Surface Engineering
机械设计专业术语英文词汇
机械设计专业术语的英语翻译阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower摆动导杆机构oscillating guide-bar mechanism摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed变速speed change变速齿轮change gear ; change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism并行工程concurrent engineering并行设计concurred design, CD912不平衡相位phase angle of unbalance不平衡imbalance (or unbalance)不平衡量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及控制装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit913齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism串级调速cascade speed control创新innovation ; creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打包机packer打滑slipping带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing单万向联轴节single universal joint单位矢量unit vector914当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动平衡dynamic balance动平衡机dynamic balancing machine动态特性dynamic characteristics动态分析设计dynamic analysis design动压力dynamic reaction动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch915端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics反转法kinematic inversion反正切Arctan范成法generating cutting仿形法form cutting方案设计、概念设计concept design, CD防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy916分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment公法线common normal line917公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design918。
surface engineering 审稿意见
We now have referees' comments on the above paper. I am pleased to tell you that the work is of interest, but regret to say that the paper is not considered suitable in its present form for publication in Surface Engineering. The reasons are detailed in the comments below.You will see that a number of general and specific points are mentioned which necessitate extensive rewriting of the paper.Please consider how you wish to proceed. If you are able to revise the paper extensively, to deal in full with all the points mentioned, we shall be willing to consider the position further.You will see a menu item entitled Submission Needing Revision. Your submission record may be viewed there.When resubmitting, please provide a list of changes and, where appropriate, respond to each point which has been raised. You should upload this response as a separate file during the resubmission process. Please ensure that you supply a text file prepared according to the specification in the instructions to authors (SEE IMPORTANT NOTES ON LANGUAGE AND EQUATIONS BELOW) and a high resolution image file of each figure. Failure to do this may result in a delay in the typesetting of your paper. Please note that it is not permitted to submit a PDF file of the revised manuscript at this stage.Please note that manuscripts will be automatically withdrawn if a revised version has not been submitted within 90 days of this invitation.With regardsT S Sudarshan, Ph.DEditor-in-chiefSurface EngineeringComments from the Editors and Reviewers:Administrative Comments PRIOR to a Technical ReviewWe take plagiarism seriously so please make sure that ALL citations are properly referenced. We will use computer software to compare your manuscript with the database of ALL manuscripts published from ALL publishersPlease use any of the above sites to check your paper first. and bring down your similarity to less than 5%.Please reduce the length of your title to less than 10 wordsYour paper MUST not exceed 20 typed pages including figures, so please remove unnecessary figures and ensure that they are of the right size and not oversized. Please ensure that all figures have legends, micron markers and where necessary magnification or other relevant details.Please provide email address for each author and at least two different email addresses for the primary point of contact. Please add this to your log in profilePlease also make sure that all references are in the correct format as per the guidelines to authors posted on the website. We recommend that 25% of the references be from the past 3 years so that your paper has citation value.A copy of the TOC is enclosed for helpful references that may support your publication and please ensure it is not the same as something published previously.your paper must have a significant content on coatings and cannot be mere modeling or properties as it will be rejectedPlease check your English using the feature on Microsoft word for both grammar and spelling. This should help avoid a lot of expression problems and make it easy for the reviewer to understand your paper.Mechanisms must be clearly stated for the phenomena observed in the discussion section and must not be empiricalconclusions must be comprehensive and not written like a reportplease also clearly indicate the industrial value/relevance for these approaches described in your paperplease also state in the first few paras as to why this work is not the same as that of others and what knowledge is it adding that is not already available that contributes to the archival literatureLANGUAGE AND LANGUAGE-EDITING:If the referees' comments have raised concerns over the use of English in your paper, it is important that you check and revise your paper carefully, preferably with the assistance of a native English speaker, to ensure the work is reported and discussed clearly.You may also wish to consider the use of a language-editing service to refine the use of English in your manuscript before resubmission. For information about language-editing services and discounts for Surface Engineering authors, please visit/page/authors/languageediting.Use of an editing service does not guarantee that your paper will be accepted for publication. A decision will be made following the usual peer review process.IMPORTANT NOTE ON EQUATIONS IN WORD 2007 Manuscripts containing equations must be produced in Word 2007 compatibility mode using Equation Editor 3.0 or in an earlier version of Word. Equations generated by Word 2007 are stored as images and cannot be used for typesetting. See/authors/instructions/sur for further details.。
Surfaceengineeringofpolymermebrnesviamusselnspiredchemistry
Surface engineering of polymer membranesvia mussel-inspired chemistryHao-Cheng Yang a,Jianquan Luo b,Yan Lv a,Ping Shen a,Zhi-Kang Xu a,na MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou310027,Chinab The National Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing100190,Chinaa r t i c l e i n f oArticle history:Received17July2014Received in revised form26January2015Accepted20February2015Available online2March2015Keywords:Surface engineeringMussel-inspired chemistrySurface modificationPolydopaminePolymer membranea b s t r a c tOver the past decades,polymer membranes are becoming more and more compelling due to their growingdemand in environment,energy and healthfields.Many efforts have been devoted to improve the membraneperformance and extend their application via the methodology of surface engineering.One of the mostpromising strategies is mussel-inspired chemistry,which has become a powerful tool in membrane fabricationand modification because of its universality and versatility.Considering the increasing interest and advances inthisfield,we present this review regarding mussel-inspired chemistry in the surface engineering of polymermembranes.The adhesion mechanism and properties of polydopamine(as a representative)are brieflyoutlined at the beginning.Then detailed elaboration is followed on the applications of mussel-inspiredchemistry in the surface science and technology of membranes.Catecholamines can be directly deposited onthe membrane surface,act as an interface layer for post-modification,serve as a surface component ofmembrane and pre-decorate polymers for membrane modification or fabrication.Finally,we summarizerecent research progress and give a further perspective of the mussel-inspired catecholamine in membranescience and technology.&2015Elsevier B.V.All rights reserved.1.IntroductionIt is well known that we are facing a series of unprecedentedchallenges from environment and energy crisis with the rapid devel-opment of modern industry.One of the most serious problems is thefreshwater shortage,which generates a great demand on the devel-opment of alternative technologies for water production,such as sea-water desalination and wastewater reuse[1].Over the past decades,worldwide membrane scientists are engaged in the research of novelfiltration membranes to meet the demands for clean and plentifulwater supply,including both polymeric[2–4]and ceramic[5–7]mem-pared to the ceramic ones,polymer membranes are moreContents lists available at ScienceDirectjournal homepage:/locate/memsciJournal of MembraneScienceFig. 1.Achieved and potential applications of mussel-inspired catecholamine inmembrane science./10.1016/j.memsci.2015.02.0270376-7388/&2015Elsevier B.V.All rights reserved.Abbreviations:PE,polyethylene;PP,polypropylene;PVDF,poly(vinylidenefluor-ide);PEG,polyethylene glycol;PHEMA,poly(hydroxyethyl methylacrylate);PNI-PAM,poly(N-isopropylacrylamide);PAA,polyacrylic acid;DOPA,dihydroxyphenylalanine;PDA,polydopamine;PS,polystyrene;PTFE,polytetra-fluoroethylene;ATRP,atom transfer radical polymerization;PDOPA,poly(dihy-droxyphenylalanine);RAFT,reversible addition fragmentation transfer;PSu,polysulfone;PSBMA,poly(sulfobetaine methacrylate);PEI,polyethyleneimine;PAN,polyacrylonitrile;BSA,bovine serum albumin;DMAEMA,2-(dimethylamino)ethylmethacrylate;HEMA,2-hydroxyethyl methacrylate;SERS,surface enhanced Ramanscattering;ZIF,zeolitic imidazolate framework;CS,chitosan;TFC,thinfilmcompositen Corresponding author.E-mail address:xuzk@(Z.-K.Xu).Journal of Membrane Science483(2015)42–59widely employed in water puri fication for industrial,agricultural and municipal uses because of their flexibility and low cost.However,traditional polymer membranes have several notable drawbacks.For example,the mechanical property is unstable due to swelling by water during filtration for hydrophilic polymer membranes (e.g.cellulose derivatives)[8,9].On the other hand,some commercial polymers,such as polyethylene (PE),polypropylene (PP)and poly(vinylidene fluoride)(PVDF),exhibit high trans-membrane pressure and fouling af finity be-cause of the poor surface wettability (i.e.low hydrophilicity)[10–13].Furthermore,the traditional membranes can no longer meet the requirement for water puri fication due to the increasing wastewater complexity and the more stringent emission standards.A new generation of membranes is required with both high-performance and multi-functions [14].Hence,great effort has been devoted to develop novel functionalized membranes for various purposes,and particularly,the surface engineering of membrane has attracted much attention because the membrane surface plays a crucial role during the separation process.Surface properties,such as wettability and ch-arge as well as roughness,largely determine the membrane perfor-mance including water permeation and anti-fouling property.More speci fically,the hydrophilic surfaces show better wettability and resistance to membrane fouling than the hydrophobic ones,leadingFig.2.Possible reaction mechanisms and structures of polydopamine proposed by (a)Messersmith's,(b)Freeman's and (c)Liebscher's groups.(d)Proposed mechanism for the binding of DOPA to TiO 2and mica surfaces [43,60,62].(e)AFM results of interactions between single DOPA or DOPA –quinone molecule and Ti substrate (left)or an amino-containing substrate (right)[66].(f)A schematic mechanism of likely interactions between the mfps (mfp-3as an example)and four different surfaces (mica,SiO 2,PMMA and PS)[65].H.-C.Yang et al./Journal of Membrane Science 483(2015)42–5943to an increased water permeation flux though more details should be considered carefully.Furthermore,the membrane surface coupled with speci fic adsorption [15]or catalytic function [16,17]shows great potentials in advanced technologies for water treatment.Surface engineering grants extrinsic properties for the traditional polymer membranes to meet the requirements of high performance and multi-functions [18].However,it is challenging to modify the inert surfaces composed of C –H or C –F bonds due to their low surface energy and reactivity.Researchers have been trying to find more facile,universal and effective ways to realize this goal.Numerous methods,such as dip-coating [19,20],plasma treatment [21–25],surface grafting [26–29],interfacial crosslinking [30,31]and addition of amphiphilic co-polymers [32,33],have been developed to hydrophilize or functio-nalize the membrane surfaces.Unfortunately,most of the aforemen-tioned techniques suffer from some disadvantages.For example,the stability of physical coating is questioned because of the relative poor compatibility between the interfaces.Hydrophilicity derived from pla-sma treatment usually decreases with the time,which is known as “hydrophobic recovery ”[34].Among these methods,surface grafting,which is initiated by the anchored initiators under high-energy radiations or catalysts,has been widely studied and applied for surface functionalization in many cases.Hydrophilic polymers such as poly-ethylene glycol (PEG)[35,36]and poly(hydroxyethyl methylacrylate)(PHEMA)[37,38]were grafted onto the membrane surfaces to impr-ove the wettability and anti-fouling properties.The temperature-or pH-sensitive polymers,such as poly(N-isopropylacrylamide)(PNIPAM)[39,40]and polyacrylic acid (PAA)[41],were also grafted to make environmentally responsive membranes.However,there are still many limitations in this method.Firstly,the mechanical property may be decreased by irradiation.Secondly,the grafting process is relatively complex,and the grafting degree,especially the uniformity is not easy to control.Thirdly,swelling of the grafted chains may block the mem-brane pores in the cases of ultra filtration and micro filtration,which leads to a sharp decrease in water permeation flst but most signi ficantly,there may exist a “grafting gradient ”along the mem-brane cross-section due to the impenetrability of the opaque mem-branes in the case of,in particular,photografting.And thus most of the monomers are polymerized near the top surface rather than the inner part,which leads to a quite hydrophilic surface but non-equivalent water permeation in some cases [42].It is worth mentioning that the modifying uniformity is dramatically important to the membrane performance,especially for the porous ones.There are two meanings when we mention “membrane surface ”in literatures.Some research-ers consider the “surface ”as the top surface of the membranes,the properties of which decide the “external ”characters including wett-ability,charge,roughness,and fouling/bacteria (which can be rejected by the membrane)resistance.On the other hand,the concept of “surface ”should include all the pore walls contacting fluid during the filtration process for porous membranes,as it will affect the “inner ”performance,for example,the permeation property and the foulant adsorption in the membrane pores.Accordingly,the photo-initiated surface grafting is dif ficult to reach the internal polymers of the mem-branes and to modify the pore surface.By contrast,the “grafting to ”method involving special reactions will not meet this problem.The poor universality and possible intricate synthesis may limit its application instead.Therefore,considering the above-mentioned pro-blems,a simple,robust,and universal technology is still needed to modify the membrane surfaces.A breakthrough has been made by Phillip B.Messersmith and co-workers in 2007[43].They found that dopamine,an important neurotransmitter in human body,could play an intriguing role in surface science,which was inspired by the strong adhesion of mytilus edulis foot.It can form a self-polymerized coating on various subst-rates under alkaline condition and air atmosphere.To date,several dopamine and dihydroxy-phenylalanine (DOPA)analogs have been developed for surface modi fication,which include norepinephrine [44,45]and other polyphenols [46–48].Compared to traditional methods,the deposition of dopamine is more simple and control-lable,which can be adjusted by changing pH,concentration,deposi-tion time,and atmosphere [49–51].The coating process occurs in the solution without any external stimuli such as light or heat,and its uniformity depends on the diffusion and reactivity along the mem-brane.Although the oxygen diffusion barrier is still a problem which may affect the self-polymerization of dopamine [52],it can be addr-essed via mild oscillation during the deposition process.And the polydopamine (PDA)coating keeps stable in solutions with a relativeFig.3.Chemical properties of dopamine and PDA as representatives of catecholamine and catecholamine-based materials.H.-C.Yang et al./Journal of Membrane Science 483(2015)42–5944wide pH range as described in Section 3.1[53].Thanks to the above advantages,the interest in the surface engineering of membrane by catecholamine has surged in recent years,leading to a large number of studies involving this hot topic.Therefore,it is necessary to review these developments and present a clear outline for the researchers.This review demonstrates the mechanisms of mussel-inspired chemistry for surface science at first.It aims at the properties and applications of the multi-functional coating for the surface engi-neering of polymer membranes.As illustrated in Fig.1,the main applications include surface modi fier,intermediate layer,skin layer,filler and pre-modi fied polymer.Finally,we provide a briefconclusion and the prospect in this field,and then a guide for the potential applications in the future.2.Mussel-inspired surface chemistry and physicsSince 2007,polydopamine has become a famous “bio-glue ”attri-buted to its strong and universal adhesion ability,the simple and facile deposition process,as well as its versatile and wide applica-tions [43].Numerous researches concerning mussel-inspired surface chemistry have emerged over the past six years.There is nodoubtFig.4.(a)SEM images of PE,PVDF and PTFE porous membranes before and after dopamine deposition (c ¼2.0g/L,t ¼24h,pH ¼8.5)[89].(b)Permeate flux as a function of time during oil/water emulsion cross flow filtration of XLERO membranes modi fied with varied dopamine concentrations,deposition times,and initial pH values of Tris –HCl buffer [92].(c)Schematic and SEM images of PDA-modi fied PSU/PAN nano fibrous membranes for La 3þabsorption [115].H.-C.Yang et al./Journal of Membrane Science 483(2015)42–5945that it attracts much attention,especially from the researchers inmembrane science because,as demonstrated in Section1,one of themost important applications of surface chemistry is in membranescience.Inspired by the mytilus edulis foot protein,catechols arewidely applied in functional coatings[54,55],biomedicine[56],electronics[57]and otherfields as reviewed previously[58,59].Inthis section,we briefly summarize the adhesion mechanisms of PDAbased on the reported results,and also illustrate its intriguing prop-erties which are essential for the achieved or potential applications inmembrane science.2.1.Structures and adhesion mechanismsIt has been widely accepted that the catechol structure with strongadhesion and the“crosslink network”formed via autoxidation are themain reasons for PDA attachment on various surfaces[43].Fig.2aduplicates the oxidation and polymerization mechanism suggested byLee et al.[43].Both covalent and non-covalent interactions(includinghydrogen bond,π–πstacking and charge transfer interaction)play crucial roles for PDA formation in this mechanism.However,Dreyeret al.[60]proposed that dopamine aggregates through hydrogen bondandπ–πstacking instead of covalent binding,as shown in Fig.2b.They concluded the mechanism by investigating the structures of PDA from solid state nuclear magnetic resonance and X-ray diffraction spectra. Similar conclusions were presented by Hong et al.[61]that the physical assembly of dopamine and its oxidation product,5,6-dihy-droxyindole,contribute dominantly to the formation of PDA even though the dimers and trimers also exist.Recently,Liebscher et al.[62] demonstrated a covalently linked structure composed of dihydrox-yindole and indoledione units with different degrees of saturation,and the PDA chains are stacked parallel through hydrogen bond(Fig.2c). Distinct from Freeman's model,they suggested that the CÀC connec-tions are predominant between the monomer units.On the other hand,the detailed adhesion mechanisms of catecholshould be considered separately for different surfaces[54].For example,catechol interacts with TiO2surface via bidentate chelationinteraction,and the adhesion force is weakened by oxidizing catecholinto quinone as revealed by Hwang et al.[63].Hwang et al.suggestedthat the interaction mode converts to coordination from hydrogenbonding with the increase of pH[64].For mica and SiO2,bidentatehydrogen bonding is the major contributor to the adhesion force ofmytilus edulis foot protein(Fig.2d)[65,66].More details have beenreviewed by Zhou and his colleagues for interactions betweencatechol and inorganic substrates[54].In the membrane science and technology,we are more concernedabout the interaction modes between catechol and polymer surfaces,which are distinguished from the inorganic ones.For example,byusing single molecular force spectra,Lee et al.investigated the inte-ractions between catechol and various surfaces,including both org-anic and inorganic substrates[67].A reversible coordination wasdetected when catechol interacts with Ti surface,while an irrever-sible covalence may exist when it attaches to an amino-containingsurface.Moreover,DOPA shows higher adhesion force than DOPA–quinone in the former case(Fig.2e).In general,for polar polymersurfaces,the hydrogen bonding between phenolic hydroxyl groupand hydrogen-bonding acceptors,or even the formation of covalentbond,results in the primary adhesion,while hydrophobic orπ–πinteraction plays a crucial role when catechol contacts non-polarpolymers(e.g.polyolefin,polystyrene(PS))(Fig.2f)[68,69].However,although a possible deposition process was proposed[70],themechanism remains elusive for some hydrophobic substrates withlow surface energy,such as polytetrafluoroethylene(PTFE)and PP,which may be rationalized by hydrophobic interactions[65].2.2.Physical and chemical propertiesThe most impressive properties are their versatility and adhesiveability for mussel-inspired self-coatings on various substrates,whichmake them expected candidates for surface engineering(Fig.3)[71].Tobe specific,the catechol group can react with thiol-andamino-Fig.5.(a)Static water contact angles and electrolyte wettability of PE separators before and after the polydopamine treatment.(b)Voltage profiles of the pouch-type half cells with and without the polydopamine treatment during thefirst cycle.Both cells were cycled at a rate of0.1C between3.0and4.5V.(c)A comparison of discharging capacities for both type cells at a series of current densities.(d)Nyquist plots for the pouch-type half cells measured after the70cycles shown in(c).The inset shows the same plots but with a larger scale[111].H.-C.Yang et al./Journal of Membrane Science483(2015)42–5946containing compounds via Michael addition and Schiff-base reaction [72,73].Moreover,it shows good reducibility and can be easily oxidized into quinone under mild condition[74],which has been always utilized in redox reactions[75,76].By connecting with initiators for atom transfer radical polymerization(ATRP),various polymer chains can be grafted onto the PDA or PDOPA-modified surfaces via surface-initiated ATRP(SI-ATRP)[77,78].Similar examples have also been reported through reversible addition fragmentation transfer(RAFT)polymeriza-tion[79–81].Furthermore,the strong metal ion chelation ability of catechol structure enables inorganic particles and coatings to form on aTable1Summary of PDA/PDOPA-modified membranes by direct deposition and their applicationsTypes Substrate Reagent,buffer solution,pH Application/purpose Refs.MF PE/PVDF/PTFE DOPA/DA,Tris/phosphate,5.0-10.0Hydrophilization[89]Polyester DA,Tris,8.5Anti-fouling[103]PE DA,Tris-methanol,8.5Li-ion battery separator[104,111]PE DA,Tris,8.5Li-ion battery separator[110]CA DA,Tris,8.5Li-ion battery separator[108]PTFE DA,Tris-methanol,8.5Li-ion battery separator[112]PE DA,Tris-methanol,8.5Li-ion battery separator[114]UF PES DA,Tris,8.5Hemodialysis/anti-fouling[90]PSu/PE DA,Tris,8.8Hydrophilization[93]Nafion DA,Tris,8.5UF microbial fuel cell/anti-bacteria[100]PVDF DA,Tris,8.5Oil–water separation[104]RO PSu DA,Tris,8.7PRO[91]PA DA,Tris,5.0,8.8,11.0RO[92]CA DOPA,Tris,8.0FO/anti-fouling[98]PA DOPA,Tris,8.3RO/anti-fouling[99]PA DA,Tris,8.8RO/anti-bacteria[102]Anion exchange membrane NEOSEPTA AMX membrane DA,Tris,8.8Electrodialysis/anti-fouling[101] Electrospun nanofibrous membrane PVDF DA,Tris,8.5Li-ion battery separator[109]PAN/PSU DA,Tris,8.0Metal ion absorption[115]Table2Summary of the membranes involving PDA intermediate layer on their surfaces for various applications.Substrate Other components Mechanism Application/purpose Refs.PP MF membrane PVP,I2Hydrogen bond Anti-fouling and anti-bacteria[116] PVDF membrane PHEMA and PDMAEMA SI-ATRP Anti-fouling and Anti-bacteria[131]Membranes from MF to RO PEG-NH2Catechol-amino reactions Anti-fouling[124–126]ES-20RO membrane2-(methacryloyloxy)ethyl phosphorylcholine and2-aminoethyl methacrylate copolymerCatechol-amino reactions Anti-fouling[127]DOW RO membrane poly([2-(methacryoyloxy)ethyl]trimethylammoniumchloride)SI-ATRP Anti-fouling[129]PA/PES compositemembraneTitania Chelation Anti-fouling[142] PVDF UF membrane Titania Chelation Anti-fouling[143]PS electrospunfibrous membrane Undecanethiol,11-mercaptoundecanoic acid and silvernitrateCatechol-thiol reaction,chelationand reductionOil/Water separation,ion gatingand anti-bacteria[117]Steel mesh n-Dodecyl mercaptan Michael addition Oil/water separation[118]PP MF membrane PEI,silica Catechol-amino reactions andbiomineralizationOil/water separation[141]PE MF membrane Heparin Catechol-amino reactions Blood compatibility[119]PE MF membrane BSA Catechol-amino reactions Biocompatibility[120] PLA membrane Heparin Catechol-amino reactions Hemodialysis[121] Diblock copolymermembranePNIPAM-NH2Catechol-amino reactions pH-sensitive membrane[122]Nylon MF membrane PAA SI-ATRP pH-sensitive membrane[130]PE MF membrane PMMA SI-ATRP Li-ion battery separator[132]PE MF membrane Dimethylaminoethanethiol,silica Catechol-thiol reaction andbiomineralizationLi-ion battery separator[139] Aluminia membrane,steel meshZIF-8Chelation Gas separation[146,147] PES hollowfibermembranem-Phenylenediamine,piperazine and trimesoyl chloride Interfacial polymerization Energy generation[149]PSu UF membrane PEI Catechol-amino and interfacialcrosslinkNanofiltration[150]PES UF membrane Trimesoyl chloride and piperazidine Interfacial polymerization Nanofiltration[151] PSu UF membrane Graphene oxide Covalent bond Nanofiltration[153] PES UF membrane Chitosan Catechol-amino reactions andinterfacial crosslinkPervaporation[148]Aluminia tubemembrane m-Phenylenediamine and trimesoyl chloride Interfacial polymerization Pervaporation[152]H.-C.Yang et al./Journal of Membrane Science483(2015)42–5947Fig.6.(a)Post-modi fication of PDA-coated PS nano fibrous membranes for multi-functional uses [117].(b)Schematic description of the preparation of PDA-coated stainless steel mesh film and N-dodecyl mercaptan modi fied surface through Michael addition reaction [118].(c)and (d)are the schemes of immobilization of heparin and BSA onto the membrane surface via PDA adhesion layer [119,120].(e)Oily water fouling behavior of flat-sheet membranes with PDA and PDA-g-PEG coatings [124].H.-C.Yang et al./Journal of Membrane Science 483(2015)42–5948PDA-modified surface[82,83],or acts as the cross-linking point in the metal ion-bridged polymer hydrogels[84,85].Apart from the properties referred above,there are also some “unexplored”or neglected characteristics of PDA or PDOPA which may be useful for some special purposes.For example,as a melanin-like material,PDA exhibits some electrical properties[86].It also shows a wide light absorbance ranging from ultraviolet to visible region[87]. Moreover,it has excellent free-radical-scavenging property,which has potential to protect the polymer membranes from the attack of free radicals[88].3.Applications in membrane science and technology3.1.As a surface modifier by direct deposition on membraneZhu and his co-workers reported thefirst work to use DOPA and dopamine as hydrophilic modifiers for hydrophobic polymer mem-branes[89].The wettability of PE,PVDF and PTFE microfiltration membranes was improved after several hours'deposition in dopamine or DOPA solution(Fig.4a).However,the deposition time is too long and the water permeationflux does not increase obviously due to pores blocking caused by PDA aggregates.The pore blocking affects the water permeation significantly when PDA or PDOPA is applied in the surface modification of ultrafiltration and nanofiltration membranes.Likewise, Cheng et al.[90]used PDA to modify polyethersulfone(PES)ultrafiltra-tion membrane,and they found that the waterflux decreased with the increase of deposition time and dopamine concentration,which is caused by the pores blocking on the top surface of membrane.Hence,it is necessary to avoid long-time and high-concentration dopamine dep-osition on the separation layer if high waterflux is preferred for the membranes.For example,Arena et al.[91]modified polysulfone(PSu)support layer of a commercial reverse osmosis membrane with dopam-ine to reduce severe internal concentration polarization.They peeled off the polyester fabric layer before deposition,and prewetted the hydro-phobic PSu support with isopropyl alcohol before immersing it into the dopamine solution,which is quite wise for reducing deposition time and improving hydrophilicity of the whole membrane.In contrast with the blocking effect,the hydrophilicity of PDA or PDOPA coatings impr-oves the membrane performance during the actualfiltration process. The same research group also investigated the effects of deposition conditions,including time,dopamine concentration and pH value,on the oil/water separation performance of PDA-modified reverse osmosis membranes systematically(Fig.4b)[92,93].They found a decrease of pure waterflux after PDA deposition,while an increase of permeateflux during thefiltration of oil-in-water emulsion,due to the enhanced anti-oil-fouling property by mussel-inspired coating.In addition,the optimal deposition pH value is8.8in their work.Surface fouling becomes one of the most crucial problems during thefiltration process due to the inherent hydrophobicity of most commercial polymer membranes[94].One important motivation of hydrophilization is to improve the in-service performance of mem-brane by constructing an anti-fouling surface[95,96].Dopamine contains both amino and phenolic hydroxyl groups(and carboxylic acid group for L-DOPA),which can be regarded as zwitterionic mole-cules for anti-fouling property[97].Zou et al.investigated the fouling resistance characteristics of L-DOPA coated polyamide reverse osmosis membranes.The results show that the water permeability is improved and the protein fouling is reduced after modification[98,99].The similar surface modifications for other membranes(e.g.microfiltration and anion-exchange membranes)have also been reported[100–104]. However,the aromatic rings in PDA coating limit the hydrophilicity and anti-fouling property of the modified membranes.To address this problem,the authors developed the one-step co-depositionapproachFig.7.(a)Schematic diagram illustrating the process of SI-ATRP from the membrane surfaces.Both PAA and poly(HEMA-g-DMAEMA)or poly(DMAEMA-g-HEMA)were grafted onto the membranes for pH-sensitive and anti-fouling properties[131].(b)pH-dependent permeability of aqueous solutions through the pristine nylon membrane and nylon-g-PAAc membranes with monomer concentrations of2%,4%and6%[130].(c)Time-dependentflux of pristine PVDF membrane,PDOPA-coated membrane and PVDF-g-PHEMA membrane with an ATRP time of10min operated with BSA solution for three cycles[131].H.-C.Yang et al./Journal of Membrane Science483(2015)42–5949to further improve the surface hydrophilicity,as well as the anti-fou-ling property.The polypropylene microporous membranes were imm-ersed into the dopamine/poly(sulfobetaine methacrylate)(PSBMA) solution,and then the PDA/PSBMA modified membranes were obt-ained[105].The membrane shows better fouling resistance during the filtration of protein solution.Moreover,this coating is very stable during a long-term rinse.In addition,the authors also co-deposited dopamine and low-molecular-weight polyethyleneimine(PEI)onto the membrane surface[106].As an amino-rich polymer,PEI can not only react with dopamine via Schiff base or Michael addition reaction, but also provide hydrophilic group for further -pared to the pure PDA,the PDA/PEI coating shows reduced deposition time,improved wettability and accordingly high waterflux.Further-more,the deposition solution can be reused for more thanfive times because no aggregates form in the solution(the interposition of PEI disturbs non-covalent interactions in polydopamine).Another important application of the PDA-modified membranes is the separator of batteries[107–110].PE separator has been commonly employed in Li-ion batteries.To obtain a better power performance and cycle lives of the batteries,Ryou et al.prepared a PDA-treated PE separator with improved compatibility between membranes and liq-uid electrolytes[111],which showed a higher capacity retention ability than unmodified one(Fig.5).A PDA-decorated PTFE separator was also invented by this group[112],and the PDA coating showed a signi-ficant improvement in the compatibility between surfaces even with low surface energy[113].Moreover,the PDA-decorated separators exhibited excellent anti-oxidative and anti-thermal-shrinkage proper-ties[110,114].A greater improvement of performance was found for the low-porosity separators than the high-porosity ones[107].Besides the traditional hydrophobic materials,PDA coating has also been applied to hydrophilic polymers such as cellulose for improving thermal dimensional stability and mechanical strength[108].AllofFig.8.(a)Scheme of coating polydopamine(PDA)on a PP membrane as well as subsequent PVP and iodine complexation.(b)Static water contact angles and SEM images of unmodified,PDA-modified and PDA/PVP-modified PE membranes.(c)Permeateflux of water and protein solution through the original and modified PP membranes.(d)Representativefluorescence microscopy images of the membranes surfaces after being exposed to a BSA–FITC solution for8h.(e)Antimicrobial activities of each membrane against Staphylococcus aureus[116].H.-C.Yang et al./Journal of Membrane Science483(2015)42–5950。
材料科学专业英语词汇
材料科学专业英语词汇1. Material science - 材料科学2. Properties - 物性3. Structure - 结构5. Mechanical properties - 机械性能6. Thermal properties - 热性能7. Electrical properties - 电性能8. Optical properties - 光学性能9. Chemical properties - 化学性能10. Processing - 加工11. Synthesis - 合成12. Manufacturing - 制造13. Testing - 测试14. Characterization - 表征15. Nanomaterials - 纳米材料16. Polymers - 高分子材料17. Metals - 金属18. Ceramics - 陶瓷20. Biomaterials - 生物材料21. Material selection - 材料选择22. Material degradation - 材料退化23. Corrosion - 腐蚀24. Fracture - 断裂25. Fatigue - 疲劳26. Deformation - 变形27. Microstructure - 微观结构28. Phase transformation - 相变29. Crystal structure - 晶体结构30. Surface engineering - 表面工程31. Coating - 涂层32. Thin films - 薄膜33. Materials characterization techniques - 材料表征技术34. X-ray diffraction - X射线衍射35. Scanning electron microscopy - 扫描电子显微镜36. Transmission electron microscopy - 透射电子显微镜37. Atomic force microscopy - 原子力显微镜38. Differential scanning calorimetry - 差示扫描量热计39. Tensile testing - 拉伸试验。
Brief Introductionof Surface Engineering Technologies(地面工程介绍)
宋芳屯油田
田萨 北 油 喇嘛店油 田
萨 中 油 田
萨 南 油 田
杏 北 油 田
杏 南 油 田
龙虎泡油 田
葡萄花油 田
● full process flow in daqing oilfield
收集 处理 用户
化工厂 化工厂 油 气 系 Oil and gas system gathering 油井
脱水站
原油稳定厂
原油库
Chemical plant
炼油厂
Oil and gas handling station
Dehydration station
Crude oil stabilization p;ant
Crude oil store
Refinery plant
Water treatment system
Daqing Oilfield Productivity Construction
Daqing Oilfield is the largest onshore oilfield which located in the frigid
area. The oilfield has experienced several development periods like “water
Oil and gas gathering and transportation Supply water Surface engineering Something flooding Supply and distribution power
automatzition
communication
Road
含油污水处理站 Produced Water Treatment Station
材料表面工程_ 物理气相沉积与磁控溅射_
Materials Surface Engineering 材料表面工程
第1章气相沉积技术与磁控溅射
第七章气相沉积技术
一、气相沉积技术及其分类
气相沉积技术是近年来迅速发展的表面技术,它利用气相在各种材料或制品的表面进行沉积,制备单层或多层薄膜,使材料或制品获得所需的各种优异性能。
该技术也被称为“干镀”,主要分PVD 和CVD :物理气相沉积(Physical Vapor Deposition )化学气相沉积(Chemical Vapor Deposition )等离子化学气相沉积(Plasma Chemical Vapor Deposition )气相沉积技术
(1)物理气相沉积(Physical Vapor Deposition,PVD):是在真空条件下,采用各种物理方法,将固态的镀料转化为原子、分子或离子态的气相物质后,再沉积于基体表面从而形成固体薄膜的一类薄膜制备方法。
(2)化学气相沉积(Chemical Vapor Deposition,CVD):把还有构成薄膜元素的一种或几种化合物、单质气体提供给基体,借助气相作用或基体表面上的化学作用形成薄膜。
(3)兼具二者优势的等离子化学气相沉积(PCVD)
气相沉积的特点
①气相沉积的环境为密闭的高真空环境,原料的转化率高,
减少材料的浪费。
②气相沉积可降低来自空气的污染,所得的沉积膜纯度高。
③能在低温条件下制备高熔点物质。
④便于制备多层复合膜,层状复合材料和梯度材料。
成
具
机械零件
塑料模具
冲压模具
汽
车工业︱发动机零
件。
机械制图专业英语词汇大全
机械制图专业英语词汇大全一、基本概念在机械制图中,有一些基本的概念和术语,以下是这些概念和术语的英语词汇:1.Mechanical Drawing(机械制图)2.Engineering Drawing(工程制图)3.Drafting(制图)4.Blueprint(蓝图)5.Orthographic Projection(正投影)6.Isometric Projection(等轴投影)7.Dimension(尺寸)8.Scale(比例尺)9.Section(剖视图)10.Detail Drawing(细节图)11.Assembly Drawing(装配图)12.Exploded View(爆炸视图)13.Tolerance(公差)14.Geometric Tolerance(几何公差)15.Surface Roughness(表面粗糙度)二、点、线、面的表示在机械制图中,点、线和面是最基本的几何元素,以下是它们的英语词汇:1.Point(点)2.Line(线)3.Straight Line(直线)4.Curve(曲线)5.Circle(圆)6.Arc(弧)7.Tangent(切线)8.Angle(角度)9.Right Angle(直角)10.Perpendicular(垂直)11.Parallel(平行)12.Polygon(多边形)13.Triangle(三角形)14.Rectangle(矩形)15.Square(正方形)三、制图工具和材料在机械制图中,常用的工具和材料对于专业英语词汇如下:工具类1.Pencil(铅笔)pass(圆规)3.Protractor(量角器)4.Drawing Board(绘图板)5.T-square(直尺)6.French Curve(曲线板)7.Engineering Scale(工程比例尺)8.Drafting Tape(制图胶带)9.Eraser(橡皮)材料类1.Tracing Paper(透明纸)2.Drawing Paper(绘图纸)3.Sketchbook(素描本)4.Drawing Ink(绘图墨水)5.Drawing Pen(绘图笔)6.Drafting Film(草图纸)四、常见图形和视图机械制图中,常常需要绘制各种图形和视图,以下是一些常见的图形和视图的英语词汇:图形类1.Plan(平面图)2.Elevation(立面图)3.Section(剖视图)4.Isometric View(等轴视图)5.Exploded View(爆炸视图)6.Perspective View(透视图)7.Detail(细节)视图类1.Front View(正视图)2.Rear View(背视图)3.Top View(俯视图)4.Bottom View(底视图)5.Right Side View(右侧视图)6.Left Side View(左侧视图)7.Isometric View(等轴视图)五、尺寸和公差在机械制图中,尺寸和公差是非常重要的,以下是关于尺寸和公差的英语词汇:1.Dimension(尺寸)2.Overall Length(总长)3.Width(宽度)4.Height(高度)5.Diameter(直径)6.Radius(半径)7.Tolerance(公差)8.Upper Limit(上限)9.Lower Limit(下限)10.Deviation(偏差)11.Clearance(间隙)12.Interference(干涉)六、曲线和曲面在机械制图中,曲线和曲面的表示是非常重要的,以下是关于曲线和曲面的英语词汇:1.Spline(样条曲线)2.Bezier Curve(贝塞尔曲线)3.NURBS(非均匀有理B样条曲线)4.Fillet(圆角)5.Chamfer(倒角)6.Surface(曲面)7.Cylindrical Surface(柱面)8.Conical Surface(圆锥面)9.Spherical Surface(球面)10.Toroidal Surface(环面)以上是机械制图专业英语词汇的大全,希望对你的学习有所帮助。
组织工程中的英文名词解释
组织工程中的英文名词解释组织工程(tissue engineering)是一门交叉学科,旨在利用细胞和生物材料来创建替代体内脏器和组织的工艺。
该领域涉及多个学科领域,包括生物学、医学、化学和工程学等。
在组织工程中,有许多与这一领域相关的英文名词,以下将对其中几个重要的名词进行解释。
生物材料(biomaterials)是指那些用于修复、替代、增强或重塑生物组织和器官的物质。
这些材料可以是天然的,如骨骼、皮肤和血液等,也可以是人工合成的,如金属、塑料和陶瓷等。
生物材料必须具备与人体组织相容性,不引起免疫反应,并具有所需的生物功能和机械性能。
支架(scaffold)是一种将细胞组合成三维结构的支持材料。
支架提供细胞生长所需的物理和化学支持,并可以通过提供微环境来控制细胞的分化和功能。
支架可以通过各种材料制成,如天然聚合物、合成聚合物和生物陶瓷。
细胞培养(cell culture)是指在体外培养条件下维持和增殖活体细胞的过程。
细胞培养通常需要一定的生长培养基,其中包含维持细胞生长所需的营养物质和生长因子。
细胞培养是组织工程中制备组织或器官的重要步骤。
细胞移植(cell transplantation)是将体外培养的细胞或组织移植到体内的过程。
细胞移植可用于修复或替代受损组织,并且可以改善许多疾病的治疗效果。
细胞移植可以通过直接注射、植入支架或通过手术等方法进行。
生物陶瓷(bio-ceramics)是一类由人工合成的无机材料,具有生物活性和生物相容性。
生物陶瓷通常用于制备支架和人工骨髓等组织工程应用。
与其他生物材料相比,生物陶瓷具有良好的机械性能和生物活性,可促进骨组织的再生。
再生医学(regenerative medicine)是指通过利用生物学、工程学和医学知识修复或替代受损组织和器官的方法。
再生医学的目标是恢复受损组织的功能,并最终实现组织和器官的再生。
组织工程是再生医学的重要组成部分,通过组织工程技术可以构建人工组织或器官,并促进身体的自愈能力。
表面工程学翻译
1.Surface engineering is the subdiscipline of materials science which deal with the surface of solid matter.It has applications to chemistry mechanical engineering ,and electrical engineering (particularly in relation to semiconductor manufacturing).表面工程学是处理固体物质表面材料科学的学科分支。
它在化工,机械工程和电机工程(特别是与半导体制造业相关的)方面都有很多的应用。
2.Solids are composed of a bulk material covered by a surface. The surface which bounds the bulk material is called the Surface phase .It acts as an interface to the surrounding environment. The bulk material in a solid is called the Bulk phase.固体是由被大量的物质覆盖的表面组成。
这个限制这些大量物质的表面被称作表面相。
它表现为与周围环境接触的界面。
这些在固体内部的大量的物质被称作体相。
3.The surface phase of a solid interacts with the surrounding environment. This interaction can degrade the surface over time .Environmental degradation of the surface phase over time can be caused by wear, corrosion,fatigue and creep.固体的表面相会同周围环境相互作用。
(完整版)工程学专业英语词汇
(完整版)工程学专业英语词汇工程学专业英语词汇引言工程学是一门涉及设计、建造和维护物质世界的学科,它跨越了各个领域,包括土木工程、电气工程、机械工程等等。
在研究工程学时,了解和掌握相关的英语词汇是至关重要的。
本文档将介绍一些常用的工程学专业英语词汇,希望能对研究和工作中有所帮助。
1. 土木工程英语词汇- Concrete - 混凝土- Foundation - 基础- Structural analysis - 结构分析- Reinforcement - 钢筋- Retaining wall - 挡土墙- Excavation - 挖掘- Bridge - 桥梁- Dam - 水坝- Highway - 公路- Geotechnical engineering - 岩土工程2. 电气工程英语词汇- Electric circuit - 电路- Transformer - 变压器- Generator - 发电机- Motor - 电动机- Power distribution - 电力分配- Control system - 控制系统- Circuit breaker - 断路器- Voltage - 电压- Current - 电流- Resistance - 电阻3. 机械工程英语词汇- Mechanical design - 机械设计- Thermodynamics - 热力学- Fluid mechanics - 流体力学- Heat transfer - 热传导- Stress analysis - 应力分析- Machine tool - 机床- Bearing - 轴承- Gear - 齿轮- Cam - 凸轮- Robotics - 机器人技术4. 计算机工程英语词汇- Algorithm - 算法- Programming - 编程- Database - 数据库- Software engineering - 软件工程- Artificial intelligence - 人工智能- Cybersecurity - 网络安全- Data mining - 数据挖掘- Virtual reality - 虚拟现实5. 工程管理英语词汇- Project management - 项目管理- Cost estimation - 成本估算- Schedule - 进度- Risk management - 风险管理- Quality control - 质量控制- Teamwork - 团队合作- Stakeholder - 利益相关者- Procurement - 采购- Lean manufacturing - 精益制造- Six Sigma - 六西格玛管理结论本文档提供了工程学专业常用英语词汇的简介,涵盖了土木工程、电气工程、机械工程、计算机工程以及工程管理等领域。
曲面零件的加工工艺设计
摘要随着科学技术的发展和制造水平的提高,社会加工中曲面零件出现的越来越多,人们对曲面零件的精度要也求越来越高。
曲面零件的加工也一直是现在社会加工的重要研究方面。
本文主要分析了曲面零件的加工,从普通车床的曲面零件的加工分析、数控车床的曲面零件分析及对于典型曲面零件飞机机翼的Pro/E建模制和数控仿真的运用。
本文对曲面零件的加工工艺有了一个较为全面的总结。
首先介绍了曲面零件的加工发展和加工中最常用的逆向工程的介绍。
通过对普通机床的研究改造说明普通机床上的曲面加工的方法及可行性。
之后介绍曲面零件在数控机床中加工,阐述数控加工的特点及数控机床的认识。
最后通过Pro/E的三维建模和曲面造型等方法设计飞机机翼外形,使得飞机机翼外形设计面向可视化,然后通过Pro/E的NC模块,自动生成NC序列后转化成数控加工G 代码,再经过后续处理模拟机床加工,实现在虚拟的环境中进行飞机机翼模型的设计和加工。
关键词:普车曲面加工,数控曲面加工,逆向工程,Pro/E三维建模AbstractWith the development of science and technology and manufacturing standards improve, more and more curved parts of social process, people on the surface of the parts precision is also increasingly high demand. Machining of curved surface parts has been an important research aspect of social processing now. This paper mainly analyzes the machining of curved surface parts, using surface analysis, from the machining of curved surface part of the ordinary lathe CNC lathe and for the typical aircraft wing surface parts of Pro/E construction molding and NC simulation.This process on the surface of the parts have a more comprehensive summary .First, the reverse engineering is the most commonly used processing development of curved surface parts and processing in the paper. Through the study of the reforming of ordinary machine tool that surface processing of general machine tools and feasibility. After the introduction of surface machining in CNC machine tools, understanding the characteristics and CNC machining .Finally, 3D modeling and surface modeling method of Pro/E design of aircraft wing shape, the aircraft wing shape design for visualization, and then through the NC module Pro/E, NC sequences generated automatically converted to G NC machining simulation code, after further processing, design and processing of an aircraft wing model in virtual environment the.[keyword]:Surface processing of general machine tools,Surface machining of CNC machine tools,Reverse engineering Pro/E 3D modeling.目录摘要 (I)Abstract (II)目录.................................................................. - 1 - 序言.................................................................. - 1 - 第一章曲面零件的分析介绍.............................................. - 2 -1.1曲面零件的生产过程............................................... - 2 -1.1.1曲面造型方法的发展......................................... - 2 -1.1.2机械零件加工工艺在制造生产过程中的应用..................... - 4 -1.2曲面零件的特点及逆向工程介绍..................................... - 4 -1.2.1 逆向工程概述............................................... - 4 -1.2.2 逆向工程的重要意义......................................... - 5 -1.2.3 国内外研究现状............................................. - 5 -1.2.4逆向工程的在引进技术中的应用............................... - 6 - 第二章、曲面零件在普通机床上的加工工艺.................................. - 7 -2.1 C6140车床曲面加工的改进........................................ - 7 -2.1.1 切削运动改造............................................... - 7 -2.1.2 切削运动改造的思路......................................... - 7 -2.1.3 立铣头的设计............................................... - 7 -2.1.4 靠模法中铣刀进给运动的改造................................. - 8 -2.1.5 车床床身导轨上附加工作台的改造............................. - 9 -2.2 普通机床曲面叶片优化设计....................................... - 9 -2.2.1普通机床的条件下加工弧形曲面............................... - 9 -2.2.2设备要求.................................................. - 10 -2.2.3操作注意事项.............................................. - 11 - 第三章、曲面零件在数控机床上的加工工艺................................. - 12 -3.1 曲面零件数控加工的原理及特点................................... - 12 -3.1.1数控加工的原理............................................ - 12 -3.1.2 数控加工的特点............................................ - 12 -3.2数控机床及加工介绍.............................................. - 13 -3.2.1三轴数控机床技术简介...................................... - 13 -3.2.2四轴数控机床技术简介...................................... - 13 -3.2.3 五轴技术简介.............................................. - 14 - 第四章、典型零件飞机零部件工艺设计及建模............................... - 16 -4.1机翼的功用及简介................................................ - 16 -4.2基于pro/E建模设计.............................................. - 16 -4.2.1 新建零件文件.............................................. - 16 -4.2.2草绘...................................................... - 17 -4.2.3 创建拉伸特征.............................................. - 17 -4.2.4 创建边界混合特征.......................................... - 19 -4.2.5 创建拉伸特征.............................................. - 19 -4.3 零件的数控编程及模拟加工....................................... - 20 -4.3.1 基于Pro/E的NC加工操作流程............................... - 20 - 结论................................................................. - 27 - 致谢................................................................. - 28 - 参考文献............................................................... - 29 - 附录................................................................. - 30 -序言目前在国内曲面零件的设计加工还是比较少的,但也是正在迅速发展的方面。
表面工程技术(PPT 90张)
腐 蚀
美国:国家标准局1978年调查: 1975年腐蚀损失达820亿美元,占 国民生产总值的4.9%; 1995年腐蚀损失达3000亿美元; 中国:1983年调查:腐蚀损失400亿元/年
腐蚀和磨损均是 发生于机件表面 的材料流失过程, 其他形式的失效 过程有许多也是 从表面开始
世界三大名刃之一
日本刀的覆土烧刃
10 Company Logo
1.1 表面工程
www.theபைடு நூலகம்
1.1.1 表面技术及其发展背景
19世纪工业革命以来,为适应高强度、高硬度 和耐磨、耐蚀、耐高温等特殊要求,需不断开发 各种特殊的合金材料,但这些材料往往价格昂贵。 因此,人们试图采用各种表面技术对普通钢材表 面进行加工,改变其表面性能,以适应复杂的工 作环境。 另外,磨损、腐蚀等失效都是首先发生在材料 表面,通过对材料表面进行有效处理,可极大地 提高材料寿命。基于这样的背景,逐步形成了一 门新兴学科——表面工程学。
材料表面工程
概论
第一章
6 Company Logo
第一章 材料表面工程概论
主要内容: 1.1 表面工程的概述 1.2 表面工程技术的功能与分类 1.3表面工程的科学体系 1.4表面工程技术的应用 1.5表面工程技术的发展趋势
13
延缓和 控制表 面破坏 的方法
促进 了表 面工 程学 的发 展与 形成
Company Logo
表面工程技术的背景
表面工程概念的提出始于20世纪80年代。 1983年英国T· Bel教授首先提出了表面工程的概 念。 表面工程学科发展的重要标志是1983年英国伯 明翰大学沃福森表面工程研究所的建立和1985 年国际刊物《表面工程》的发行。 1986年10月国际热处理联合会决定接受表面工 程的概念,并把自己的会名改为国际热处理及 表面工程联合会。
速度快并且容易中的材料类SCI期刊
速度快并且容易中的材料类SCI期刊(更新中)推荐:1. Journal of alloy and compounds 影响因子IF 1点多,1个月给消息,容易中,现在几乎成为中国人的专刊了,哈哈;2. applied surface science 影响因子IF 1点多,发表容易,3. Materials Letter 1.7 速度快,快报一般都要求有新意(当然,新意太高可以投APL了)4. Materials & Design 影响因子不到1,很快,快点一个月就接受的!适合特别想要文章毕业或者评奖学金的。
5. Physica B 影响因子不到1,很快,我一个同学已经在上面发了2篇了,最快不到一个月就接受了,还是容易中的,最好是工作全面细致些。
6. Materials science and engineering B 影响因子1点多,从投稿到接受一般3-4个月,相对容易中。
7. Optoelectronics and Advanced Materials-Rapid Communications, 罗马尼亚期刊,影响因子0.2,很快,一个月可以搞定,适合灌水和急需文章。
8. Optical materials 发光材料期刊,影响因子1点多,相对容易中,速度也快。
9. Journal of Luminescence 发光方面专业期刊,老牌杂志,虽然影响因子只有1点多,但很多发光方面的经典文章出自此期刊,相对容易中,速度也可以。
10. Journal of Physics D: Applied physics 偏物理材料方面,影响因子2 左右,速度快,也不难中,中国人投稿还比较多。
黑名单:1. Thin solid films 影响因子1点多,但审稿巨慢,不推荐;2. Materials Characterization 影响因子不高,容易中,但速度慢,如果不急着要文章,也可以投的;3. Materials Chemistry and Physics 影响因子1点多,速度巨慢,我一个同学投稿半年还没消息,现在1年过去了还没查到这篇文章,估计没戏了吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(d)
Warm up the Surface
(a) (b) (c) (d) flame hardening induction hardening e-beam hardening laser hardening
Absorptionsschicht
Energy transformation in heat
Adsorption layer • fats, gases, ... • few Å Oxide layer • 1 - 10 nm Beilby-Layer • extremely deformed until amorphous • 0,1 - 1 µm Plastically deformed zone • deformation possible • 5 - 10 µm
Surface Engineering: Example 2 − Turbine Blades −
Service Conditions:
• high temperature (until 1400°C) • oxidative atmosphere • high mechanical load
Material Request
Co/Ni-Basis-Super alloy • Ts = 1230 …1315 °C ZrO2 – Heat insulation coating • Phase transformation: → Y2O3 - Stabilization • Oxidation diffusion: → Oxidation protective layer
Thermal Surface Treatment − Induction Hardening −
• Principle: Alternating current in the coil ⇒ alternating magnetic field ⇒ eddy currents in the material • Warm up: ⇒ hysteretic loss ⇒ joule’s heat • Penetration depth δ
Surface Engineering - Literature
Books:
- M. Ohring - The Material Science of Thin Films, Academic Press, 1992 - T. Burakowski, T. Wierzchoń - Surface Engineering of Metals, CRC Press, 1999 - R. A. Haefer - Oberflächen- und Dünnschichttechnologie (2 Bd.), Springer, 1991
- thermal stability - oxidation-/corrosion -resistance - mechanical stability at high temp. (creep resistance, fatigue strength) - Low density
Surface Engineering: Example 2 − Turbine Blades −
Wärmeleitung
Thermal Surface Treatment − Flame Hardening −
• C2H2/O2 (1:1,5) -mixture • combined with a quench sprinkler • Hardness depth: 0,25-6 mm • big work pieces
Processes of Surface Engineering − Overview −
Surface coating Surface modification
sharp interface PVD CVD thermal spraying galvanic ...
gradual interface - without change of the chem. composition - with change of the chem. composition
technical
2-dim. boundary of the solid
3-dim. Boundary layer (marginalised layer), sharp boundary between the layer and the substrate is not possible
Structure of a Technical Surface
(1-R)⋅I0
1. Structure 2. Coating
Problem: High loss caused by reflection
Anti reflex coatings: SiN, SiO2, TiO2, MgF2
Surface Engineering: Example 1 - Anti reflex coating for Solar cells -
Surface Engineering: Example 1 − Anti reflex coating for Solar cells −
Surface Engineering: Example 1 - Anti reflex coating for Solar cells -
R⋅I0; R(Si) ≈ 0,3-0,4
Thermal Surface Treatment − Principle −
Pro eutectoid steel
Temperature [°C]
1 - completely transformed 2 - partially transformed 3,4 - thermal influenced
till 200 K
Temperature
MCrAlY (also MCrAlYb) • M= Co or Ni respectively • adhesive layer
Surface Engineering: Example 3 − Hip Joint Implant −
Head
• Ion implantation
Journals:
- Surface Engineering - Surface Coatings and Technology - Thin Solid Films - Nuclear Methods and Methods in Physics Research (Ionenimplantation) - Härterei Technische Mitteilungen - Metalloberfläche
e.g.: functional thin layers
- all new phenomenon of the material behaviour - Investigation methods are often at the limit
Surface Engineering
Surface
physical
Surface of the solid is in contact with the environment
Elastically deformed zone Base material
Surface Engineering
(1) Surface has a primary function
Bulk serves as „substrate“ with required properties (elastically, stiff, ductile, insulating, ...) - Telescope mirror: reflectivity - Breaks: high friction and a low abrasion rate - Semiconductor: evenness and a low defect content
(2) Surface as protection
Bulk material has primary function, but must be protected: - wear, oxidation, heat protection
Surface Engineering
Goal:
Optimization of the properties of a component by a varying the surface
All real tribological problems are extremly complex! => interdisciplinary - contact mechanics, adhesion, elasticity, plasticity, breakage, - chemical interaction, - boundary conditions (temperature, humidity),
Werkstoffwissenschaft V
Surface Engineering
Sommersemester 2004
Ore + Energy = Metal Metallurgy
+ Energy = Produkt + SE = Improved Product Product MaterialsTechnology Surface Engineering
content: - Formation- and production -processes of layers respectively and modified marginalised layers - Characterisation of layers/marginalised layers (Microstructure, chemical composition, properties) - Understanding of the correlation between formation-/ production -process, microstructure and properties