第5章 参数估计与假设检验

合集下载

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。

点估计是用估计量的某个取值直接作为总体参数的估计值。

点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

统计学家在某种程度上确信这个区间会包含真正的总体参数。

在区间估计中置信度越高,置信区间越大。

置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。

置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。

(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。

(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。

(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。

(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。

(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。

(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。

假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

参数估计和假设检验

参数估计和假设检验

假设检验
实际中的假设检验问题
假设检验: 事先作出关于总体参数、分布形式、
相互关系等的命题(假设),然后通过样本信息 来判断该命题是否成立(检验) 。



产品自动生产线工作是否正常? 某种新生产方法是否会降低产品成本? 治疗某疾病的新药是否比旧药疗效更高? 厂商声称产品质量符合标准,是否可信?





两个正态总体均值差的检验(t检验) 两个正态总体方差未知但等方差时,比较两正态总体样 本均值的假设检验 函数 ttest2 格式 [h,sig,ci]=ttest2(X,Y) %X,Y为两个正态总体的样本,显 著性水平为0.05 [h,sig,ci]=ttest2(X,Y,alpha) %alpha为显著性水平 [h,sig,ci]=ttest2(X,Y,alpha,tail) %sig为当原假设为真时得 到观察值的概率,当sig为小概率时则对原假设提出质疑 ,ci为真正均值μ的1-alpha置信区间。
例:从某厂生产的滚珠中随机抽取10个,测得滚珠的
直径(单位:mm)如下 15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87 若滚珠直径满服从正态分布N(μ,σ2),其中μ,σ未知。试 求之并计算置信水平为90%的置信区间
x = [15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87]; % 定义样本观测值向量 % 调用normfit函数求正态总体参数的最大似然估计和置信区间 % 返回总体均值的最大似然估计muhat和90%置信区间muci, % 还返回总体标准差的最大似然估计sigmahat和90%置信区间sigmaci [muhat,sigmahat,muci,sigmaci] = normfit(x,0.1)

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。

总体参数是指总体的其中一种性质,比如总体均值、总体方差等。

样本数据是从总体中随机抽取的一部分数据,用来代表总体。

参数估计的目标是使用样本数据来估计总体参数的值。

常见的参数估计方法有点估计和区间估计。

(1)点估计点估计是通过一个统计量来估计总体参数的值。

常见的点估计方法有样本均值、样本方差等。

点估计的特点是简单、直观,但是估计值通常是不准确的。

这是因为样本的随机性导致样本统计量有一定的误差。

因此,点估计通常会伴随着误差界限,即估计值的置信区间。

(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。

常见的区间估计方法有置信区间和可信区间。

置信区间是指当重复抽样时,包含真实总体参数的概率。

置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

可信区间是指在一次抽样中,包含真实总体参数的概率。

可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。

例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。

2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。

在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。

在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。

然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。

假设检验包含两种错误,即第一类错误和第二类错误。

第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。

第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。

常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。

参数估计与假设检验

参数估计与假设检验

参数估计与假设检验参数估计是指利用样本数据对总体参数进行估计的过程。

在统计学中,总体参数通常是我们关心的感兴趣的数量,比如总体均值、总体方差等。

通过对样本进行抽样调查,我们可以得到样本数据,然后利用样本数据来估计总体参数的值。

常用的参数估计方法有点估计和区间估计。

点估计是通过一个统计量来估计总体参数的值。

例如,样本均值可以作为总体均值的点估计值,样本方差可以作为总体方差的点估计值。

点估计通常使用最大似然估计或最小二乘估计等方法来求解。

区间估计是通过一个区间来估计总体参数的值。

区间估计提供了一个参数可能取值的范围。

例如,我们可以计算一个置信区间,表示总体参数在一定置信水平下落在该区间内的概率。

常用的区间估计方法有正态分布的置信区间和t分布的置信区间等。

假设检验是用于检验总体参数的假设的方法。

假设检验可以帮助我们判断总体参数是否等于一些特定值,或者两个总体参数是否相等。

假设检验通常需要先提出一个原假设和一个备择假设。

原假设是我们要进行检验的假设,而备择假设则是对原假设的补充或者扩展。

通过计算样本数据的统计量,并结合给定的显著性水平,我们可以得到一个检验统计量的观察值。

根据观察值和显著性水平的关系,我们可以判断是否拒绝原假设。

假设检验的步骤可以分为以下几个部分:1.提出假设:明确原假设和备择假设。

2.选择显著性水平:设定拒绝原假设的标准。

3.计算检验统计量:根据样本数据计算出统计量的观察值。

4.求取拒绝域和接受域:结合显著性水平和检验统计量的分布,确定拒绝原假设的条件。

5.得出结论:通过比较检验统计量的观察值和拒绝域的关系,判断是否拒绝原假设。

假设检验是统计学中非常重要的一部分,它可以帮助我们对实际问题进行科学的推断和决策。

在实际应用中,我们常常使用假设检验来判断广告效果、药物疗效、投资收益等方面的问题。

通过参数估计和假设检验,我们可以从样本数据中获取关于总体参数的信息,并对其进行推断和判断。

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验第五章参数估计和假设检验本章重点1、抽样误差的概率表述;2、区间估计的基本原理;3、小样本下的总体参数估计方法;4、样本容量的确定方法;本章难点1、一般正态分布 标准正态分布;2、t分布;3、区间估计的原理;4、分层抽样、整群抽样中总方差的分解。

统计推断:利用样本统计量对总体某些性质或数量特征进行推断。

两类问题:参数估计和假设检验基本特点:(1)以随机样本为基础;(2)以分布理论为依据;(3)推断的只是一种可能的结果;(4)是归纳推理和演绎推理的结合。

本章主要内容:阐述常用的几种参数估计方法。

第一节参数估计一、参数估计的基本原理两种估计方法点估计 区间估计1.点估计:以样本指标直接估计总体参数。

点估计优良性评价准则(1)无偏性。

估计量 的数学期望等于总体参数,即 , 该估计量称为无偏估计。

(2)有效性。

当 为 的无偏估计时, 方差 越小, 无偏估计越有效。

(3)一致性。

对于无限总体,如果对任意 ,有,则称 是 的一致估计。

(4)充分性。

一个估计量如能完全地包含未知参数信息,即为 充分估计量。

2.点估计的缺点:不能反映估计的误差和精确程度区间估计:利用样本统计量和抽样分布估计总体参数的可能区间【例1】CJW 公司是一家专营体育设备和附件的公司,为了监控公司的服务质量, CJW 公司每月都要随即的抽取一个顾客样本进行调查以了解顾客的满意分数。

根据以往的调查,满意分数的标准差稳定在20分左右。

最近一次对100名顾客的抽样显示,满意分数的样本均值为82分,试建立总体满意分数的区间。

抽样误差抽样误差:一个无偏估计与其对应的总体参数之差的绝对值。

抽样误差 = (实际未知)要进行区间估计,关键是将抽样误差E 求解。

若 E 已知,则区间可表示为:区间估计:估计未知参数所在的可能的区间。

区间估计优良性评价要求θθ⇒ˆθˆθθ=ˆE θˆ0>εθˆ2)ˆ(θθ-E0)|ˆ(|=≥-∞→εθθn n P Lim n θˆθθαθθθ-=1)ˆˆ(UL P <<[]E x x +-,E是抽样误差的组成部分,而由于全面调查所形成的层间方差不是抽样误差的组成部分。

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。

参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。

下面将详细介绍这两种方法以及它们的应用。

1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。

在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。

参数估计的目标是利用样本数据去估计总体参数的值。

最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。

-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。

置信区间的计算方法通常是基于样本统计量的分布进行计算。

在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。

-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。

-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。

2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。

在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。

假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。

原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。

-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。

-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。

-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。

在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。

常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。

参数估计与假设检验的关系

参数估计与假设检验的关系

1-2

参数估计与假设检验的区别
2、区间估计通常求得的是以样本估计值为中心的双侧置 信区间。 假设检验不仅有双侧检验也有单侧检验。 3、区间估计立足于大概率1-α,通常以较大的把握程度( 可信度)1-α去估 计总体参数的置信区间。 假设检验是立 足于小概率α ,通常以很小的显著水平去检验对总体参数 的先验假设是否成立。
双侧检验!
1-7

用置信区间进行检验
(例题分析)
H0: = 1000
置信区间为
H1: 1000
= 0.05
n = 49
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
x z 2
n
,
x
z
2
n
9911.96
50 ,991 1.96 16
50 16
966.5,1015.5
3. 右侧检验:求出单边置信上限
X z
n
或X
t
S n
4. 若总体的假设值0大于单边置信上限,拒绝H0
1-6

用置信区间进行检验
(例题分析)
【例】一种袋装食品每包的标准重量应为
1000克。现从生产的一批产品中随机抽取16 袋,测得其平均重量为991克。已知这种产 品重量服从标准差为50克的正态分布。试确 定这批产品的包装重量是否合格?( = 0.05)
参数估计与假设检验的区别
1、参数估计是根据样本资料估计总体参数的真值,假设检验是根 据样本资料来检验对总体参数的先验假设是否成立。 例如,通过 随机抽取的样本对某地区居民的平均收入进行推断:
参数估计:要求以一定的概率估计总体平均收入 假设检验:要求以一定的概率判断总体平均收入是否达到某

第5章 参数估计

第5章 参数估计

猎物射击,结果该猎物身中一弹,你认为谁打中的可能
性最大? 根据经验而断:老猎人打中猎物的可能性最大. 极大似然估计法的思想就是对固定的样本值,选
择待估参数的估计值使“样本取样本值”[离散型]或 “样
本取值落在样本值附近”[连续型] 的概率最大。
(2、极大似然估计的求法
单参数情形
根据总体分 布律写出似 然函数:换x 为xi
来得到待估参数θ 的极大似然估计值(驻点);
③ 、必要时,参照极大似然估计值写出极大似然
估计量.
【例6】求服从二项分布B(m,p)的总体X未知参数 p的极大似然估计量。 〖解〗单参数,离散型。 因为总体 X
~ B(m, p),
x m x
其分布律为
m x
f ( x; p) C p (1 p)
下面分离散型与连续型总体来讨论. 设离散型总体X的分布律
P{X x} p( x; )
( )
形式已知,θ 为待估参数. X 1 , X 2 ,..., X n 为来自总体X的
样本, x1 , x2 ,..., xn 为其样本值,则 X 1 , X 2 ,..., X n 的联合分
布律为:
用其观察值
ˆ( X , X ,..., X ), 1 2 n
——θ 的估计量
ˆ( x , x ,..., x ) 1 2 n
——θ 的估计值
来估计未知参数θ .
今后,不再区分估计量和估计值而统称为θ 的估计,
ˆ . 均记为
二、构造估计量的两种方法
1、矩估计法 理论根据:样本矩(的连续函数)依概率收敛于总
因为X~N(μ ,σ 2),所以X总体的概率密度为
2 1 (x ) 2 f ( x; , ) exp ( R, 0) 2 2 2

参数估计与假设检验

参数估计与假设检验

参数估计与假设检验参数估计和假设检验是统计学中常用的两种方法,用于对总体和样本进行推断和判断。

本文将介绍参数估计和假设检验的基本概念、原理以及在实际应用中的重要性。

一、参数估计参数估计是利用样本数据对总体参数进行估计的方法。

在统计学中,总体是指我们要研究的对象,而参数是总体的特征或者性质。

参数估计的目的就是根据样本数据推断总体参数。

1.1 点估计点估计是一种基本的参数估计方法,它通过计算样本数据的统计量,得到总体参数的估计值。

常见的点估计方法包括样本均值估计总体均值、样本方差估计总体方差等。

点估计的估计值通常通过样本的统计量来计算,如样本平均值、样本标准差等。

1.2 区间估计区间估计是参数估计的一种更加准确的方法。

它不仅给出了总体参数的一个具体估计值,还给出了一个置信区间,表示在一定置信水平下总体参数的取值范围。

常见的区间估计方法有置信区间估计总体均值、置信区间估计总体比例等。

二、假设检验假设检验是通过对样本数据的分析与总体假设进行比较,判断总体假设是否成立的统计方法。

它是基于概率理论的方法,通过计算样本数据与总体假设之间的差异,来得出结论。

2.1 假设检验的基本步骤(1)建立原假设(H0)和备择假设(H1);(2)选择合适的统计量来作为检验的依据;(3)确定显著性水平(α);(4)计算检验统计量的观察值;(5)根据观察值和显著性水平进行判断。

2.2 类型Ⅰ错误和类型Ⅱ错误假设检验中存在两种错误类型,分别是类型Ⅰ错误和类型Ⅱ错误。

类型Ⅰ错误,也称为显著性水平α,指的是原假设为真时被错误地拒绝原假设的概率。

通常将α设定为0.05或0.01,表示在这个显著性水平下所能容忍的错误概率。

类型Ⅱ错误,指的是原假设为假时,接受原假设的概率。

类型Ⅱ错误的概率称为β。

当研究者希望尽可能避免犯类型Ⅱ错误时,需要增加样本容量以提高检验的敏感性。

三、参数估计与假设检验的应用参数估计和假设检验在实际应用中具有广泛的应用价值,可以帮助研究者进行科学研究和数据分析。

第5章概率论与假设检验简介

第5章概率论与假设检验简介
任意分 布总体
样本均 值分布
σ σx = n
µx = µ
2011-4-27
X
23
2.样本方差的分布
Statistics Statistics
设总体~ 的样本, 设总体 ~ N(µ,σ2 ), 取容量 的样本 , 则样 , 取容量n的样本 本方差 s2
χ2(n – 1):自由度为 :自由度为(n-1)的卡方分布 的卡方分布
1. 2.
密度函数f(x)曲线下的面积等于 曲线下的面积等于1 密度函数 曲线下的面积等于 分布函数是f(x) 下小于 x0 的面积 分布函数是
f(x)
F ( x0 )
x0
2011-4-27
x
8
期望和方差
Statistics Statistics
2011-4-27
E( X ) = ∫ xf (x)dx = µ
2011-4-27
12
正态分布标准化
Statistics Statistics
1. 标 准 化 线 性变换
2.
标准正态 分布的概 率密度和 分布函数
2011-4-27
13
一般正态分布
标准正态分布
σ
σ =1
µ
x
µ=0
Z
Excel:正态分布函数
Statistics Statistics
NORMDIST (x, mean, std, cumulative) Cumulative=0:返回指定平均值和标准差的正态分 : 布函数的概率密度 Cumulative=1:返回累积概率密度(分布函数值) :返回累积概率密度(分布函数值) NORMINV (prob, mean, std) NORMDIST (x, mean, std, 1)的反函数 的反函数 NORMSDIST(z) 返回标准正态分布函数的累积概率P(X ≤ z ) 返回标准正态分布函数的累积概率 NORMSINV(probability) NORMSDIST(z)的反函数 的反函数

统计学中的参数估计与假设检验

统计学中的参数估计与假设检验

统计学中的参数估计与假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。

参数估计和假设检验是统计学中两个重要的概念和方法,用于推断总体参数和判断假设是否成立。

本文将详细介绍参数估计与假设检验的基本原理和应用。

一、参数估计参数估计是通过样本数据推断总体的未知参数。

在统计学中,总体是指研究对象的全体,而样本是从总体中抽取的一部分。

参数是总体的特征指标,例如均值、方差、比例等。

参数估计旨在通过样本数据对总体参数进行估计,并给出估计的精度。

参数估计分为点估计和区间估计两种方法。

点估计是通过样本数据计算得到的单个数字,用来估计总体参数的具体数值。

常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。

区间估计是通过样本数据计算得到的一个范围,该范围包含总体参数真值的概率较高。

置信区间是区间估计的一种形式,它可以用来描述估计值的不确定性。

二、假设检验假设检验是用于检验研究问题的特定假设是否成立的一种统计推断方法。

在假设检验中,我们提出一个原假设和一个备择假设,并根据样本数据对两个假设进行比较,进而判断原假设是否应该被拒绝。

原假设通常表示一种无关,即不发生预期效应或差异。

备择假设则表示研究者所期望的效应或差异。

在进行假设检验时,我们首先选择一个适当的统计检验方法,例如t检验、F检验或卡方检验等。

然后,计算出样本数据的检验统计量,并根据相关的分布理论和显著性水平进行推论。

最后,比较检验统计量与临界值,以决定是否拒绝原假设。

三、参数估计与假设检验的应用参数估计和假设检验在实际问题中有广泛的应用。

以医学研究为例,研究人员可能希望通过抽样来估计某种药物的有效剂量,并对药效进行假设检验。

在市场调研中,我们可以使用参数估计和假设检验来推断总体的需求曲线和做出市场预测。

在质量控制中,我们可以利用参数估计和假设检验来判断产品是否符合标准。

四、总结参数估计和假设检验是统计学中重要的方法,可以通过样本数据来推断总体参数和判断假设是否成立。

第-五-章--假设检验.

第-五-章--假设检验.
H0
H1 0
双侧检验与单侧检验
(假设的形式)
假设 原假设
单侧检验 双侧检验
左侧检验 右侧检验
H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
2、选择适当的统计量,并确定 其分布形式
1.Z
x 0
n
3.t
x 0
s
n
2.Z
x s
地加以拒绝的风险为0.05。
已知:0 125,0 150, n10030,x 120,0 0.05
?
证明: 45
H0 1200(0)
解 :H 0: 12 ,H 5 1:0 125
由 0 .0知 5 Z 1 1 .645
而 Zx 0 1125 00 1025 03.33 1.645
1、二者互为消长。
PZZ H0为真 PZZ H1为真
2、在检验中,对和 的选 择取决于犯两类错误所要付出的
代价。通常的做法是先确定。
3、若要同时减少和,或
给定α而使β减少,就必须增大样 本容量n。
4、 β的大小不仅与临界值有关, 而且还与原假设的参数值 0 与总体参
数的真实值 之间的差异大小有关。
已知: 0 500,n 50 30 x 510,s 8, 5%
?
求: 500
解 :H 0:5,0 H 10 :500
由 0.0知 5Z1.645
而Z x 0 510500
s
8
n
50
8.751.645 接受 H1,拒绝 H0
即在现有的显著性水平下,
可以认为装得太满.
三、正态总体、方差未知、 小样本
已知 :X~N100,?0,0 1000

参数估计和假设检验的基本原理

参数估计和假设检验的基本原理

参数估计和假设检验的基本原理参数估计和假设检验是统计学中两个重要的概念和方法,用于从样本数据中得出总体参数的估计和对统计假设进行验证。

本文将介绍参数估计和假设检验的基本原理,以及它们在统计学中的应用。

一、参数估计的基本原理参数估计是用样本数据对总体参数进行估计的方法。

在统计学中,样本是从总体中抽取的一部分数据,总体是我们研究的对象。

参数是总体的数值特征,如总体均值、比例、方差等。

参数估计的基本原理是通过样本数据来推断总体参数的取值范围。

常用的参数估计方法有点估计和区间估计。

1. 点估计点估计是利用样本数据得到一个点作为总体参数的估计值。

点估计的基本原理是从样本中选取一个统计量作为总体参数的估计值。

常见的点估计方法有样本均值、样本比例以及最大似然估计等。

2. 区间估计区间估计是通过样本数据得到一个包含总体参数真值的区间。

区间估计的基本原理是根据样本数据计算出一个区间,使得总体参数落在这个区间内的概率达到预先指定的置信水平。

常见的区间估计方法有置信区间和预测区间等。

二、假设检验的基本原理假设检验是用于验证统计假设的方法。

统计假设是对总体参数或总体分布的陈述或假定,通常包括原假设和备择假设。

假设检验的基本原理是根据样本数据来判断原假设是否能够拒绝。

假设检验通常包括以下步骤:1. 建立假设首先,我们需要明确原假设和备择假设。

原假设通常是我们要进行验证的假设,备择假设则是对原假设的否定或补充。

2. 选择检验统计量接下来,我们选择一个合适的检验统计量,它能够在原假设成立时与备择假设有所区别。

3. 设置显著水平显著水平是在假设检验中预先设定的,用于判断拒绝原假设的临界值。

常见的显著水平有0.05和0.01。

4. 计算统计量的值根据样本数据计算检验统计量的值。

5. 判断拒绝域根据显著水平和检验统计量的分布,确定一个拒绝域。

如果检验统计量的值落在拒绝域内,就拒绝原假设;否则,接受原假设。

6. 得出结论根据拒绝或接受原假设的结果,得出关于总体的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


20
H0
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.4 单样本T检验
5.4.1 基本概念及统计原理
2.单样本T检验的检验统计量
单样本T检验的前提是总体服从正态分布 N ( , 2 ) ,其中 为总体均 2 值, 为总体方差。如果样本容量为n,样本均值为 X,则 X 仍服从正态 2 。 分布,即: X ~ N ( , )
在零假设成立的条件下,均值检验使用t统计量,构造的t统计量 为:
t X S/ n
n
其中, 用 0 代入,t统计量服从自由度为n-1的t分布,S为样本标 准差。
在给定原假设的前提下,SPSS将检验值代入t统计量,得到检验 统计量观测值,以及根据T分布的分布函数计算出的概率P值。
21
H(0 , 2 ) N
5
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.1 统计推断与假设检验
5.1.3 参数估计SPSS实例分析
【例5-1】 从一个正态总体中随机抽取容量为8的样本,各 样本值分别为10,8,12,15,6,13,5,11;求总体均值在 95%的置信区间。 分析:这是一个求总体均值的区间估计问题,进行总体均值 的区间估计可以采用探索分析或单样本T检验,本例中采用探 索分析,具体分析步骤同例4-3。
5.1.2 区间估计简介
因为点估计直接用样本估计值作为总体参数的估 计值,没有提供关于估计精度的任何信息,存在抽 样标准误差,故提出了未知参数的区间估计法。 给出两个数,指出总体参数以一定概率位于两 数所确定的区间内,这种估计叫做参数的区间估计 。区间估计是在点估计的基础上,给出总体参数估 计的一个范围,所以区间估计相对于点估计更加精 确,要优于点估计。
8
H0
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.2 假设检验
5.2.1 基本概念及统计原理
2.显著性水平与置信水平
显著性水平:在作假设检验时,我们犯第一类错误的最大概 率称为检验的显著性水平。这个概率常记为,通常抽样前就 指定好,这样得到的结果才不会影响我们的选择。 在实际问题中,显著性水平可以有多种选择,但最为普 通的是0.05或0.01。例如,如果设计一个决策法则选择的显 著性水平是0.05(5%),那么在100次中可能有5次机会使我 们拒绝本该接受的假设。也就是说,我们大约有95%的把握 作出正确的决策。此时,我们说拒绝假设的显著性水平为 0.05,即犯拒绝本应接受的假设这类错误的概率是0.05。 置信水平:1- 为置信度或置信水平;
【例5-2】 某生产食盐的生产线,其生产的袋装食盐的标准质 量为500 g,现随机抽取10袋,其质量分别为495 g,502 g, 510 g,497 g,506 g,498 g,503 g,492 g,504 g,501 g 。假设数据呈正态分布,请检验生产线的工作情况。
分析:这是一个典型的比较样本均值和总体均值的T检验问题 ; 第1步 数据组织:首先建立SPSS数据文件,只需建立一个变量 “Weight”,录入相应的数据即可,建立的数据文件存入文件 data5-1.sav中。
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.4 单样本T检验
5.4.1 基本概念及统计原理
3.单样本T检验的步骤
在给定样本来自正态总体的假设下,单样本T检验作为 假设检验的一种方法,其基本步骤与假设检验的步骤是一样 的。
22
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.4 单样本T检验 5.4.2 单样本T检验SPSS实例分析
电子工业出版社
5.2 假设检验
5.2.3 假设检验的一般步骤
第5步 在给定显著性水平条件下,做出统计推断结果。
这里的显著性水平指的是当假设正确时被拒绝的概率 ,即弃真概率,一般取0.01或0.05。当检验统计量的概率p 值小于显著性水平时,则认为此时拒绝零假设而犯弃真错 误的概率小于显著性水平,即低于预先给定的水平,也就 是说犯错误的概率小到我们能容忍的范围,这时可以拒绝 零假设;反之,如果检验统计量的概率p值大于显著性水平 ,如果拒绝零假设,犯弃真错误的概率大于预先给定的容 忍水平,这时不应该拒绝零假设。
1.统计假设 原假设:被检验的假设,通过检验可能被接受,也可能被否定
;在很多情况下,我们给出一个统计假设仅仅是为了拒绝它。例如 ,如果我们要判断给定的一枚硬币是否均匀,则假设硬币是均匀的 (即p=0.5,其中p是正面出现的概率);类似地,如果我们要判断 一种方法是否优于其他的方法,则假设两种方法之间没有差异。这 样的假设通常称为零假设或原假设,记为 。 H0 备择假设:与原假设对应的假设,只有在原假设被否定后才可接 受的假设;例如,如果零假设是 p 0.5 ,则备择假设是 p 0.5 。 备择假设记为 H1 。 拒绝域、临界点:当检验统计量取某个区域中的值时,拒绝原假 设,则称该取值区域为拒绝域,称拒绝域的边界点为临界点。
18
SPSS 19(中文版)统计分析实用教程
电子工业出版社
主要内容
5.1 参数估计 5.2 假设检验 5.3 参数检验与非参数检验 5.4 单样本T检验 5.5 独立样本T检验 5.6配对样板T检验 5.7单样本的非参数检验
19
H0
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.4 单样本T检验
参数检验的总体分布形式是已知的或假定的,只是一些 参数的取值或范围未知,分析的主要目的是估计参数的取值 范围,或对其进行某种统计检验。如正态总体的均值是否与 某个值存在显著差异,两个总体的均值是否有显著差异等。 主要包括: ① 单样本T检验:检验单个变量的均值与假Байду номын сангаас检验值之间是 否存在差异; ② 独立样本T检验:检验两组来自独立总体的样本,其独立 总体的均值或中心位置是否一样;
5.4.1 基本概念及统计原理
1.单样本T检验的概念
单样本T检验利用来自某总体的样本数据,推断该总体的均值与 指定的检验值之间是否存在显著性差异,它是对总体均值的假设检 验。
为此,给出检验均值 0 ,原假设: = 0 ,其中 为总体均值 ,即认为总体均值与检验值 0 之间无显著性差异。 。 例如,从新生的入学成绩的抽样数据推断平均成绩是否为75分 ;在人口普查中,某地区职工今年的平均收入是否和往年的平均收 入有显著差异。
5.单侧检验与双侧检验
双侧检验:只强调差异而不强调方向性的检验叫双侧检验。 单侧检验:强调某一方向的检验叫单侧检验。
10
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.2 假设检验
5.2.2 小概率事件原理
在概率论中我们把发生概率小到接近于0的事件称为小概 率事件(即在大量重复试验中出现的频率非常低)。 在统计学上,把小概率事件看成在一次特定的抽样中不 可能发生的事件,称为“小概率事件实际不可能原理”。这 是统计学上进行假设检验(显著性检验)的基本依据。根据 这一原理,若某事件在理论上被认为在原假设成立的情况下 是个小概率事件,它不会出现,而在实际中出现了,我们就 推翻原来的假设,认为原假设不成立,从而接受备择假设。
5.1.1 点估计简介
1.基本概念
点估计用样本统计量的值直接作为总体参数的估计值。 如用样本均值直接作为总体均值的估计值,用样本方差直接 作为总体方差的估计值等。
2.常用的点估计方法
(1)矩估计法 (2)极大似然估计法 (3)稳健估计法
4
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.1 统计推断与假设检验
0
第2步 选择检验统计量; 在统计推断中,总是通过构造样本的统计量并计算统 计量的概率值进行推断,一般构造的统计量应服从或近似服从 常用的已知分布,例如均值检验中最常用的t分布和F分布等。
第3步 规定显著性水平;
12
H0
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.2 假设检验
5.2.3 假设检验的一般步骤
与参数检验的原理相同,非参数检验过程也是先根据问 题提出原假设,然后利用统计学原理构造出适当的统计量, 最后利用样本数据计算统计量的概率P值,与显著性水平进 行比较,得出拒绝或者接受原假设的结论。 非参数检验包括单样本(O)、独立样本(I)、相关样 本(R)的非参数检验。
17
SPSS 19(中文版)统计分析实用教程
第4步 计算检验统计量的观测值及其发生的概率值; 在给定零假设前提下,计算统计量的观测值和相应概率p 值。概率p值就是在零假设 成立时检验统计量的观测值发生 的概率,该概率值间接地给出了样本值在零假设成立的前提 下的概率,对此可以依据一定的标准来判断其发生的概率是 否为小概率。
13
H0
SPSS 19(中文版)统计分析实用教程
6
SPSS 19(中文版)统计分析实用教程
电子工业出版社
主要内容
5.1 参数估计 5.2 假设检验 5.3 参数检验与非参数检验 5.4 单样本T检验 5.5 独立样本T检验 5.6配对样板T检验 5.7单样本的非参数检验
7
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.2 假设检验
5.2.1 基本概念及统计原理
14
SPSS 19(中文版)统计分析实用教程
电子工业出版社
主要内容
5.1 参数估计 5.2 假设检验 5.3 参数检验与非参数检验 5.4 单样本T检验 5.5 独立样本T检验 5.6配对样板T检验 5.7单样本的非参数检验
15
SPSS 19(中文版)统计分析实用教程
电子工业出版社
5.3 参数检验及非参数检验 5.3.1 参数检验简介
③ 配对样本T检验:检验两个相关的样本是否来自具有相同 均值的总体。
相关文档
最新文档