3、MATLAB与Simulink基础
matlab simulink设计与建模-概述说明以及解释
matlab simulink设计与建模-概述说明以及解释1.引言1.1 概述概述部分的内容可以描述该篇文章的主题和内容的重要性。
可以参考以下写法:引言部分首先概述了文章的主要内容和结构,主要涉及Matlab Simulink的设计与建模方法。
接下来,我们将详细介绍Matlab Simulink 的基本概念、功能和应用,并探讨其在系统设计和仿真建模中的重要性。
本文旨在向读者提供一种全面了解Matlab Simulink的方法,并帮助他们在实际工程项目中运用该工具进行系统设计和模拟。
通过本文的阅读,读者将能够深入了解Matlab Simulink的优势和特点,并学会如何使用其开发和设计各种复杂系统,从而提高工程的效率和准确性。
在接下来的章节中,我们将重点介绍Matlab Simulink的基本概念和设计方法,以及实际案例的应用。
最后,我们将通过总结现有的知识和对未来发展的展望,为读者提供一个全面的Matlab Simulink设计与建模的综合性指南。
1.2文章结构1.2 文章结构本文将以以下几个部分展开对MATLAB Simulink的设计与建模的讨论。
第一部分是引言部分,其中概述了本文的主要内容和目的,并介绍了文章的结构安排。
第二部分是正文部分,主要包括MATLAB Simulink的简介和设计与建模方法。
在MATLAB Simulink简介部分,将介绍该软件的基本概念和功能特点,以及其在系统设计和建模中的优势。
在设计与建模方法部分,将深入讨论MATLAB Simulink的具体应用技巧和方法,包括系统建模、模块化设计、信号流图、仿真等方面的内容。
第三部分是结论部分,主要总结了本文对MATLAB Simulink设计与建模的讨论和分析,并对其未来的发展方向进行了展望。
通过以上结构安排,本文将全面介绍MATLAB Simulink的设计与建模方法,以期为读者提供一个全面而系统的了解,并为相关领域的研究和应用提供一些借鉴和参考。
MATLABSimulink模型建立与仿真指南
MATLABSimulink模型建立与仿真指南第一章:MATLAB与Simulink简介MATLAB是一种高级的数值计算和科学分析的编程语言,由MathWorks开发。
它提供了强大的数学函数库和绘图工具,使得用户可以进行复杂的数值计算和数据可视化。
Simulink是MATLAB的扩展,是一种用于建立和仿真动态系统的图形化环境。
在MATLAB中,用户可以通过命令行或脚本文件进行计算。
而在Simulink中,用户可以利用图形化界面来搭建系统模型,并进行仿真。
Simulink提供了丰富的预置模块库,用户只需将这些模块连接起来,即可构建复杂的系统模型。
第二章:Simulink模型的基本组成Simulink模型由多个部分组成,包括输入信号、输出信号和系统组件。
输入信号可以是手动输入的常数,也可以是来自其他模型的信号。
输出信号是用户对系统模型感兴趣的结果。
系统组件即模型中的各个模块,这些模块可以完成各种功能,如乘法、滤波、逻辑运算等。
第三章:模型建立与仿真流程1. 确定系统模型的目标和需求:在建立模型之前,需要明确系统模型的目标和需求。
这些可能包括系统的输入输出关系、稳定性要求、性能要求等。
2. 模型建立:根据系统的目标和需求,选择合适的系统组件,并将其连接起来,构建系统模型。
可根据需要进行参数设置,以适应不同的场景。
3. 仿真设置:在进行仿真之前,需要设置仿真参数。
这些包括仿真时间、仿真步长等。
仿真时间指定了仿真的时间范围,仿真步长指定了仿真的时间间隔。
4. 仿真运行:设置好仿真参数后,可以运行仿真。
Simulink将逐步模拟系统的行为,并输出仿真结果。
第四章:Simulink模型调试与优化在进行仿真时,可能会发现模型存在问题,如输出不符合预期、系统不稳定等。
这时需要对模型进行调试和优化。
1. 系统调试:可以通过数据观察、信号域分析等方法,定位系统问题。
更换输入信号、输出信号,或调整模型参数,可以帮助发现问题。
Matlab-Simulink基本模块操作
第2章 Simulink模块操作
表 2-2 控制模块方块图的参数
参数
定义
ScreenColor BackgroundColor
模型方块 图的背景色 模块和标 注的背景色
Fore groun dColor
模块和标 注的前景色
第2章 Simulink模块操作
用户可以把这些参数设置为如下任一值: 'black','white','red','green','blue','cyan','magenta',
第2章 Simulink模块操作
Simulink模块操作
2.1 模块操作 2.2 改变模块外观 2.3 设置模块参数 2.4 标注方块图 2.5 模块属性对话框 2.6 显示模块输出 2.7 控制和显示模块的执行顺序 2.8 查表编辑器 2.9 鼠标和键盘操作概述
第2章 Simulink模块操作
2.1 模 块 操 作
2.1.1 Simulink模块类型 用户在创建模型时必须知道,Simulink把模块分为两种
类型:非虚拟模块和虚拟模块。非虚拟模块在仿真过程中起 作用,如果用户在模型中添加或删除了一个非虚拟模块,那 么Simulink会改变模型的动作方式;相比而言,虚拟模块在 仿真过程中不起作用,它只是帮助以图形方式管理模型。此 外,有些Simulink模块在某些条件下是虚拟模块,而在其他 条件下则是非虚拟模块,这样的模块称为条件虚拟模块。表 2-1列出了Simulink中的虚拟模块和条件虚拟模块。
第2章 Simulink模块操作 图2-10
第2章 Simulink模块操作
2.2.3 指定方块图颜色 Simulink允许用户在方块图中指定任何模块或标注的前景色
matlabsimulink教程
matlabsimulink教程Matlab Simulink是一种基于Matlab的高级系统建模和仿真工具。
它允许用户通过图形化界面来构建和模拟复杂的多域系统。
首先,我们来介绍如何启动Simulink。
在Matlab主界面的命令窗口中输入simulink即可打开Simulink图形界面。
Simulink界面主要由工具栏、模型窗口和浏览器窗口组成。
工具栏上的各种按钮可以帮助用户进行模型的构建和仿真。
模型窗口用于进行模型的可视化编辑,用户可以从浏览器中选择模型中的各个组件进行添加和连接。
在开始使用Simulink之前,我们建议用户先了解一些基本概念和术语。
Simulink中的基本组成单位是模块,模块可以是输入、输出、运算器、信号转换器等。
这些模块可以通过连线连接起来,形成一个完整的系统模型。
模块间的信号传递可以是连续的、离散的或者混合的。
在Simulink中,用户可以通过选择不同的模块和参数来构建自己需要的系统模型。
Simulink有很多强大的功能,其中之一是仿真功能。
用户可以设置各种参数来对系统模型进行仿真,比如时间步长、仿真时长等。
Simulink会根据用户设定的参数对系统模型进行仿真,并产生仿真结果。
用户可以通过可视化界面查看仿真结果,也可以将仿真结果保存为数据文件和图形文件。
另外,Simulink还提供了各种调试工具和分析工具,帮助用户对系统模型进行诊断和优化。
除了系统建模和仿真功能,Simulink还可以与其他Matlab工具和工具箱进行集成。
用户可以在Simulink中调用Matlab函数和脚本,也可以使用不同的工具箱来扩展Simulink的功能。
Simulink还支持与外部硬件的连接和通信,比如数据采集卡、控制器等。
总之,Matlab Simulink是一个功能强大、易于使用的系统建模和仿真工具。
通过Simulink,用户可以通过图形化界面来构建和仿真复杂的系统模型,同时还可以进行调试和优化。
matlab simulink模型搭建方法
matlab simulink模型搭建方法Matlab Simulink是一个强大的多领域仿真和模型搭建环境,广泛应用于控制系统、信号处理、通信系统等多个领域。
本文将详细介绍Matlab Simulink模型搭建的方法,帮助您快速掌握这一技能。
一、Simulink基础操作1.启动Simulink:在Matlab命令窗口输入“simulink”,然后按回车键,即可启动Simulink。
2.创建新模型:在Simulink开始页面,点击“新建模型”按钮,或在菜单栏中选择“文件”→“新建”→“模型”,创建一个空白模型。
3.添加模块:在Simulink库浏览器中,找到所需的模块,将其拖拽到模型窗口中。
4.连接模块:将鼠标光标放在一个模块的输出端口上,按住鼠标左键并拖拽到另一个模块的输入端口,松开鼠标左键,完成模块间的连接。
5.参数设置:双击模型窗口中的模块,可以设置模块的参数。
6.模型仿真:在模型窗口中,点击工具栏上的“开始仿真”按钮,或选择“仿真”→“开始仿真”进行模型仿真。
二、常见模块介绍1.源模块:用于生成信号,如Step、Ramp、Sine Wave等。
2.转换模块:用于信号转换和处理,如Gain、Sum、Product、Scope 等。
3.控制模块:用于实现控制算法,如PID Controller、State-Space等。
4.建模模块:用于构建物理系统的数学模型,如Transfer Fcn、State-Space等。
5.仿真模块:用于设置仿真参数,如Stop Time、Solver Options等。
三、模型搭建实例以下以一个简单的线性系统为例,介绍Simulink模型搭建过程。
1.打开Simulink,创建一个空白模型。
2.在库浏览器中找到以下模块,并将其添加到模型窗口中:- Sine Wave(正弦波信号源)- Transfer Fcn(传递函数模块)- Scope(示波器模块)3.连接模块:- 将Sine Wave的输出端口连接到Transfer Fcn的输入端口。
MATLAB-SIMULINK讲解完整版
图3-5 模块的基本操作示例
、按键 、按键 和按键 。
(5) 窗口切换类:包括 6 个按键,分别是按键 、按键
、按键 、按键 、按键 和按键 。
工具栏中各个工具图标及其功能说明见附录 B。
3.2 SIMULINK的基本操作 3.2.1 模块及信号线的基本操作
1. 模块的基本操作 模块是系统模型中最基本的元素,不同模块代表了不同 的功能。各模块的大小、放置方向、标签、属性等都是可以 设置调整的。表3-1列出了SIMULINK中模块基本操作方法 的简单描述。
善模型的外观
标左键
可改变折线的走向, 选中目标节点,按住鼠标左键,拖曳到目标位置,松开鼠
改善模型的外观
标左键
从一个节点引出多 条信号线,应用于不同 目的
方法 1:先按住“Ctrl”键,再选中信号引出点,按住鼠标 左键,拖曳到下级目标模块的信号输入端,松开鼠标左键;
方法 2:先选中信号引出线,然后在信号引出点按住鼠标 右键,拖曳到下级目标模块的信号输入端,松开鼠标右键
如图3-6所示,在模型中加入注释文字,使模型更具可 读性。
图3-6 添加注释文字示例 (a) 未加注释文字;(b) 加入注释文字
3.2.3 子系统的建立与封装 1. 子系统的建立 一般而言,电力系统仿真模型都比较复杂,规模很大,
包含了数量可观的各种模块。如果这些模块都直接显示在 SIMULINK仿真平台窗口中,将显得拥挤、杂乱,不利于用 户建模和分析。可以把实现同一种功能或几种功能的多个模 块组合成一个子系统,从而简化模型,其效果如同其它高级 语言中的子程序和函数功能。
matlab-simulink初级教程
Simulink仿真环境基础学习Simulink是面向框图的仿真软件。
7.1演示一个Simulink的简单程序【例7.1】创建一个正弦信号的仿真模型。
步骤如下:(1) 在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(Simulink Library Browser) 窗口,如图7.1所示。
图7.1 Simulink界面(2) 单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。
(3) 在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。
(4) 用鼠标单击所需要的输入信号源模块“Sine Wave”(正弦信号),将其拖放到的空白模型窗口“untitled”,则“Sine Wave”模块就被添加到untitled窗口;也可以用鼠标选中“Sine Wave”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave”模块添加到untitled窗口,如图7.2所示。
(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器)拖放到“untitled”窗口中。
(6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。
如图7.3所示。
(7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。
双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。
第2章 MATLAB的基础知识
a=[1 2 1;2 2 1;2 1 2]; b=[1;2;3]; a/b %矩阵右除
运行程序,得到结果:
??? Error using ==> mrdivide Matrix dimensions must agree.
重新输入语句
a\b
%矩阵左除 ans = 1.0000 -0.3333 0.6667
运行程序,得到结果:
c= 0 0 1 1 1 0
说明 对于复数运算,“= =”与“~ =”运算,既比较实部, 又比较虚部。而其他运算仅比较实部。关系运算同样也可用于 常量与矩阵的比较,在这种情况下,该常量与矩阵的每一个元 素进行比较,其结果是一个与矩阵同维数的0、1矩阵。
逻辑操作符
逻辑操作符 说 明 相对应函数
-0.1667 0 0
(3)矩阵特征值运算
矩阵条件数cond( ) 矩阵的秩rank() 矩阵特征值eig ( )
矩阵范数norm( ) 矩阵的迹trace ( ) 矩阵奇异值svd ( )
例2-7 分别计算矩阵a的有关特征参数。输入以下 MATLAB语句
a=[1 2 3;4 5 6;7 8 0] [cond(a),norm(a),rank(a)]
2.MATLAB工作环境
图形窗口“Figure”
M文件窗口
3.MATLAB的M文件
所谓M文件,就是用户把要实现的命令写在一个 以.m为扩展名的文件中
M文件有两种格式(统称为M文件) 函数式M文件 程序式M文件 程序式M文件用于把很多需要在命令窗口输入的命 令放在一起,就是命令的简单叠加 函数式M文件用于把重复的程序段封装成函数供用 户调用。
&
|
逻辑与
逻辑或
and(a,b)
第三章 Simulink基础
同一模型中复制模块 (1)按下ctrl键,选中要复制的模块 (2)拖到喜欢的位置 删除模块 选中后,点击右健中的clear 或按键盘的delete 断开模块连接 按下shitf键,选中模块并从模型中的原始位置 拖支模块即可。 改变模块的方向 Format菜单中选择flip block命令旋转180度,或 者rotate block顺时针旋转90度。
数学运算模块(math)
求绝对值或求模 建立逻辑真值表 求复数的幅值与相角 求复数的实部和虚部 求点乘(内积) 增益(对输入信号乘上一个常数) 逻辑操作符 由幅值与相角求复数 数学运算函数
求极大与极小值 对输入信号求积或商 比较操作符 取整操作 取输入的正负符号 以滑动形式改变增益 对输入信号求代数和 三角函数
输入源模块(source)
带限白噪声 产生一个频率不断变化的正弦波 显示当前仿真时间 生成一个常值 在规定的采样间隔显示当前仿真时间 从工作空间中定义的矩阵读取数据 从文件中读取数据 接地线模块 整个系统的输入子端
固定时间间隔的脉冲发生器 斜坡信号 正态分布的随机信号 产生规律重复的线性信号 产生各种不同的波型 产生一个正弦波 产生一个阶跃函数 均匀分布随机数
4、选择对象(包括模块和连线) 选择一个对象 单击鼠标左键即可选中 选择一个以上对象
逐个选择法:按住shift键 用方框选择
选择整个模型: Ctrl+A 或edit菜单下的select all
5、两个窗口之间模块的复制和移动 用鼠标复制模块 (1)打开相应的库或模型窗口 (2)把要复制的模块拖到自己的目标窗口 中。 用菜单中的命令复制、粘贴模块 模块的命名 选中模块的名称,然后输入新的字符 在同一模块中移动模块 (1)选中需要移动的模块和连线 (2)拖动到适当的地方,然后释放鼠标
simulink基础知识
simulink基础知识Simulink 基础知识简介Simulink 是由 MathWorks 开发的用于动态系统建模和仿真的图形编程环境。
它与 MATLAB 软件紧密集成,提供了一个强大的工具集,适用于各种工程和科学领域。
图形建模Simulink 以拖放界面进行建模,用户可以使用称为块的预定义组件。
这些块代表系统中的元素,如信号源、放大器和控制器。
用户可以通过连接块来创建复杂系统模型。
直觉操作Simulink 具有直观的界面,使用户能够通过拖放块轻松创建模型。
通过双击块,可以访问其属性和参数,从而可以根据需要进行自定义。
模型仿真Simulink 模型可以针对用户定义的输入进行仿真。
仿真引擎解决模型中的方程,并生成输出信号。
这些信号可以在示波器或其他可视化工具中查看。
建模元素Simulink 提供了广泛的块库,用于构建各种系统模型。
这些块包括:信号生成块:产生输入信号,如正弦波和方波。
元件块:表示电阻、电容和电感等物理元件。
传输线块:模拟电气和流体动力系统中的传输线行为。
控制系统块:实现 PID 控制器、状态空间控制器和线性化控制器。
模型分析Simulink 提供了用于分析模型行为的强大工具。
这些工具包括:示波器:显示模型中信号的时域波形。
Bode 图:绘制系统的幅度和相位响应。
Nyquist 图:显示系统的稳定性。
与 MATLAB 集成Simulink 与 MATLAB 紧密集成,这使得用户可以访问 MATLAB的广泛功能。
用户可以在 Simulink 模型中嵌入 MATLAB 代码块,从而可以执行高级计算和数据处理任务。
应用领域Simulink 用于各种应用,包括:控制系统设计信号处理动力学建模机械系统模拟电路分析优点图形建模界面,易于使用广泛的块库,涵盖各种工程领域与 MATLAB 紧密的集成,提供强大的计算能力用于模型分析的强大工具集缺点对于大型复杂模型,仿真时间可能很长非线性系统的建模可能具有挑战性需要对 MATLAB 有基本的了解。
第三章 matlab的simulink建模与仿真
3、其它子系统
可配置子系统,代表用 户定义库中的任意模块, 只能在用户定义库中使用。 函数调用子系统。
for循环
3)在一个仿真时间步长内,simulink可以多次进出一 个子系统。 原子子系统:
1)子系统作为一个“实际”的模块,需顺序连续执行。
2)子系统作为整体进行仿真。
3)子系统中的模块在子系统中被排序执行。
建立原子子系统:
1)先建立一空的原子子系统。
2)先建立子系统,再强制转换成原子子系统。
Edit/block parameters
在enabled subsystem
triggered subsystem
enabled and triggered subsystem中。
1)早期simulink版本中,enable和triggered信号需要从 signal&system中调用。
2)simulink后期版本中,在上述模块中含这两个信号。 3)一个系统中不能含多个enable和triggered信号。 4)其它子系统可看成某种形式的条件执行子系统。
3.4创建simulink模型(简单入门)
一、启用simulink并建立系统模型 启动simulink: (1)用命令方式:simulink (2)
二、simulink模块库简介 1、simulink公共模块库 Continuous(连续系统)
连续信号数值积分 输入信号连续时间积分
单步积分延迟,输出为前一输入
动态模型:描述系统动态变化过程
静态模型:平衡状态下系统特性值之间的关系
二、计算机仿真
1、仿真的概念
以相似性原理、控制理论、信息技术及相关领域 的有关知识为基础,以计算机和各种专用物理设备为工 具,借助系统模型对真实系统进行实验研究的一门综合 性技术。 2、仿真分类 实物仿真:建造实体模型 数学模型:将数学语言编制成计算机程序 半实体模型:数学物理仿真
MATLABSimulink联合仿真指南
MATLABSimulink联合仿真指南MATLAB Simulink联合仿真指南第一章:MATLAB和Simulink概述1.1 MATLAB的介绍1.1.1 MATLAB的起源和发展1.1.2 MATLAB的基本特点和优势1.1.3 MATLAB的应用领域1.2 Simulink的介绍1.2.1 Simulink的基本概念和原理1.2.2 Simulink在系统建模和仿真中的应用1.2.3 Simulink与其他仿真软件的比较1.3 MATLAB和Simulink的关系1.3.1 MATLAB和Simulink的协同工作原理1.3.2 MATLAB和Simulink的应用场景第二章:MATLAB基础2.1 MATLAB语言基础2.1.1 MATLAB的数据类型和变量2.1.2 MATLAB的基本运算和函数2.1.3 MATLAB的控制结构2.2 MATLAB图形界面2.2.1 MATLAB的命令窗口和编辑器 2.2.2 MATLAB的图形窗口和绘图工具2.3 MATLAB的数据处理与分析2.3.1 数据导入和导出2.3.2 数据操作和处理2.3.3 数据可视化第三章:Simulink基础3.1 Simulink的基本组成3.1.1 模型、系统和信号的概念3.1.2 Simulink模型的创建和编辑3.1.3 Simulink模型的参数设置3.2 Simulink的基本元素3.2.1 Simulink的信号类型和传输线3.2.2 Simulink的模块和子系统3.2.3 Simulink的运算器和逻辑门3.3 Simulink的仿真过程3.3.1 仿真参数的设置3.3.2 仿真的执行和结果分析3.3.3 仿真模型的调试和优化第四章:MATLAB和Simulink的联合应用4.1 MATLAB与Simulink的数据交互4.1.1 数据导入和导出的方法4.1.2 数据传输和共享的技巧4.1.3 数据处理和分析的整合4.2 MATLAB和Simulink的调用和扩展4.2.1 MATLAB函数在Simulink中的应用4.2.2 Simulink模型的MATLAB脚本控制4.2.3 Simulink模型的自定义函数和库4.3 MATLAB和Simulink的联合仿真案例分析 4.3.1 电路系统仿真4.3.2 控制系统仿真4.3.3 信号处理系统仿真第五章:MATLAB和Simulink的高级应用5.1 MATLAB在系统设计和优化中的应用5.1.1 优化算法和工具的使用5.1.2 系统性能评估和参数调整5.1.3 系统设计的可视化和交互5.2 Simulink在实时仿真和硬件连接中的应用5.2.1 实时仿真的基本概念和要素5.2.2 Simulink和硬件连接的方法和工具5.2.3 实时仿真案例分析5.3 MATLAB和Simulink在自动化测试和验证中的应用 5.3.1 自动化测试的需求和挑战5.3.2 MATLAB和Simulink在测试自动化中的应用5.3.3 测试验证的案例和结果结语:MATLAB Simulink联合仿真的前景和发展6.1 MATLAB Simulink在工程教学和研究中的意义6.2 MATLAB Simulink的应用前景和发展趋势参考文献注:以上章节的标题仅为示例,具体内容和顺序可根据实际情况进行调整。
MATLAB-Simulink基础
MATLAB-Simulink基础§1Simulink简介Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持连续、离散及两者混合的线性和非线性系统,也支持具有多种采样频率的系统。
在Simulink环境中,利用鼠标就可以在模型窗口中直观地“画”出系统模型,然后直接进行仿真。
它为用户提供了方框图进行建模的图形接口,采用这种结构画模型就像你用手和纸来画一样容易。
它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。
Simulink包含有Sink(输出方式)、Source(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和E某tra(其他环节)等子模型库,而且每个子模型库中包含有相应的功能模块,用户也可以定制和创建自己的模块。
用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。
用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的结构和各模块之间的相互关系。
在定义完一个模型后,用户可以通过Simulink的菜单或MATLAB的命令窗口键入命令来对它进行仿真。
菜单方式对于交互工作非常方便,而命令行方式对于运行一大类仿真非常有用。
采用Scope模块和其他的画图模块,在仿真进行的同时,就可观看到仿真结果。
除此之外,用户还可以在改变参数后迅速观看系统中发生的变化情况。
仿真的结果还可以存放到MATLAB的工作空间里做事后处理。
模型分析工具包括线性化和平衡点分析工具、MATLAB的许多基本工具箱及MATLAB的应用工具箱。
由于MATLAB和Simulink是集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改。
Simulink具有非常高的开放性,提倡将模型通过框图表示出来,或者将已有的模型添加组合到一起,或者将自己创建的模块添加到模型当中。
simulink基础
B
Revolute D Ground D
工程软件训练
3.Neural Network Tool al Network Blockset节点上,通过单击鼠标右 键后,便可打开如图所示的Neural Network Blockset模块集窗口。
工程软件训练
2.SimMechanics(机构系统模块)
SimMechanics可以在simulink下直接使用的模块集,可以将表示各种机构 的模块在普通simulink窗口中绘制出来,并通过它自己提供的检测与驱动模块和 普通simulink模块连接起来,获得整个系统的仿真结果。SimMechanics必须在 MATLAB 6.1及以上版本的支持下运行,其动画显示还需要虚拟现实工具箱的 支持。
41
工程软件训练
2) 网络输入模块库(Net Input Functions)
用鼠标的左键双击Net Input Functions模块库的图标,便可打开如图所示的网 络输入模块库窗口。
网络输入模块库中的每一个模块都能够接受任意数目的加权输入向量、加权的 层输出向量,以及偏值向量,并且返回一个网络输入向量。
上面的这些模块需要的权值向量必须定义为列向量。这是因为Simulink中的信号 可以为列向量,但是不能为矩阵或者行向量。
43
工程软件训练
4)控制系统模块库(Control Systems) 用鼠标的左键双击Control Systems模块库的图标,便可打开如图所示的控
制系统模块库窗口。神经网络的控制系统模块库中包含三个控制器和一个示波器。
在Neural Network Blockset模块集中包含了四个模块库,用鼠标的左键双击
。 各个模块库的图标,便可打开相应的模块库
了解MATLABSimulink进行系统建模与仿真
了解MATLABSimulink进行系统建模与仿真MATLAB Simulink是一款功能强大的工具,专门用于系统建模和仿真。
它可以帮助工程师和科研人员设计复杂的系统、开展仿真分析,并支持快速原型设计和自动生成可执行代码。
本文将详细介绍MATLAB Simulink的基本概念、系统建模与仿真流程,以及其在各个领域中的应用。
第一章:MATLAB Simulink简介MATLAB Simulink是MathWorks公司开发的一款图形化建模和仿真环境。
它包含了一系列模块,可以通过简单地拖拽和连接来模拟和分析复杂的系统。
Simulink中的模块代表不同的系统组件,例如传感器、执行器、控制器等。
用户可以通过连接这些模块来构建整个系统,并通过仿真运行模型以评估系统的性能。
第二章:系统建模基础系统建模是使用Simulink进行系统设计的关键步骤。
在建模之前,需要明确系统的输入、输出和所涉及的物理量。
Simulink提供了广泛的模块库,包括数学运算、信号处理、控制等,这些模块可以方便地应用到系统中。
用户可以选择合适的模块,并通过线连接它们来形成系统结构。
此外,Simulink还支持用户自定义模块,以满足特定的需求。
第三章:MATLAB与Simulink的联合应用MATLAB和Simulink是密切相关的工具,它们可以互相配合使用。
MATLAB提供了强大的数学计算和数据分析功能,可以用于生成仿真所需的输入信号,以及分析仿真结果。
同时,Simulink也可以调用MATLAB代码,用户可以在模型中插入MATLAB函数块,以实现更复杂的计算和控制逻辑。
第四章:系统仿真与验证系统仿真是利用Simulink来验证系统设计的重要步骤。
通过设置仿真参数和初始条件,用户可以运行模型来模拟系统的行为。
仿真可以包括不同的输入场景和工况,以验证系统在不同条件下的性能和稳定性。
Simulink提供了丰富的仿真分析工具,例如波形显示器、频谱分析等,可以帮助用户分析仿真结果并进行必要的调整。
MATLAB与Simulink基础资料
绘图:
三维图 形
MATLAB绘图
»x=-4:0.1:4; »y=x; »[x,y]=meshgrid(x,y); »z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ... - 1/3*exp(-(x+1).^2 - y.^2); »mesh(x,y,z)
a)c1 =1时
1.6
c1=2
c2=1
1.4
c3=0.5
1.2
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
time/s
(b) 不同的
c1
图3-15 磁滞回环系统的阶跃响应
SIMULINK基础
系统分析
output
4.5
幅值为1
4
幅值为3
3.5
3
2.5
2
1.5
1
0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 time/s
>>p=[1 -12 0 25 116] p= 1 -12 0 25 116 >>r=roots(p) r= 11.74728287082272 2.70282074384101 -1.22505180733187 + 1.46720800872890i -1.22505180733187 - 1.46720800872890i >>pp=poly(r) pp = 1.0000 -12.0000 0 25.0000 116.0000
Simulink基础
Simulink基础教程Simulink是MATLAB系统建模与仿真的图形扩展。
simulink的主要有优点之一,就是能够建立不能用转换方程表示的非线性系统的模型。
simulink的另外一个有点就是能够设定初始值。
当建立转换方程的时候,初始值设定为零。
目录▪启动simulink▪模型文件▪基本元素▪简单例子▪运行simulink▪建立系统在simulink里面,系统是绘制在屏幕上的方块图。
这其中有很多可用的功能方块,比如如传递函数,求和结点,还有一些虚拟的输入跟输出的方块,比如函数生成器或是示波器。
simulink是跟matlab相关联的,数据可以在程序之间相互传递,在本教程中,我们将会把simulink应用在MATLAB教程的建模实例中,并对模型进行仿真,Simulink的支持在Unix,Macintosh和Windows环境下运行,并包含在学生版MATLAB中供个人电脑使用。
对于Simulink的更多信息,请访问该页面顶部的Mathworks公司链接。
这些教程背后的想法是,你可以在一个窗口中运行的Simulink同时在另一个窗口中查看它们。
系统模型文件可以从教程下载,并在Simulink中打开。
您可以对这些系统进行建模和扩展,同时学习使用Simulink进行系统建模,控制和仿真。
不要将教程中的窗口图标和菜单跟实际的Simulink的窗口弄混。
大多数图像在这些教程都不能使用–他们只是显示你应该在你自己的Simulink窗口看到的。
所有Simulink的操作应该在你的Simulink窗口来完成。
启动simulink启动simulink在MATLAB中启动simulink遵循如下步骤:Simulink你也可以点击MATLAB最上面的图标启动simulink当它启动之后,你能看到下面一个带Simulink Library Browser标题的窗口模型文件在simulink里面,一个模型是由许多模块组成的,这些模块和在一起组成一个系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
>>p=[1 -12 0 25 116] p= 1 -12 0 25 116 >>r=roots(p) r= 11.74728287082272 2.70282074384101 -1.22505180733187 + 1.46720800872890i
-1.22505180733187 - 1.46720800872890i
控制系统数字仿真与CAD
——MATLAB与SIMULINK基础
张晓华
教授 /博士生导师
E-mail:xh_zhang@
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
主要内容
MATLAB运用与简单运算 MATLAB绘图 数据处理 流程控制 控制工具箱
yp(1)=x(2);
yp(2)=2*(1-x(1)^2)*x(2)-x(1); 在命令行求解这个方程: [t,x]=ode45(‘vdp’,0,20,[1 ;1]); plot(t,x(:,1),t,x(:,2)); %画出x和dx/dt的时域波形 电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
Lab of PEED
Bring Ideas Together
控制工具箱
模型转换和降阶:
[num,den]=ss2tf(a,b,c,d,iu) [ad,bd]=c2d(a,b,Ts) 例3-1 绘制
» num=[10];
G (s) 10 s 1 . 2 s 10
2
[z,p,k]=ss2zp(a,b,c,d,iu) [a,b,Ts]=c2d (ad,bd) 的nyquist图和bode图。
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
主要内容
MATLAB运用与简单运算 MATLAB绘图 数据处理 流程控制 控制工具箱
SIMULINK基础
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
数据处理 矩阵分解:
绘图:
三维图 形
»x=-4:0.1:4; »y=x; »[x,y]=meshgrid(x,y); »z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ... - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ... - 1/3*exp(-(x+1).^2 - y.^2); »mesh(x,y,z)
%令u=2
主要内容
MATLAB运用与简单运算 MATLAB绘图 数据处理 流程控制 控制工具箱
SIMULINK基础
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together流程控制 NhomakorabeaFor循环
for x=array
command end if expression1 commands1 ifelse expression2 commands2 -----else commands end
解 MATLAB编程如下:
» den=[1,1.2,10];
» w=logspace(-2,2,1000); »nyquist(num,den,w) » grid » bode(num,den,w) » grid
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
控制工具箱
Lab of PEED
Bring Ideas Together
控制工具箱
系统建模:
状态空间 传递函数
X AX BU Y CX DU
H (s) N1s W1 s
n n 1 n w 1
N2s W2s
nn 2 nw 2
N nn W nw
20世纪70年代,Clever Moler等编写了MATLAB (MATrix LABoratory)
20世纪80年代,John Little与Clever Moler 建立Math Works公司 在MATLAB基础上加入了SIMULINK 等丰富实用的工具箱
电力电子与电力传动实验室
Lab of PEED
»title('First Figure Example')
»xlabel('Time(s)') »ylabel('Value(v)')
»grid on
»gtext(‘sinx’) »legend(‘sinx’)
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB绘图
Nyquist Diagram 3 0 dB -2 dB 2 2 dB 1 4 dB 6 dB -6 dB 10 dB 20 dB 0 -10 dB -20 dB -4 dB
Imaginary Axis
-1
-2
-3 -1.5
-1
-0.5
0 Real Axis
0.5
1
1.5
2
Bode Diagram 20
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB运用与简单运算
矩阵操作:
>>a=[1 2 6 10 3 7 11 4 8 12
下标操作
5 9
13
14
15
16]
>>a(2:3,3:4) ans =
7
11
8
12
电力电子与电力传动实验室
Lab of PEED
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
while循环
for expression
If-else-end
command
end
主要内容
MATLAB运用与简单运算 MATLAB绘图 数据处理 流程控制 控制工具箱
SIMULINK基础
电力电子与电力传动实验室
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB运用与简单运算
帮助功能:
1.脚本文件——M-文件 将部分程序或运算写成M文件使得数据处理方便快捷
2.在线帮助 灵活的使用help、lookfor、find的帮助
命令能给MATLAB使用带来很大帮助。
SIMULINK基础
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB运用与简单运算
MATLAB是美国Math Works公司的软件产品,是一个高级的 数值分析、处理与计算软件;SIMULINK是基于模型化图形 组态的动态系统仿真软件,是MATLAB的一个工具箱
数据处理
常微分方程数值解:
[t, x]=ode23(‘xfun’, [t0, tf] x0, tol, trace) [t, x]=ode23(‘xfun’, [t0, tf] x0, tol, trace)
d x dt
2 2
(1 x )
2
dx dt
x 0
function yp=vdp(t,x)
特征值分解
[v,d]=eig(a) 三角分解
[v,d]=eig(a,b)
[l, u, p]=lu(a)
奇异分解
[u,s,v]=svd(a)
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
数据处理
多项式处理:
多项式表示
x 12 x 0 x 25 x 116
Bring Ideas Together
主要内容
MATLAB运用与简单运算 MATLAB绘图 数据处理 流程控制 控制工具箱
SIMULINK基础
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB绘图
绘图:
»x=0:0.01:pi*3;
二维图形
»y=sin(x); »plot(x,y)
3. 超文本帮助
4. MATLAB的pdf说明书
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB运用与简单运算
矩阵运算:
简单矩阵输入:
1.键盘输入
——注意行、列的生成
2.语句生成 from:step:to 、 linespace、logspace
Magnitude (dB) Phase (deg)
0
-20
-40
-60 0 -45 -90 -135 -180 10
-2
10
-1
10
0
10
1
10
2
Frequency (rad/sec)
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
主要内容
MATLAB运用与简单运算 MATLAB绘图 数据处理 流程控制 控制工具箱
a^2=
7 10 15 22
1
9
4
16
电力电子与电力传动实验室
Lab of PEED
Bring Ideas Together
MATLAB运用与简单运算 矩阵运算: 矩阵运算: 关系运算