课件 简单事件的概率(1)-
随机事件的概率(1)(共27张PPT)
![随机事件的概率(1)(共27张PPT)](https://img.taocdn.com/s3/m/9fa2ea2aeffdc8d376eeaeaad1f34693daef10f7.png)
0≤ ≤1.
(2)概率及其记法:对于给定的随机事件 A,如果随着试验次数的增
加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称
为事件 A 的概率,简称为 A 的概率.
一般来说,随机事件 A 在每次试验中是否发生是不能预知的,但是
在大量的重复试验后,随着试验次数的增加,事件 A 发生的频率会逐渐
录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
127
121
击中飞碟的频率
(1)计算各次记录击中飞碟的频率;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数 100,击中飞碟数是 81,故击中飞碟的频率是
81
=0.810,同理可求得题表中的频率依次是
(5)从分别标有号码 1,2,3,4,5 的 5 个号签中任取一个,得到 4 号签;
(6)导体通电后,发热;
(7)三角形的内角和为 360°;
(8)某电话机在 1 分钟内收到 4 次呼叫.
解:(1)(6)是必然事件;(3)(7)是不可能事件;(2)(4)(5)(8)是随机事件.
目录
退出
4.某人射击 10 次,击中靶心 8 次,则击中靶心的概率为 0.8.这种说法
件的是(
)
A.③
B.①
C.①④
D.④
解析:①是不可能事件,②是不可能事件,③是随机事件,④是必然事
件.
答案:D
目录
退出
2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
简单事件的概率
![简单事件的概率](https://img.taocdn.com/s3/m/ac725ba90029bd64783e2cae.png)
简单事件的概率
知识点总结
一、可能性:
1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件:必然事件和不可能事件都是确定的;
4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.
二、概率:
1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1。
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
常见考法
(1)判断哪些事件是必然事件,哪些是不可能事件;
(2)直接求某个事件的概率。
误区提醒
对一个不确定事件所有等可能出现的结果数做了重复计算或漏算。
【典型例题】(2010福建宁德)下列事件是必然事件的是().
A.随意掷两个均匀的骰子,朝上面的点数之和为6
B.抛一枚硬币,正面朝上
C.3个人分成两组,一定有2个人分在一组
D.打开电视,正在播放动画片
【解析】必然事件指的是一定发生的事件,3个人分成两组,一定有2个人分在一组
这是一定的,所以本题选C。
简单事件的概率
![简单事件的概率](https://img.taocdn.com/s3/m/f38db734f01dc281e53af0bf.png)
简单事件的概率1、简单事件类型:(1)必然事件:有些事件我们事先能肯定它一定会发生,这类事件称为必然事件;(2)不可能事件:有一些事件我们事先能肯定它一定不会发生,这类事件称为不可能事件;必然事件与不可能事件都是确定的。
(3)不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件。
2.概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
P 必然事件=1, P 不可能事件=0, 0<P 不确定事件<13.概率的计算方法(1)用试验估算: 此事件出现的次数试验的总次数某事件发生的概率 (2)常用的计算方法:① 直接列举 ; ② 列表法 树状图 。
4.频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小。
频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率。
练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ).A .0B .1C .0.5D .不能确定3.关于频率与概率的关系,下列说法正确的是( ).A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等4.下列说法正确的是( ).A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .817.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ).A .31 B .32 C .61 D .91 8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小A .3B .2C .1D .010.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生概率的计算(重点)1、等可能事件的概率如果事件发生的各种结果的可能性相同,结果总数为n ,其中事件A 发生的可能的结果总数为m (m≤n),那么事件A 发生的概率为()nm A P =. 2、运用列表格、画树状图等列举方法来统计、计算等可能事件发生的结果总数和某种事件A 发生的可能的结果总数,从而计算简单事件发生的概率.【典例讲解】例1、袋中有1个红球,2个白球和3个黄球,球的质量与大小、外表均相同,搅匀后从中摸出一个球,则: ①任意从袋中摸得一个球,恰好是红球的概率. ②任意从袋中摸得一个球,恰好是白球的概率. ③任意从袋中摸两个球,恰好是红球和黄球的概率.直接列举由于6个球的外质均相同,所以任意摸出一球时,被摸出的球的概率为61,而红球只有一个,白球是2个,黄球是3个. ∴摸红球的概率为61;摸白球的概率为31,黄球为21. 而摸出两球时,所有的可能性为n=15种(如红白1,红白2,白1黄1,白1黄2,白1黄3,白2黄1,白2黄2,白2黄3,红黄1,红黄2,红黄3,白1白2,黄1黄2,黄1黄3,黄2黄3). 但事件“任意从袋中摸两个球,恰好是红球和黄球”的总数m=3,∴摸到红球和黄球的概率为51.例2、小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平,并说明理由.列表(1)从表中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平. 画树状图(1)从树状图中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平.例3、图为红心和梅花两组牌,每组牌面数字都分别是1,2,3.如果从每组牌中各抽一张,并将牌面数字相加,得数字和.求:(1)牌面数字和为奇数的概率;(2)牌面数字和为偶数的概率;(3)牌面数字和为6的概率;(4)牌面数字和为几的概率最大?这个概率是多少?例4.根据闯关游戏规则,请你探究“闯关游戏”的奥秘。
浙教版九年级上册 2.2 简单事件的概率一等奖优秀课件
![浙教版九年级上册 2.2 简单事件的概率一等奖优秀课件](https://img.taocdn.com/s3/m/0a6f410fdd36a32d737581fa.png)
自由转动如图三色转盘一次,事件“指针落
在红色区域”的概率是 吗?
思考:你能通过给三色转盘增加一个条件,求出
事件“指针落在红色区域”的概率吗?
.
等可能性事件
化转
非等可能性事件
如果事件发生的各种可能性都相同,结果总数
为n,其中事件A发生的可能的结果总数为
m(m≤n),那么事件A发生的概率为
问题1:一道答题竞猜活动,在6个式样、大小都相同的箱子
当堂练习: 1.任意写出一个偶数和一个奇数,两数之和是奇数的 概率是_____, 两数之和是偶数的概率是________. 1 0 2.求下事件发生的概率. (1)从一副扑克牌中任抽一张牌. ①事件A:抽出的这张牌是红桃A.
②事件B:抽出的这张牌是A.
(2)先从一副扑克牌中去掉2张大小王,然后任抽一张.
①事件C:抽到的这张牌是红桃
②事件D:抽到的这张牌是红桃或黑桃
问题3:在一个不透明的盒子中装12个白球,若干个
黄球,它们除了颜色不同外,其余都相同,若从中随 1 机摸出一个球是黄球的概率是 ,则黄球的个数是多 3 少个?
一个公式:事件A发生的概率
两种思想:转化思想;方程思想 三个能:
能
直接 运用
能
变式 运用
能
综合 运用
我们都生活在一个充满概率的世界里,当我们慎重的迈出人
生的第一步时,你有选择生存的方式和来自利,但你不能使概率达 到100%。
有的同学有99%帮助他人的概率,但他却选择了1%的麻木不仁的 概率,因为他还没有体会生命的真谛—帮助别人,快乐自己。 有的同学有99%的好好学习的概率,但他却选择了1%的不思进取 的概率,因为他不懂得对青春的珍惜—少壮不努力,老大徒伤悲。 这样的话题还有很多,可以说是举不胜举,在生活中,我们往往 忽视了自己所拥有的,孰不知这正是人生所要追求的最高境界。
用列表法求概率课件课件(共22张PPT)
![用列表法求概率课件课件(共22张PPT)](https://img.taocdn.com/s3/m/f970309aab00b52acfc789eb172ded630a1c984c.png)
(2)两枚骰子的点数和是9;
(3)至少有一枚骰子的点数为2.
两枚骰子分别记为第一枚和第二枚,列表如下
第一枚
1
第二枚
1
(1,1)
2
3
4
5
6
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
球,记下标号. 若两次取的乒乓球标号之和为 4,小林赢;若标号之和为
5,小华赢. 请判断这个游戏是否公平,并说明理由.
解:列表得:
第一个
将“标号之和为 4”记
第二个
1
1
2
3
4
(1,1)
(2,1)
(3,1)
(4,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
一列出.
【注意】直接列举法比较适合用于最多涉及两个试验因素或分两
步进行的试验,且事件总结果的种数比较少的等可能性事件.
思考
“同时抛掷两枚质地均匀的硬币”与“先后抛掷一枚质地均匀的硬币”,
这两种试验的所有可能结果一样吗?
分步思考:(1)在第一枚为正面的情况下第二枚硬币有正、反两种情况;
(2)第一枚为反面的情况下第二枚硬币有正、反两种情况. 所有的结果共
2 1
即“正正”“反反”,所以P(A)= 4 2
(2)一枚硬币正面向上,一枚硬币反面向上(记为事件C)有2种结果;
简单事件的概率讲义
![简单事件的概率讲义](https://img.taocdn.com/s3/m/defa75e4b9f3f90f77c61b2e.png)
科登教育学科教师讲义课 题 简单事件的概率教学目标会求一个事件发生概率。
重点、难点1)要弄清楚我们关注的是发生哪个或哪些结果; (2)要弄清楚所有机会均等的结果.教学内容知识梳理在数学中,我们把事件发生的可能性的大小,称为事件发生的概率如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率是nmA P =)(。
无论哪个或哪些结果都是机会均等的;部分与全部之比,不要误会为部分与部分之比。
事件的概率表示:列表、树状图。
在用列表法分析事件发生的所有情况时往往第一次在列,第二次在行。
表格中列在前,行在后,其次若有三个红球,要分红1、红2、红3。
虽然都是红球但摸到不同的红球时不能表达清楚的。
实验次数越多,频率越接近概率尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。
所以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。
1 实验频率与理论概率的关系只是在实验次数很多时,实验频率接近于理论概念,但实验次数再多,也很难保证实验结果与理论值相等,这就是“随机事件”的特点. 游戏公平吗?1. 游戏的公平性是指游戏双方各有50%赢的机会,或者游戏多方赢的机会相等.2. 表示一个事件发生的可能性大小的数叫做该事件的概率.一个事件发生的概率取值在0与1之间.3. 概率的预测的计算方法:某事件A 发生的概率:基本事件的总数包含的基本事件的个数事件A P =4. 用分析的办法求事件发生的概率要注意关键性的两点: (1)要弄清楚我们关注的是发生哪个或哪些结果; (2)要弄清楚所有机会均等的结果.典型例题例1(2012泰安)一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为( )A .16B .13C .12D .23考点:列表法与树状图法。
2.2-简单事件的概率(1)
![2.2-简单事件的概率(1)](https://img.taocdn.com/s3/m/6ba7f2d4c0c708a1284ac850ad02de80d4d80694.png)
第10页,共14页。
练习:
1、某事件发生的可能性如下:⑴极有可能,但不一定发生; ⑵发生与不发生的可能性一样;⑶发生可能性极少;⑷不可能发 生。试将它们与下面的数值联系起来: A、0.1% B、50% C、0 D、99.99%
2、在下列说法中,不正确的为( )
A、不可能事件一定不会发生; B、必然事件一定会发生; C、抛掷两枚同样大小的硬币,两枚都出现反面的事件是一个不 确定事件;
16
4
假如小猫在如图 所示的地板上自由地 走来走去,并随意停 留在某块方砖上,它 最终停留在黑色方砖 上的概率是多少? (图中每一块方砖除 颜色外完全相同)
第8页,共14页。
1、明明家过年包了100个饺子,其中有一个饺子中包
了幸运果。明明任意挑选了一个饺子,正好是包有幸
运果的饺子的概率是
.
P正好包有幸运果 = 1
概率都是1/2。
P A =P B = 1
2
第5页,共14页。
【例1】一项答题竞猜活动,有6个式样、大小都相 同的箱子中有且只有1个箱子里藏有礼物。参与选 手将回答5道题目,每答对一道题,主持人就从6 个箱子中去掉一个空箱子。而选手一旦答错,即取 消后面的答题资格,从剩下的箱子中选取一个箱子。 求下列事件发生的概率。
100
2、有10个外形相同的盒子,其中3盒装着玉米,2盒装着菠
菜,4盒装着豆角,1盒装着土豆,随机拿出一盒,盒子里
装着玉米的概率是
.
P 盒子里装着玉米 = 3
10
第9页,共14页。
例2.求下列事件发生的概率:
(1)事件A:从一副扑克牌中任抽1张牌,抽出的这张牌 是红桃A; (2)事件B:先从一副扑克牌中去掉2张王牌,然后任抽1
《概率》PPT教学课文课件
![《概率》PPT教学课文课件](https://img.taocdn.com/s3/m/01f4695d571252d380eb6294dd88d0d233d43c04.png)
练习2
2.在一个不透明的袋子中装有黑球 m 个、白球 n 个、红球 3 个,除颜
B 色外无其他差别,任意摸出一个球是红球的概率是( )
A. 3 m n
B. 3 mn3
C. m n mn3
D. m n 3
解析:任意摸出一个球共有(m n 3)种等可能的结果,
其中是红球的结果有 3 种,所以 P(红球) 3 . mn3
概率
学习目标
1.借助生活中实例了解概率的意义,渗透随机观念,能计算 一些简单随机事件的概率
2.在合作探究学习过程中,体验数学的价值与学习的乐趣.感受辩证思想
3.经历猜想试验——收集数据——分析结果的探索过程,丰富对随机现象的体 验,体会概率是描述不确定现象规律的数学模型
01 新课导入
新课导入
在相同条件下,某一随机事件可能发生也可能不发生.那么,它发生 的可能性究竟有多大?能否用数值刻画可能性的大小呢?下面我们 讨论这个问题.
② P(点数为奇数) 1 2
③ P(点数大于2且小于5) 1 3
例2
如图是一个质地均匀的转盘,转盘分成7个大小相同的扇形,颜色 分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其 中的某个扇形会恰好停在指针所值的位置(指针指向两个扇形的交 线时,当做指向右边的扇形).求下列事件的的概率:
解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格 各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率
是3 8
例3
小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情 况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域 外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区 域还是B区域?
九年级数学下册课件(冀教版)用列举法求简单事件的概率
![九年级数学下册课件(冀教版)用列举法求简单事件的概率](https://img.taocdn.com/s3/m/8ae1001882c4bb4cf7ec4afe04a1b0717fd5b32a.png)
按钮 12 13 14 23 24 34 代号
结果 成功 失败 失败 失败 失败 失败
所有可能结果有6种,它们都是等可能发生的,
而其中只有一种结 果为“闯关成功”,所以,
P(闯关成功)=
1 6
.
总结
直接列举法求概率的采用: 当试验的结果是有限个的,且这些结果出现的可
能性相等,并决定这些概率的因素只有一个时采用.
86 (88,86) (79,86) (90,86) (81,86) (72,86)
82 (88,82) (79,82) (90,82) (81,82) (72,82)
85 (88,85) (79,85) (90,85) (81,85) (72,85)
83 (88,83) (79,83) (90,83) (81,83) (72,83)
式 P( A) m 计算出事件的概率. n
2.适用条件:如果事件中各种结果出现的可能性均等,含有 两次操作(如掷骰子两次)或两个条件(如两个转盘)的事件.
1 对本节“一起探究”投掷正四面体的试验,求下列事件的概率. A=“两数之和为偶数 ” B=“两数之和为奇数” C=“两数之和大于5” D=“两数之和为3的倍数”
解:(1)根据题意列表如下: 共有9种等可能的结果,它们是(0,-1),(0,-2),(0,0), (1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0).
x
y
-1
-2
0
0
(0,-1)
(0,-2)
(0,0)
1
(1,-1)
(1,-2)
(1,0)
2
(2,-1)
(2,-2)
(2,0)
例1 如图,四个开关按钮中有两个各控制一盏灯,另两个按钮控 制一个发音装置. 当连续按对两个按钮点亮两盏灯时,“闯 关 成功”;而只要按错一个按钮,就会发出 “闯关失败” 的声音. 求“闯关成功”的概率.
最新浙教版数学九年级上册2.2简单事件的概率(1)课件
![最新浙教版数学九年级上册2.2简单事件的概率(1)课件](https://img.taocdn.com/s3/m/6ad16017227916888486d713.png)
3 有可能冲出封锁线吗?冲出封锁线的概率为多大呢? 4
6、袋子里有1个红球,3个白球和5个黄球,每一
个球除颜色外都相同,从中任意摸出一个球,则
1 P(摸到红球)= 9 ; 5
P(摸到黄球)=
1 P(摸到白球)= ; 3
9
。
7、 有5张数字卡片,它们的背面完全相同,正面
分别标有1,2,2,3,4。现将它们的背面朝上,从 中任意摸到一张卡片,则:p (摸到1号卡片)=
P( 摸到红球) = P (A)
_______________
摸出一球所有可能的结果数
摸到红球可能出现的结果数
注意:公式在等可能性下适用
1)你能写出摸到白球的概率吗? 1 解:P(摸到白球)=- 4 2)若把摸球游戏换成4个黄球,那么摸到黄 球、白球的概率分别是多少? 解:P(摸到黄球)=1, P(摸到白球)=0 3)你能写出必然事件和不可能事件的概率 吗? P(必然事件)=1 , P(不可能事件)=0
一个箱子里有3个红球,1个白球 (除颜色外其它都相同),小明从中任意 摸一球是红球的可能性有多大?
小 明
在数学上,我们把事件发生的可能性的大小 也称为事件发生的概率 表示摸到红球的可能性,也叫做摸到红球的 概率(probability) 。概率用英文probability 的第一个字母p来表示。
转盘自由转动一次,指针落 在黄色区域和落在绿色区域 的可能性哪一个较大?橘黄色 区域和灰色区域呢?
小明和小聪一起玩掷骰子游戏,游戏规则如下: 若骰子朝上一面的数字是6,则小聪得10分; 若骰子朝上一面不是6,则小明得10分。谁先得到 100分,谁就获胜。这个游戏规则公平吗?
那么你知道小明得10分的可 能性是多少?小聪得10分的可能 性是多少?
第18课 简单随机事件的概率
![第18课 简单随机事件的概率](https://img.taocdn.com/s3/m/d5d53e88f8c75fbfc67db235.png)
D.4个
解析 A.在足球赛中,弱队战胜强队是随机事件,故 本选项正确; B.抛掷1枚硬币,硬币落地时正面朝上是随机事件, 故本选项正确;
第18课 简单随机事件的概率
基础自测
1.(2013·聊城)下列事件:
①在足球赛中,弱队战胜强队;
②抛掷1枚硬币,硬币落地时正面朝上;
③任取两个正整数,其和大于1;
第18课 简单随机事件的概率
基础自测
3.(2013·泰州)事件A:打开电视,它正在播广告;事件B: 抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标
准大气压下,温度低于0℃时冰融化.这3个事件的概率
分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大
小关系正确的是
首 页
A.P(C)<P(A)=P(B)
第18课 简单随机事件的概率
要点梳理
3.概率
概率指事件发生的可能性大小;简单事件的概率可以通
过统计事件发生的所有不同结果来计算,常用的方法有:
首
枚举法、列表法和画树状图法等.
页
事件A发生的概率:P_(_A_)_=__事__件_所_A_发有__生可__的能__可的__能结__的果__结总__果数__总__数_.
④长为3cm、5cm、9cm的三条线段能围成一个三角形.
首
页
其中随机事件有
( B)
A.1个
B.2个
C.3个
D.4个
C.任取两个正整数,其和大于1是必然事件,故本选 项错误; D.长为3cm、5cm、9cm的三条线段能围成一个三角形 是不可能事件,故本选项错误.故选B.
第18课 简单随机事件的概率
基础自测
第18课 简单随机事件 的概率
《简单事件的概率》2.2(1)简单事件的概率
![《简单事件的概率》2.2(1)简单事件的概率](https://img.taocdn.com/s3/m/166fa668cc22bcd127ff0c69.png)
10.某号码锁有6个拨盘,每个拨盘上有从 0到9共十个数字.当6个拨盘上的数字组成某 一个六位数字号码(开锁号码)时,锁才能打开. 如果不知道开锁号码,试开一次就把锁打开的 概率是多少?
整理课件
11.如图,有一只蚂蚁在△ABC木板上随意走
动,已知点E是线段AB的中点,点D是线段AC
的三等分点,则蚂蚁停留在黑色区域(△ABC)
方砖上,(每一块方砖除颜色外完
全相同)
(1)它最终停留在黑砖上的概率? (2)它最终停留在白砖上的概率?
P(停留在黑砖 )上 1 P(停留在白砖 )上 3
4
4
整理课件
4. 从标有1到15序号的15个台球中,任意摸出一个, 请计算下列事件发生的概率:
在一A个:不台透球明上的的盒数中是装5有的两倍个数白;球,n个黄球, 除颜色不同外均相同。若从中随机摸出一个球,
等可能性事件的概率公式:
P(A)
事件A发生的可能结果总数 所有事件可能发生果 的总 结数
要善于应用数学知识解决生活中的实际问题 整理课件
1.如图,转盘被等分成若干个扇形,转动转盘,计算转 盘停止后,指针指向红色区域的概率。
P(红色区)域 3 2.假如小猫在如图所示的地板上8自 由地走来走去,并随意停留在某块
整理课件
30°
甲
180°
乙
任意抛掷一枚 均匀的骰子,朝上一 面的点数为3的概率 是多少?朝上一面的 点数为6呢?朝上一面 的点数为3的倍数呢?
概率
整理课件
一个布袋里装有8个红球和2个黑球它们除 颜色外都相同,求下列事件发生的概率: (1)从中摸出一个球,是白球;
P(摸出白)球 0
(2)从中摸出一个球,不是白球;
2.2简单事件的概率(1)
![2.2简单事件的概率(1)](https://img.taocdn.com/s3/m/7f4272b33186bceb19e8bbe8.png)
(2) 自由转动如图三色转 盘一次,事件“指针落在红 色区域”的概率为 1 .
3
练一练 2.任意抛掷一枚均匀的骰子,观察向上一面 的点数,求下列事件的概率: (1)点数为3; P(点数为3)= 1
6
(2)点数为3的倍数;
P(点数为3或6)= 2 1
63
(3)点数大于2且小于5;
P(点数大于2且小于5)= 2 1 63
同数量的黄球,搅拌均匀后使从袋中摸出一
个是黄球的概率不小于 1 ,问至少取出了多
少个黑球?
3
7、(2012•温州)一个不透明的袋中装有红、黄、 白三种颜色球共100个,它们除颜色外都相同, 其中黄球个数是白球个数的2倍少5个.已知从袋 中摸出一个球是红球的概率是 3 . (1)求袋中红球的个数; 10 (2)求从袋中摸出一个球是白球的概率; (3)取走10个球(其中没有红球)后,求从剩 余的球中摸出一个球是红球的概率.
一般地,必然事件发生的概率为100%, 即P(必然事件)=1;
不可能事件发生的概率为0,即P(不可 能事件)=0.
而随机事件发生的概率介于0与1之间, 即0<P(随机事件)<1.
例2 求下列事件发生的概率:
(1)事件A:从一副扑克牌中任抽1张牌,抽 出的这张牌是红桃A。
(2)事件B:先从一副扑克牌中去掉2张王牌, 然后任抽1张牌,抽出的这张牌是红桃。
例1 一项答题竞猜活动,在6个式样、大小都 相同的箱子中有且只有一个箱子里藏有礼物。 参与选手将回答5道题目,每答对一道题,主 持人就从剩下的箱子中去掉一个空箱子;而一 旦答错,即取消后面的答题资格,选手从剩下 的箱子中选取一个箱子。求下列事件发生的概 率。
(2)事件B:选手连续答对了4道题,他选中 藏有礼物的箱子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果事件发生的各种可能结果的可能性相同, 结果总数为n 如果事件发生的各种可能结果的可能性相同, 结果总数为 可能性相同 事件A发生的可能的结果总数为 事件 发生的可能的结果总数为m 发生的可能的结果总数为
如图为道路示意图,则某人从 处随意走 处随意走, 如图为道路示意图,则某人从A处随意走, 走到B的概率为多少 的概率为多少? 走到某号码锁有6个拨盘,每个拨盘上有从0到9共十 某号码锁有6个拨盘,每个拨盘上有从0 个数字. 个数字.当6个拨盘上的数字组成某一个六位数字 号码(开锁号码) 锁才能打开. 号码(开锁号码)时,锁才能打开.如果不知道开锁 号码,试开一次就把锁打开的概率是多少? 号码,试开一次就把锁打开的概率是多少?
36 6
9 1 P= = 36 4 两次朝上一面的点数的和为5 (5)两次朝上一面的点数的和为5的概率
(4)朝上一面的点数都为偶数的概率; 朝上一面的点数都为偶数的概率;
4 1 P= = 36 9
一枚硬币掷于地上, 一枚硬币掷于地上,出现正面的概率各为 1/2 一枚硬币掷于地上两次,都是正面的概率为 1/4 一枚硬币掷于地上两次, 可以理解为1/2× 可以理解为1/2×1/2 1/2 一枚硬币掷于地上三次,三次都是正面的概率为 1/8 一枚硬币掷于地上三次, 可以理解为1/2×1/2×1/2; 可以理解为1/2×1/2×1/2; 1/2
共同回顾
这节课你有什么收获和体会? 这节课你有什么收获和体会?
把事件发生的可能性的大小称为事件发生的概率 把事件发生的可能性的大小称为事件发生的概率
如果事件发生的各种可能结果的可能性相同, 如果事件发生的各种可能结果的可能性相同, 可能性相同 结果总数为n 结果总数为 事件A发生的可能的结果总数为 事件 发生的可能的结果总数为m 发生的可能的结果总数为 那么事件A发生的概率为 那么事件 发生的概率为
3 5
m P(A)= n ( )
三色转盘,每个扇形的圆心角度数相等, 如图 三色转盘,每个扇形的圆心角度数相等, 让转盘自由转动一次, 指针落在黄色区域” 让转盘自由转动一次, “指针落在黄色区域” 的概率是多少? 的概率是多少?
° 120° 120° ° 120° °
72° °
如图,有甲、乙两个相同的转盘。 例1 如图,有甲、乙两个相同的转盘。让两个 转盘分别自由转动一次,当转盘停止转动, 转盘分别自由转动一次,当转盘停止转动,求 (1)转盘转动后所有可能的结果; )转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝 )两个指针落在区域的颜色能配成紫色( 两色混合配成)的概率; 两色混合配成)的概率; (3)两个指针落在区域的颜色能配成绿色(黄、蓝 )两个指针落在区域的颜色能配成绿色( 两色混合配成)或紫色的概率; 两色混合配成)或紫色的概率;
° 120° 120° ° 120° °
72° °
° 120° 120° ° 120° °
72° °
做一做
任意抛掷两枚均匀硬币,硬币落地后, 任意抛掷两枚均匀硬币,硬币落地后, 两枚均匀硬币 (1)写出抛掷后所有可能的结果 一正一反的概率是多少? (2)一正一反的概率是多少?
一个盒子里装有4个只有颜色不同的球 其中3 个只有颜色不同的球, 例2 一个盒子里装有 个只有颜色不同的球,其中 个红球, 个白球 从盒子里摸出一个球, 个白球。 个红球,1个白球。从盒子里摸出一个球,记下颜 放回, 搅匀,再摸出一个球。 色后放回 色后放回,并搅匀,再摸出一个球。 不放回 (1)写出两次摸球的所有可能的结果; )写出两次摸球的所有可能的结果; (2)摸出一个红球,一个白球的概率; )摸出一个红球,一个白球的概率; (3)摸出 个红球的概率; 个红球的概率; )摸出2个红球的概率
n 那么,一枚硬币掷于地上n次, n次都是正面的概率为 那么,一枚硬币掷于地上n 次都是正面的概率为 ( )
,
1 2
可以理解为1/2×1/2× 1/2; 可以理解为1/2×1/2× … ×1/2; 1/2 n个1/2相乘 个 相乘
一枚硬币掷于地上两次,都是正面的概率为1/4, 一枚硬币掷于地上两次,都是正面的概率为1/4, 1/4 将两枚硬币同时掷于地上,同时出现正面的概率也为1/4 , 将两枚硬币同时掷于地上,同时出现正面的概率也为1/4 掷两枚硬币和一枚硬币掷两次的正面都朝上的概率相同吗? 掷两枚硬币和一枚硬币掷两次的正面都朝上的概率相同吗? 的正面都朝上的概率相同吗 掷n枚硬币和一枚硬币掷n次的正面都朝上的概率相同吗? 枚硬币和一枚硬币掷n 的正面都朝上的概率相同吗?
第2次 次 第1次 次 白 红1 红2 红3 白 白,白 白 红1,白 白 红2 ,白 白 红3 ,白 白 红1 白,红1 红 红1 ,红1 红 红2,红1 红 红3 ,红1 红 红2 白,红2 红 红1,红2 红 红2 ,红2 红 红3 ,红2 红 红3 白,红3 红 红1,红3 红 红2 ,红3 红 红3,红3 红
你会了吗? 你会了吗?
任意把骰子连续抛掷两次, 任意把骰子连续抛掷两次, 两次 (1)写出抛掷后的所有可能的结果; 写出抛掷后的所有可能的结果;
36
2 1 P= = 36 18 1
的概率; (2)朝上一面的点数一次为3,一次为 的概率; 朝上一面的点数一次为 ,一次为4的概率 (3)朝上一面的点数相同的概率; = 6 = 朝上一面的点数相同的概率; 相同的概率 P
m P(A)= n ( )
° 120° 120° ° 120° °
72° °