第二章参数估计与假设检验精品PPT课件
《假设检验》课件
方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。
参数估计与假设检验
参数估计与假设检验参数估计是指利用样本数据对总体参数进行估计的过程。
在统计学中,总体参数通常是我们关心的感兴趣的数量,比如总体均值、总体方差等。
通过对样本进行抽样调查,我们可以得到样本数据,然后利用样本数据来估计总体参数的值。
常用的参数估计方法有点估计和区间估计。
点估计是通过一个统计量来估计总体参数的值。
例如,样本均值可以作为总体均值的点估计值,样本方差可以作为总体方差的点估计值。
点估计通常使用最大似然估计或最小二乘估计等方法来求解。
区间估计是通过一个区间来估计总体参数的值。
区间估计提供了一个参数可能取值的范围。
例如,我们可以计算一个置信区间,表示总体参数在一定置信水平下落在该区间内的概率。
常用的区间估计方法有正态分布的置信区间和t分布的置信区间等。
假设检验是用于检验总体参数的假设的方法。
假设检验可以帮助我们判断总体参数是否等于一些特定值,或者两个总体参数是否相等。
假设检验通常需要先提出一个原假设和一个备择假设。
原假设是我们要进行检验的假设,而备择假设则是对原假设的补充或者扩展。
通过计算样本数据的统计量,并结合给定的显著性水平,我们可以得到一个检验统计量的观察值。
根据观察值和显著性水平的关系,我们可以判断是否拒绝原假设。
假设检验的步骤可以分为以下几个部分:1.提出假设:明确原假设和备择假设。
2.选择显著性水平:设定拒绝原假设的标准。
3.计算检验统计量:根据样本数据计算出统计量的观察值。
4.求取拒绝域和接受域:结合显著性水平和检验统计量的分布,确定拒绝原假设的条件。
5.得出结论:通过比较检验统计量的观察值和拒绝域的关系,判断是否拒绝原假设。
假设检验是统计学中非常重要的一部分,它可以帮助我们对实际问题进行科学的推断和决策。
在实际应用中,我们常常使用假设检验来判断广告效果、药物疗效、投资收益等方面的问题。
通过参数估计和假设检验,我们可以从样本数据中获取关于总体参数的信息,并对其进行推断和判断。
假设检验《统计学原理》课件
X=X1>X0
H0为伪
从上图可以看出,如果临界值沿水平方向右移,α将变小而β变大,即若减小 α错误,就会增大犯β错误的机会;如果临界值沿水平方向左移,α将变大而 β变小,即若减小β错误,也会增大犯α错误的机会,
a 错误和 错误的关系
在样本容量n一定的情况下,假设检验不能同时做到犯α和 β两类错误的概率都很小,若减小α错误,就会增大犯β错误 的机会;若减小β错误,也会增大犯α错误的机会,要使α和 β同时变小只有增大样本容量,但样本容量增加要受人力、 经费、时间等很多因素的限制,无限制增加样本容量就会 使抽样调查失去意义,因此假设检验需要慎重考虑对两类 错误进行控制的问题,
参数假设检验举例
例2:某公司进口一批钢筋,根据要求,钢筋的 平均拉力强度不能低于2000克,而供货商强 调其产品的平均拉力强度已达到了这一要 求,这时需要进口商对供货商的说法是否真 实作出判断,进口商可以先假设该批钢筋的 平均拉力强度不低于2000克,然后用样本的 平均拉力强度来检验假设是否正确,这也是 一个关于总体均值的假设检验问题,
假设检验的两类错误
正确决策和犯错误的概率可以归纳为下表:
假设检验中各种可能结果的概率
H0 为真
接受H0
1-α 正确决策
拒绝H0,接受H1
α 弃真错误
H0 为伪
β 取伪错误
1-β 正确决策
•假设检验两类错误关系的图示
以单侧上限检验为例,设H0 :X≤X0 , H1:X>X0
图a X≤X0 H0为真
a
H0值
样本统计量 临界值
观察到 的样本 统计量
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误, 假设检验是依据样本提供的信息进行判断,有犯错误的可 能,所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真而 拒绝了,犯这种错误的概率用α表示,也称作α错误 αerror 或弃真错误, 第二类错误是原假设H0不为真时,检验结果把它当成真而 接受了,犯这种错误的概率用β表示,也称作β错误 βerror 或取伪错误,
《假设检验》PPT课件-(2)(1)
例6.2 现用两种测量肺活量的仪器对12名妇女测得最大呼气率(PEER)(L/min),资料如表6.1,问两种方法的检测结果有无差别?
H0:d=0,两仪器检验结果相同; H1:d≠0,两仪器检验结果不同。 双侧 =0.05。 按 = n-1=12-1=11查t值表,得t0.20,11=1.363,t0.10,11=1.796,t0.10,11>t>t0.20,11,则0.20>P>0.10,差别无统计学意义,尚不能认为两种仪器检查的结果不同。
5
6
8
9
10
11
4
与间关系:大,小;大,小。增加n可同时,缩小。
检验的功效
实际应用假设检验时,当P ≤ 而拒绝H0接受H1,要注意第一类错误出现;当P > 而不拒绝H0,要注意第二类错误的出现。尤其是,第二类错误率 表示失去对真实的H1作出肯定结论之概率,故1- 就是对真实的H1作出肯定结论之概率,常被用来表达某假设检验方法的检验的功效(power of a test),国内学者称它为把握度:假设检验对真实的H1作肯定结论之把握程度。 `
判断水准 必须事先确定,一般取0.05。 P值 P值是决策的依据 P≤0.05 及其意义:首先P不指H0成立之可能,而是指从H0假设总体中随机抽到差别至少等于现有差别的机会。
假设检验中需注意的几个问题
第一类错误与第二类错误 拒绝H0,接受H1 不拒绝H0 H0真实 第一类错误( ) 正确推断(1-) H0不真实 正确推断(1-) 第二类错误() 统计学上规定:H0真实时被拒绝为第一类错误(又称Ⅰ型错误,type Ⅰerror),H0不真实时不拒绝为第二类错误(又称Ⅱ型错误,type Ⅱ error)。
参数估计和假设检验
X
n =16
一般的,当总体服从 N(μ,σ2 )时,来自该总体的容量为n的样本的均值X也服从正态分布,X 的期望为μ,方差为σ2/n。即X~N(μ,σ2/n)。
中央财经大学统计学院*
中心极限定理
f(X)
X
小样本
从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布。
3,4
3,3
3,2
3,1
3
2,4
2,3
2,2
2,1
2
4,4
4,3
4,2
4,1
4
1,4
4
1,3
3
2
1
1,2
1,1
1
第二个观察值
第一个 观察值
所有可能的n = 2 的样本(共16个)
抽样分布的一个演示:重复抽样时样本均值的抽样分布(3)
各样本的均值如下表,并给出样本均值的抽样分布
x
样本均值的抽样分布
比重复抽样时的必要样本量要小。 式中n0是重复抽样时的必要样本容量。
中央财经大学统计学院*
样本量的确定(实例1)
需要多大规模的样本才能在 90% 的置信水平上保证均值的误差在 ± 5 之内? 前期研究表明总体标准差为 45.
n
Z
E
=
=
=
≈
2
2
2
2
2
2
(1
645)
(45)
(5)
219.2
220
.
向上取整
当 时总体比例的置信区间可以使用正态分布来进行区间估计。(样本比例记为 ,总体比例记为π)
参数估计和假设检验课件
4.0
2.5
n
(xi x )2
2 x
i 1
M
M为样本数目
(1.0 2.5)2 (4.0 2.5)2 0.625 2
16
n
1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
14
样本均值的抽样分布与总体分布的 比较
总体分布
.3 .2 .1 0
简单随机抽样、重复抽样时,样本均 值抽样分布的标准差等于 ,这
n
个指标在统计上称为标准误。 统计软件在对变量进行描述统计时一
般会输出这一结果。
18
有限总体校正系数
Finite Population Correction Factor
简单随机抽样、不重复抽样时,样本均值
抽样分布的方差略小于重复抽样的方差,
和0的属性变量,中值
权数分别为 216和779。计 算这一变量均 值的置信区间 即为比例的置 信区间。
方差 标准差 极小值 极大值 范围 四分位距
统计量 标准误 .2171 .01308
下限 .1956 上限 .2386
.1857 .0000 .170 .41247
.00 1.00 1.00 .00
置信区间= x E
最大允许误差是人为确定的,是调查者在 相应的置信度下可以容忍的误差水平。
33
如何确定必要样本量?
必要样本量受以下几个因素的影响:
1、总体标准差。总体的变异程度越大,必 要样本量也就越大。
2、最大允许误差。最大允许误差越大,需 要的样本量越小。
3、置信度1- 。要求的置信度越高,需要 的样本量越大。
简单随机抽样下估计总体比例时 样本容量的确定
参数估计假设检验PPT
参数假设检验的步骤包括提出假设、选择合适的统计量、确定临界值、 计算检验统计量、做出决策。
03
参数假设检验的优点是简单易行,适用于大样本数据,能够给出明确 的接受或拒绝假设的结论。
04
参数假设检验的缺点是它对总体分布的假设较为严格,有时难以满足。
非参数假设检验
非参数假设检验是一种不依赖于总体分布具体形式的检验方法,它通过对 样本数据本身的特性进行检验来推断总体特性。
优势原则与最小化最大后悔准则
优势原则
在多方案决策中,如果一个方案在其他所有方案中的优势超过某个阈值,则该 方案被视为最优。优势原则是决策理论中的一种准则,用于指导决策者选择最 优方案。
最小化最大后悔准则
该准则是为了避免做出可能带来最大损失的错误决策,而选择一个最优策略使 得最大后悔最小化。
熵准则与信息准则
随机区组设计
总结词
随机区组设计是一种将实验对象按照某些特征进行分组,并在组内进行不同处理的实验设计方法。
详细描述
在随机区组设计中,实验对象按照某些相似特征进行分组,并在组内随机分配不同的处理。这种设计 方法可以控制组间的干扰因素,减少误差,提高实验的精度。
拉丁方设计
总结词
拉丁方设计是一种用于多因素实验的实验设计方法,它将实验对象按照拉丁字母排列,以控制实验中的顺序效应 和边缘效应。
的影响。
CHAPTER 06
相关与回归分析
相关分析
确定变量间关系
通过相关分析,可以确定两个或 多个变量之间的关系,包括正相 关、负相关和无相关。
描述变量间关系强
度
相关系数(如皮尔逊相关系数、 斯皮尔曼秩相关系数等)可以用 来描述变量间关系的强度和方向。
控制其他变量的影
第二章 估计与检验
二、均值和方差的区间估计和假设 1、总体均值的区间估计
二、均值和方差的区间估计和假设 2、总体方差的区间估计
二、均值和方差的区间估计和假设
例1: 某种零件的重量服从于正态分布。现中 随机抽10件作为样本,观察到的重量(㎏)分 别是:4.8,4.7, 5.0,5.2,4.7,4.9,5.0, 4.6,4.7 ,5.1。估计零件的平均重量,在 95%的置信水平估计平均重量的区间。
MEANS 过程代码如下: Proc MEANS MEAN STD STDERR T PRT; var y; run;
MEANS过程后面的选择项可以选择 MEAN 、STD 、STDERR、 T、 PRT等基 本统计量。这些统计量可以根据研究的实 际需要自行添加删除。
均值 MEAN=0.1794,检验统计量 T= 0.86,其概率值 Pr>│T│=0.4037,大于显 著性水平⍺ ,所以接受原假设,拒绝备选假 设,即样本中的含量与标准相同。
•
•
一、基本统计概念
2.假设检验
假设检验是统计推断中另一个重要部分,它与参数估 计有着密切的联系。 假设检验要求先对总体的参数作出一个假设,称为原 假设;另外还要给出一个与其相互对立的备择假设,原假 设与备择假设有且仅有一个成立。然后构造一个合适的检 验统计量,并确定在原假设成立时该统计量的分布,在给 定的显著性水平下,从分布中可得出原假设的拒绝域。最 后由样本观测值计算该统计量的取值,如果取值落在原假 设的拒绝域中,则拒绝原假设,而取对应的备择假设。否 则,不能拒绝原假设。
结果给出了总体均值以及标准差在置信 度90%、95%、99%下的置信区间。
如在intervals语句下面添加alpha=0.05 type=lower;就能获得对应95%置信区间以及对应 的置信下限.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.1 案例介绍
【案例1】新工艺是否有效?
某厂生产的一种钢丝的平均抗拉强度为 10560 (kg/cm2)。
现采用新工艺生产了一种新钢丝,随机抽取 10 根, 测得抗拉强度为:
10512, 10623, 10668, 10554, 10776 10707, 10557, 10581, 10666, 10670 求得新钢丝的平均抗拉强度为 10631.4(kg/cm2)。 是否就可以作出新钢丝的平均抗拉强度高于原钢 丝,即新工艺有效的结论?
3
【案例2】机床加工精度是否符合要求? 某台加工缸套外径的机床,正常状态下所
加工缸套外径的标准差应不超过 0.02 mm。 检验人员从加工的缸套中随机抽取 9 个,
测得外径的样本标准差为 S = 0.03 mm。 问:该机床的加工精度是否符合要求?
4
【案例3】两种轿车的质量有无差异?
新车的平均首次故障里程数是汽车的一个主要可 靠性指标。
本例中,由于 H1: > 0 (右边检验),而当 H0 为真时,
有
P{ t ≤t ( n-1 ) } = 1-
可知当统计量 t >t(n-1) 时,就可以有1- 的把握判定 H0 不真 (犯错误的概率仅为 ),故此时应拒绝 H0。
从而拒绝域为 t >t(n-1),临界值为 t(n-1)。
12
Байду номын сангаас
6. 计算统计量 t 的值, 并作出检验结论
现采用了新工艺生产,测得新工艺生产的 n 个元件寿命 为 x1, x2, ···, xn。
问:
新工艺生产的元件期望寿命 是否比原工艺的元件期望寿 命 0 有显著提高?
此问题要推断的是:
是否 > 0?
这可用假设检验的方法解决,步骤如下:
10
1.提出一个希望推翻的假设, 称为原假设, 记为 H0
本例中
8
§5.2 假设检验的原理
一、实际推断原理 假设检验的理论是小概率原理,又称为实际推断 原理,其具体内容是:小概率事件在一次试验中是 几乎不可能发生的。
二、假设检验推理的思想方法 假设检验推理的思想方法是某种带有概率性质的 反证法。
9
. §5.2 假设检验的原理
三、基本原理和步骤
例1:统计资料表明,某电子元件的寿命 X~N(0 , 2 ), 其中 0 已知, 2 未知。
本例中,若计算结果为 t >t(n-1), 则拒绝 H0,
接受 H1,即在水平 下, 认为 显著高于 0。 若 t < t(n-1),就不能拒绝 H0,即认为 并不显
著高于 0。 当拒绝 H0 时,说明在给定的水平 下, 和 0
间存在显著差异。 这就是称 为显著性水平的原因。
f (x)
0
H0: = 0
2. 按希望出现的结果提出一个与原假设对立的假设,
称为备择假设,记为 H1。 本例中
H1: > 0
3. 构造一个能用来检验原假设 H0 的统计量
本例中,要检验的是总体均值 ,而X是的优良
估计, 故应使用 X 来构造检验 的统计量。
当 H0 为真时,统计量
t X 0 ~t (n-1)
现测得甲、乙两种品牌轿车的首次故障里程数数 据如下:
甲品牌 X1:1200, 1400, 1580, 1700, 1900 乙品牌 X2:1100, 1300, 1800, 1800, 2000, 2400
其中 x 1 =1556, x 2 =1733
问:能否据此判定乙品牌轿车的平均首次故障里 程高于甲品牌?
S/ n
11
4. 给定一个小概率 , 称为显著性水平
显著性水平 是当 H0 为真时, 拒绝 H0 的概率
(即犯“弃真”错误的概率)。也即当检验结果拒绝 H0 时,
不犯错误的概率为 1-, 从而可以有1- 的可信度接受
备择假设 H1。 5. 确定要拒绝 H0 时统计量的取值范围, 称为拒绝域,
拒绝域的边界点称为临界值。
乙 0.7 –1.6 –0.2 –1.2 –0.1 3.4 3.7 0.8 0.0 2.0
(1)哪种安眠药的疗效好? (2)如果将试验方法改为对同一组10个病人,每人分 别服用甲、乙两种安眠药作对比试验,试验结果仍如上 表,此时结论如何?
6
【案例5】某一系列电视剧是否获得成功
如果能够证明某一系列电视剧在播出的头 13周其观众的收视率超过了25%,则可以 断定它获得了成功。假定由400个家庭组成 的样本中,有112个家庭在头13周看过了某 系列电视剧。现在要判断这部电视剧是否 获得了成功。
5
【案例4】哪种安眠药的疗效好?
为分析甲、乙两种安眠药的效果,某医院将20个失 眠病人分成两组,每组10人,两组病人分别服用甲、 乙两种安眠药作对比试验。试验结果如下:
两种安眠药延长睡眠时间对比试验(小时)
病人 安眠药
1
2
3
4
5
6
78
9 10
甲 1.9 0.8 1.1 0.1 –0.1 4.4 5.5 1.6 4.6 3.4
t (n-1)
x
右边检验的拒绝域
13
二.检验中可能犯的两类错误
设 t 为检验原假设 H0 所用的统计量,t(n-1)为检
验的临界值,由显著性水平 的定义(右边检验)
P{ t >t(n-1) | H0 为真}=
第5章 假设检验 本章教学目标
了解和掌握统计推断中的另一个基本问题:参 假设检验及其在经济管理中的应用; 掌握运用 Excel 的“数据分析”及其统计函数 功能求解假设检验问题。
1
本章主要内容
§5.1 案例介绍 §5.2 假设检验的基本原理 §5.3 单个正态总体均值的检验 §5.4 单个正态总体方差的检验 §5.5 两个独立正态总体均值的检验 §5.6 成对样本试验的均值检验 §5.7 两个正态总体方差的检验 §5.5 总体比例的检验 本章重点:假设检验中不可避免的两类错误及其应用 Excel“数据分析”功能的使用及其运行输出结果分析。 难点:假设检验中不可避免的两类错误及其应用。
7
【案例6】女企业家对成功的理解是否不同
对女企业家进行了一项研究来看她们对成功的 理解。给她们提供了几个备选答案,如快乐/自我 实现,销售/利润,成就/挑战。根据她们业务的总 销售额将其分为几组。销售额在10万~50万元的在 一组,少于10万元的在另一组。
要研究的问题是:把销售/利润作为成功定义的 比率,前一组是否高于后一组?