有高灵敏度的优点,且荧光现象具有有利的时间表度。
由于物质分子结构不同,其所吸收光的波长和发射的荧光波长也不同,利用这一特性可以定性鉴别物质。
荧光探针技术是一种利用探针化合物的光物理和光化学特性,在分子水平上研究某些体系的物理、化学过程和检测某种特殊环境材料的结构及物理性质的方法。
该技术不仅可用于对某些体系的稳态性质进行研究,而且还可对某些体系的快速动态过程如对某种新物种的产生和衰变等进行监测。
这种技术具备极高的灵敏性和极宽的动态时间响应范围的基本特点。
羟基自由基(HO·)和超氧阴离子自由基(O2-·)是生物体内活性氧代谢产生的物质,当体内蓄积过量自由基时,它能损伤细胞,进而引起慢性疾病及衰老效应。
因此,近些年来人们为了预防这类疾病的发生,自由基的研究已逐渐成为热点。
而快速、灵敏和实用的自由基检测方法就显得十分重要。
荧光探针检测自由基具有操作简便、响应迅速、选择性高等多种优点,我们将着重研究一类苯并噻唑结构荧光探针的合成及其对超氧阴离子自由基(O2-·)的检测。
关键词:荧光探针,苯并噻唑,超氧阴离子自由基,自由基检测SYNTHESIS OF FLUORESCENT PROBES AND DETECTION OF FREE RADICALSABSTRACTApplications of fluorescence analysis method in biochemistry, medicine, industry and chemical research grow with each passing day, the reason is that fluorescence analysis method has the advantages of high sensitivity, and the flurescence phenomenon has a favorable time characterization. Since the molecular structure of different materials, the absorption wavelength and fluorescence wavelength of the emitted light is different, this feature can be characterized using differential substances. Fluorescent probe technology is a method using photophysical and photochemical properties for researching some systems’physical and chemical process at the molecular level and detecting a particular structure and physical property of the special environment material. This technology not only can be used for steady-state nature of certain system, but also can monitore fast dynamic processes of a certain system such as the production and decay of a new species. This technology has the basic characteristics of a high degree of sensitivity and very wide dynamic range response time. Hydroxyl radical(HO-·)and superoxide anion radical(O2-·) is a substance produced in vivo metabolism of reactive oxygen species. When the body accumulates excess free radicals that will damage cells thereby causing chronic diseases and aging effects. Thus, in recent years people in order to prevent the occurrence of such diseases, the study of free radicals has become a hot spot. And fast, sensitive and practical method for the detection is very important. Using the fluorescent probes for the detection of free radicals is a simple, quick response, high selectivity variety of advantages. We will focus on the study of a classof synthetic fluorescent probes of benzothiazole structure and detection of superoxide anion radical.Key words:Fluorescent probes, Benzothiazole, Superoxide anion radical, Detection of free radicals目录1 绪论 (1)1.1 引言 (1)1.2 荧光 (1)1.2.1 荧光的产生 (1)1.2.2 荧光探针结构特点 (2)1.2.3 荧光探针传感机理 (3)1.2.4 常见荧光团 (3)1.2.5 荧光探针的性能 (5)1.2.6 影响荧光探针性能的因素 (5)1.2.7 荧光淬灭 (5)1.3 自由基 (6)1.3.1 自由基的间接检测技术 (6)1.3.2 自由基的直接检测技术 (7)1.4 研究现状 (8)1.4.1 超氧化物歧化酶(SOD)的检测 (8)1.4.2 2-(2-吡啶)-苯并噻唑啉荧光探针 (8)1.4.3 PF-1和PNF-1 (8)1.4.4 香草醛缩苯胺 (8)1.4.5 Hydroethidine类荧光探针 (9)1.4.6 二(2,4-二硝基苯磺酰基)二氟荧光素 (9)1.5 选题背景和意义 (10)1.6 课题研究内容 (10)2 荧光探针的合成 (11)2.1 引言 (11)2.2 还原文献 (11)2.3 新探针合成 (11)2.3.1 2-(4-二甲氨基苯)-苯并噻唑 (11)2.3.2 2-(4-氰基苯)-苯并噻唑 (12)2.3.3 2-(苯)-苯并噻唑 (12)2.3.4 2-(4-甲基苯)-苯并噻唑 (12)2.3.5 2-(4-硝基苯)-苯并噻唑 (13)2.3.6 2-(水杨醛)-苯并噻唑 (13)2.4 合成小结 (14)2.5 实验药品及规格 (14)2.6 实验仪器及型号 (15)3 实验结果与讨论 (16)3.1 引言 (16)3.2 荧光性能测试 (16)3.2.1 荧光性能待测溶液配制 (16)3.2.2 荧光性能测试结果 (16)3.2.3 测试谱图 (17)3.3 1H NMR数据 (21)3.3.1 2-(2-吡啶)-苯并噻唑 (21)3.3.2 2-(4-二甲氨基苯)-苯并噻唑 (22)3.3.3 2-(4-氰基苯)-苯并噻唑 (23)3.3.4 2-(苯)-苯并噻唑 (24)3.3.5 2-(4-甲基苯)-苯并噻唑 (25)3.3.6 2-(水杨醛)-苯并噻唑 (25)3.3.7 2-(2-噻吩)-苯并噻唑 (26)3.4 反应条件控制及处理 (27)3.5 结论与展望 (27)参考文献 (28)致谢 (30)译文及原文 (31)1 绪论1.1 引言荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增, 其原因在于荧光分析法具有高灵敏度的优点, 且荧光现象具有有利的时间表度。
含三苯乙烯或四苯乙烯结构的具有聚集诱导发光性能的苯并噻唑衍生
专利名称:含三苯乙烯或四苯乙烯结构的具有聚集诱导发光性能的苯并噻唑衍生物及其制备方法和应用
专利类型:发明专利
发明人:马春平,池振国,周勰,张艺,刘四委,许家瑞
申请号:CN201410051825.6
申请日:20140214
公开号:CN103804318A
公开日:
20140521
专利内容由知识产权出版社提供
摘要:本发明公开了含三苯乙烯或四苯乙烯结构的具有聚集诱导发光性能的苯并噻唑衍生物及其制备方法和应用,其以2-氨基-6-甲氧基苯并噻唑为起始原料,先在碱性条件下开环反应生成2-氨基-5-甲氧基苯硫酚,再与含有三苯乙烯或四苯乙烯结构的芳香醛基化合物进行闭环反应,得到含甲氧基的苯并噻唑衍生物,也可以经过脱甲基得到含有羟基的苯并噻唑衍生物;上述化合物还可以通过基团取代反应进行修饰,生成含有其它官能团的苯并噻唑衍生物。
本发明的苯并噻唑衍生物在溶液中发光强度较弱,在聚集态或固态时发射出强烈荧光,是一类优良的聚集诱导发光材料,且合成相对比较简单,而且原料成本低廉,易于大规模的商业化生产,在电致发光器件、荧光探针、荧光开关和生物体成像等领域中具有重要的应用。
申请人:中山大学
地址:510275 广东省广州市新港西路135号
国籍:CN
代理机构:广州新诺专利商标事务所有限公司
代理人:周端仪
更多信息请下载全文后查看。
采用密度泛函理论中的B3LYP
采用密度泛函理论中的B3LYP/6-31G(d)的方法上研究C15H13N30S2和C16H14N2OS2优化几何构型、红外光谱、密立根布局分布、前线轨道、NBO。
计算所得C15H13N30S2和C16H14N2OS2优化几何构型中,其共有的与噻唑环上相连的苯环几何参数相差甚微,但噻唑环与取代基相连处相差较大,说明苯并噻唑取代基对几何构型的影响主要限于取代位附近。
B3LYP/6-31G(d)的方法计算的C15H13N30S2和C16H14N2OS2 红外振动光谱中,Gaussian 软件对振动频率进行归属和解析,为C15H13N30S2和C16H14N2OS2分子红外光谱实验测试提供理论参考。
在构型优化的基础上计算前线轨道能级,C15H13N30S2和C16H14N2OS2化合物能隙不同、其电子发生转移不同转移在吸收光的波长也不相同。
即苯并噻唑环连接不同取代基时,对能隙和电子吸收光的波长有一定影响。
因此,化合物所含取代基不同其前线轨道能量和电子吸收光的波长不同,即可以通过连接不同的取代基对分子进行改性,也可以通过改变化合物取代基来获取所需波长的材料,为该类材料合成提供理论指导。
自然键轨道分析显示了C15H13N30S2和C16H14N2OS2分子在外部微扰下电子都具有长程转移的特点。
整体分析结果可预知,在应用领域方面,被研究的两种化合物可能是一种很好的光电材料。
有机分子光电材料是光电材料的重要分支,可以用于制作有机发光二级管(OLED)[1-3]、有机场效应晶体管[4-5]、有机太阳能电池[6-7]等诸多光电器件,而这类材料发展的关键在于新型有机分子的研发。
有机分子光电材料按其分子结构分为:高分子聚合物和有机小分子化合物。
有机小分子化合物与高分子聚合物相比,具有分子结构明确、分子量固定、选择范围广、易于合成、结构设计多样性等优点[8]。
基于这类优点,使有机小分子在光电材料领域受到研究人员广泛关注。
2-羟基-1-萘甲醛缩2-氨基苯并噻唑荧光性质研究
贵州 大 学 学 报 ( 自然 科 学 版 ) J o u r n a l o f G u i z h o u U n i v e r s i t y( N a t u r a l S c i e n c e s )
V0 1 .3 0 N0.2 Ap r .201 3
的机理 ; 利用 其非集 聚或 聚集态 实现 了对金属 离子
1 0 1 . 6 0 。 , ^ y= 9 0 . 0 0 。 , V= 1 3 9 6 . 4( 1 0) n m , Z=
2 , D c: 1 . 4 2 4 g / C I n , F( 0 0 0)=6 2 8 , =0 . 1 0 2
群为 P 1 2 1 / n 1 . 晶 胞参 数 a=9 . 7 0 4( 4 ) n m, b=
1 5 . 0 4 0 ( 7 ) n m, c= 9 . 7 6 7 ( 4 )( 4 ) n m, = 9 0 . 0 0 。 , B
=
1 ) , 在混 合 溶 剂 中形 成 聚 集 态 发 射 强 荧 光 。光 谱 性 质研究 及 晶体 结构 数 据 , 推测 了产生 A I E E性 质
m m 一
,
RI = 0 . 0 4 0 5, w R 2 = 0 . 1 2 8 7[ I >2 o - ( I ) ] .
的 比色或荧 光选择 性识别 。
1 . 3 光 谱测量 方法
1 实验 部 分
1 . 1 试 剂与 仪器
衍 生 物 1储 备 液 ( 0 . 1 0 0 m m o l・L ) : 称 取 3 . 0 mg 衍 生 物溶 于 T H F , 配制 成 1 0 0 ml 溶液 。金
5-呋喃基-1-苯并噻唑基吡唑啉类荧光化合物的合成及光谱分析
5 呋喃 基一一 并 噻 唑基 吡 唑 啉类 荧光 化 合物 的合成 及 光谱 分 析 一 1苯
王进敏 李东风H ,王 芳 , , 柳 翱 李 敏 ,
1 .长春工业大学生物工程学 院,吉林 长春 10 1 302
2 吉林大学材料科学 与工程学 院, . 吉林 长春
10 2 305
摘
要
吡唑啉衍生物具有高 的蓝色荧光 , 且具 有高量子效率 , 并 很易于用作发光材料 中电子传输层 。 依据
Sh l a n r cel mre 经验 中化学结构 与荧光性关 系 , h 在吡唑啉 的 1位引入了苯并 噻唑基 , 一 一 3位引入苯 基衍 生物 , 使
其具有荧光性 , - 5 位引入呋喃基作为助色 团, 可使荧 光波 长红 移 , 增加荧光性 。 文章设计并 合成 了六 种 5 一 位 引入 呋喃基苯并噻 唑吡唑啉类荧光化合物 , 通过红外光谱 、 荧光光 谱 、 N 、 素分析 对合成 的化合物 H MR 元 进行 了表征 ,表明这类化合 物具有 良好的荧光性 , 其最大发射波长在 4 0 6 r 之 间, 4  ̄4 0un 经过分析得知其荧
在 10mL三颈瓶中加入 2 0 水合肼 ,置于冰水 0 0mL 8 浴冷却 , ~1 5 O℃搅拌下滴加 2 l 盐 酸 , 入 5mL 6mo ・L 加
2 0mL乙二醇 ,室温放置几 mi , 入 l. 2g I ,回流 n后 加 50 d
双环化学试剂 厂 AR ,硫氰 酸钠( ) 北京化工厂 AR) 浓硫酸 , , 实验 用水 为蒸馏水 。 P r i E me S 5 荧光 光谱 仪 ,P r i Eme 型 红 ekn l rL 5型 ekn l r
R
N - 嗍z c
含苯并噻唑基香豆素类铜离子探针的合成及其性能
整个 分子 形成 一 个 标 准 的电 子“ 供 体一 受体” 的共 轭 模 式, 得 到具 有不 同范 围的吸 收和荧 光发射 波 长 , 显 示不 F
2 . 2 探 针 化 合 物 的 合 成
紫外 光谱 仪 ( 日本 岛津 公 司 1 6 0 1型 ) ; 荧 光 光谱 仪, 日本 岛津公 司 F 一 4 5 0 0 ; 精密 p H计 , Mo d e l p HS 一 3 C 型; 核磁共振仪 , 德国 B r u k e r 公 司, 4 0 0和 6 0 0 MHz ;
H
2
2 实 验
2 . 1 仪 器 与 试 剂
金 属离子 L i 、 K 、 Na 、 C a 、 F e 、 F e 。 、 Ag 、
P b 、 Ni 、 Mg 、 C d 、 A1 等 溶 液 均为 其 水 合硝 酸
盐配制 而成 , C u 、 Mn 、 B a 、 Z n 溶 液 均 为 其 水 合 高氯酸 盐配 制而成 。
。 H o/ 、 , ^ OH
∞ b 定 的指 导意 义 。本 文将 含 羟基 香 豆素 通 过 c c键
e
直 接相连 , 组 成 一 个 发 出 强 烈 荧 光 的 淬 灭 型 探 针 N 分 子 N
N, 合 成路线 如 图 l 所示 。
O
CH 2 ( C O OC 2 H s ) 2
2 . 2 . 1 7 一 羟基一 3乙酯基香 豆 素( 1 ) 的合成 将 3 . 0 g 2 , 4 一 二 羟 基 苯 甲醛 ( 2 2 mmo | ) 溶解于 3 ( )
1-(2-苯并噻唑)-3-(3,5-二溴吡啶)-三氮烯与铜的荧光反应及应用
馏水。
极 电位 法l _ 2 ] 、 电感 耦 合 等 离 子 体 原 子 发 射 光 谱 法_ 3 ] 、 原 子 吸收 光 谱 法_ 4 以及 分 光 光 度 法 等 。其
冶金分析 , 2 0 1 3 , 3 3 ( 6 ) : 3 7 — 4 1
Me t a l l u r g i c a l An a l y s i s , 2 0 1 3, 3 3 ( 6 ): 3 7 — 4 1
文章编 号 : 1 0 0 0 —7 5 7 1 ( 2 0 1 3 ) 0 6 —0 0 3 7 —0 5
中光度 法最 为简 单 也 最 为 常见 , 光 度 法测 定 铜 的 显色剂主要 有类[ 7 ] 、 三 氮烯类 _ 8 等 试 剂 。三 氮 烯 类 试 剂 是 一 类 广 泛应 用 于过渡 金属 离子 如 C d 抖、 Hg 抖、 C u 等 的光 度 分析 试 剂 _ g , 本 文 合 成 并 鉴 定 了一 种 三 氮 烯类 试 剂 1 - ( 2 - 苯并 噻唑) 一 3 一 ( 3 , 5 一 二溴吡啶) 一 三 氮烯 ( B T P y B T) , 系 统研 究 了 其 与 铜 的 反 应 条 件, 建 立 了一 种 测 定 铜 的荧 光 分 析 方 法 。方 法 用 于测 定水 样 中 的铜 , 结 果满 意 。
AVAT AR 3 6 0 F I — I R 傅 立 叶 变 换 红 外 光 谱
仪( 美 国尼 高力 仪 器公 司) ; P HS 一 3 C T 型数 字 P H 计( 上 海 伟业 仪 器厂 ) ; 电子 天平 ; 微 量 注 射 器 F L UO RAT 一 0 2 P A NO RAMA 荧 光 仪 ( 俄 罗 斯 刘
两个新的苯并噻唑衍生物的合成与光物理性质
第 2 5卷
第 2期
感 光 科 学 与 光 化 学
P o c a h cS i c n h t c e sr h t ̄r p i ce ea d P o o h mi y n t
VO . 5 No. 12 2
Ma. 0 7 r ,2 0
及 Sl e 固体基质 中的线性吸收和荧光性质 , o gl — 分析 了分子微环境和结构特点对化合物光 物理 性 质 的影 响 .
1 实验部分
1 1 试剂 与仪 器 .
试剂 :. 2甲基 一 噻唑 购 自 Ac s 司 , 苯并 r 公 o 分析 纯 ;一 4甲基 . 甲基吡 啶碘 盐 根据 参 考文 N一
献lJ 1合成 ; 3 正硅酸乙酯 、 苯乙酮 、 对苯二 甲醛、 哌啶均购 自 上海化学试剂公司 , 分析纯 ; 溶
剂均重蒸后使用 .
仪器 : 核磁共振谱 由 Me uy | - 0 z r rPu 4 H 核磁共振光谱仪测定 ; c s0 质谱用 l S e 高分 o pc n 辨 MA D —O L I F质谱仪测定 ; T 元素分析数据用 P 2 0 元素分析仪测定 ; E40 溶胶一 凝胶玻璃
桥, 合成 了两个新 的 A-- 型 苯 并噻 唑 衍 生 物 :一2苯 并噻 唑 )乙烯基 查 尔 酮 nA 4(一 一
() 4 { [一苯并噻唑) 1 和 一4 2( 一 乙烯基 ] 乙烯基 } 一 苯 一 甲基吡啶碘 盐 ( )研 究了它 N 2. 们在 溶 液和 固体基 质 中的光 物 理性 质 . 究发 现 : 研 染料 2由 于具 有较 强 的极 性 和较好的平面性 , 而具有较长的吸收、 从 发射峰和较强的荧光发射. 有机 染料在 聚 甲基 丙烯酸 甲酯/ 溶胶 一 胶 复合玻 璃 中的发 光行 为与 聚 甲基 丙烯 酸 甲酯和 溶 凝
一个具有大Stokes位移的苯并噻唑类pH荧光探针
Ke r s b n oh a oe p S o e h f f o e c n e s r y wo d : e z t iz l ; H; tk ss i ; u rs e ts n o t l
D 值 不 仅对 物 质 的物 化性 质 及 其 反应 性 能有 H 明显 的影 响 .而且 在 生 命 体 系 中也 有 重 要 功 能 。
E gneig N nigU i r t N jn 10 3 C ia n i r , ajn nv sy a ig2 0 9 , hn) e n e i, n
Absr c :A e ita l c l r c r e ta se H u r s e t s ns r BTP2 wa o tu t d b i y rd i g ta t n w n r mo e u a ha g r n f r p f o e c n e o l s c nsr c e y v n lb g n i
22 12
无
机
化
学
学
报
第2 7卷
度 ,因此 时 至今 日仍 有许 多 新 型 p 比色 指示 剂 的 H
报 道… 但 是 比色 法也存 在 着 明显 的缺 点 , 法 应 无
大 荧 光 分 子 的 So e 位 移 许 多 文献 报 道 了 利 用 tk s IT效 应 获 得 具 有 大 So e 移 的 离 子 荧 光 探 C t s位 k
香豆素-苯并噻唑荧光探针的合成及性质研究
香豆素-苯并噻唑荧光探针的合成及性质研究彭梦姣;尚华;杨建民【摘要】In order to detect iron ion quickly and conveniently, a fluorescent sensor (BC-1) for iron ion bearing coumarin-benzothiazole derivative has been designed and synthesized by a novel way. Sulphur and oxygen heteroatoms were introduced as chelating site and ethyl-7-hydroxycoumarin-3-carboxylate group was introduced as fluorophore to achieve recognition. After complexing of iron ion and identification group, BC-1 which served as an ON–OFF type sensor displayed high selectivityand sensitivity for iron ion in a very short time. BC-1 was designed with ease of synthesis, low cost and low yield. Therefore, the sensor has potential in physiological and environmental applications, including connate water and industrial waste water, systems for iron ion detection.%为了快速、便捷地检测铁离子,设计并合成了一种新型香豆素-苯并噻唑荧光探针(BC-1)并将其应用于Fe(III)检测.探针BC-1以香豆素为荧光团并引入硫原子和氧原子作为识别基团以达到良好的检测效果.Fe(III)与识别基团络合后,探针BC-1表现出猝灭型的检测效果,并能在短时间内对Fe(III)表现出高选择性和高灵敏度地识别.另外探针BC-1合成路线简便、成本低、产率高,因此探针BC-1除了可以在自然水系、工业废水和生物体内很好的检测Fe(III)外,还有很好的市场化前景、便于向大众推广.【期刊名称】《应用科技》【年(卷),期】2018(045)003【总页数】7页(P96-102)【关键词】香豆素-苯并噻唑衍生物;荧光探针;检测;Fe(III);猝灭型;高选择性;高灵敏度;低成本【作者】彭梦姣;尚华;杨建民【作者单位】陕西工业职业技术学院化工与纺织服装学院,陕西咸阳 712000;陕西工业职业技术学院化工与纺织服装学院,陕西咸阳 712000;陕西工业职业技术学院化工与纺织服装学院,陕西咸阳 712000【正文语种】中文【中图分类】O657.39开发具有高选择性和高灵敏度的金属离子探针一直都倍受人们关注[1-4]。
苯并噻唑用途
苯并噻唑用途苯并噻唑是一种有机化合物,它的化学结构包含苯环和噻唑环的融合而成。
苯并噻唑及其衍生物在医药、农药、材料科学等领域具有广泛的应用。
以下将详细介绍苯并噻唑的用途。
1. 医药应用:苯并噻唑具有广泛的生物活性,因此被广泛应用于药物研发领域。
其衍生物常作为药物分子骨架的一部分,用于合成抗肿瘤、抗病毒、抗菌、抗炎症等药物。
例如,克洛伐他汀就是一种常用的抗高血脂药,其结构中包含苯并噻唑环。
此外,苯并噻唑还可用于合成抗抑郁、止痛、抗癫痫等药物。
2. 农药应用:苯并噻唑及其衍生物在制备农药方面也具有重要作用。
这些化合物通常作为杀虫剂或除草剂的有效成分,用于防治病虫害,提高农作物产量。
比如,茚虫脒是一种广谱杀虫剂,其结构中含有苯并噻唑环。
3. 光电材料应用:苯并噻唑化合物具有良好的光电性能和热稳定性,因此在光电材料领域有重要应用。
它们可用于制备光电器件、发光二极管(LED)和有机太阳能电池等。
苯并噻唑中的π共轭体系有助于提高材料的导电性能和荧光性能。
4. 染料应用:苯并噻唑及其衍生物也广泛应用于染料领域。
它们具有良好的染色性能和稳定性,可用于纺织品染料、颜料、油墨等的制备。
苯并噻唑染料常被用作自然纤维和合成纤维的染料。
5. 功能材料应用:苯并噻唑化合物在功能材料领域有多种应用。
例如,它们可用于制备聚合物材料、聚合物电解质等,用于制备超级电容器、锂离子电池、燃料电池等能源存储和转换材料。
除上述应用外,苯并噻唑还可用于合成有机合成试剂、光敏剂、螢光染料和催化剂等。
它们的广泛应用归功于其独特的化学结构和多样的化学反应性。
总之,苯并噻唑在医药、农药、材料科学和其他领域中具有广泛的应用。
随着对该化合物及其衍生物研究的深入,相信它的应用范围还将不断拓展,为人类社会的发展做出更多贡献。
增白剂er-1 分子结构
增白剂er-1 分子结构
增白剂ER-1分子式为C40H38N12O8S2,分子量为858.91,是一种大分子荧光增白剂。
其分子结构中含有苯環和苯并噻唑喹啉骨架,并带有苯基和两个亚麻二乙酸基团,同时还有多个氨基、咪唑环和噻唑环等官能团。
具体来说,增白剂ER-1的分子结构由两个苯环组成,其中一个苯环上连接有一个苯并噻唑喹啉骨架,并带有两个亚麻二乙酸基团(主要起到吸收紫外线的作用)。
另一个苯环上则连接有多个氨基、咪唑环和噻唑环等官能团(主要起到发出蓝色荧光的作用)。
总的来说,增白剂ER-1的分子结构非常复杂,其特殊的结构和官能团的存在可以赋予塑料、纺织品和造纸等物品的白度和亮度,使其外观更加美观。
紫外吸收波长365附近的荧光基团
紫外吸收波长365附近的荧光基团荧光基团是一类具有荧光特性的化学结构,能够吸收紫外光并发射可见光的物质。
其中以紫外吸收波长365附近的荧光基团尤为重要,因为它们在科学研究、医学诊断和生物标记等领域具有广泛的应用。
紫外吸收波长365附近的荧光基团主要包括吡啶、嘧啶、苯并噻吩和苯并噻唑等结构。
这些基团具有类似的化学性质,但在光学性质上却有所不同。
以吡啶为例,它是一种六元杂环化合物,具有良好的紫外吸收特性。
吡啶的吸收峰位于紫外光区域,波长约为240-270纳米,而发射峰则位于可见光区域,波长约为360-400纳米。
这种吸收和发射光谱的差异性使得吡啶成为一种理想的荧光探针,广泛应用于生物分析和药物研究中。
嘧啶是另一种常见的紫外吸收波长365附近的荧光基团。
作为一种五元杂环化合物,嘧啶具有较高的紫外吸收能力。
它的吸收峰位于260纳米附近,而发射峰则位于370纳米附近。
嘧啶的这种光学性质使得它在DNA和RNA的研究中得到广泛应用。
通过将嘧啶标记到核酸分子中,可以实现DNA的测序、荧光原位杂交等技术,为生命科学研究提供了强有力的工具。
苯并噻吩和苯并噻唑是两类具有相似结构的荧光基团。
它们都是含有硫原子的芳香环化合物,具有良好的紫外吸收和发射特性。
苯并噻吩的吸收峰位于320纳米附近,而发射峰则位于420纳米附近。
而苯并噻唑的吸收峰和发射峰则分别位于340和460纳米附近。
这两类荧光基团在生物成像和化学传感领域有着广泛的应用。
通过将它们引入到生物体内或化学体系中,可以实现对特定分子的高灵敏度检测和定量分析。
紫外吸收波长365附近的荧光基团不仅在科学研究中发挥着重要作用,还在医学诊断和生物标记等方面具有广泛应用。
通过将这些荧光基团与特定分子或生物体系结合,可以实现对疾病标记物、细胞结构和功能等的高分辨率成像和定量分析。
这些技术的发展为疾病的早期诊断、治疗的指导和新药研发提供了重要的手段。
紫外吸收波长365附近的荧光基团在科学研究、医学诊断和生物标记等领域具有广泛的应用。
一个具有大Stokes位移的苯并噻唑类pH荧光探针
一个具有大Stokes位移的苯并噻唑类pH荧光探针刘超;孙辉;杨晓亮;何卫江【摘要】本文通过乙烯基将作为荧光团的苯并噻唑与作为H+受体的4-吡啶基桥联构筑了一个基于分子内电荷转移机制的pH荧光探针BTP2.研究表明该探针的Stokes位移为237 nm,远大于相应2-吡啶基类似物BTP1.滴定实验表明该探针的荧光在pH3.80至5.50之间随pH值增大而增强,且不受其他金属离子的干扰,具有检测胞内酸性细胞器pH的良好前景.探针pK,为4.72,略高于BTP1.4-吡啶基连接导致的更大的Stokes位移表明调节吡啶连接位置可以实现对该类探针分子Stokes位移的调控.%A new intramolecular charge transfer Ph fluorescent sensor BTP2 was constructed by vinyl bridging benzothiazole fluorophore with the H+ acceptor, 4-pyridyl group via a vinyl group. Emission spectroscopic study disclosed that this new compound has a Stokes shift of 237 nm, which is much larger than that of its analogue BTP1 of 2-pyridyl group. Titration experiment indicated that the emission of BTP2 increases with Ph in the Ph range from 3.80 to 5.50. Moreover, this Ph sensing ability is not interfered by the coexisting metal cations, which provides BTP2 the potential for intracellular Ph imaging of acidic organelles. Its pKa is around 4.72, slightly larger than that of BTP1. The 4-pyridyl group induced larger Stokes shift implies that altering the bridging site of pyridyl group might be an effective means to regulate the Stokes shift of these Ph probe.【期刊名称】《无机化学学报》【年(卷),期】2011(027)011【总页数】7页(P2121-2127)【关键词】苯并噻唑;pH;Stokes位移;荧光探针【作者】刘超;孙辉;杨晓亮;何卫江【作者单位】南京大学化学化工学院,南京210093;南京大学化学化工学院,南京210093;南京大学化学化工学院,南京210093;南京大学化学化工学院,南京210093【正文语种】中文【中图分类】OpH值不仅对物质的物化性质及其反应性能有明显的影响,而且在生命体系中也有重要功能。
亚甲基蓝荧光拍摄激发波长
亚甲基蓝荧光拍摄激发波长亚甲基蓝(MethyleneBlue)是一种抗菌药,但它也有许多其他的用处,如用于荧光拍摄来确定激发波长。
本文将聚焦于亚甲基蓝荧光拍摄以确定激发波长的应用。
亚甲基蓝是一种染料,是由一系列两苯并噻唑异氰酸酯所组成的复合物。
它本质上可以把紫外线转换成可见光,从而实现荧光拍摄。
亚甲基蓝使用荧光拍摄定义激发波长的原因在于它可以实现快速、准确的激发波长测定。
首先,在实验中,将亚甲基蓝溶液添加到实验物质中,以确定其中的激发波长。
然后,将溶液浸入紫外/可见光源,使其发出特定波长的光。
亚甲基蓝则会将紫外线转换成可见光,从而产生出荧光。
最后,通过观察荧光的强度,可以确定激发波长。
除此之外,亚甲基蓝还可以用于测定荧光持续时间。
即在荧光拍摄期间,测量荧光是否可以持续一段时间。
通常,由于物质衰变,荧光无法持续很长时间。
然而,亚甲基蓝可以帮助改善荧光持续时间,这也是它为促进荧光拍摄提供重要帮助的一个方面。
同时,很多实验室和学术研究都使用亚甲基蓝荧光拍摄来确定激发波长。
近期,伦敦大学的一项实验论文显示,亚甲基蓝可以帮助检测到小分子的激发波长,从而提高实验的精度和准确性。
他们表明,将亚甲基蓝添加到水溶液中,可以有效调节荧光强度,从而确定准确的激发波长。
另一方面,芝加哥大学的研究人员在研究中发现,亚甲基蓝荧光拍摄还可以用于检测癌症细胞的激发波长。
通过分析荧光的强度,可以量化检测癌症细胞的存在,从而提供癌症诊断信息。
总之,亚甲基蓝是一种活跃的染料,可以用于荧光拍摄以确定激发波长。
它可以加快实验进程,提高实验精度和准确性,还可以用于检测癌症细胞。
相比其他方法,亚甲基蓝荧光拍摄更加简便、准确。
因此,亚甲基蓝荧光拍摄是探索细胞分子机制、检测小分子和癌细胞的有效方法之一。
常用的磷光基团
常用的磷光基团
磷光基团是一种能够发出磷光的化学基团,它在许多领域都有广泛的应用。
下面我将介绍几种常用的磷光基团,并简要阐述它们的特点和应用。
1. 苯并噻唑磷光基团:
苯并噻唑磷光基团具有良好的光稳定性和较高的发光效率,被广泛应用于生物成像、荧光探针和有机发光二极管等领域。
其发光波长范围广,可以通过化学修饰实现发光颜色的调控,从而满足不同应用的需求。
2. 锂离子磷光基团:
锂离子磷光基团是一种在锂离子电池领域有重要应用的材料。
它可以通过发光来反映锂离子在电池中的储存和释放情况,从而实现锂离子电池的状态监测。
这种磷光基团的特点是具有较高的灵敏度和快速的响应速度。
3. 金属有机磷光基团:
金属有机磷光基团是一类含有金属离子的有机分子,通过与金属离子的配位作用实现发光。
这种磷光基团在光电子器件和化学传感器等领域具有广泛应用。
其独特的电子结构和发光性质可以通过选择不同的金属离子和配体来实现调控,从而满足不同应用的需求。
4. 稀土磷光基团:
稀土磷光基团是一类以稀土离子为中心的有机分子,具有较高的发光效率和较长的寿命。
它在荧光材料、显示器件和生物成像等领域有广泛应用。
稀土磷光基团的特点是发光波长范围广,可以通过改变稀土离子的选择和配体的修饰来实现发光颜色的调控。
磷光基团在各个领域都有重要应用,其特点和性能的差异使得它们可以满足不同应用的需求。
随着科技的不断发展,我们相信磷光基团在未来会有更广阔的应用前景。
相信通过不断的研究和创新,我们能够开发出更多高效、稳定的磷光基团,为各个领域的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Synthesis and characterization of new thienylpyrrolyl-benzothiazoles as efficient and thermally stablenonlinear optical chromophoresRosa M.F.Batista,a Susana P.G.Costa,a Elisabeth L.Malheiro,aMichael Belsley b and M.Manuela M.Raposo a ,*aCentro de Qu ımica,Universidade do Minho,Campus de Gualtar,4710-057Braga,Portugal bDepartamento de F ısica,Universidade do Minho,Campus de Gualtar,4710-057Braga,PortugalReceived 22February 2007;revised 8March 2007;accepted 9March 2007Available online 14March 2007Abstract —The synthesis and full characterization of new chromophores with second-order nonlinearities containing thienylpyrrolyl and benzothiazolyl moieties are reported.The solvatochromic behavior of the compounds was investigated.The hyperpolarizabilities b of deriva-tives 4–6were measured using hyper-Rayleigh scattering and thermogravimetric analysis (TGA)was used to evaluate their thermal stability.The experimental results indicate that strong nonlinearity is balanced by good thermal stability especially for chromophores 6b and 6c ,making them good candidates for NLO applications.Ó2007Elsevier Ltd.All rights reserved.1.IntroductionMaterials with large nonlinear optical (NLO)response are of fundamental importance in modern communication technol-ogy,e.g.ultrafast image-processing,optical data processing,transmission,and storage.1Conjugated organic push–pull substituted chromophores are promising candidates for sys-tems with high molecular hyperpolarizabilities b .In a search for improved response a wide range of structural modifica-tions to the donor,acceptor,and p -conjugated moieties have been carried out.2Experimental 3and theorectical 4studies have demonstrated that replacing the benzene ring of a chromophore bridge with easily delocalizable five-membered heteroaromatic rings,such as thiophene,pyrrole,and thiazole,results in an enhanced molecular hyperpolar-izability of donor–acceptor compounds.While the aromatic-ity of heteroaromatics affects the electron transfer between donor and acceptor groups,the electron-excessive or elec-tron-deficient nature of the heterocyclic ring systems may also play a major role in determining the overall electron-do-nating and accepting ability of the substituents:electron-rich heterocycles act as auxiliary donors and electron-deficient heterocycles act as auxiliary acceptors.4,5Several thiazole,imidazole,oxazole,and phenyl analogues have beenprepared and characterized for comparison of the nonlinear optical properties.These studies showed that the strength of the nonlinear response varies according to the following relationship thiazoles >oxazoles >imidazoles.However,for the practical application of second-order NLO materials,not only a high hyperpolarizability but also good thermal stability is required.In this respect,promising candidates are benzothiazole derivatives,4a–c,6as well as conjugated thiophene and pyrrole heterocycles acting as donors,substituted with appropriate acceptor groups.7Recent reports have appeared on the synthesis and character-ization of chromophores in which the donor moiety is repre-sented by a p -excessive five-membered heterocycle (pyrrole or thiophene)and the acceptor group is a deficient heterocyclic azine ring (pyridine,pyrazine,pyrimidine,and pyridazine),which exhibit solvatochromic,electrochromic,photo-chromic,fluorescent,and nonlinear optical properties.8,3g–i Our research on new organic and organometallic materials includes an interest in new molecules with application in optical and electronic devices.9–12In particular,thienyl-pyrrole 11and benzothiazole 12derivatives,which typically exhibit favorable fluorescence,solvatochromic,electro-chemical,photochromic,and NLO properties could be used in the manufacture of organic light-emitting diodes (OLEDs),semiconductor materials,in optical data storage devices,and second-harmonic generators.We were there-fore motivated to explore the potential of conjugated 1-(alkyl)aryl-2-(20-thienyl)pyrroles as strong p -electronKeywords :Thiophene;Pyrrole;Benzothiazole;Solvatochromism;Hyper-Rayleigh (HRS)scattering;Thermal stability;Nonlinear optical (NLO)material.*Corresponding author.Tel.:+351253604381;fax:+351253678983;e-mail:mfox@quimica.uminho.pt0040–4020/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.tet.2007.03.065Tetrahedron 63(2007)4258–4265donor moieties functionalized with the benzothiazole group on the thiophene or on the pyrrole ring.Due to the deficiency of electron density on the ring C atoms,the benzothiazole heterocycle acts as an electron-withdrawing group and also as an auxiliary acceptor.Moreover,the results obtained con-cerning the electron-withdrawing power of a series of 2-benzylazoles (thiazole,oxazole,and imidazole)and their corresponding benzo-fused analogues in terms of charge de-mand c x ,a quantity representing the fraction of p negative charge withdrawn (delocalized)by the ring,indicate that c thiaz >c oxaz >c imidaz .Furthermore,the large electronegativ-ities and lone electron pairs of S and N atoms in benzo-thiazole and the extension of the conjugation length of the p -electron bridge leads also to an increase in molecular hyperpolarizability,showing that they are a good choice for NLO applications.4a,d,6aAs far as we know this is the first time that the synthesis and characterization of UV–vis,solvatochromic,thermal,and second-order NLO properties of thienylpyrrolyl-benzo-thiazoles are reported in the literature.2.Results and discussion2.1.SynthesisRecently we have developed a method for the synthesis of formyl-thienylpyrroles 1–3.11d Compounds 1–3with the formyl group at 50-position or 3-and 5-positions of the thio-phene or pyrrole ring,respectively,were used as precursors of benzothiazoles 4–6in order to evaluate the effect of the position of benzothiazole group on the optical properties of these chromophores.Benzothiazoles 4–6with either alkyl or aryl donors on the thienylpyrrolyl system were obtained by reaction of o -aminobenzenethiol with formyl derivatives 1–3,in DMSO at 120 C 13for 2–3h (Scheme 1).The reaction is initiated by the formation of the correspond-ing imine that cyclizes spontaneously,yielding the benzo-thiazoline,which is oxidized to the benzothiazole,aided by the oxidizing character of DMSO.Purification of the crude products by column chromatography gave pure benzo-thiazoles 4–6in moderate to excellent yields (34–93%).Thestructures of thienylpyrrolyl-substituted benzothiazoles 4–6were unambiguously confirmed by their analytical and spectral data.2.2.UV–vis study of benzothiazoles 4–6The electronic spectra of thienylpyrrolyl-benzothiazole derivatives 4–6in dioxane were recorded (Table 1).The position of the absorption bands is influenced by the structure of the compounds,for example,by the substituent on the nitrogen atom of the pyrrole ring and by the position of sub-stitution of the benzothiazole moiety on the pyrrole or thio-phene ring.The influence of the substituent on the nitrogen atom of the pyrrole ring is demonstrated by comparison of the absorption maxima of compounds 6a and 6d as the lon-gest wavelength transition is shifted from 377.5nm for 6a to 390.0nm for 6d .The variation of the absorption peak (l max )with the position of the electron-deficient benzo-thiazole on the pyrrole or on the thiophene ring for deriva-tives 4–6is noteworthy (Fig.1).Chromophores 6a and 6c ,which have the benzothiazole nucleus at the 50-position of the thiophene ring,show marked bathochromic shifts (ca.N SRN SRN SROHC OHC CHON SRS NN SRNS1a,c2a,c3a-d4a,c 5a,c6a-da R = n -Prb R = Phc R = 4-MeOPhd R= 2,4-diMeOPhScheme 1.Synthesis of benzothiazoles 4–6from formyl-thienylpyrroles 1–3.Table 1.Yields,UV–vis absorptions,b and b 0values,and T d data for compounds 4–6aCompd Yield (%)l max (nm)b b (10À30esu)b 0c (10À30esu)T d e ( C)4a 34318.07544—4c 48319.073433695a 75353.06432—5c 35366.085393366a 36377.5890d 3803026b 48374.53301503306c 93386.54501803576d 67390.0550220375p NA—352.016.917,188.5—a Experimental hyperpolarizabilities and spectroscopic data measured in dioxane solutions.b All the compounds are transparent at the 1064nm fundamental wave-length.cData corrected for resonance enhancement at 532nm using the two-level model with b 0¼b [1À(l max /1064)2][1À(l max /532)2];damping factors were not included.14–16d The hyperpolarizability for compound 6a proved to be extraordinarily large,possibly due to a two photon resonance enhancement effect.eDecomposition temperature (T d )measured at a heating rate of 20 C min À1under a nitrogen atmosphere,obtained by TGA.4259R.M.F .Batista et al./Tetrahedron 63(2007)4258–426520–25nm)in their CT bands compared with chromophores 5a and 5c ,which have the benzothiazole group in the 5-posi-tion of the pyrrole ring.Substitution of a bulky benzothiazolyl group at the 3-position of the pyrrole ring decreases the over-lap between the orbitals of consecutive rings and hence shortens the effective conjugation pounds 5a and 5c show bathochromic shifts in the absorption l max com-pared to derivatives 4a and 4c due to more extensive electron delocalization.Therefore,the difference in l max values between compounds 4and 5is in the range of 35–47nm.2.3.Solvatochromic study of benzothiazoles 4–6Donor–acceptor substituted thienylpyrroles 11b,c,f and benzo-thiazoles 12b–d have been known to demonstrate strong solva-tochromic behavior.In order to investigate if compounds 4–6could act as suitable probes for the determination of solvent polarity,we carried out a preliminary study on the absorption spectra for compounds 4–6in solvents with different polari-ties (diethyl ether,ethanol,chloroform,and DMSO).We found that compounds 6a (D n ¼+832cm À1)and 6d (D n ¼+581cm À1)showed the largest wavenumber shifts in the peak absorption band so a full solvatochromic study involv-ing 13solvents was carried out.The results are summarized in Table 2.Compounds 6a (D n ¼+1121cm À1)and 6d (D n ¼+924cm À1)exhibit positive solvatochromism with respect to their CT absorption band,that is,the position of the absorption max-imum shifts to longer wavelengths as the polarity of thesolvent increases due to a greater stabilization of the excited state relative to the ground state with increasing polarity of the solvent.9d Noteworthy is the behavior of 6a and 6d in chlorinated solvents such as chloroform and dichloro-methane,which slightly deviates from linearity.9b,11b In view of the pronounced solvatochromism,the good correla-tion with p *values for the 13solvents investigated,com-pounds 6a and 6d appear to be very appropriate solvent polarity probes.2.4.Study of nonlinear optical properties and thermal stabilities of benzothiazoles 4–6We have used the hyper-Rayleigh scattering (HRS)method 21,22to measure the first hyperpolarizability b of benzothiazoles 4–6.p -Nitroaniline (p NA)was used as the standard in order to obtain quantitative values,while care was taken to properly account for possible fluorescence of the compounds 4–6(see Section 4.3for more details).The static hyperpolarizability b 0values are calculated using a very simple two-level model neglecting damping.They are there-fore only indicative and should be treated with caution.The measured b value for compound 6a is abnormally large;this may be due to a two-photon resonance effect although no ev-idence of fluorescence at 532nm was observed,and/or due to steric effects.The b values for compounds having the benzothiazole group on the thiophene ring are 20–33times greater than p NA,whereas the respective b 0are 18–26times greater.From Table 1it is obvious that the increase of the do-nor strength of the group that substitutes the nitrogen atom on the pyrrole ring along the series Ph <4-OMePh <2,4-diOMePh,results both in red-shifted absorption maxima and enhanced b values for pyrroles 6b –d .Comparison of the b values for 6c (450Â10À30esu)and 5c (85Â10À30esu)shows that the substitution using the benzo-thiazole group at the 50-position on the thiophene ring (6c )leads to a larger nonlinearity than the same electron-deficient heterocycle at 5-position on the pyrrole ring (5c ).The results obtained showed that the location of the electron-deficient benzothiazole on the pyrrole or on the thiophene ring alone can dramatically alter the overall molecular nonlinearity of the system.One must therefore view the thienylpyrrole and the benzothiazole moieties not simply as the conjugated segments but also as the structural units,which affects the overall electron transfer properties of the system.Pyrrole,being the most electron-rich five-membered heteroaromatic ring,counteracts the electron-withdrawing effect of the benzothiazole heterocycle (in 5c ),resulting in a decrease in b .These findings are in accordance with theo-retical 4a,6i and experimental 6a studies reported before for re-lated compounds,and also with our recent work 11f where it was concluded that the increase or decrease of the molecular nonlinear activity on heteroaromatic systems depends on the nature and location of the aromatic rings in the system.Thermal stability of chromophores 4–6was estimated by thermogravimetric analysis.All samples had very high de-composition temperatures (T d ¼302–375 C),measured at a heating rate of 20 C min À1under a nitrogen atmosphere.Experimental results for compounds 6b –d ,indicate that good nonlinearity–thermal stability is well balanced for00.511.522.533.5250300350400450500Wavelength (nm)A b s5a6a4aFigure 1.UV–vis absorption spectra of compounds 4a –6a in dioxane.Table 2.Solvatochromic data [l max (nm)of the charge-transfer band]for compounds 6a and 6d in selected solvents Solvent ap *196a6dl max (nm)n max (cm À1)l max (nm)n max (cm À1)n -Hexane À0.08370.027,027384.026,049Diethyl ether 0.27374.026,738389.025,706Ethanol 0.54379.026,385391.025,575Toluene 0.54380.026,316393.025,445Dioxane 0.55379.026,385390.025,641Ethyl acetate 0.55377.026,525389.025,707THF 0.58379.026,385392.025,510Methanol 0.60378.026,455391.025,575Acetonitrile 0.75378.026,455390.025,641Chloroform 0.7620373.026,809388.025,773DCM 0.82377.026,525389.025,707DMF 0.88384.026,041395.025,316DMSO 1.00386.025,906398.025,125aSolvents used as received.The correlation coefficient r obtained for the linear solvation energy relationship with p *values by Kamlet and Taft without chlorinated solvents was r ¼0.9451for 6a and 0.8987for 6d .4260R.M.F .Batista et al./Tetrahedron 63(2007)4258–4265these chromophores,which possess b values from 330Â10À30to550Â10À30esu and higher decomposition temperatures(T d¼330–375 C).3.ConclusionsIn summary,we have synthesized new thienylpyrrolyl-benzothiazoles4–6from formyl-thienylpyrroles1–3in moderate to excellent yields.The solvatochromic behavior of compounds4–6was deter-mined by regression analyses of absorption maxima in13 solvents.Due to their pronounced solvatochromic properties benzothiazoles4–6and especially compounds6a and6d are suitable to investigate the solvent polarity by means of their absorption wavenumbers.Hyper-Rayleigh scattering was used to determine thefirst hyperpolarizability,b,the data showing that b is dependent on the substituent on the pyrrole ring(alkyl or aryl)and on the position of substitution(3or5)of the benzothiazole group on the pyrrole or on the thiophene ring.It also showed that the benzothiazoles have high molecular nonlinearities especially derivatives6b–d,in which the benzothiazole group is substituted on the thiophene ring,as their values are20–33times higher that the well known p NA molecule. Thermal stability of chromophores4–6was estimated by thermogravimetric analysis.All samples had very high decomposition temperatures(T d¼302–375 C). Experimental results for compounds6b–d,indicate that good nonlinearity–thermal stability is well balanced for these chromophores,which possess b values from330Â10À30to550Â10À30esu and the higher decomposition tem-peratures(T d¼330–375 C),making them good candidates for NLO applications.4.Experimental4.1.Synthesis generalReaction progress was monitored by thin layer chromato-graphy(0.25mm thick precoated silica plates:Merck Fertig-platten Kieselgel60F254),while purification was effected by silica gel column chromatography(Merck Kieselgel60; 230–400mesh).NMR spectra were obtained on a Varian Unity Plus Spectrometer at an operating frequency of 300MHz for1H NMR and75.4MHz for13C NMR using the solvent peak as an internal reference.The solvents are indicated in parenthesis before the chemical shift values(d relative to TMS and given in parts per million).Peak as-signments were carried out by the DEPT135,HMQC (heteronuclear multiple quantum coherence),and HMBC (heteronuclear multiple bond coherence)techniques.Mps were determined on a Gallenkamp apparatus and are uncor-rected.Infrared spectra were recorded on a BOMEM MB 104spectrophotometer.UV–vis absorption spectra(200–800nm)were obtained using a Shimadzu UV/2501PC spec-trophotometer.Mass spectrometry analyses were performed at the C.A.C.T.I.-Unidad de Espectrometria de Masas of the University of Vigo,Spain.Light petroleum refers to solvent boiling in the range 40–60 C.The synthesis of formyl-thienylpyrroles1–3 was described elsewhere.11d4.2.General procedure for the synthesis of thienyl-pyrrolyl-1,3-benzothiazoles4–6The corresponding formyl-thienylpyrroles1–3(1equiv)and o-aminobenzenethiol(1equiv)were heated in DMSO (1mL mmolÀ1)at120 C with stirring for2–3h.The reac-tion was followed by TLC using diethyl ether/light petro-leum1:1as an eluent.When the reaction was complete, the reaction mixture was allowed to cool and poured into water and extracted with ethyl acetate(3Â50mL mmolÀ1). The organic layer was dried with magnesium sulfate and evaporated under reduced pressure.The crude residue was submitted to silica gel column chromatography using mixtures of diethyl ether and light petroleum of increasing polarity.The fractions containing the purified product were collected and evaporated under vacuum.4.2.1.2-(10-Propyl-20-(thien-200-yl)pyrrol-30-yl)-1,3-benzo-thiazole(4a).Orange oil(34%).UV(dioxane):l max nm (log3)318.0(4.09),303.0(4.05),289.0(4.01),240.5(4.16). IR(liquidfilm)n3063,2964,2930,2873,1664,1572, 1524,1439,1345,1244,1219,1084,965,908,848,758, 728cmÀ1.1H NMR(CDCl3)d0.89(t,3H,J¼7.5Hz,C H3),1.75(m,2H,CH2C H2CH3), 3.76(t,2H,J¼7.5Hz,C H2CH2CH3),6.86(d,1H,J¼3.0Hz,50-H),7.02(d,1H,J¼3.0Hz,40-H),7.20–7.26(m,3H,6-H+400-H+300-H),7.38(dt, 1H,J¼8.1and1.2Hz,5-H),7.64–7.68(m,2H,7-H+500-H), 7.95(dd,1H,J¼8.1and1.2Hz,4-H).MS(FAB)m/z(%): 325([M+H]+,100),324(M+,25),323(23),281(11),163(9). HRMS:(FAB)m/z(%)for C18H17N2S2;calcd325.0833; found325.0838.4.2.2.2-(10-(4000-Methoxyphenyl)-20-(thien-200-yl)pyrrol-30-yl)-1,3-benzothiazole(4c).Yellow solid(48%).Mp: 165.4–166.6 C.UV(dioxane):l max nm(log3)319.0 (4.37),305.5(4.34),292.0(4.31),244.5(4.39).IR(KBr) n3103,2960,2852,1607,1514,1443,1322,1235,1111, 1032,927,907,837,754,713cmÀ1.1H NMR(CDCl3) d3.80(s,3H,OC H3),6.83(dd,2H,J¼9.3and2.4Hz,3000-H+5000-H),7.00(d,1H,J¼3.0Hz,50-H),7.07–7.10(m,1H, 400-H),7.15–7.18(m,4H,300-H+40-H+2000-H+6000-H),7.28 (dt,1H,J¼6.6and1.5Hz,6-H),7.42(dt,1H,J¼8.4and 1.2Hz,5-H),7.49(dd,1H,J¼5.1and1.2Hz,500-H),7.70 (br d,1H,J¼8.7Hz,7-H),8.05(br d,1H,J¼8.7Hz,4-H). 13C NMR(CDCl3)d55.41(OCH3),109.28(C40),113.98 (C3000+C5000),120.62(C20),121.15(C7),121.94(C4), 124.36(C6),124.79(C5´),125.92(C5),126.80(C30), 127.24(C400+C2000+C6000),129.32(C500),130.62(C200), 132.11(C300+C1000),134.35(C7a),152.22(C3a),158.86 (C4000),161.35(C2).MS(FAB)m/z(%):389([M+H]+, 100),388(M+,41),387(20),154(9).HRMS:(EI)m/z (%)for C22H17N2OS2;calcd389.0782;found389.0785.4.2.3.2-(10-Propyl-50-(thien-200-yl)pyrrol-20-yl)-1,3-benzo-thiazole(5a).Dark green oil(75%).UV(dioxane):l max nm (log3)353.0(4.49),256.5(4.40),241.0(4.13).IR(liquid film)n3103,3067,2963,2871,1595,1541,1482,1434, 1392,1312,1248,1195,1046,933,899,756cmÀ1.1H NMR(CDCl3)d0.93(t,3H,J¼7.5Hz,C H3),1.79–1.874261R.M.F.Batista et al./Tetrahedron63(2007)4258–4265(m,2H,CH2C H2CH3),4.69(t,2H,J¼7.5Hz,C H2CH2CH3),6.39(d,1H,J¼3.9Hz,40-H),6.88(d,1H,J¼4.2Hz30-H),7.12–7.18(m,2H,400-H+300-H),7.34(dt,1H,J¼7.2and 1.2Hz,6-H),7.39(dd,1H,J¼4.5and1.2Hz,500-H),7.45 (dt,1H,J¼7.2and1.2Hz,5-H),7.84(dd,1H,J¼8.7and 1.2Hz,7-H),7.95(dd,1H,J¼8.1and1.2Hz,4-H).13C NMR(CDCl3)d10.88(C H3),24.72(CH2C H2CH3),42.72 (C H2CH2CH3),111.59(C40),115.13(C30),121.04(C7), 122.54(C4),124.51(C6),125.91(C5),126.02(C500), 126.70(C300),127.42(C400),127.47(C50),132.24(C20), 133.87(C7a),133.90(C200),154.38(C3a),160.18(C2). MS(FAB)m/z(%):325([M+H]+,81),324(M+,100),307 (25),289(13),155(22),154(71).HRMS:(FAB)m/z(%) for C18H17N2S2;calcd325.0833;found325.0837.4.2.4.2-(10-(4000-Methoxyphenyl)-50-(thien-200-yl)pyrrol-20-yl)-1,3-benzothiazole(5c).Brown solid(35%).Mp: 154.9–156.3 C.UV(dioxane):l max nm(log3)366.0 (4.51),257.5(4.12),244.0(4.20).IR(KBr)n3060,2931, 2852,1513,1480,1434,1299,1251,1043,844,758, 693cmÀ1.1H NMR(CDCl3)d3.95(s,3H,OC H3),6.67(d, 1H,J¼3.9Hz,30-H),6.73(br d,1H,J¼3.9Hz,300-H),6.86–6.89(m,1H,400-H),7.03–7.06(dd,2H,J¼8.7and2.1Hz, 3000-H and5000-H),7.11(dd,1H,J¼5.5and1.2Hz,500-H), 7.24(br t,1H,J¼8.4Hz,6-H),7.35–7.41(m,4H,2000-H+ 6000-H+5-H+40-H),7.65(br d,1H,J¼8.7Hz,7-H),7.94(br d,1H,J¼8.7Hz,4-H).13C NMR(CDCl3)d55.60(OCH3), 110.46(C30),114.78(C3000+C5000),120.97(C7),121.90(C4), 124.35(C6),125.08(C500),125.15(C300),126.25(C5), 127.04(C400),129.65(C50+C1000),131.68(C2000+C6000), 133.75(C20+C200),133.97(C7a),152.02(C3a),158.70 (C2),161.04(C4000).MS(FAB)m/z(%):389([M+H]+, 100),388(M+,76),387(10),219(7).HRMS:(FAB)m/z (%)for C22H17N2OS2;calcd389.0782;found389.0778. 4.2.5.2-(100-Propyl-200-(thien-20-yl)pyrrolyl)-1,3-benzo-thiazole(6a).Dark green solid(36%).Mp:65.3–67.0 C. UV(dioxane):l max nm(log3)377.5(4.47),256.0(4.23), 244.0(4.23).IR(KBr)n3102,2966,2930,1526,1477,1301, 1256,1230,1081,1027,906,833,804,751,726cmÀ1.1H NMR(CDCl3)d0.93(t,3H,J¼7.5Hz,C H3),1.80(m,2H, CH2C H2CH3),4.08(t,2H,J¼7.5Hz,C H2CH2CH3),6.21–6.23(m,1H,400-H),6.45–6.47(m,1H,300-H),6.81–6.83 (m,1H,500-H),7.04(d,1H,J¼3.9Hz,40-H),7.38(dt,1H, J¼7.5and1.5Hz,6-H),7.48(dt,1H,J¼7.5and1.5Hz,5-H),7.60(d,1H,J¼3.9Hz,30-H),7.86(dd,1H,J¼7.5and1.5Hz,7-H),8.02(dd,1H,J¼7.5and1.5Hz,4-H).13C NMR(CDCl3)d11.17(C H3),24.67(CH2C H2CH3),49.45 (C H2CH2CH3),108.34(C400),111.29(C300),121.37(C7), 122.75(C4),124.20(C500),125.06(C400),125.08(C6), 125.88(C200),126.39(C5),129.02(C30),134.51(C7a), 135.18(C20or C50),139.31(C20or C50),153.69(C3a), 161.27(C2).MS(EI)m/z(%):325(M++1,23),324(M+, 100),282(21),281(15).HRMS:(EI)m/z(%)for C18H16N2S2;calcd324.0755;found324.0760.4.2.6.2-(100-Phenyl-200-(thien-20-yl)pyrrolyl)-1,3-benzo-thiazole(6b).Dark green solid(48%).Mp:73.1–74.9 C. UV(dioxane):l max nm(log3)374.5(4.23),256.0(3.98), 241.5(4.12).IR(KBr)n2924,1725,1595,1528,1496, 1434,1256,1232,1071,805,760,724,696cmÀ1.1H NMR(CDCl3)d6.36–6.38(m,1H,400-H),6.44(d,1H, J¼3.9Hz,40-H),6.63–6.65(m,1H,300-H),6.94–6.95(m,1H,500-H),7.32–7.35(m,4H,6-H+3ÂPh-H),7.37(d,1H, J¼3.9Hz,30-H),7.41–7.48(m,3H,5-H+2ÂPh-H),7.82 (br d,1H,J¼7.2Hz,7-H),7.99(br d,1H,J¼8.1Hz,4-H). 13C NMR(CDCl3)d109.69(C400),112.06(C300),121.33 (C7),122.72(C4),124.86(C6),124.99(C40),125.77 (C500),126.35(C5),126.61(2ÂPh-C),126.77(C200), 127.90(1ÂPh-C),128.91(C30),129.26(2ÂPh-C),134.51 (C7a),134.62(C20or C50),139.17(C20or C50),139.76 (C1000),153.71(C3a),161.25(C2).MS(EI)m/z(%):359 (M++1,25),358(M+,100),254(6),149(15).HRMS:(EI) m/z(%)for C21H14N2S2;calcd358.0598;found358.0594.4.2.7.2-(100-(4000-Methoxyphenyl)-200-(thien-20-yl)pyr-rolyl)-1,3-benzothiazole(6c).Dark green solid(93%). Mp:141.8–143.5 C.UV(dioxane):l max nm(log3)386.5 (4.25),257.0(4.13),242.0(4.09).IR(KBr)n2922,1515, 1484,1247,1043,901,842,755,717cmÀ1.1H NMR (CDCl3)d3.88(s,3H,OC H3),6.33–6.35(m,1H,400-H), 6.47(d,1H,J¼3.9Hz,40-H),6.61–6.63(m,1H,300-H),6.88–6.90(m,1H,500-H),6.96(d,2H,J¼9Hz,3000-H+5000-H),7.26(d,2H,J¼9Hz,2000-H+6000-H),7.34(dt,1H,J¼6.6and1.2Hz,6-H),7.38(d,1H,J¼4.2Hz,30-H),7.46 (dt,1H,J¼6.9and1.2Hz,5-H),7.82(dd,1H,J¼8.1and 0.9Hz,7-H),7.98(dd,1H,J¼7.5and0.6Hz,4-H).13C NMR(CDCl3)d55.46(O C H3),109.33(C400),111.35(C300), 114.33(C3000+C5000),121.28(C7),122.64(C4),124.47(C40), 124.92(C6),125.97(C500),126.30(C5),127.13(C200), 127.96(C2000+C6000),128.93(C30),132.64(C1000),134.35 (C20or C50),134.46(C7a),139.32(C20or C50),153.68 (C3a),159.19(C4000),161.26(C2).MS(EI)m/z(%):389 (M++1,27),338(M+,100),373(29),194(8).HRMS:(EI) m/z(%)for C22H16N2S2O;calcd388.0704;found388.0706.4.2.8.2-(100-(2000,4000-Dimethoxyphenyl)-200-(thien-20-yl)-pyrrolyl)-1,3-benzothiazole(6d).Dark green solid(67%). Mp:141.2–142.8 C.UV(dioxane):l max nm(log3)390.0 (4.42),260.0(4.08),243.0(4.17).IR(KBr)n2926,1727, 1610,1590,1516,1444,1308,1207,1161,1131, 1118cmÀ1.1H NMR(CDCl3)d3.68(s,3H,OC H3),3.89 (s,3H,OC H3),6.35–6.37(m,1H,400-H),6.52(d,1H, J¼3.9Hz,40-H),6.54–6.57(m,2H,3000-H+5000-H),6.64–6.66(m,1H,300-H),6.79–6.81(m,1H,500-H),7.24(d,1H, J¼9Hz,6000-H),7.33(dt,1H,J¼6.9and 1.2Hz,6-H), 7.38(d,1H,J¼3.9Hz,30-H),7.44(dt,1H,J¼6.9and 1.2Hz,5-H),7.81(dd,1H,J¼6.9and1.2Hz,7-H),7.97 (dd,1H,J¼6.9and 1.2Hz,4-H).13C NMR(CDCl3) d55.55(O C H3),55.73(O C H3),99.75(C3000or C5000), 104.33(C3000or C5000),109.19(C400),110.22(C300),121.26 (C7),121.79(C1000),122.58(C4),123.19(C40),124.84 (C6),126.14(C500),126.25(C5),128.06(C200),128.96 (C30),129.67(C6000),133.75(C20or C50),134.44(C7a), 139.84(C20or C50),153.72(C3a),156.29(C2000),161.00 (C4),161.42(C2).MS(EI)m/z(%):419(M++1,27),418 (M+,100),403(22),360(6),209(8).HRMS:(EI)m/z(%) for C23H18N2S2O2;calcd418.0810;found418.0807.4.3.Nonlinear optical measurements for compounds4–6 using the hyper-Rayleigh scattering(HRS)method21 Hyper-Rayleigh scattering(HRS)was used to measure the first hyperpolarizability b of the molecules studied.The experimental set-up for hyper-Rayleigh measurements is similar to the one presented by Clays and Persoons.21The4262R.M.F.Batista et al./Tetrahedron63(2007)4258–4265incident laser beam came from a Q-switched Nd/YAG laser operating at a10Hz repetition rate with approximately 20mJ of energy per pulse and a pulse duration(FWHM) close to12ns at the fundamental wavelength of1064nm. The incident power could be varied using a combination of a half-wave plate and Glan polarizer.The incident beam was weakly focused(beam diameter w0.5mm)into the so-lution contained in a5-cm long cuvette.The hyper-Rayleigh signal was collimated using a high numerical aperture lens passed through an interferencefilter centered at the sec-ond-harmonic wavelength(532nm)before being detected by a photomultiplier(Hamamatsu model H9305-04).The current pulse from the photomultiplier was integrated using a Stanford Research Systems gated box-car integrator (model SR250)with a25ns gate centered on the temporal position of the incident laser pulse.The hyper-Rayleigh sig-nal was normalized at each pulse using the second-harmonic signal from a1-mm quartz plate to compensate forfluctua-tions in the temporal profiles of the laser pulses due to lon-gitudinal mode beating.Dioxane was used as a solvent,and the b values were calibrated using a reference solution of p-nitroaniline (p NA)22also dissolved in dioxane at a concentration of 1Â10À2mol dmÀ3(external reference method).The hyperpolarizability of p NA dissolved in dioxane is known from EFISH measurements carried out at the same funda-mental wavelength.17,18The concentrations of the solution under study(10À4M)were chosen so that the corresponding hyper-Rayleigh signals fall well within the dynamic range of both the photomultiplier and the box-car integrator.All solu-tions werefiltered(0.2m m porosity)to avoid spurious sig-nals from suspended impurities.The small hyper-Rayleigh signal that arises from dioxane was taken into account according to the expressionI2u¼G ÂN solvent C b2solvent DþN solute C b2solute DÃI2uwhere the factor G is an instrumental factor that takes into account the detection efficiency(including geometrical factors and linear absorption or scattering of the second-harmonic light on its way to the detector)and localfield corrections.The brackets indicate an average over the spatial orientation of the molecules.The error associated with the HRS measured b values is estimated to be approximately 15%.We took particular care to avoid reporting artificially high hyperpolarizabilities due to a possible contamination of the hyper-Rayleigh signal by molecularfluorescence near 532nm.Measurements were carried out using two different interferencefilters with different transmission pass bands centered near the second harmonic at532nm.The transmis-sion band of the narrowfilter(CVI model F1.5-532-4)was 1.66nm(full width at half maximum)with a transmission of47.6%at the second harmonic,while the corresponding values for the widefilter(CVI model F03-532-4)were 3.31nm,with a transmission of63.5%at the second harmonic.The transmission of eachfilter at the second-harmonic wavelength was carefully determined using a crystalline quartz sample.We assume that any possiblefluo-rescence emitted from the solutions is essentially constant over the transmission of both interferencefilters.Then by comparing the signals obtained with the two differentfilters we can determine the relative contributions of the hyper-Rayleigh and possiblefluorescence signals.The relevant equations areS2uNB¼SNBA WBÀS WB A NBT NB A WBÀT WB A NBT NBS FNB¼SLBT NBÀS NB T LBT NB A WBÀT WB A NBA NBHere S2u NB is the hyper-Rayleigh scattering contribution to the signal,i.e.,the signal that would have been measured using the‘narrow’bandfilter if there were nofluorescence present. Thefluorescence contribution to the signal measured using the narrow band interferencefilter is S F NB.The signals S NB and S WB are the actual signals measured(after correction for the solvent contribution)using the‘narrow’(CVI model F1.5-532-4)and‘wide’(CVI model F03-532-4)band in-terferencefilters.The transmissions T NB and T WB are,re-spectively,the transmission of the‘narrow’and‘wide’band interferencefilters at the second-harmonic wavelength (47.6and63.5%),A NB and A WB represent the area under the respectivefilter’s transmission curve.These values were carefully measured using a dual-beam spectrophotometer with slits adjusted to give0.1nm resolution.We obtained values of1.2and2.18nm for A NB and A WB,respectively.This allows us to determine iffluorescence is present and to reliably correct for its presence provided that the integrated contribution is less than80%of the total detected signal within the temporal gate of the box-car integrator(25ns). From our measurements we conclude that compounds6a and6d emit negligiblefluorescence at532nm.When using the‘narrow’bandfilter the estimated fraction of the total detected signal due tofluorescence is listed in the following table:Compound S FNB=S NB4a0.494c0.535a0.595c0.256a—6b0.306c0.146d—We estimate that the error associated with the above values varies between5and15%of the value quoted.4.4.Thermogravimetric analysis of compounds4–6Thermogravimetric analysis of samples was carried out using a TGA instrument model Q500from TA Instruments, under high purity nitrogen supplied at a constant 50mL minÀ1flow rate.All samples were subjected to a20 C minÀ1heating rate and were characterized between 25and700 C.AcknowledgementsThanks are due to Foundation for Science and Technology (Portugal)forfinancial support through the Centro de4263R.M.F.Batista et al./Tetrahedron63(2007)4258–4265。