2017年江苏省泰州市高港区中考数学模拟试卷及答案
2017年江苏省泰州市中考数学试卷-答案
45,∵PB4545PAB OCG∠=∠=,,k⎛135,∴45∠,∵45∠,∴∠90OBE,∴△整理得:282nk n n n+=+,化简得:8k=,故选D.4545,45PAB∠,∴PA135,∴45∠,∵直线45,∴45∠,∴∠,∴OGBFG中,42n604515-=.120.30,∵AB30,又由小明沿着坡度为30所对的直角边是斜边的一半,即可求得答案.90,【提示】如图,由题意可知点C 运动的路径为线段AC ',点E 运动的路径为EE ',由平移的性质可知AC EE '=',求出AC '即可解决问题.【考点】平移的性质,等腰三角形的性质. 三、解答题17.【答案】(1)答案见解析 (2)答案见解析【解析】解:(1)原式1412=-+=-(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解. 【提示】(1)原式利用零指数幂,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果. (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】0次幂,负整数指数幂,特殊三角函数值,二次根式的运算. 18.【答案】(1)答案见解析 (2)960人【解析】解:(1)观察统计图知:6-10个的有6人,占10%,∴总人数为610%60÷=人, ∴16-20的有6066241212----=人,∴条形统计图为:93【解析】解:(1)如图所示,射线CM即为所求;ADAD AC690,90DAF ∠,∴∠∴2EF =.9090DAF ADF ∠+∠=,,推出BAE ∠=与O相切于点90,∵BD 90,∴BD,∴点P为»BD∠,90,∴30BCPD是平行四边形,30,∴OE30,推出四边形90,90,∴90∠,90,∴223290905ACP P NP AP MN∠=∠===,,,∴3。
江苏省泰泰州市2017中考数学试卷(含答案)
泰州市二○一二年初中毕业、升学统一考试数 学 试 题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应..位置..上) 1.13-等于A .3B .31-C .-3D .312.下列计算正确的是A .6232x x x =⋅B .824x x x =⋅C .632)(x x -=-D .523)(x x = 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为 A .51012.3⨯ B .61012.3⨯ C .5102.31⨯ D .710312.0⨯ 4.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是A .2536)1(362-=-xB .25)21(36=-xC .25)1(362=-xD .25)1(362=-x5.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是 A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件6.用4个小立方块搭成如图所示的几何体,该几何体的左视图是(第6题图)ABCD7.如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠OCD 的度数是 A .40° B .45° C .50° D .60° 8.下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题...共有 A .1个 B .2个 C .3个 D .4个第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题..卡相应位置.....上) 9. 3的相反数是 ▲ .10.如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ',则点P '表示的数是 ▲ . 11.若52=-b a ,则多项式b a 36-的值是 ▲ . 12.一组数据2、-2、4、1、0的中位数是 ▲ . 13.已知∠α的补角是130°,则∠α= ▲ 度.14.根据排列规律,在横线上填上合适的代数式:x ,23x ,35x , ▲ ,59x ,…. 15.分解因式:962+-a a = ▲ .16.如图,△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,若CD =4,则点D到AB 的距离是 ▲ .17.若代数式232++x x 可以表示为b x a x +-+-)1()1(2的形式,则a +b 的值是 ▲ .18.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分) 计算或化简:(1)︒--++30cos 4|3|2012120; (2)aa a a a 211122+-÷--.(第7题图)(第18题图) ADC BP (第10题图)P-1AB CD(第16题图)┐20.(本题满分8分) 当x 为何值时,分式x x --23的值比分式21-x 的值大3 ?21.(本题满分8分) 小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.22.(本题满分8分) 某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量; (2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份?(第22题图)图① D 级 B 级A 级20%C 级 30%分析结果的扇形统计图图②人数分析结果的条形统计图23.(本题满分10分) 如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.24.(本题满分10分) 如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡向上走到C 处,这时,PC =30 m ,点C 与点A 恰好在同一水平线上,点A 、B 、P 、C 在同一平面内. (1)求居民楼AB 的高度; (2)求C 、A 之间的距离.(精确到0.1m ,参考数据:41.12≈,73.13≈,45.26≈)25.(本题满分10分) 如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数c bx x y ++-=232的图象经过B 、C 两点. (1)求该二次函数的解析式;(2)结合函数的图象探索:当y >0时x 的取值范围.BACDEF(第23题图) (第25题图)(第24题图)26.(本题满分10分) 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上.将△ABC 向下平移4个单位、再向右平移3个单位得到△1A 1B 1C ,然后将△1A 1B 1C 绕点1A 顺时针旋转90°得到△1A 2B 2C .(1)在网格中画出△1A 1B 1C 和△1A 2B 2C ;(2)计算线段AC 在变换到1A 2C 的过程中扫过区域的面积(重叠部分不重复计算).27.(本题满分12分) 如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA =5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C . (1)试判断线段AB 与AC 的数量关系,并说明理由; (2)若PC =52,求⊙O 的半径和线段PB 的长;(3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,求⊙O 的半径r 的取值范围.ABC (第26题图) (第27题图)(备用图)28.(本题满分12分) 如图,已知一次函数b kx y +=1的图象与x 轴相交于点A ,与反比例函数xcy =2的图象相交于B (-1,5)、C (25,d )两点.点P (m 、n )是一次函数b kx y +=1的图象上的动点. (1)求k 、b 的值;(2)设231<<-m ,过点P 作x 轴的平行线与函数xcy =2的图象相交于点D .试问△P AD 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设a m -=1,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.(第28题图)参考答案一、选择题: D C B C D A A B 二、填空题:-3;2;15;1;50;7x 4;(a -3)2;4;11;2; 三、解答题: 19.(1)4;(2)11a -+; 20.x =1,检验室原方程的根; 21.略、P (。
2017年江苏泰州中考数学试卷及答案
2017年江苏泰州中考数学试卷及答案一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的算术平方根是( )A .2±B .2C .2-D .2【答案】B.2.下列运算正确的是( )A .a 3•a 3=2a 6B .a 3+a 3=2a 6C .(a 3)2=a 6D .a 6•a 2=a3【答案】C.3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 【答案】C .4.三角形的重心是( )A .三角形三条边上中线的交点B .三角形三条边上高线的交点C .三角形三条边垂直平分线的交点D .三角形三条内角平行线的交点【答案】A .5.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变【答案】C .6.如图,P 为反比例函数y=k x(k >0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y=﹣x ﹣4的图象于点A 、B .若∠AOB=135°,则k 的值是( )A.2 B.4 C.6 D.8【答案】D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7. |﹣4|= .【答案】4.8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.【答案】4.25×104.9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.【答案】8.10.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)【答案】不可能事件.11.将一副三角板如图叠放,则图中∠α的度数为.【答案】15°.12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.【答案】3π.13.方程2x 2+3x ﹣1=0的两个根为x 1、x 2,则1211x x +的值等于 . 【答案】3.14.小明沿着坡度i 为1:的直路向上走了50m ,则小明沿垂直方向升高了 m . 【答案】25.15.如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,5),(4,2).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .【答案】(7,4)或(6,5)或(1,4).16.如图,在平面内,线段AB=6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC=PA .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为 .【答案】2三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:7﹣1)0﹣(﹣12)﹣23tan30°; (2)解方程:214111x x x ++=--.【答案】(1)-2;(2)分式方程无解.18.“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【答案】(1)详见解析;(2)960.19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【答案】13.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【答案】(1)详见解析;(2)4.21.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.【答案】(1)点P在一次函数y=x﹣2的图象上,理由见解析;(2)1<m<73.22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△A BE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【答案】(1)详见解析;(2)2.23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为BD的中点;(2)若∠C=∠D,求四边形BCPD的面积.【答案】(1)详见解析;(2)183.25.阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB 的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O 出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【答案】(1) 42;(2) t=5或t=11;(3)当8﹣25≤t≤383时,点P到线段AB的距离不超过6.26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化.。
2017年江苏省泰州市中考数学试卷
2017年江苏省泰州市中考数学试卷满分:120分版本:苏教版第I 卷(选择题,共36分)一、选择题(每小题3分,共18分)1.(2017江苏泰州,1,3分)2的算术平方根是( )A. C. D.22.(2017江苏泰州,2,3分)下列运算正确的是( )A.3362a a a ⋅=B.3362a a a +=C.()236a a =D.623a a a ÷=3.(2017江苏泰州,3,3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.(2017江苏泰州,4,3分)三角形的重心是( )A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点 5.(2017江苏泰州,5,3分)某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变6.(2017江苏泰州,6,3分)如图,P 为反比例函数()0k y k x=>在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y =-x -4的图象于点A 、B ,若135AOB =∠°,则k 的值是( )A.2B.4C.6D.87.(2017江苏泰州,7,3分)4-= .8.(2017江苏泰州,8,3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为_______.9.(2017江苏泰州,9,3分)已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为 .10.(2017江苏泰州,10,3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是 .(填“必然事件”、“不可能事件”或“随机事件”)11.(2017江苏泰州,11,3分)将一副三角板如图叠放,则图中a ∠的度数为.12.(2017江苏泰州,12,3分)扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为2cm .13.(2017江苏泰州,13,3分)方程22310x x +-=的两个根为1x 、2x ,则1112x x +的值等于 .14.(2017江苏泰州,14,3分)小明沿着坡度i 为的直路向上走了50m ,则小明沿垂直方向升高了 m .15.(2017江苏泰州,15,3分)如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,5),(4,2),若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .16.(2017江苏泰州,16,3分)如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A ,若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为 .三、解答题(本大题共10个小题,共102分).17.(2017江苏泰州,17,12分)(1)计算:)20112-⎛⎫--+ ⎪⎝⎭°;18.(2017江苏泰州,18,8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1) 补全条形统计图;(2) 估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数. 分析:(1)条形统计图中学习微课在6—10个的学生有6人,所占百分比是10%,故总人数是6÷10%=60(人),故学习微课在16—20个的学生有60-6-6-24-12=12(人);(2)根据样本中每周学习数学泰微课在16至30个之间的人数的百分比估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的百分比,由此求解.19.(2017江苏泰州,19,8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(2017江苏泰州,20,8分)如图,ABC △中,ACB ABC >∠∠.(1)用直尺和圆规在ACB ∠的内部作射线CM ,使ACM ABC =∠∠(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM 交AB 于点D ,9AB =,6AC =,求AD 的长.21.(2017江苏泰州,21,10分)平面直角坐标系xOy 中,点P 的坐标为(m +1,m -1).(1)试判断点P 是否在一次函数y =x -2的图象上,并说明理由;(2)如图,一次函数132y x=-+的图象与x轴、y轴分别相交于点A、B,若点P在AOB△的内部,求m的取值范围.22.(2017江苏泰州,22,10分)如图,正方形ABCD中,G为BC边上一点,BE AG⊥于E,DF AG⊥于F,连接DE.(1)求证:ABE DAF△≌△;(2)若1AF=,四边形ABED的面积为6,求EF的长.23.(2017江苏泰州,23,10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?分析:(1)根据题意,找出题中的等量关系.①A种菜品的营业额+B种菜品的营业额=1120元;②A种菜品的利润+B种菜品的利润=280元.根据等量关系,列出方程组,计算即可;(2).24.(2017江苏泰州,24,10分)如图,O ⊙的直径12cm AB =,C 为AB 延长线上一点,CP 与O ⊙相切于点P ,过点B 作弦BD ∥CP ,连接PD .(1)求证:点P 为»BD的中点; (2)若∠C =∠D ,求四边形BCPD 的面积.25.(2017江苏泰州,25,12分)阅读理解:如图①,图形l 外一点P 与图形l 上各点连接的所有线段中,若线段i PA 最短,则线段i PA 的长度称为点P 到图形l 的距离.例如:图②中,线段i PA 的长度是点1P 到线段AB 的距离;线段2P H 的长度是点2P 到线段AB 的距离.解决问题:如图③,平面直角坐标系xOy 中,点A 、B 的坐标分别为()8,4,()12,7,点P 从原点O 出发,以每秒1个单位长度的速度向x 轴正方向运动了t 秒.(1) 当4t =时,求点P 到线段AB 的距离;(2) t 为何值时,点P 到线段AB 的距离为5?(3) t 满足什么条件时,点P 到线段AB 的距离不超过6?(直接写出此小题的结果)26.(2017江苏泰州,26,14分)平面直角坐标系xOy 中,点A 、B 的横坐标分别为a 、2a +,二次函数()222y x m x m =-+-+的图象经过点A 、B ,且a 、m 满足2a m d -=(d 为常数).(1)若一次函数1y kx b =+的图象经过A 、B 两点.①当1a =、1d =-时,求k 的值;② 若1y 随x 的增大而减小,求d 的取值范围;(2)当4d =-且2a ≠-、4a ≠-时,判断直线AB 与x 轴的位置关系,并说明理由;(3)点A 、B 的位置随着a 的变化而变化,设点A 、B 运动的路线与y 轴分别相交于点C 、D ,线段CD 的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由. 分析:(1)①把1a =、1d =-代入2a m d -=,可求出m 的值,从而求出二次函数的表达式.把A ,B 两点的横坐标分别代入二次函数表达式即可求出两点的纵坐标,列方程组即可求出一次函数表达式;②由1y 随x 的增大而减小,可以得出A 点的纵坐标比点B 的纵坐标小,从而求出a 、m 代数式的范围,而d 与a 、m 有关系,从而代换出m 的范围;(2)通过点A 、点B 的纵坐标相同,判断出直线AB 与横轴平行;(3)建立以a 为自变量的二次函数,求线段CD 的长度.。
2017年江苏泰州中考真题数学
2017年江苏省泰州市中考真题数学一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2的算术平方根是( )±A.2B.2-C.2D.2解析:根据算术平方根的定义直接解答即可.2的算术平方根是2.答案:B.2.下列运算正确的是( )A.a3·a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6·a2=a3解析:分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.A、根据同底数幂的乘法,a3·a3=a6,故此选项错误;B、根据合并同类项,a3+a3=2a3,故此选项错误;C、根据幂的乘方,(a3)2=a6,正确;D、根据同底数幂的乘法,a6·a2=a8,故此选项错误.答案:C.3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( )A.B.C.D.解析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D 、不是轴对称图形,是中心对称图形,故本选项错误. 答案:C.4.三角形的重心是( )A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点解析:三角形的重心是三条中线的交点. 答案:A.5.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( ) A.平均数不变,方差不变 B.平均数不变,方差变大 C.平均数不变,方差变小 D.平均数变小,方差不变解析:根据平均数的意义、方差的意义,可得答案.1601651701631671655x ++++==原,S 原2=585,1601651701631671651656x +++++==新,S 新2=586,平均数不变,方差变小.答案:C.6.如图,P 为反比例函数ky x=(k >0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y=-x-4的图象于点A 、B.若∠AOB=135°,则k 的值是( )A.2B.4C.6D.8解析:作BF ⊥x 轴,OE ⊥AB ,CQ ⊥AP ;设P 点坐标(n ,kn),∵直线AB 函数式为y=-x-4,PB ⊥y 轴,PA ⊥x 轴, ∴C(0,-4),G(-4,0), ∴OC=OG ,∴∠OGC=∠OCG=45° ∵PB ∥OG ,PA ∥OC ,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°, ∴PA=PB , ∵P 点坐标(n ,kn), ∴OD=CQ=n ,∴AD=AQ+DQ=n+4;∵当x=0时,y=-x-4=-4, ∴OC=DQ=4,2222GE OE OC ===; 同理可证:222k BG BF PD n===, ∴222kBE BG EG n=+=+; ∵∠AOB=135°,∴∠OBE+∠OAE=45°, ∵∠DAO+∠OAE=45°, ∴∠DAO=∠OBE ,∵在△BOE 和△AOD 中,90DAO OBEBEO ADO ∠=∠⎧⎨∠=∠=︒⎩, ∴△BOE ∽△AOD ;∴OE BE OD AD=,即224222kn n n +=+; 整理得:nk+2n 2=8n+2n 2,化简得:k=8.答案:D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.|-4|= .解析:因为-4<0,由绝对值的性质,可得|-4|的值:|-4|=4. 答案:4.8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 .解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将42500用科学记数法表示为:4.25×104.答案:4.25×104.9.已知2m-3n=-4,则代数式m(n-4)-n(m-6)的值为 . 解析:先将原式化简,然后将2m-3n=-4代入即可求出答案. 当2m-3n=-4时,∴原式=mn-4m-mn+6n=-4m+6n=-2(2m-3n)=-2×(-4)=8. 答案:810.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是 .(填“必然事件”、“不可能事件”或“随机事件”) 解析:根据必然事件、不可能事件、随机事件的概念进行判断即可. ∵袋子中3个小球的标号分别为1、2、3,没有标号为4的球, ∴从中摸出1个小球,标号为“4”,这个事件是不可能事件. 答案:不可能事件.11.将一副三角板如图叠放,则图中∠α的度数为 .解析:由三角形的外角的性质可知,∠α=60°-45°=15°. 答案:15°.12.扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为 cm 2.解析:先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积. 设扇形的圆心角为n ,则:32180n ππ=g g ,得:n=120°.∴212033360Sππ==g g扇形cm2.答案:3π.13.方程2x2+3x-1=0的两个根为x1、x2,则1211x x+的值等于 .解析:先根据根与系数的关系得到x1+x2=32-,x1x2=12-,再通分得到1212123213112x xx x x x-++===-.答案:3.14.小明沿着坡度i为1:3的直路向上走了50m,则小明沿垂直方向升高了 m.解析:如图,过点B作BE⊥AC于点E,∵坡度:i=13∴tan∠A=1333,∴∠A=30°,∵AB=50m,∴BE=12AB=25(m).∴他升高了25m.答案:25.15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为 .解析:∵点A 、B 、P 的坐标分别为(1,0),(2,5),(4,2). ∴223213PA PB ==+=,∵点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心, ∴221323PC PA PB ====+,则点C 的坐标为(7,4)或(6,5)或(1,4). 答案:(7,4)或(6,5)或(1,4).16.如图,在平面内,线段AB=6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC=PA.若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为 .解析:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB=BC ′=6,∠ABC ′=90°,∴226626EE AC '='=+=. 答案:62.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.计算. (1)计算:()2173n 321ta 0-⎛⎫⎪⎝⎭---+︒.解析:(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.答案:(1)原式=1-4+1=-2.(2)解方程:214111x x x++=--. 解析:(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.答案:(2)去分母得:x 2+2x+1-4=x 2-1, 解得:x=1,经检验x=1是增根,分式方程无解.18.“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图.解析:(1)求得16-20的频数即可补全条形统计图. 答案:(1)观察统计图知:6-10个的有6人,占10%, ∴总人数为6÷10%=60人,∴16-20的有60-6-6-24-12=12人,∴条形统计图为:(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数. 解析:(2)用样本估计总体即可.答案:(2)121224120096060++⨯=(人).答:该校全体学生中每周学习数学泰微课在16至30个之间的约有960人.19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.答案:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为3913 =.20.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹). 解析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可.答案:(1)如图所示,射线CM即为所求.(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.解析:(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.答案:(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴AD ACAC AB=,即669AD=,∴AD=4.21.平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;解析:(1)要判断点(m+1,m-1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.答案:(1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2图象上.(2)如图,一次函数123y x=-+的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.解析:(2)根据题意得出0<m+1<6,0<m-1<3,m-1<12-(m+1)+3,解不等式组即可求得.答案:(2)∵函数123 y x=-+,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m-1<3,m-1<12-(m+1)+3∴1<m<73.22.如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于E ,DF ⊥AG 于F ,连接DE.(1)求证:△ABE ≌△DAF.解析:(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF.答案:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°, ∴∠BAE=∠ADF , 在△ABE 和△DAF 中,BAE ADF AEB DFA AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF(AAS).(2)若AF=1,四边形ABED 的面积为6,求EF 的长.解析:(2)设EF=x ,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题; 答案:(2)设EF=x ,则AE=DF=x+1, 由题意()()211161122x x x ⨯⨯+⨯+⨯⨯+=, 解得x=2或-5(舍弃),∴EF=2.23.怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?解析:(1)由A 种菜和B 种菜每天的营业额为1120和总利润为280建立方程组即可. 答案:(1)设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得,()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份.(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?解析:(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.答案:(2)设A种菜品售价降0.5a元,即每天卖(20+a)份;总利润为w元因为两种菜品每天销售总份数不变,所以B种菜品卖(40-a)份每份售价提高0.5a元.w=(20-14-0.5a)(20+a)+(18-14+0.5a)(40-a)=(6-0.5a)(20+a)+(4+0.5a)(40-a)=(-0.5a2-4a+120)+(-0.5a2+16a+160)=-a2+12a+280=-(a-6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.»BD的中点.(1)求证:点P为解析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论.答案:(1)证明:连接OP,∵CP与⊙O相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴»»PB PD,∴点P为»BD的中点.(2)若∠C=∠D,求四边形BCPD的面积.解析:(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.答案:(2)∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=12AB=6,∴PC=63,∵∠ABD=∠C=30°,∴OE=12OB=3,∴PE=3,∴四边形BCPD的面积=PC·PE=63×3=183.25.阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB 的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O 出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P 到线段AB 的距离.解析:(1)作AC ⊥x 轴,由PC=4、AC=4,根据勾股定理求解可得.答案:(1)如图1,作AC ⊥x 轴于点C ,则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P 到线段AB 的距离22224442PA PC AC =+=+=.(2)t 为何值时,点P 到线段AB 的距离为5? 解析:(2)作BD ∥x 轴,分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;P 位于AC 右侧时,作AP 2⊥AB ,交x 轴于点P 2,证△ACP 2≌△BEA 得AP 2=BA=5,从而知P 2C=AE=3,继而可得答案.答案:(2)如图2,过点B 作BD ∥x 轴,交y 轴于点E ,①当点P 位于AC 左侧时,∵AC=4、P 1A=5,∴222211543PC PA AC =-=-=, ∴OP 1=5,即t=5;②当点P 位于AC 右侧时,过点A 作AP 2⊥AB ,交x 轴于点P 2,∴∠CAP 2+∠EAB=90°,∵BD ∥x 轴、AC ⊥x 轴,∴CE ⊥BD ,∴∠ACP 2=∠BEA=90°,∴∠EAB+∠ABE=90°,∴∠ABE=∠P 2AC ,在△ACP 2和△BEA 中,22904ACP BEA AC BE P AC ABE ∠=∠=︒⎧⎪==⎨⎪∠=∠⎩, ∴△ACP2≌△BEA(ASA), ∴22222345AP BA AE BE ==+=+=,而此时P 2C=AE=3, ∴OP 2=11,即t=11.(3)t 满足什么条件时,点P 到线段AB 的距离不超过6?(直接写出此小题的结果)解析:(3)分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得.点P 位于AC 右侧且P 3M=6时,作P 2N ⊥P 3M 于点N ,知四边形AP 2NM 是矩形,证△ACP 2∽△P 2NP 3得22233AP CP P P NP =,求得P 2P 3的长即可得出答案. 答案:(3)如图3,①当点P 位于AC 左侧,且AP 3=6时, 则2222336425PC AP AC =-=-=∴OP 3=OC-P 3C=8-25;②当点P 位于AC 右侧,且P 3M=6时,过点P 2作P 2N ⊥P 3M 于点N ,则四边形AP 2NM 是矩形,∴∠AP 2N=90°,∠ACP 2=∠P 2NP3=90°,AP 2=MN=5,∴△ACP 2∽△P 2NP 3,且NP 3=1,∴22233AP CP P P NP =,即23531P P =,∴2353P P =, ∴32235388333OP OC CP P P =++=++=,∴当3388t -≤时,点P 到线段AB 的距离不超过6.26.平面直角坐标系xOy 中,点A 、B 的横坐标分别为a 、a+2,二次函数y=-x 2+(m-2)x+2m的图象经过点A 、B ,且a 、m 满足2a-m=d(d 为常数).(1)若一次函数y 1=kx+b 的图象经过A 、B 两点.①当a=1、d=-1时,求k 的值.②若y 1随x 的增大而减小,求d 的取值范围.解析:(1)①当a=1、d=-1时,m=2a-d=3,于是得到抛物线的解析式,然后求得点A 和点B 的坐标,最后将点A 和点B 的坐标代入直线AB 的解析式求得k 的值即可.②将x=a ,x=a+2代入抛物线的解析式可求得点A 和点B 的纵坐标,然后依据y 1随着x 的增大而减小,可得到-(a-m)(a+2)>-(a+2-m)(a+4),结合已知条件2a-m=d ,可求得d 的取值范围.答案:(1)①当a=1、d=-1时,m=2a-d=3,所以二次函数的表达式是y=-x 2+x+6.∵a=1,∴点A 的横坐标为1,点B 的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A 和点B 的坐标代入直线的解析式得:630k b k b +=⎧⎨+=⎩,解得:39k b =-⎧⎨=⎩, 所以k 的值为-3.②∵y=-x 2+(m-2)x+2m=-(x-m)(x+2),∴当x=a 时,y=-(a-m)(a+2);当x=a+2时,y=-(a+2-4)(a+4),∵y 1随着x 的增大而减小,且a <a+2,∴-(a-m)(a+2)>-(a+2-m)(a+4),解得:2a-m >-4,又∵2a-m=d ,∴d 的取值范围为d >-4.(2)当d=-4且a ≠-2、a ≠-4时,判断直线AB 与x 轴的位置关系,并说明理由.解析:(2)由d=-4可得到m=2a+4,则抛物线的解析式为y=-x 2+(2a+2)x+4a+8,然后将x=a 、x=a+2代入抛物线的解析式可求得点A 和点B 的纵坐标,最后依据点A 和点B 的纵坐标可判断出AB 与x 轴的位置关系.答案:(2)∵d=-4且a ≠-2、a ≠-4,2a-m=d ,∴m=2a+4.∴二次函数的关系式为y=-x 2+(2a+2)x+4a+8.把x=a 代入抛物线的解析式得:y=a 2+6a+8.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.解析:(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m-8),于是可得到CD与m的关系式.答案:(3)线段CD的长随m的值的变化而变化.∵y=-x2+(m-2)x+2m过点A、点B,∴当x=a时,y=-a2+(m-2)a+2m,当x=a+2时,y=-(a+2)2+(m-2)(a+2)+2m,∴A(a,-a2+(m-2)a+2m)、B(a+2,-(a+2)2+(m-2)(a+2)+2m).∴点A运动的路线是的函数关系式为y1=-a2+(m-2)a+2m,点B运动的路线的函数关系式为y2=-(a+2)2+(m-2)(a+2)+2m.∴点C(0,2m),D(0,4m-8).∴DC=|2m-(4m-8)|=|8-2m|.∴线段CD的长随m的值的变化而变化.当8-2m=0时,m=4时,CD=|8-2m|=0,即点C与点D重合;当m>4时,CD=2m-8;当m<4时,CD=8-2m.。
2017年江苏省泰州市中考数学试卷有答案版本
2017 年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共6 个小题,每小题3 分,共18 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3 分)(2017•泰州)2 的算术平方根是()A.B.C.D.2【分析】根据算术平方根的定义直接解答即可.【解答】解:2 的算术平方根是,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.(3 分)(2017•泰州)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【分析】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.(3 分)(2017•泰州)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.4.(3 分)(2017•泰州)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3 分)(2017•泰州)某科普小组有5 名成员,身高分别为(单位:cm):160,165,170,163,167.增加1 名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据平均数的意义、方差的意义,可得答案.=,【解答】解:==165,S2原==165,S2新=,平均数不变,方差变小,故选:C.【点评】本题考查了方差,利用方差的定义是解题关键.6.(3 分)(2017•泰州)如图,P 为反比例函数y=(k>0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y=﹣x﹣4 的图象于点A、B.若∠AOB=135°,则k 的值是()A.2 B.4 C.6 D.8【分析】作BF⊥x 轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k 的值.【解答】解:作BF⊥x 轴,OE⊥AB,CQ⊥AP;设P 点坐标(n,),∵直线AB 函数式为y=﹣x﹣4,PB⊥y 轴,PA⊥x 轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P 点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0 时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE= OC= ;同理可证:BG= BF= PD= ,∴BE=BG+EG= + ;∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE 和△AOD 中,,∴△BOE∽△AOD;∴= ,即= ;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.【点评】本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.二、填空题(每题 3 分,满分30 分,将答案填在答题纸上)7.(3 分)(2017•泰州)|﹣4|=4.【分析】因为﹣4<0,由绝对值的性质,可得|﹣4|的值.【解答】解:|﹣4|=4.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0 的绝对值是0.8.(3 分)(2017•泰州)天宫二号在太空绕地球一周大约飞行42500 千米,将42500用科学记数法表示为 4.25×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将42500 用科学记数法表示为:4.25×104.故答案为:4.25×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(3 分)(2017•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8 .【分析】先将原式化简,然后将2m﹣3n=﹣4 代入即可求出答案.【解答】解:当2m﹣3n=﹣4 时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.10.(3 分)(2017•泰州)“一只不透明的袋子共装有3 个小球,它们的标号分别为1,2,3,从中摸出1 个小球,标号为“4”,这个事件是不可能事件.(填“必然事件”、“不可能事件”或“随机事件”)【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:∵袋子中 3 个小球的标号分别为1、2、3,没有标号为4 的球,∴从中摸出 1 个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.(3 分)(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.(3 分)(2017•泰州)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为3π cm2.【分析】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【解答】解:设扇形的圆心角为n,则:2π=,得:n=120°.∴S=扇形=3πcm2.故答案为:3π.【点评】本题考查的是扇形面积的计算,根据题意先求出扇形的圆心角的度数,再计算扇形的面积.13.(3 分)(2017•泰州)方程2x2+3x﹣1=0 的两个根为x1、x2,则+的值等于3 .【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再通分得到+ =,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣,所以+= ==3.故答案为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2= .14.(3 分)(2017•泰州)小明沿着坡度i 为1:的直路向上走了50m,则小明沿垂直方向升高了25 m.【分析】首先根据题意画出图形,由坡度为1:,可求得坡角∠A=30°,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,30°所对的直角边是斜边的一半,即可求得答案.【解答】解:如图,过点 B 作BE⊥AC 于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.【点评】此题考查了坡度坡角问题.此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.15.(3 分)(2017•泰州)如图,在平面直角坐标系xOy 中,点A、B、P 的坐标分别为(1,0),(2,5),(4,2).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为(7,4)或(6,5)或(1,4).【分析】由勾股定理求出PA=PB==,由点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,得出PC=PA=PB=,即可得出点C 的坐标.【解答】解:∵点A、B、P 的坐标分别为(1,0),(2,5),(4,2).∴PA=PB= =,∵点 C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,∴PC=PA=PB= =,则点C 的坐标为(7,4)或(6,5)或(1,4);故答案为:(7,4)或(6,5)或(1,4).【点评】本题考查了三角形的外接圆、坐标与图形性质、勾股定理;熟练掌握勾股定理是解决问题的关键.16.(3 分)(2017•泰州)如图,在平面内,线段AB=6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P,且满足PC=PA.若点P 沿AB 方向从点A 运动到点B,则点E 运动的路径长为 6 .【分析】如图,由题意可知点C 运动的路径为线段AC′,点E 运动的路径为EE′,由平移的性质可知AC′=EE′,求出AC′即可解决问题.【解答】解:如图,由题意可知点 C 运动的路径为线段AC′,点E 运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==6 ,故答案为6.【点评】主要考查轨迹、平移变换、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题(本大题共10 小题,共102 分.解答应写出文字说明、证明过程或演算步骤.)17.(12 分)(2017•泰州)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣4+1=﹣2;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1 是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(8 分)(2017•泰州)“泰微课”是学生自主学习的平台,某初级中学共有1200 名学生,每人每周学习的数学泰微课都在6 至30 个之间(含6 和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16 至30 个之间(含16 和30)的人数.【分析】(1)求得16﹣20 的频数即可补全条形统计图;(2)用样本估计总体即可;【解答】解:(1)观察统计图知:6﹣10 个的有6 人,占10%,∴总人数为6÷10%=60 人,∴16﹣20 的有60﹣6﹣6﹣24﹣12=12 人,∴条形统计图为:(2)该校全体学生中每周学习数学泰微课在16 至30 个之间的有1200×=960 人.【点评】本题考查了条形统计图及用样本估计总体的知识,解题的关键是认真读两种统计图,并从统计图中整理出进一步解题的信息,难度不大.19.(8 分)(2017•泰州)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3 篇不同的文章中抽取一篇参加比赛,抽签规则是:在3 个相同的标签上分别标注字母A、B、C,各代表1 篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9 种,甲、乙抽中同一篇文章的情况有3 种,概率为= .【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8 分)(2017•泰州)如图,△ABC 中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB 的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM 交AB 于点D,AB=9,AC=6,求AD 的长.【分析】(1)根据尺规作图的方法,以AC 为一边,在∠ACB 的内部作∠ACM= ∠ABC 即可;(2)根据△ACD 与△ABC 相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM 即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即= ,∴AD=4.【点评】本题主要考查了基本作图以及相似三角形的判定与性质的运用,解题时注意:两角对应相等的两个三角形相似;相似三角形的对应边成比例.21.(10 分)(2017•泰州)平面直角坐标系xOy 中,点P 的坐标为(m+1,m﹣1).(1)试判断点P 是否在一次函数y=x﹣2 的图象上,并说明理由;(2)如图,一次函数y=﹣x+3 的图象与x 轴、y 轴分别相交于点A、B,若点P 在△AOB 的内部,求m 的取值范围.【分析】(1)要判断点(m+1,m﹣1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3,解不等式组即可求得.【解答】解:(1)∵当x=m+1 时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2 图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P 在△AOB 的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.22.(10 分)(2017•泰州)如图,正方形ABCD 中,G 为BC 边上一点,BE⊥AG 于E,DF⊥AG 于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED 的面积为6,求EF 的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS 证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD 是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE 和△DAF 中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,由题意2××(x+1)×1+ ×x×(x+1)=6,解得x=2 或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.23.(10 分)(2017•泰州)怡然美食店的A、B 两种菜品,每份成本均为14 元,售价分别为20 元、18 元,这两种菜品每天的营业额共为1120 元,总利润为280 元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5 元可多卖1 份;B 种菜品售价每提高0.5 元就少卖1 份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【分析】(1)由A 种菜和B 种菜每天的营业额为1120 和总利润为280 建立方程组即可;(2)设出A 种菜多卖出a 份,则B 种菜少卖出a 份,最后建立利润与A 种菜少卖出的份数的函数关系式即可得出结论.【解答】解:(1)设该店每天卖出A、B 两种菜品分别为x、y 份,根据题意得,,解得:,答:该店每天卖出这两种菜品共60 份;(2)设A 种菜品售价降0.5a 元,即每天卖(20+a)份;总利润为w 元因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a)份每份售价提高0.5a 元.w=(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316 元.【点评】此题主要考查的是二元一次方程组和二次函数的应用,解本题的关键是正确理解题意,找出题目中的等量关系,再列出方程组或函数关系式,最后计算出价格变化后每天的总利润.24.(10 分)(2017•泰州)如图,⊙O 的直径AB=12cm,C 为AB 延长线上一点,CP 与⊙O 相切于点P,过点B 作弦BD∥CP,连接PD.(1)求证:点P 为的中点;(2)若∠C=∠D,求四边形BCPD 的面积.【分析】(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD 是平行四边形,于是得到结论.【解答】(1)证明:连接OP,∵CP 与⊙O 相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴=,∴点P 为的中点;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD 是平行四边形,∵PO= AB=6,∴PC=6 ,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD 的面积=PC•PE=6×3=18 .【点评】本题考查了切线的性质,垂径定理,平行四边形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.25.(12 分)(2017•泰州)阅读理解:如图①,图形l 外一点P 与图形l 上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P 到图形l 的距离.例如:图②中,线段P1A 的长度是点P1到线段AB 的距离;线段P2H 的长度是点P2到线段AB 的距离.解决问题:如图③,平面直角坐标系xOy 中,点A、B 的坐标分别为(8,4),(12,7),点P 从原点O 出发,以每秒1 个单位长度的速度向x 轴正方向运动了t 秒.(1)当t=4 时,求点P 到线段AB 的距离;(2)t 为何值时,点P 到线段AB 的距离为5?(3)t 满足什么条件时,点P 到线段AB 的距离不超过6?(直接写出此小题的结果)【分析】(1)作AC⊥x 轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x 轴,分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;P 位于AC 右侧时,作AP2⊥AB,交x 轴于点P2,证△ACP2≌△BEA 得AP2=BA=5,从而知P2C=AE=3,继而可得答案;(3)分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;点P 位于AC 右侧且P3M=6 时,作P2N⊥P3M 于点N,知四边形AP2NM 是矩形,证△ACP2∽△P2NP3得=,求得P2P3的长即可得出答案.【解答】解:(1)如图1,作AC⊥x 轴于点C,则AC=4、OC=8,当t=4 时,OP=4,∴PC=4,∴点P 到线段AB 的距离PA===4;(2)如图2,过点B 作BD∥x 轴,交y 轴于点E,①当点P 位于AC 左侧时,∵AC=4、P1A=5,∴P1C===3,∴OP1=5,即t=5;②当点P 位于AC 右侧时,过点 A 作AP2⊥AB,交x 轴于点P2,∴∠CAP2+∠EAB=90°,∵BD∥x 轴、AC⊥x 轴,∴CE⊥BD,∴∠ACP2=∠BEA=90°,∴∠EAB+∠ABE=90°,∴∠ABE=∠P2AC,在△ACP2和△BEA 中,∵,∴△ACP2≌△BEA(ASA),∴AP2=BA= ==5,而此时P2C=AE=3,∴OP2=11,即t=11;(3)如图3,①当点P 位于AC 左侧,且AP3=6 时,则P3C===2 ,∴OP3=OC﹣P3C=8﹣2 ;②当点P 位于AC 右侧,且P3M=6 时,过点P2作P2N⊥P3M 于点N,则四边形AP2NM 是矩形,∴∠AP2N=90°,∠ACP2=∠P2NP3=90°,AP2=MN=5,∴△ACP2∽△P2NP3,且NP3=1,∴=,即=,∴P2P3= ,∴OP3=OC+CP2+P2P3=8+3+=,∴当8﹣2 ≤t≤时,点P 到线段AB 的距离不超过6.【点评】本题主要考查一次函数的综合问题,理解题意掌握点到线段的距离概念及分类讨论思想的运用、矩形的判定与性质、相似三角形的判定与性质是解题的关键.26.(14 分)(2017•泰州)平面直角坐标系xOy 中,点A、B 的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m 的图象经过点A、B,且a、m 满足2a﹣m=d(d 为常数).(1)若一次函数y1=kx+b 的图象经过A、B 两点.①当a=1、d=﹣1 时,求k 的值;②若y1随x 的增大而减小,求d 的取值范围;(2)当d=﹣4 且a≠﹣2、a≠﹣4 时,判断直线AB 与x 轴的位置关系,并说明理由;(3)点A、B 的位置随着a 的变化而变化,设点A、B 运动的路线与y 轴分别相交于点C、D,线段CD 的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由.【分析】(1)①当a=1、d=﹣1 时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A 和点B 的坐标,最后将点A 和点B 的坐标代入直线AB 的解析式求得k 的值即可;②将x=a,x=a+2 代入抛物线的解析式可求得点A 和点B 的纵坐标,然后依据y1 随着x 的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d 的取值范围;(2)由d=﹣4 可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2 代入抛物线的解析式可求得点A 和点B 的纵坐标,最后依据点A 和点B 的纵坐标可判断出AB 与x 轴的位置关系;(3)先求得点A 和点B 的坐标,于是得到点A 和点B 运动的路线与字母a 的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD 与m 的关系式.【解答】解:(1)①当a=1、d=﹣1 时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点 A 的横坐标为1,点 B 的横坐标为3,把x=1 代入抛物线的解析式得:y=6,把x=3 代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A 和点B 的坐标代入直线的解析式得:,解得:,所以k 的值为﹣3.②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),∴当x=a 时,y=﹣(a﹣m)(a+2);当x=a+2 时,y=﹣(a+2﹣4)(a+4),∵y1随着x 的增大而减小,且a<a+2,∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,又∵2a﹣m=d,∴d 的取值范围为d>﹣4.(2)∵d=﹣4 且a≠﹣2、a≠﹣4,2a﹣m=d,∴m=2a+4.∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.把x=a 代入抛物线的解析式得:y=a2+6a+8.把x=a+2 代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点 B 的纵坐标相同,∴AB∥x 轴.(3)线段CD 的长随m 的值的变化而变化.∵y=﹣x2+(m﹣2)x+2m 过点A、点B,∴当x=a 时,y=﹣a2+(m﹣2)a+2m,当x=a+2 时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).∴点A 运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B 运动的路线的函数关系式为y2=﹣(a+2)2+(m﹣2)(a+2)+2m.∴点C(0,2m),D(0,4m﹣8).∴DC=|2m﹣(4m﹣8)|=|8﹣2m|.∴线段CD 的长随m 的值的变化而变化.当8﹣2m=0 时,m=4 时,CD=|8﹣2m|=0,即点C 与点D 重合;当m>4 时,CD=2m ﹣8;当m<4 时,CD=8﹣2m.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,求得点A 和点B 的坐标是解题的关键.。
2017年泰州市中考数学试题含答案解析
一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的算术平方根是()A.2±B.2C.2-D.2【答案】B.试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是2,故选B.考点:算术平方根.2.下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3 【答案】C.试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C.考点:整式的运算.3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【答案】C.考点:中心对称图形;轴对称图形.4.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【答案】A.试题分析:三角形的重心是三条中线的交点,故选A . 考点:三角形的重心.5.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变【答案】C . 试题分析:160+165+170+163+167==1655x 原 ,S 2原=585;160+165+170+163+167+165==1656x 新,S2新=586,平均数不变,方差变小,故选C .学#科网 考点:平均数;方差.6.如图,P 为反比例函数y=k x(k >0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8【答案】D.∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45° ∵PB ∥OG ,PA ∥OC ,∵∠AOB=135°, ∴∠OBE+∠OAE=45°, ∵∠DAO+∠OAE=45°, ∴∠DAO=∠OBE , ∵在△BOE 和△AOD 中,090BEO ADO DAO OBE⎧∠=∠=⎨∠=∠⎩,∴△BOE ∽△AOD ;∴OE BE OD AD =,即222224kn n n+=+;整理得:nk+2n 2=8n+2n 2,化简得:k=8; 故选D .考点:反比例函数综合题.二、填空题(每题3分,满分30分,将答案填在答题纸上)7. |﹣4|= . 【答案】4.试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4. 考点:绝对值.8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 . 【答案】4.25×104.考点:科学记数法.9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.【答案】8.试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8. 考点:整式的运算;整体思想. 学#科.网10.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)【答案】不可能事件.试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件.考点:随机事件.11.将一副三角板如图叠放,则图中∠α的度数为.【答案】15°.试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.考点:三角形的外角的性质.12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.【答案】3π.试题分析:设扇形的圆心角为n,则:2π=3nπ⨯,解得:180n=120°.所以S 扇形=21203360π⨯=3πcm 2.考点:扇形面积的计算.13.方程2x 2+3x ﹣1=0的两个根为x 1、x 2,则1211x x+的值等于 . 【答案】3.试题分析:根据根与系数的关系得到x 1+x 2=﹣32,x 1x 2=﹣12, 所以1211x x +=12123212x x x x -+=-=3.考点:根与系数的关系.14.小明沿着坡度i 为1:的直路向上走了50m ,则小明沿垂直方向升高了 m . 【答案】25.考点:解直角三角形的应用.15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C 在第一象限内,且横坐标、纵坐标均为整数,P是△ABC 的外心,则点C的坐标为.【答案】(7,4)或(6,5)或(1,4).考点:三角形的外接圆;坐标与图形性质;勾股定理. 16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为.【答案】62试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt △ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′=2266+=62.21世纪教育网考点:轨迹;平移变换;勾股定理.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:(7﹣1)0﹣(﹣12)﹣2+3tan30°; (2)解方程:214111x x x ++=--.【答案】(1)-2;(2)分式方程无解.考点:实数的运算;解分式方程.18.“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【答案】(1)详见解析;(2)960.(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200×121224++=960人.60考点:条形统计图;用样本估计总体.21世纪教育网19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【答案】1.3考点:用列表法或画树状图法求概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【答案】(1)详见解析;(2)4.试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.试题解析:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC ,∠CAD=∠BAC ,∴△ACD ∽△ABC , ∴AD AC AC AB =,即669AD =, ∴AD=4. 学@科网考点:基本作图;相似三角形的判定与性质.21.平面直角坐标系xOy 中,点P 的坐标为(m+1,m ﹣1).(1)试判断点P 是否在一次函数y=x ﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣12x+3的图象与x 轴、y 轴分别相交于点A 、B ,若点P 在△AOB 的内部,求m 的取值范围.【答案】(1)点P 在一次函数y=x ﹣2的图象上,理由见解析;(2)1<m<7.3考点:一次函数图象上点的坐标特征;一次函数的性质.22.如图,正方形ABCD中,G为BC边上一点,BE ⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【答案】(1)详见解析;(2)2.由题意2×12×(x+1)×1+12×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.考点:正方形的性质;全等三角形的判定和性质;勾股定理.23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.试题解析:=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.考点:二元一次方程组和二次函数的应用.24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为BD的中点;(2)若∠C=∠D,求四边形BCPD的面积.【答案】(1)详见解析;(2)183.试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∴四边形BCPD的面积=PC•PE=63×3=183.学科%网考点:切线的性质;垂径定理;平行四边形的判定和性质.25.阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P 到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【答案】(1) 42;(2) t=5或t=11;(3)当8﹣25≤t≤383时,点P到线段AB的距离不超过6.试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD ∥x 轴,分点P 在AC则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P 到线段AB 的距离PA=22PC CA +=2244+=42;(2)如图2,过点B 作BD ∥x 轴,交y 轴于点E ,①当点P 位于AC 左侧时,∵AC=4、P 1A=5,∴P 1C=2222154P A AC -=-=3,∴OP 1=5,即t=5;②当点P 位于AC 右侧时,过点A 作AP 2⊥AB ,交x轴于点P 2,∴∠CAP 2+∠EAB=90°,∵BD ∥x 轴、AC ⊥x 轴,∴CE ⊥BD ,(3)如图3,①当点P 位于AC 左侧,且AP 3=6时,则P 3C=2222364P A AC -=-=25,∴OP 3=OC ﹣P 3C=8﹣25;②当点P 位于AC 右侧,且P 3M=6时,过点P2作P2N⊥P3M于点N,考点:一次函数的综合题.26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B 运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化.当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m.试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m 的关系式.试题解析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A (1,6),B (3,0).将点A 和点B 的坐标代入直线的解析式得:630k b k b +=⎧⎨+=⎩,解得:39k b =-⎧⎨=⎩, 所以k 的值为﹣3.把x=a+2代入抛物线的解析式得:y=a 2+6a+8.∴A (a ,a 2+6a+8)、B (a+2,a 2+6a+8).∵点A 、点B 的纵坐标相同,∴AB ∥x 轴.(3)线段CD 的长随m 的值的变化而变化.∵y=﹣x2+(m﹣2)x+2m过点A、点B,∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2)考点:二次函数综合题.。
2017年江苏省泰州市中考数学试卷含答案解析
徐老师江苏省泰州市2017年中考试卷数学本试卷满分120分,考试时间120分钟.一、选择题(每小题3分,共18分)1.2的算术平方根是()A .BC .D .22.下列运算正确的是()A .3362a a a = B .3362a a a +=C .326()a a =D .623a a a = 3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()AB C D4.三角形的重心是()A .三角形三条边上中线的交点B .三角形三条边上高线的交点C .三角形三条边垂直平分线的交点D .三角形三条内角平行线的交点5.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变6.如图,P 为反比例函数(0)k y k x=>在第一象限内图像上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数4y x =--的图像于点A 、B ,若135AOB =∠°,则k 的值是()A .2B .4C .6D .8二、填空题(每小题3分,共30分)7.4-=8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.已知234m n -=-,则代数式(4)(6)m n n m ---的值为.10.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.将一副三角板如图叠放,则图中α∠的度数为.12.扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为2cm .13.方程22310x x +-=的两个根为1x 、2x ,则1211x x +的值等于.14.小明沿着坡度i为的直路向上走了50m ,则小明沿垂直方向升高了m .15.如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,5),(4,2),若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是ABC △的外心,则点C 的坐标为.(第15题)(第16题)16.如图,在平面内,线段6AB =,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC PA =,若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为.三、解答题(本大题共10小题,共102分)17.(12分)(1)计算:0211)()302----+°;徐老师(2)解方程:214111x x x++=--.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:每周学习数学泰微课人数的条形统计图每周学习数学泰微课人数的扇形统计图根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,ABC △中,ACB ABC ∠>∠.(1)用直尺和圆规在ACB ∠的内部作射线CM ,使ACM ABC =∠∠(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM 交AB 于点D ,9AB =,6AC =,求AD 的长.21.(10分)平面直角坐标系xOy 中,点P 的坐标为(1,1)m m +-.(1)试判断点P 是否在一次函数2y x =-的图像上,并说明理由;(2)如图,一次函数132y x =-+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB △的内部,求m 的取值范围.徐老师22.(10分)如图,正方形ABCD 中,G 为BC 边上一点,BE AG ⊥于E ,DF AG ⊥于F ,连接DE .(1)求证:ABE DAF △≌△;(2)若1AF =,四边形ABED 的面积为6,求EF 的长.23.(10分)怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,O ⊙的直径12cm AB =,C 为AB 延长线上一点,CP 与O ⊙相切于点P ,过点B 作弦BD CP ∥,连接PD .(1)求证:点P 为 BD的中点;(2)若C D =∠∠,求四边形BCPD 的面积.25.(12分)阅读理解:PA最短,则线如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段1PA的长度称为点P到图形l的距离.段1例如:图②中,线段i P A的长度是点i P到线段AB的距离;线段2P H的长度是点2P 到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当4t=时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B横坐标分别为a、2a+,二次函数2(2)2=-+-+的图像经过点A、B,且a、m足2a m dy x m x m-=(d为常数).=+的图像经过A、B两点.(1)若一次函数1y kx b①当1d=-时,求k的值;a=、1②若1y随x的增大而减小,求d的取值范围;(2)当4a≠-时,判断直线AB与x轴的位置关系,并说明理由;a≠-、4d=-且2(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.徐老师江苏省泰州市2017年中考试卷数学答案解析一、选择题1.【答案】B【解析】解:2,故选B .【提示】根据算术平方根的定义直接解析即可.【考点】算术平方根.2.【答案】C【解析】解:A .336•a a a =,故此选项错误;B .3332a a a +=,故此选项错误;C .326()a a =,正确;D .628•a a a =,故此选项错误,故选:C .【提示】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【考点】幂的运算及合并同类项.3.【答案】C【解析】解:A .是轴对称图形,不是中心对称图形,故本选项错误;B .既不是轴对称图形,又不是中心对称图形,故本选项错误;C .既是轴对称图形又是中心对称图形,故本选项正确;D .不是轴对称图形,是中心对称图形,故本选项错误,故选C .【提示】根据轴对称图形和中心对称图形的概念对各选项提示判断即可得解.【考点】轴对称图形与中心对称图形的定义.4.【答案】A【解析】解:三角形的重心是三条中线的交点,故选:A .【提示】根据三角形的重心是三条中线的交点解析.【考点】三角形重心的定义.5.【答案】C 【解析】解:160165170163167=1655x ++++原,258=5S 原,160165170163167=6x ++++新,258=6S 新,平均数不变,方差变小,故选:C .【提示】根据平均数的意义,方差的意义,可得答案.【考点】平均数,方差的计算.6.【答案】D【解析】解:方法1.作BF x ⊥轴,OE AB CQ AP ⊥⊥,,如图1,设P 点坐标,k n n⎛⎫⎪⎝⎭,∵直线AB 函数式为4y x =--,PB y ⊥轴,PA x ⊥轴,∴0,4(40)),(C G --,,∴OC OG =,∴45OGC OCG ∠=∠= ,∵PB OG PA OC∥,∥,∴4545PBA OGC PAB OCG ∠=∠=∠=∠= ,,∴PA PB =,∵P 点坐标,k n n⎛⎫⎪⎝⎭,∴OD CQ n ==,∴4AD AQ DQ n =+=+;∵当0x =时,44y x =--=-,∴42OC DQ GE OE =====,,同理可证:2BG n ===,∴2BE BG EG n=+=+∵135AOB ∠= ,∴45OBE OAE ∠+∠= ,∵45DAO OAE ∠+∠= ,∴DAO OBE ∠=∠,∵在BOE △和AOD △中,90DAO OBEBEO ADO ∠=∠⎧⎨∠=∠=⎩,∴BOE AOD △∽△;∴OE BEOD AD=,即2224nnn+=+;整理得:22282nk n n n +=+,化简得:8k =,故选D.方法2.如图2,过B 作BF x ⊥轴于F ,过点A 作AD y ⊥轴于D ,∵直线AB 函数式为4y x PB y =--⊥,轴,PA x ⊥轴,∴0,4(40)),(C G --,,∴OC OG =,∴45OGC OCG ∠=∠=∵PB OG PA OC ∥,∥,∴45PBA OGC ∠=∠= ,45PAB OCG ∠=∠= ,∴PA PB =,∵P徐老师点坐标,k n n ⎛⎫ ⎪⎝⎭,∴,44(,)k kA n nB n n⎛⎫---- ⎪⎝⎭,∵当0x =时,44y x =--=-,∴4OC =,当0y =时,4x =-.∴4OG =,∵135AOB ∠= ,∴45BOG AOC ∠+∠= ,∵直线AB 的解析式为4y x =--,∴45AGO OCG ∠=∠= ,∴45BGO OCA BOG OBG ∠=∠∠+∠= ,,∴OBG AOC ∠=∠,∴BOG OAC △∽△,∴OG BG AC OC =,∴44BG AC =,在等腰Rt BFG △中,BG ==,在等腰Rt ACD △中,AC ==4n =,∴8k =.【提示】方法1.作BF x ⊥轴,OE AB CQ AP ⊥⊥,,易证BOE AOD △∽△,根据相似三角形对应边比例相等的性质即可求出k 的值.方法2.先求出OG OC ,,再判断出BOG OAC △∽△,得出OG BGAC OC=,再利用等腰直角三角形的性质得出BG AC ,即可得出结论.【考点】一次函数,反比例函数的图像与性质.二、填空题7.【答案】4【解析】解:44-=.【提示】因为40-<,由绝对值的性质,可得4-的值.【考点】绝对值的性质.8.【答案】44.2510⨯【解析】解:将42500用科学记数法表示为:44.2510⨯.【提示】科学记数法的表示形式为10n a ⨯的形式,其中110a n ≤<,为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1≥时,n 是非负数;当原数的绝对值1<时,n 是负数.【考点】科学计数法.9.【答案】8【解析】解:当234m n -=-时,∴原式46mn m mn n=--+(4622(3)24)8m n m n =-+=--=-⨯-=.【提示】先将原式化简,然后将234m n -=-代入即可求出答案.【考点】求代数式的值和整体思想.10.【答案】不可能事件【解析】解:∵袋子中3个小球的标号分别为1,2,3,没有标号为4的球,∴从中摸出1个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【提示】根据必然事件,不可能事件,随机事件的概念进行判断即可.【考点】必然事件.11.【答案】15°【解析】解:由三角形的外角的性质可知,604515α∠=-= .【提示】根据三角形的外角的性质计算即可.【考点】三角形外角定理.12.【答案】3π【解析】解:设扇形的圆心角为n ,则:π32π=180n g g ,得:120n = .∴22120π33πcm 360S ==g g 扇形【提示】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【考点】扇形面积的求法.13.【答案】3【解析】解:根据题意得1232x x +=-,1212x x =-,所以121212113x x x x x x ++==.【提示】先根据根与系数的关系得到1232x x +=-,1212x x =-,再通分得到12121211x x x x x x ++=,然后利用整体代入的方法计算.徐老师【考点】一元二次方程的根与系数的关系.14.【答案】25【解析】解:如图,过点B 作BE AC ⊥于点E ,∵坡度i =:,∴tan A ∠==,∴30A ∠= ,∵50m AB =,∴125)2(BE AB m ==.【提示】首先根据题意画出图形,由坡度为,可求得坡角30A ∠= ,又由小明沿着坡度为的山坡向上走了50m ,根据直角三角形中,30 所对的直角边是斜边的一半,即可求得答案.【考点】解直角三角形.15.【答案】(7,4)或(6,5)或(1,4)【解析】解:如图,∵点A B P ,,的坐标分别为1025(,(42))(),,,,.∴PA PB ===,∵点C 在第一象限内,且横坐标、纵坐标均为整数,P是ABC △的外心,∴PC PA PB ====,则点C 的坐标为(7,4)或(6,5)或(1,4).【提示】由勾股定理求出PA PB ===由点C 在第一象限内,且横坐标、纵坐标均为整数,P 是ABC △的外心,得出PC PA PB ====,即可得出点C 的坐标.【考点】三角形的外心,三角形的外接圆,勾股定理.16.【答案】【解析】解:如图,由题意可知点C 运动的路径为线段AC ',点E 运动的路径为EE ',由平移的性质可知AC EE '=',在Rt ABC '△中,易知690AB BC ABC ='=∠'= ,,∴EE AC '='==.【提示】如图,由题意可知点C 运动的路径为线段AC ',点E 运动的路径为EE ',由平移的性质可知AC EE '=',求出AC '即可解决问题.【考点】平移的性质,等腰三角形的性质.三、解答题17.【答案】(1)答案见解析(2)答案见解析【解析】解:(1)原式1412=-+=-(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解.【提示】(1)原式利用零指数幂,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】0次幂,负整数指数幂,特殊三角函数值,二次根式的运算.18.【答案】(1)答案见解析(2)960人【解析】解:(1)观察统计图知:6-10个的有6人,占10%,∴总人数为610%60÷=人,∴16-20的有6066241212----=人,∴条形统计图为:徐老师(2)该校全体学生中每周学习数学泰微课在16至30个之间的有121224120096060++⨯=人.【提示】(1)求得16-20的频数即可补全条形统计图.(2)用样本估计总体即可.【考点】条形统计图,扇形统计图,频数的概念.19.【答案】13【解析】解:如图:所有可能的结果有9种,甲,乙抽中同一篇文章的情况有3种,概率为31=93.【提示】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲,乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【考点】画树状图,列表求等可能条件下的概率.20.【答案】(1)答案见解析(2)4AD =【解析】解:(1)如图所示,射线CM 即为所求;(2)∵ACD ABC CAD BAC ∠=∠∠=∠,,∴ACD ABC △∽△,∴AD AC AC AB =,即669AD =,∴4AD =.【提示】(1)根据尺规作图的方法,以AC 为一边,在ACB ∠的内部作ACM ABC∠=∠即可.(2)根据ACD △与ABC △相似,运用相似三角形的对应边成比例进行计算即可.【考点】基本尺规作图,三角形相似的判定和性质.21.【答案】(1)答案见解析(2)713m <<【解析】解:(1)∵当1x m =+时,121y m m =+-=-,∴点1,)1(P m m +-在函数2y x =-图像上.(2)∵函数132y x =-+,∴()6,0,)3(0A B ,,∵点P 在AOB △的内部,∴016m <+<,013m <-<,(111)32m m -<-++,∴713m <<.【提示】(1)要判断点1,1()m m +-是否的函数图像上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出016m <+<,013m <-<,(111)32m m -<-++,解不等式组即可求得.【考点】一次函数的图像,点在函数图像上的意义,不等式的解法.22.【答案】(1)答案见解析(2)2EF =【解析】证明:(1)∵四边形ABCD 是正方形,∴AB AD =,∵DF AG BE AG ⊥⊥,,∴90BAE DAF ∠+∠= ,90DAF ADF ∠+∠= ,∴BAE ADF ∠=∠,在ABE △和DAF△中,==BAE ADF AEB DFA AB AD ∠∠⎧⎪∠∠⎨⎪=⎩,∴()ABE DAF AAS △≌△.(2)设EF x =,则1AE DF x ==+,由题意112(1)11)62(2x x x ⨯⨯+⨯+⨯⨯+=,解得2x =或5-(舍弃),∴2EF =.徐老师【提示】(1)由9090BAE DAF DAF ADF ∠+∠=∠+∠= ,,推出BAE ADF ∠=∠,即可根据AAS 证明ABE DAF △≌△.(2)设EF x =,则1AE DF x ==+,根据四边形ABED 的面积为6,列出方程即可解决问题;【考点】正方形的性质,三角形全等的判定及性质,一元二次方程的解法.23.【答案】(1)60(2)316【解析】解:(1)设该店每天卖出A B ,两种菜品分别为x y ,份,根据题意得,20181120(2014)(1814)280x y x y +=⎧⎨-+-=⎩,解得:2040x y =⎧⎨=⎩,所以该店每天卖出这两种菜品共60份.(2)设A 种菜品售价降0.5a 元,即每天卖(20)a +份;总利润为w 元因为两种菜品每天销售总份数不变,所以B v种菜品卖(40)a -份,每份售价提高0.5a 元,20140.5)20)1814((0.5)4)(0(w a a a a =--++-+-60.5)2((((0)40.5)40)a a a a =-+++-26)36(1a =--+,当6a w =,最大,316w =【提示】(1)由A 种菜和B 种菜每天的营业额为1120和总利润为280建立方程组即可.(2)设出A 种菜多卖出a 份,则B 种菜少卖出a 份,最后建立利润与A 种菜多卖出的份数的函数关系式即可得出结论.【考点】二元一次方程组的应用及解法,二次函数的应用,配方法.24.【答案】(1)答案见解析(2)183【解析】(1)证明:连接OP ,∵CP 与O 相切于点P ,∴PC OP ⊥,∴90OPC ∠= ,∵BD CP ∥,∴90OEP OPC ∠== ,∴BD OP ⊥,∴点P 为»BD的中点.(2)解:∵C D ∠=∠,∵2POB D ∠=∠,∴2POB C ∠=∠,∵90CPO ∠= ,∴30C ∠= ,∵BD CP ∥,∴C DBA ∠=∠,∴D DBA ∠=∠,∴BC PD ∥,∴四边形BCPD 是平行四边形,∵162PO AB ==,∴PC =30ABD C ∠=∠= ,∴132OE OB ==,∴3PE =,∴四边形BCPD 的面积•3PC PE ===.【提示】(1)连接OP ,根据切线的性质得到PC OP ⊥,根据平行线的性质得到BD OP ⊥,根据垂径定理即可得到结论.(2)根据圆周角定理得到2POB D ∠=∠,根据三角形的内角和得到30C ∠= ,推出四边形BCPD 是平行四边形,于是得到结论.【考点】切线的性质,垂径定理,平行线的性质与判定,三角形全等的判定与性质,圆心角定理,锐角三角函数,勾股定理.25.【答案】(1)(2)11t =(3)3883t -≤≤【解析】解:(1)如图1,作AC x ⊥轴于点C ,则48AC OC ==,,当4t =时,4OP =,∴4PC =,∴点P 到线段AB 的距离PA ==.徐老师(2)如图2,过点B 作BD x ∥轴,交y 轴于点D ,①当点P 位于AC 左侧时,∵145AC P A ==,,∴13PC ===,∴15OP =,即5t =;②当点P 位于AC 右侧时,过点A 作2AP AB ⊥,交x 轴于点2P ,∴290CAP EAB ∠+∠= ,∵BD x ∥轴,AC x ⊥轴,∴CE BD ⊥,∴290ACP BEA ∠=∠= ,∴90EAB ABE ∠+∠= ,∴2ABE P AC ∠=∠,在2ACP △和BEA △中,∵22904ACP BEA AC BE P AC ABE ⎧∠=∠=⎪==⎨⎪∠=∠⎩,∴2()ACP BEA ASA △≌△,∴25AP BA ==+=,而此时23P C AE ==,∴211OP =,即11t =;(3)如图3,①当点P 位于AC 左侧,且36AP =时,则3PC ==,∴338OP OC PC =-=-②当点P 位于AC 右侧,且36P M =时,过点2P 作23P N P M ⊥于点N ,则四边形2AP NM是矩形,∴2223290905AP N ACP P NP AP MN ∠=∠=∠=== ,,,∴223ACP P NP △∽△,且31NP =,∴22233AP CP P P NP =,即23531P P =,∴2353P P =,∴32235388333OP OC CP P P =++=++=,∴当3883t -≤≤时,点P 到线段AB 的距离不超过6.【提示】(1)作AC x ⊥轴,由44PC AC ==,,根据勾股定理求解可得.(2)作BD x ∥轴,分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;P 位于AC 右侧时,作2AP AB ⊥,交x 轴于点2P ,证2ACP BEA △≌△得25AP BA ==,从而知23P C AE ==,继而可得答案.(3)分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;点P 位于AC 右侧且36P M =时,作23P N P M ⊥于点N ,知四边形2AP NM 是矩形,证223ACP P NP △∽△得22233AP CP P P NP =,求得23P P 的长即可得出答案.【考点】点的坐标的意义,勾股定理,相似三角形的判定与性质,锐角三角函数定义,分类讨论思想.26.【答案】(1)①3-②4d >-(2)当d=-4且a ≠-2、a ≠-4时,判断直线AB 与x 轴的位置关系,并说明理由;(3)点A 、B 的位置随着a 的变化而变化,设点A 、B 运动的路线与y 轴分别相交于点C 、D ,线段CD 的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由.【解析】解:(1)①当11a d ==-,时,23m a d =-=,所以二次函数的表达式是26y x x =-++.∵1a =,∴点A 的横坐标为1,点B 的横坐标为3,把1x =代入抛物线的解析式得:6y =,把3x =代入抛物线的解析式得:01,6()()3,0y A B =∴,,.将点A 和点B 的坐标代入直线的解析式得:630k b k b +=⎧⎨+=⎩,解得:39k b =-⎧⎨=⎩,所以k 的值为3-.②∵22)2)(()2(y x m x m x m x =-+-+=--+,∴当x a =时,)2)((y a m a =--+;徐老师当2x a =+时,24)(()4y a a =-+-+,∵1y 随着x 的增大而减小,且2a a <+,∴)2)(2)4((()a m a a m a --+>-+-+,解得:24a m ->-,又∵2a m d -=,∴d 的取值范围为4d >-.(2)∵4d =-且24a a ≠-≠-,,2a m d -=,∴24m a =+∴二次函数的关系式为2(22)48y x a x a =-++++把x a =代入抛物线的解析式得:268y a a =++把2x a =+代入抛物线的解析式得:268y a a =++.∴22,682(),8()6A a a a B a a a +++++,.∵点A ,点B 的纵坐标相同,∴AB x ∥轴.(3)线段CD 的长度不变.∵22)2(y x m x m =-+-+过点A ,点B ,2a m d -=,∴2(2(2)22)y x a d x a d =-+--+-.∴222)22)48.((A B y a d a d y a d a d =-+--=+---,∵把0a =代入22()2A y a d a d =-+--,得:2y d =-,∴2(0,)C d -.∵点D 在y 轴上,即20a +=,∴2a =-,.把2a =-代入22)4(8B y a d a d =+---得:28y d =--.∴0,2(8)D d --∴228)8(DC d d =----=∴线段CD 的长度不变.【提示】(1)①当11a d ==-,时,23m a d =-=,于是得到抛物线的解析式,然后求得点A 和点B 的坐标,最后将点A 和点B 的坐标代入直线AB 的解析式求得k 的值即可.②将2x a x a ==+,代入抛物线的解析式可求得点点A 和点B 的纵坐标,然后依据1y 随着x 的增大而减小,可得到)2)(2)4((()a m a a m a --+>-+-+,结合已知条件2a m d -=,可求得d 的取值范围.(2)由4d =-可得到24m a =+,则抛物线的解析式为222)48(y x a x a =-++++,然后将2x a x a ==+,代入抛物线的解析式可求得点A 和点B 的纵坐标,最后依据点A 和点B 的纵坐标可判断出AB 与x 轴的位置关系.(3)先求得点A 和点B 的坐标,于是得到A 和点B 的点运动的路线与字母a 的函数关系式,则点2(0,)C d -,0,2(8)D d --,于是可得到CD 的长度.【考点】一次函数的图像与性质,待定系数法,点的坐标规律,二次函数的性质.。
2017年江苏省泰州市中考数学试题(含解析)
2017年江苏省泰州市中考数学试卷第I 卷(选择题,共36分)一、选择题(每小题3分,共18分)1.(2017江苏泰州,1,3分)2的算术平方根是( )A.2±B.2C.2-D.2答案:B ,解析:根据算术平方根的定义可知,2的算术平方根是2. 2.(2017江苏泰州,2,3分)下列运算正确的是( )A.3362a a a ⋅=B.3362a a a +=C.()236a a = D.623a a a ÷=答案:C ,解析:根据同底数幂的乘法法则可知,336a a a ⋅=,故A 选项错误;根据合并同类项法则可知,336a a a +=,故B 选项错误;根据幂的乘方法则可知,()236a a =,故C 选项正确;根据同底数幂的除法法则可知,624a a a ÷=,故D 选项错误;故选C .3.(2017江苏泰州,3,3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( )A .B .C .D .答案:C ,解析:A 是轴对称图形,但不是中心对称图形;B 既不是轴对称图形,也不是中心对称图形;C 既是轴对称图形又是中心对称图形;D 是中心对称图形,但不是轴对称图形;故选C . 4.(2017江苏泰州,4,3分)三角形的重心是( ) A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点答案:A ,解析:三角形的重心是三角形三条边上中线的交点,故选A .5.(2017江苏泰州,5,3分)某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变答案:C ,解析:原来科普小组5名成员的平均身高是:15(160+165+170+163+167)=165cm ,方差是:15[(160-165)2+(165-165)2+(170-165)2+(163-165)2+(167-165)2]=15(25+0+25+4+4)=585.增加1名身高为165cm 的成员后,平均身高是:16(160+165+170+163+167+165)=165cm ,方差是:16[(160-165)2+(165-165)2+(170-165)2+(163-165)2+(167-165)2+(165-165)2]=16(25+0+25+4+4+0)=582963=.故选C .6.(2017江苏泰州,6,3分)如图,P 为反比例函数()0ky k x=>在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y =-x -4的图象于点A 、B ,若135AOB =∠°,则k 的值是( )A.2B.4C.6D.8答案:D ,解析:如图,设直线AB 与x 轴交于点G ,与y 轴交于点K ,则G (-4,0),F (0,-4).所以OG =OK =4,在Rt △GOK 中,∠OGK =∠OKG =45°,所以∠OBG +∠BOG =45°,∠OGB=∠OKA =135°,又∵∠BOA =135°,∠GOK =90°,∴∠BOG +∠AOK =45°,∴∠OBG =∠AOK =45°,∴△BOG ∽△OAK ,∴BG OG OKAK=,设P 点坐标为(x ,y ),则BG =2y ,AN =2x ,故242y x=,∴2xy =16,xy =8,k =xy =8.第II 卷(非选择题,共84分)二、填空题(每小题3分,共30分).7.(2017江苏泰州,7,3分)4-= .答案:4,解析:根据“一个负数的绝对值是它的相反数”可得4-=4.8.(2017江苏泰州,8,3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为_______.答案:4.25×104,解析:42500=4.25×10000=4.25×104.9.(2017江苏泰州,9,3分)已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为. 答案:8,解析:m (n -4)-n (m -6)=mn -4m -mn +6n =-4m +6n =-2(2m -3n )=-2×(-4)=8.10.(2017江苏泰州,10,3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是 .(填“必然事件”、“不可能事件”或“随机事件”)答案:不可能事件,解析:∵袋子中3个小球的标号分别为1、2、3,没有标号为4的球, ∴从中摸出1个小球,标号为“4”,这个事件是不可能事件.11.(2017江苏泰州,11,3分)将一副三角板如图叠放,则图中a ∠的度数为.答案:15°,解析:如图,a ∠=90°-∠DAF ,∠DAF =∠B +∠BCA =30°+45°=75°,所以a ∠=15°.12.(2017江苏泰州,12,3分)扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为2cm .答案:3π,解析:根据扇形面积公式,S =12lr =1232π⨯⨯=3π2cm .13.(2017江苏泰州,13,3分)方程22310x x +-=的两个根为1x 、2x ,则1112x x +的值等于.答案:3,解析:根据根与系数的关系可知,12x x +=32-,12x x =12-,∴1112x x +=1212x x x x +=3.14.(2017江苏泰州,14,3分)小明沿着坡度i 为3的直路向上走了50m ,则小明沿垂直方向升高了m.答案:25,解析:如图,过点B作BE⊥AC于点E,∵坡度i=1:3,∴tan∠A=1:3=33,∴∠A=30°,∵AB=50m,∴BE=12AB=25(m).∴小明沿垂直方向升高了25m.15.(2017江苏泰州,15,3分)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2),若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.答案:(7,4),(6,5),解析:如图,以点P为圆心,P A为半径作圆,⊙P在第一项限经过的符合条件的点有两个,分别是(7,4)和(6,5).故答案为(7,4),(6,5).16.(2017江苏泰州,16,3分)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=P A,若点P沿AB方向从点A运动到点B,则点E运动的路径长为.答案:2E点运动的轨迹与C点运动的轨迹相同,C点运动的路程是226662+=,故答案是62.三、解答题(本大题共10个小题,共102分). 17.(2017江苏泰州,17,12分)(1)计算:()2017132-⎛⎫-- ⎪⎝⎭°;分析:根据任意不为0的数0次幂都等于1,得)71-=1;根据负指数的意义,得2142-⎛⎫-= ⎪⎝⎭;由3tan30°=3°=3. 解:原式=1-4+1=-2. (2)解方程:214111x x x ++=--. 分析:根据解分式方程的步骤解答即可. 解:去分母,得(x +1)2-4=x 2-1去括号,得x 2+2x +1-4=x 2-1 移项、合并同类项,得2x =2 二次项系数化为1,得,x =1.经检验,x =1是分式方程的增根,故原分式方程无解.18.(2017江苏泰州,18,8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题: (1) 补全条形统计图;(2) 估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.分析:(1)条形统计图中学习微课在6—10个的学生有6人,所占百分比是10%,故总人数是6÷10%=60(人),故学习微课在16—20个的学生有60-6-6-24-12=12(人);(2)根据样本中每周学习数学泰微课在16至30个之间的人数的百分比估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的百分比,由此求解.解:(1)补全条形统计图如下;(2)48100%120060⨯⨯=960(人),估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数是960人.19.(2017江苏泰州,19,8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取. 用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.分析:列表或画树状图,然后根据概率公式列式计算即可得解. 解:(1) 方法1:列表,得一共有9种等可能的结果,其中,甲、乙抽中同一篇文章的有3种,故P (甲、乙抽中同一篇文章)=39=13.方法2:画树形图,得一共有9种等可能的结果,其中,甲、乙抽中同一篇文章的有3种,故P (甲、乙抽中同一篇文章)=39=13.20.(2017江苏泰州,20,8分)如图,ABC △中,ACB ABC >∠∠.(1)用直尺和圆规在ACB ∠的内部作射线CM ,使ACM ABC =∠∠(不要求写作法,保留作图痕迹); (2)若(1)中的射线CM 交AB 于点D ,9AB =,6AC =,求AD 的长.分析:(1)考查基本作图“作一个角等于已知角”;(2)易证△ADC ∽△ACB ,根据相似三角形对应边成比例即可求解. 解:(1)作图如下;(2)解:∵ACM ABC =∠∠,∠A =∠A ,∴△ADC ∽△ACB ,∴AD AC ACAB,又9AB =,6AC =,∴669AD=,解得AD=4.21.(2017江苏泰州,21,10分)平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数132y x=-+的图象与x轴、y轴分别相交于点A、B,若点P在AOB△的内部,求m的取值范围.分析:(1)把P点的横坐标带入y=x-2中,若所得的y值与P点的纵坐标相等,则P点在一次函数y=x-2的图象上,否则不在;(2)因为点P在一次函数y=x-2的图象上,且点P在AOB△的内部,故先求出直线y=x-2与x轴的交点N的坐标,及直线y=x-2与132y x=-+的交点M的坐标,P点坐标在M与N之间,据此列出不等式组即可.解:(1)把x=m+1代入y=x-2,得y=m-1,故点P在一次函数y=x-2的图象上;(2)把x=0代入132y x=-+,得y=3,故B点坐标是(0,3);把y=0代入132y x=-+,得x=6,故A点坐标是(6,0);解方程组2132y xy x=-=-+⎧⎪⎨⎪⎩,得10343xy==⎧⎪⎪⎨⎪⎪⎩.因为点P在AOB△的内部,所以102134013mm<+<<-<⎧⎪⎪⎨⎪⎪⎩,解得1<m<73.22.(2017江苏泰州,22,10分)如图,正方形ABCD中,G为BC边上一点,BE AG⊥于E,DF AG⊥于F,连接DE.(1)求证:ABE DAF△≌△;(2)若1AF=,四边形ABED的面积为6,求EF的长.分析:(1)由∠DAF+∠BAE=90°,∠ABE+∠BAE=90°得∠ABE=∠DAF,又∠AEB=∠DF A =90°,AB=AD,根据AAS可证ABE DAF△≌△;(2)四边形ABED是不规则四边形,可利用S四边形ABED=S△ABE+S△AED,列方程求解.解:(1)证明:在正方形ABCD中,AB=AD,∠BAD=90°,即∠DAF+∠BAE=90°,∵BE AG⊥,DF AG⊥,∴∠AEB=∠DF A=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAF,∴ABE DAF△≌△;(2)设EF=x,则AE=1+x.由(1)可知ABE DAF△≌△,故BE=AE=x,DF=AE=1+x.S四边形ABED=S△ABE+S△AED=1122BE AE AE DE⋅+⋅=112(1)(1)22x x+++,又S四边形ABED=6,∴112(1)(1)22x x+++=6,解得x1=-5(不合题意,舍去),x2=2.故EF的长为2.23.(2017江苏泰州,23,10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?分析:(1)根据题意,找出题中的等量关系.①A种菜品的营业额+B种菜品的营业额=1120元;②A种菜品的利润+B种菜品的利润=280元.根据等量关系,列出方程组,计算即可;(2).解:(1)设)该店每天卖出A种菜品x份,B种菜品y份,根据题意,得20181120(2014)(1814)280 x yx y+=-+-=⎧⎨⎩.解得2040x y ==⎧⎨⎩.20+40=60(份)答:该店每天卖出这两种菜品共60份;(2)设A 种菜品售价降低a 元,因为两种菜品每天销售总份数不变,则B 种菜品售价降低a 元,这两种菜品一天的总利润是w 元.根据题意,得 w =(20-x -14)(20+0.5x )+(18+x -14)(40-0.5x )=-4x 2+24x +280=-4(x -3)2+316.故这两种菜品一天的总利润最多是316元.24.(2017江苏泰州,24,10分)如图,O ⊙的直径12cm AB =,C 为AB 延长线上一点,CP 与O⊙相切于点P ,过点B 作弦BD ∥CP ,连接PD . (1)求证:点P 为»BD的中点; (2)若∠C =∠D ,求四边形BCPD 的面积.分析:(1)见切线,连切点,得垂直.连接OP ,则OP ⊥CP ,由BD CP ∥得OP ⊥BD ,根据垂径定理,可得点P 为»BD 的中点;(2)根据条件可证明四边形BCPD 是平行四边形,根据“平行四边形的面积=底×高”来求.解:(1)证明:连接OP ,∵CP 与O ⊙相切于点P ,∴OP ⊥CP ,∵BD ∥CP ,∴OP ⊥BD ,∴点P 为»BD的中点;(2)连接AD ,∵AB 是直径,∴∠ADB =90°=∠OPC .∵BD ∥CP ,∴∠C =∠DBA ,∵∠C=∠D ,∴∠DBA =∠D ,∴DP ∥BC ,∴四边形BCPD 是平行四边形,∴DB =PC .∴△COP ≌△BAD (ASA ).∴CO =AB =12cm ,∴CB =OA =6cm ,∵OP =6cm ,∴CP 2263OC OP -=cm . ∵BD ∥CP ,CB =OB ,∴PE =OE =3.∴四边形BCPD 的面积是633183=2. 25.(2017江苏泰州,25,12分)阅读理解:如图①,图形l 外一点P 与图形l 上各点连接的所有线段中,若线段i PA 最短,则线段i PA 的长度称为点P 到图形l 的距离.例如:图②中,线段i PA 的长度是点1P 到线段AB 的距离;线段2P H 的长度是点2P 到线段AB 的距离. 解决问题:如图③,平面直角坐标系xOy 中,点A 、B 的坐标分别为()8,4,()12,7,点P 从原点O 出发,以每秒1个单位长度的速度向x 轴正方向运动了t 秒.(1) 当4t =时,求点P 到线段AB 的距离;(2) t 为何值时,点P 到线段AB 的距离为5?(3) t 满足什么条件时,点P 到线段AB 的距离不超过6?(直接写出此小题的结果)思路分析: (1)要求线段P A 的长,构造以P A 为斜边的直角三角形,由题意求出两直角边的长,应用勾股定理求出斜边P A 的长即可.(2)根据题意,点P 到线段AB 的距离是5,即点P 到点A 的线段P A =5,也就是到点A 的距离为5的点P 的集合,是以A 为圆心,以5为半径的圆.此圆与x 轴相交于两点均符合条件. (3)根据题意,点P 到线段AB 的距离不超过6,就是到点A 的距离小于6或等于6;利用分类讨论方法,分点在点A 到横轴的垂足左边和右边两种情况讨论.解:(1)如图④,由题意知,点P 的坐标为(4,0),连接AP ,则线段AP 的长就是此时点P 到线段AB 的距离.过点A 作AH ⊥x 轴于点H .因为A (8,4),所以AH =4,OH =8,则PH =OH -OP=4.在Rt △APH 中,由勾股定理得:AP =22224442PH AH +=+=;(2)如图④连接AP ,作AH ⊥x 轴.设点P 的坐标为(p ,0),因为A (8,4),P (p ,0),点P 到线段AB 的距离是5,即线段AP =5.所以根据题意,得 (p -8)2+(0-4)2=52P 2-16p +64=25, 整理,得 p 2-16p +55=0解得:p 1=5 ,p 2=11.①当P 点在H 点左侧时,P 点坐标是(5,0);②当P 点在H 点右侧时,P 点坐标是(11,0); 所以,当t =5或t =11时,点P 到线段P A 的距离是5。
整理江苏省泰州市泰兴市2017年中考数学一模试卷(含解析)
试卷一20 年月日A4打印/ 可编辑试卷一一.单选题1、一次文献、二次文献、三次文献是按照( A )进行区分的。
A.加工深度B.原创的层次C.印刷的次数D.评论的次2、从文献的( B )角度区分,可将文献分为印刷型、缩微型等。
A.内容公开次数B.载体类型C.出版类型D.公开程度3.具有固定名称、统一出版形式和一定出版规律的定期或不定期的连续出版物,称为( D )。
A.图书B.会议文献C.学位论文D.期刊4、文献是记录有知识的( A )。
A、载体B、纸张C、光盘D、磁盘5、( A )类型的专业文献出版周期最短、发行量最大、报道最迅速及时,成为多数论文发表渠道。
A.期刊B.报纸C.会议文献D.专利6.下列哪种文献属于一次文献( A )。
A、期刊论文B、百科全书C、综述D、文摘7.下列选项中属于连续出版物类型的选项有(C )。
A、人民日报B、学位论文C、科技期刊D、会议文献8、纸质信息源的载体是( D )A、光盘B、缩微平片C、感光材料D、纸张9.下列哪种文献属于三次文献( C )。
A、标准文献B、学位论文C、综述D、文摘10、检索、获取图书信息的传统方法是( A )。
A. 各种印刷本的书目B. 搜索引擎C.联机检索D. 网络目录11.根据国家相关标准,文献的定义是指“记录有( C )的一切载体”。
A.情报 B.信息 C.知识 D.数据12.以作者本人取得的成果为依据而创作的论文、报告等,并经公开发表或出版的各种文献,称为( C)。
A.零次文献 B.一次文献 C.二次文献 D.三次文献13.从文献的( B )角度区分,可将文献分为印刷型、缩微型等。
A.内容公开次数B.载体类型C.出版类型 D.公开程度14.具有固定名称、统一出版形式和一定出版规律的定期或不定期的连续出版物,称为( D )。
A.图书B.会议文献C.学位论文 D.期刊15.( A )类型的专业文献出版周期最短、发行量最大、报道最迅速及时,成为多数论文发表渠道。
江苏省2017年中考数学模拟卷答案解析
答案解析1.【答案】C【解析】绝对值小于1 的数也可以利用科学记数法表示,一般形式为a⨯10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.将数据0.0000021 用科学记数法表示为:2.1⨯10﹣6 ,故选C.2.【答案】D【解析】根据题意一共有5 个图形,其中轴对称图形有圆,等边三角形,等腰梯形,角4 个,所以其概4率为,故选D.55.【答案】C【解析】A.由一次函数y =ax +b 的图象可得:a > 0 ,b > 0 ,此时二次函数y =ax2 +bx +c 的图象应该开口向上,故A 错误;B.由一次函数y =ax +b 的图象可得:a > 0 ,b > 0 ,此时二次函数y =ax2 +bx +c 的图象应该开口向b< 0 ,故B 错误;上,对称轴x= -2aC.由一次函数y =ax +b 的图象可得:a < 0 ,b < 0 ,此时二次函数y =ax2 +bx +c 的图象应该开口向b< 0 ,故C 正确;下,对称轴x= -2aD.由一次函数y =ax +b 的图象可得:a < 0 ,b > 0 ,此时二次函数y =ax2 +bx +c 的图象应该开口向下,对称轴 x = - b 2a> 0 ,故 D 错误. 综上可知,选 C .6.【答案】B【解析】∵2 是关于 x 的方程 x 2 - 2mx + 3m = 0 的一个根,∴ 22 - 4m + 3m = 0 , m = 4 ,∴ x 2- 8x +12 = 0 ,解得 x 1 = 2 , x 2 = 6 .①当 6 是腰时,2 是底边,此时周长为 6 + 6 + 2 = 14 ;②当 6 是底边时,2 是腰, 2 + 2 < 6 ,不能构成三角形.所以它的周长是 14,故选 B .7.【答案】<-121 【解析】 1 2= 1 ≈ 1.732 - 1 < 1< . 2 2 8.【答案】 - 6 x 2 + x + 3【解析】根据题意可得,这个多项式为(- x 2 - 3x ) - (5x 2 - 4x - 3) = - x 2 - 3x - 5x 2 + 4 x + 3 = - 6 x 2 + x + 3 ,故答案为: - 6 x 2 + x+ 3 .11.【答案】 n 2 + n + 2【解析】仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:(1+1+2)个,第二个图有:(4+2+2)个,第三个图有:(9+3+2)个,…第 n 个图有:n 2+n +2(个).⎧18( x + y ) = 360 12.【答案】 ⎨⎩24( x - y ) = 360【解析】根据题意可得,顺水速度为 ( x + y ) 千米/时,逆水速度为 ( x - y ) 千米/时,根据所走的路程可列⎧18( x + y ) = 360方程组为 ⎨. ⎩24( x - y ) = 36013.【答案】2.3【解析】由题意可得,cos30°=AC =AB14.【答案】 373.∴AB = 2 2 ≈2.3,故应填为:2.3. 32【解析】由题意,在△ABC 中, AB = AD ,∠BAD = 32 ,1所以 ∠B = ∠BDA = (180︒ - ∠BAD ) = 274 ,因为AD =DC ,所以∠C =∠CAD ,因为∠BDA 为△ADC 的一个外角,所以∠BDA =∠C +∠CAD =2∠C ,故∠C =37°.16.【答案】64【解析】设矩形的一边长是 x cm ,则邻边的长是( 16 - x )cm .则矩形的面积 S = x (16 - x ) ,即S = - x 2 + 16 x , S = -( x - 8)2 + 64 .当 x = 8 时,S 有最大值 64.⎧2 x + y = 5①17.【解析】 ⎨⎩ x - 3 y = 6②,① - ②×2,得 7 y = -7 ,解得 y = -1,把 y = -1代入①,得 x = 3 ,⎧ x = 3 ∴原方程组的解为 ⎨⎩ y = -118.【解析】原式 =-2.(7 分) + 1 - 8 = 7 .(7 分)2(3)∵△ABC 是等边三角形,∴a =b =c > 0 .x 1 = 0,x2=-1.(7∴(a +c)x2 + 2bx + (a -c) = 0 可整理为:2ax2 + 2ax = 0 ,∴x2 +x = 0 ,解得:分)20.【解析】(1)方法一,画树状图得:方法二,列表得:∴所有等可能性的结果有12 种,其中恰好选中甲、乙两位同学的结果有2 种,2 1∴恰好选中甲、乙两位同学的概率为:=;(4 分)12 6(2)∵一共有3 种等可能性的结果,其中恰好选中乙同学的有1 种,1∴恰好选中乙同学的概率为:3.(8 分)21.【解析】证明:∵四边形ABCD 是平行四边形,∴AB=CD 且AB∥CD,∴∠EAF=∠ADC,⎩⎧AF =DC⎪ 又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF 和△DFC 中,⎨∠EAF =∠FDC ,⎪AE =DF ∴△AEF≌△DF C.(8 分)(2)利用(1)所求的四个点,结合对称轴画出其图象,如图,(7 分)(3)由图象可知当x <1时,y 随x 的增大而减小.(8 分)(写x ≤1时也得分)23.【解析】(1)连接CD,如图,∵AC 是⊙O 的直径,∴∠ADC=90°,∵E 是BC 的中点,∴ED=EC=BE;(2 分)(2)DE 是⊙O 的切线.理由如下:连接OD,如图,∵BC 为切线,∴OC⊥BC,∴∠OCB=90°,即∠2+∠4=90°,∵OC=OD,ED=EC,∴∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4=90°,即∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(6 分)(3)当BC=2 时,⎨⎩∵CA =CB =2,∴CE =DE =1 , OC =OD =1 ,又∵OC ⊥CE ,∴四边形 ODEC 为正方形.∴AO =DE =1,且 AO ∥DE ,∴四边形 AOED 是平行四边形.(8 分)25.【解析】(1)50÷25%=200(名) (2 分)(2)200-50-120=30(名),补全图形如下所示:(3)(1-60%-25%)×360°=54°.(6 分)(4)80000×(60%+25%)=68000(名) 答:估计该市大约有 68000 名学生学习态度达标.(9 分)(4 分)26.【解析】(1)∵四边形 ABCD 是正方形,∴△ABD 是等腰直角三角形,∴2AB 2=BD 2,∵BD = 2 ,∴AB =1,∴正方形 ABCD 的边长为 1.(2 分)(2)CN = 2 CM .证明如下:∵CF =CA ,AF 是∠ACF 的平分线,∴CE ⊥AF ,∴∠AEN =∠CBN =90°,∵∠ANE =∠CNB ,∴∠BAF =∠BCN ,⎧∠BAF = ∠BCN在△ABF 和△CBN 中, ⎪∠ABF = ∠CBN = 90 , ⎪ AB = BC∴△ABF ≌△CBN (ASA ),∴AF =CN ,。
2017年泰州市中考数学试卷(含答案解析版)
20XX年江苏省泰州市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2的算术平方根是()A.±√2B.√2C.−√2D.22.(3分)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a33.(3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点5.(3分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,P为反比例函数y=kx(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)|﹣4|=.8.(3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.(3分)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.10.(3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.(3分)将一副三角板如图叠放,则图中∠α的度数为.12.(3分)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.13.(3分)方程2x2+3x﹣1=0的两个根为x1、x2,则1x1+1x2的值等于.14.(3分)小明沿着坡度i为1:√3的直路向上走了50m,则小明沿垂直方向升高了m.15.(3分)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.16.(3分)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE 的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(1)计算:(√7﹣1)0﹣(﹣12)﹣2+√3tan30°;(2)解方程:x+1x−1+41−x2=1.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21.(10分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.22.(10分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23.(10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.̂的中点;(1)求证:点P为BD(2)若∠C=∠D,求四边形BCPD的面积.25.(12分)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P 从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.20XX年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•泰州)2的算术平方根是()A.±√2B.√2C.−√2D.2【考点】22:算术平方根.【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是√2,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.(3分)(2017•泰州)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.(3分)(2017•泰州)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•泰州)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【考点】K5:三角形的重心.【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)(2017•泰州)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【考点】W7:方差;W1:算术平均数.【分析】根据平均数的意义、方差的意义,可得答案.【解答】解:。
2017年江苏省泰州市中考数学试卷
2017年江苏省泰州市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2的算术平方根是()A.B.C.D.22.(3分)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a33.(3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)|﹣4|=.8.(3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.(3分)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.10.(3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.(3分)将一副三角板如图叠放,则图中∠α的度数为.12.(3分)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.13.(3分)方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于.14.(3分)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.15.(3分)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.16.(3分)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB 方向从点A运动到点B,则点E运动的路径长为.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21.(10分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.22.(10分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG 于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23.(10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.25.(12分)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.2017年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•泰州)2的算术平方根是()A.B.C.D.2【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.(3分)(2017•泰州)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【分析】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.(3分)(2017•泰州)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•泰州)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)(2017•泰州)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据平均数的意义、方差的意义,可得答案.【解答】解:==165,S2=,原==165,S2=,平均数不变,方差变小,故选:C.【点评】本题考查了方差,利用方差的定义是解题关键.6.(3分)(2017•泰州)如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8【分析】方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.方法2、先求出OG,OC,再判断出△BOG∽△OAC,得出=,再利用等腰直角三角形的性质得出BG,AC即可得出结论.【解答】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,),∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=OC=;同理可证:BG=BF=PD=,∴BE=BG+EG=+;∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE和△AOD中,,∴△BOE∽△AOD;∴=,即=;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.方法2、如图1,过B作BF⊥x轴于F,过点A作AD⊥y轴于D,∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴A(n,﹣n﹣4),B(4﹣)∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=4,当y=0时,x=﹣4.∴OG=4,∵∠AOB=135°,∴∠BOG+∠AOC=45°,∵直线AB的解析式为y=﹣x﹣4,∴∠AGO=∠OCG=45°,∴∠BGO=∠OCA,∠BOG+∠OBG=45°,∴∠OBG=∠AOC,∴△BOG∽△OAC,∴=,∴=,在等腰Rt△BFG中,BG=BF=,在等腰Rt△ACD中,AC=AD=n,∴,∴k=8,故选D.【点评】本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•泰州)|﹣4|=4.【分析】因为﹣4<0,由绝对值的性质,可得|﹣4|的值.【解答】解:|﹣4|=4.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.8.(3分)(2017•泰州)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 4.25×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将42500用科学记数法表示为:4.25×104.故答案为:4.25×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)(2017•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8.【分析】先将原式化简,然后将2m﹣3n=﹣4代入即可求出答案.【解答】解:当2m﹣3n=﹣4时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.10.(3分)(2017•泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是不可能事件.(填“必然事件”、“不可能事件”或“随机事件”)【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:∵袋子中3个小球的标号分别为1、2、3,没有标号为4的球,∴从中摸出1个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.(3分)(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.(3分)(2017•泰州)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为3πcm2.【分析】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【解答】解:设扇形的圆心角为n,则:2π=,得:n=120°.==3πcm2.∴S扇形故答案为:3π.【点评】本题考查的是扇形面积的计算,根据题意先求出扇形的圆心角的度数,再计算扇形的面积.13.(3分)(2017•泰州)方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于3.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再通分得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣,所以+===3.故答案为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•泰州)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了25m.【分析】首先根据题意画出图形,由坡度为1:,可求得坡角∠A=30°,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,30°所对的直角边是斜边的一半,即可求得答案.【解答】解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.【点评】此题考查了坡度坡角问题.此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.15.(3分)(2017•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为(7,4)或(6,5)或(1,4).【分析】由勾股定理求出PA=PB==,由点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,得出PC=PA=PB=,即可得出点C 的坐标.【解答】解:∵点A、B、P的坐标分别为(1,0),(2,5),(4,2).∴PA=PB==,∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB==,则点C的坐标为(7,4)或(6,5)或(1,4);故答案为:(7,4)或(6,5)或(1,4).【点评】本题考查了三角形的外接圆、坐标与图形性质、勾股定理;熟练掌握勾股定理是解决问题的关键.16.(3分)(2017•泰州)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为6.【分析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,求出AC′即可解决问题.【解答】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==6,故答案为6.【点评】主要考查轨迹、平移变换、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•泰州)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣4+1=﹣2;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)(2017•泰州)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【分析】(1)求得16﹣20的频数即可补全条形统计图;(2)用样本估计总体即可;【解答】解:(1)观察统计图知:6﹣10个的有6人,占10%,∴总人数为6÷10%=60人,∴16﹣20的有60﹣6﹣6﹣24﹣12=12人,∴条形统计图为:(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200×=960人.【点评】本题考查了条形统计图及用样本估计总体的知识,解题的关键是认真读两种统计图,并从统计图中整理出进一步解题的信息,难度不大.19.(8分)(2017•泰州)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8分)(2017•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.【点评】本题主要考查了基本作图以及相似三角形的判定与性质的运用,解题时注意:两角对应相等的两个三角形相似;相似三角形的对应边成比例.21.(10分)(2017•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.【分析】(1)要判断点(m+1,m﹣1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3,解不等式组即可求得.【解答】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.22.(10分)(2017•泰州)如图,正方形ABCD中,G为BC边上一点,BE⊥AG 于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,由题意2××(x+1)×1+×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.23.(10分)(2017•泰州)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【分析】(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜多卖出的份数的函数关系式即可得出结论.【解答】解:(1)设该店每天卖出A、B两种菜品分别为x、y份,根据题意得,,解得:,答:该店每天卖出这两种菜品共60份;(2)设A种菜品售价降0.5a元,即每天卖(20+a)份;总利润为w元因为两种菜品每天销售总份数不变,所以B种菜品卖(40﹣a)份每份售价提高0.5a元.w=(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.【点评】此题主要考查的是二元一次方程组和二次函数的应用,解本题的关键是正确理解题意,找出题目中的等量关系,再列出方程组或函数关系式,最后计算出价格变化后每天的总利润.24.(10分)(2017•泰州)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.【分析】(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.【解答】(1)证明:连接OP,∵CP与⊙O相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴=,∴点P为的中点;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.【点评】本题考查了切线的性质,垂径定理,平行四边形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.25.(12分)(2017•泰州)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【分析】(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;P位于AC右侧时,作AP2⊥AB,交x轴于点P2,证△ACP2≌△BEA得AP2=BA=5,从而知P2C=AE=3,继而可得答案;(3)分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;点P位于AC右侧且P3M=6时,作P2N⊥P3M于点N,知四边形AP2NM 是矩形,证△ACP2∽△P2NP3得=,求得P2P3的长即可得出答案.【解答】解:(1)如图1,作AC⊥x轴于点C,则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P到线段AB的距离PA===4;(2)如图2,过点B作BD∥x轴,交y轴于点E,①当点P位于AC左侧时,∵AC=4、P1A=5,∴P1C===3,∴OP1=5,即t=5;②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,∴∠CAP2+∠EAB=90°,∵BD∥x轴、AC⊥x轴,∴CE⊥BD,∴∠ACP2=∠BEA=90°,∴∠EAB+∠ABE=90°,∴∠ABE=∠P2AC,在△ACP2和△BEA中,∵,∴△ACP2≌△BEA(ASA),∴AP2=BA===5,而此时P2C=AE=3,∴OP2=11,即t=11;(3)如图3,①当点P位于AC左侧,且AP3=6时,则P3C===2,∴OP3=OC﹣P3C=8﹣2;②当点P位于AC右侧,且P3M=6时,过点P2作P2N⊥P3M于点N,则四边形AP2NM是矩形,∴∠AP2N=90°,∠ACP2=∠P2NP3=90°,AP2=MN=5,∴△ACP2∽△P2NP3,且NP3=1,∴=,即=,∴P2P3=,∴OP3=OC+CP2+P2P3=8+3+=,∴当8﹣2≤t≤时,点P到线段AB的距离不超过6.【点评】本题主要考查一次函数的综合问题,理解题意掌握点到线段的距离概念及分类讨论思想的运用、矩形的判定与性质、相似三角形的判定与性质是解题的关键.26.(14分)(2017•泰州)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【分析】(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,﹣2d),D(0,﹣4d﹣8),于是可得到CD的长度.【解答】解:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A和点B的坐标代入直线的解析式得:,解得:,所以k的值为﹣3.②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),∴当x=a时,y=﹣(a﹣m)(a+2);当x=a+2时,y=﹣(a+2﹣4)(a+4),∵y1随着x的增大而减小,且a<a+2,∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,又∵2a﹣m=d,∴d的取值范围为d>﹣4.(2)∵d=﹣4且a≠﹣2、a≠﹣4,2a﹣m=d,∴m=2a+4.∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.把x=a代入抛物线的解析式得:y=a2+6a+8.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)线段CD的长度不变.∵y=﹣x2+(m﹣2)x+2m过点A、点B,2a﹣m=d,∴y=﹣x2+(2a﹣d﹣2)x+2(2a﹣d).∴y A=﹣a2+(2﹣d)a﹣2d,y B=a2+(2﹣d)a﹣4d﹣8.∴点C(0,﹣2d),D(0,﹣4d﹣8).∴DC=|﹣2d﹣(﹣4d﹣8)|=|2d+8|.∵d为常数,∴线段CD的长度不变.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,求得点A和点B的坐标是解题的关键.2017年黑龙江省佳木斯市中考数学试卷(农垦、森工用)一、填空题(每题3分,满分30分)1.(3分)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示.2.(3分)函数y=中,自变量x的取值范围是.3.(3分)如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.5.(3分)不等式组的解集是x>﹣1,则a的取值范围是.6.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的。
2017年江苏省泰州市高港区数学中考三模试卷【答案】
2017年江苏省泰州市高港区中考数学三模试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)2的相反数是()A.﹣2 B.﹣ C.D.22.(3分)等于()A.﹣3 B.3 C.±3 D.3.(3分)南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为()A.10.2×105B.1.02×105C.1.02×106D.1.02×1074.(3分)如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°5.(3分)刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数6.(3分)如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2﹣ax﹣a的图象,则下列关于x、y 轴的叙述,正确的是()A.l1为x轴,l3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l3为y轴D.l2为x轴,l4为y轴二、填空题(共10小题,每小题3分,满分30分)7.(3分)使式子有意义的x取值范围是.8.(3分)一组数据1,4,2,5,3的中位数是.9.(3分)在比例尺为1:200000的地图上,小明家到单位的图上距离为20cm,则小明家到单位的实际距离为千米.10.(3分)若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为.11.(3分)已知△ABC的周长为24,面积为48,则它的内切圆的半径为.12.(3分)若m<﹣2,则下列函数:①y=(x>0);②y=﹣mx+1;③y=mx;④y=(m+1)x﹣1中y随x的增大而增大的函数是.(填序号)13.(3分)如图,△ABC内接于⊙O,∠B=30°,AC=2cm,则⊙O半径长为cm.14.(3分)如图,在矩形ABCD中,点E为边CD上一点,沿AE折叠,点D恰好落在BC边上的F点处,若AB=3,BC=5,则tan∠EFC的值为.15.(3分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=.16.(3分)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD 沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(共有10小题,共102分)17.(10分)(1)计算:()﹣2﹣(π﹣2011)0+|﹣2|+2cos45°.(2)先化简,再求值:(+)÷,其中x=﹣1.18.(8分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.19.(8分)在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.20.(10分)在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y.以先后记下的两个数字(x,y)作为点P的坐标.(1)用列表或画树状图,求点P的横坐标与纵坐标的和为4的概率;(2)求点P落在以坐标原点为圆心、为半径的圆的内部的概率.21.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.(1)求上述反比例函数和一次函数的解析式;(2)求的值.22.(10分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)23.(10分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户每天能否获得比150元更大的利润?如果能请求出最大利润,如果不能请说明理由.24.(10分)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.25.(12分)已知矩形ABCD中,AD=6,AB=12,P为边CD上的动点,过A点作AQ⊥AP,交CB的延长线于点Q,交AB于点E,若DP=x,CQ=y,(1)试写出y与x的函数关系式.(2)当x为何值时,△APE为等腰直角三角形?(3)直接写出P点由D向C运动过程中,PQ的中点F运动的路径的长?26.(14分)已知二次函数y=ax2﹣(3a+1)x+2a+1 (a≠0),与x轴交与A(x1,0)B(x2,0)两点,与y轴交与C点.(1)求出该函数的图象经过的定点的坐标.(2)若A为(1)中所求的某一定点,且x1、x2,之间的整数恰有3个(不包括x1、x2),试求a的取值范围.(3)当a=时,将与x轴重合的直线绕着D(﹣5,0)逆时针旋转得到直线l:y=kx+b,过点C、B分别作l的垂线段,距离为d1、d2,试分别求出当|d1﹣d2|最大和最小时b的值.2017年江苏省泰州市高港区中考数学三模试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)2的相反数是()A.﹣2 B.﹣ C.D.2【解答】解:2的相反数是﹣2.故选:A.2.(3分)等于()A.﹣3 B.3 C.±3 D.【解答】解:==3,故选B3.(3分)南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为()A.10.2×105B.1.02×105C.1.02×106D.1.02×107【解答】解:1020000=1.02×106,故选C.4.(3分)如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°【解答】解:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则∠D=130°,故选C5.(3分)刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故选B.6.(3分)如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2﹣ax﹣a的图象,则下列关于x、y 轴的叙述,正确的是()A.l1为x轴,l3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l3为y轴D.l2为x轴,l4为y轴【解答】解:∵抛物线的开口向上,∴a>0,∴﹣a<0,∴抛物线与y轴的负半轴相交,∴l1为x轴,l3为y轴.故选A.二、填空题(共10小题,每小题3分,满分30分)7.(3分)使式子有意义的x取值范围是x≥﹣1.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.8.(3分)一组数据1,4,2,5,3的中位数是3.【解答】解:将数据从小到大排列,可得1,2,3,4,5;第3个数为3,故这5个数的中位数是3.故填3.9.(3分)在比例尺为1:200000的地图上,小明家到单位的图上距离为20cm,则小明家到单位的实际距离为40千米.【解答】解:设这两地的实际距离是xcm,根据题意得:1:200000=20:x,解得:x=4000000,∵4000000cm=40km,∴这两地的距离是40千米.故答案为:40.10.(3分)若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为14πcm2.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,底面积为4πcm2,表面积为10π+4π=14πcm2,故答案为:14πcm2.11.(3分)已知△ABC的周长为24,面积为48,则它的内切圆的半径为4.【解答】解:设三角形的内切圆的半径为r,三边长分别为a、b、c.由题意,解得r=4.故答案为4;12.(3分)若m<﹣2,则下列函数:①y=(x>0);②y=﹣mx+1;③y=mx;④y=(m+1)x﹣1中y随x的增大而增大的函数是①②.(填序号)【解答】解:①∵m<﹣2,∴当x>0时,函数y=中y随x的增大而增大;②∵m<﹣2,∴﹣m>2,∴函数y=﹣mx+1中y随x的增大而增大;③∵m<﹣2,∴函数y=mx中y随x的增大而减小;④∵m<﹣2,∴m+1<﹣1,∴函数y=(m+1)x﹣1在第二、四象限内y随x的增大而增大.综上所述:y随x的增大而增大的函数是①②.故答案为:①②.13.(3分)如图,△ABC内接于⊙O,∠B=30°,AC=2cm,则⊙O半径长为2 cm.【解答】解:连接OA、OC,∵∠B=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=2.14.(3分)如图,在矩形ABCD中,点E为边CD上一点,沿AE折叠,点D恰好落在BC边上的F点处,若AB=3,BC=5,则tan∠EFC的值为.【解答】解:根据题意可得:在Rt△ABF中:AB=3,AF=AD=BC=5,则BF==4,又∵∠EFC+∠AFB=90°,∠AFB+∠BAF=90°,∴∠BAF=∠CFE,故tan∠EFC=tan∠BAF=.故答案为:.15.(3分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=2.【解答】解:过D点作DE⊥x轴,垂足为E,∵在Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∴DE ∥AB , ∴△OED ∽△OAB , ∴两三角形的相似比为:=∵双曲线y=(k >0),可知S △AOC =S △DOE =k , ∴S △AOB =4S △DOE =2k ,由S △AOB ﹣S △AOC =S △OBC =3,得2k ﹣k=3, 解得k=2.故本题答案为:2.16.(3分)如图,矩形ABCD 中,AB=4,BC=3,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为 6π .【解答】解:∵四边形ABCD 是矩形,AB=4,BC=3, ∴BC=AD=3,∠ADC=90°,对角线AC (BD )=5. ∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3, ∴点A 第一次翻滚到点A′位置时,则点A′经过的路线长为:=. 同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π. 点A″第一次翻滚到点A 1位置时,则点A″经过的路线长为:=. 则当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为:+2π+=6π.故答案是:6π.三、解答题(共有10小题,共102分)17.(10分)(1)计算:()﹣2﹣(π﹣2011)0+|﹣2|+2cos45°.(2)先化简,再求值:(+)÷,其中x=﹣1.【解答】解:(1)()﹣2﹣(π﹣2011)0+|﹣2|+2cos45°=4﹣1+2﹣+2×=4﹣1+2﹣+=5;(2)(+)÷===,当x=﹣1时,原式=.18.(8分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.19.(8分)在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.【解答】①证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为AB、CD的中点,∵AE=EB,DF=FC,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF,②连接BD,由①有AE=EB,∵四边形DEBF是菱形,∴DE=EB=AE,∴△ADB是直角三角形,在RT△ADB中,∵∠ADB=90°,AD=BC=2,AB=4,∴BD==2,∵四边形ABCD是平行四边形,=2•S△ADB=2××2×2=4.∴S平行四边形ABCD20.(10分)在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y.以先后记下的两个数字(x,y)作为点P的坐标.(1)用列表或画树状图,求点P的横坐标与纵坐标的和为4的概率;(2)求点P落在以坐标原点为圆心、为半径的圆的内部的概率.【解答】解:(1)根据题意列表如下:则点P坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有3种,故P(和为4)==.(2)因为点P在以坐标原点为圆心,以为半径的圆的内部,所以x2+y2<10,这样的点P有4种形式:(1,1)、(1,2)、(2,1)、(2,2),所以点P在以坐标原点为圆心,以为半径的圆的内部的概率P=.21.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.(1)求上述反比例函数和一次函数的解析式;(2)求的值.【解答】解:(1)把x=﹣3,y=1代入,得:m=﹣3.∴反比例函数的解析式为.把x=2,y=n代入得.把x=﹣3,y=1;x=2,分别代入y=kx+b得,解得,∴一次函数的解析式为(2)过点A作AE⊥x轴于点E.∵A点的纵坐标为1,∴AE=1.由一次函数的解析式为得C点的坐标为,∴.在Rt△OCD和Rt△EAD中,∠COD=∠AED=90°,∠CDO=∠ADE,∴Rt△OCD∽Rt△EAD.∴=2.22.(10分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x,在Rt△CEF中,tan∠CFE=,则EF=x.在Rt△CEG中,tan∠CGE=,则GE=.∵EF=FG+EG,∴x,x=37.5.∴CD=CE+ED=37.5+1.5=39(米).答:古塔的高度约是39米.23.(10分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户每天能否获得比150元更大的利润?如果能请求出最大利润,如果不能请说明理由.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600;(2)y=(x﹣20)(﹣2x+80)=﹣2x2+80x+40x﹣1600=﹣2x2+120x﹣1600=﹣2(x ﹣30)2+200,∵a=﹣2<0,∴抛物线开口向下,且当x=30时,y=200;最大(3)当y=150时,150=﹣2(x﹣30)2+200,(x﹣30)2=25,x﹣30=±5,x=30±5,x1=25,x2=35(舍去)又∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=28时,能取得最大值为192.答:农户每天能获得比150元更大的利润,最大利润是192元.24.(10分)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.【解答】解:(1)连接OC,BD,∵AB是小圆的切线,C是切点,∴OC⊥AB,∴C是AB的中点.∵AD是大圆的直径,∴O是AD的中点.∴OC是△ABD的中位线.∴BD=2OC=10.(2)连接AE.由(1)知C是AB的中点.同理F是BE的中点.即AB=2BC,BE=2BF,由切线长定理得BC=BF.∴BA=BE.∴∠BAE=∠E.∴∠ABE+2∠D=∠ABE+∠E+∠BAE=180°.(3)连接BO,在Rt△OCB中,∵OB=13,OC=5,∴BC=12.由(2)知∠OBG=∠OBC=∠OAC.∵∠BGO=∠AGB,∴△BGO∽△AGB.∴.25.(12分)已知矩形ABCD中,AD=6,AB=12,P为边CD上的动点,过A点作AQ⊥AP,交CB的延长线于点Q,交AB于点E,若DP=x,CQ=y,(1)试写出y与x的函数关系式.(2)当x为何值时,△APE为等腰直角三角形?(3)直接写出P点由D向C运动过程中,PQ的中点F运动的路径的长?【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=6,∠D=∠DAB=∠ABC=90°,∴∠ABQ=∠B,∴∠DAP=∠QAB=90°﹣∠PAB,∴△ADP∽△ABQ,∴=,∴=,∴y=2x+6,∴y与x的函数关系式为:y=2x+6;(2)∵△APE为等腰直角三角形,∴∠APE=90°或∠AEP=90°,当∠APE=90°或∠AEP=90°时,则∠PAE=45°,∵AB∥CD,∴∠APD=∠PAE=45°,∴△ADP是等腰直角三角形,∴PD=AD=6,即当x=6时,△APE为等腰直角三角形;(3)以B为坐标原点,直线BC,BA分别为x轴与y轴建立如图所示的平面直角坐标系,则A(0,12),C(6,0),D(6,12),当点P与D重合时,B与Q重合,∴P1Q1的中点F1的坐标为(3,6),当点P与C重合时,由(1)知,△ADP∽△ABQ,∴,∴BQ=24,∴P3Q3=30,∴P3Q3的中点F3(﹣9,0),当P为CD的中点时,同理得F2(﹣3,3),设直线F1F3的解析式为:y=kx+b,∴,∴,∴直线F1F3的解析式为:y=x+,当x=﹣3时,y=3,∴F2(﹣3,3)在直线F1F3上,∴PQ的中点F运动的路径为线段F1F3,即△AQ3C的中位线,∴AQ3==12,∴PQ的中点F运动的路径为6.26.(14分)已知二次函数y=ax2﹣(3a+1)x+2a+1 (a≠0),与x轴交与A(x1,0)B(x2,0)两点,与y轴交与C点.(1)求出该函数的图象经过的定点的坐标.(2)若A为(1)中所求的某一定点,且x1、x2,之间的整数恰有3个(不包括x1、x2),试求a的取值范围.(3)当a=时,将与x轴重合的直线绕着D(﹣5,0)逆时针旋转得到直线l:y=kx+b,过点C、B分别作l的垂线段,距离为d1、d2,试分别求出当|d1﹣d2|最大和最小时b的值.【解答】解:(1)∵y=ax2﹣(3a+1)x+2a+1 (a≠0),∴y=(x2﹣3x+2)a﹣x+1,∵该函数的图象经过的定点,∴x2﹣3x+2=0,∴x=1或2,∵x=1时,y=0,x=2时,y=﹣1,∴定点的坐标为(1,0)或(2,﹣1).(2)易知A(1,0),B(2+,0),∵x1、x2,之间的整数恰有3个(不包括x1、x2),∴﹣3≤2+<﹣2或解得﹣<a≤﹣或≤a<1.(3)∵a=,∴C(0,2),B(1,0)或(4,0),①当B(4,0)时,①如图1中,CE⊥l于E,BF⊥l于F,连接BC交EF于K.当CE=BF时,|d1﹣d2|的值最小,易证明△CEK≌△BFK,∴CK=BK,∵C(0,2),B(4,0),∴K(2,1),设直线l的解析式为y=kx+b,把D(﹣5,0),K(2,1)代入得到,解得,②如图2中,如图2中,作CK⊥BF于K,则四边形CEFK是矩形,∵CE=FK,∴|d1﹣d2|=BF﹣CE=BK,在Rt△CBK中,易知BK≤BC,∴当BC⊥DE时,|d1﹣d2|的值最大,∵直线BC的解析式为y=﹣x+2,∴可以假设直线DE的解析式为y=2x+b,把D(﹣5,0)代入得到b=10,综上所述,满足条件的b的值为或10.当B点坐标为(1,0)时,同法可求b的值为或.。
2017年江苏省泰州市中考数学试卷-答案
k=,故选D.整理得:282
+=+,化简得:8
nk n n n
4 2n
【解析】解:设扇形的圆心角为π3180n ,得:2120π33πcm 360
==扇形
【提示】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.
【提示】如图,由题意可知点C 运动的路径为线段AC ',点E 运动的路径为EE ',由平移的性质可知AC EE '=',求出AC '即可解决问题.
【考点】平移的性质,等腰三角形的性质. 三、解答题
17.【答案】(1)答案见解析 (2)答案见解析
【解析】解:(1)原式1412=-+=-
(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解. 【提示】(1)原式利用零指数幂,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果. (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】0次幂,负整数指数幂,特殊三角函数值,二次根式的运算. 18.【答案】(1)答案见解析 (2)960人
【解析】解:(1)观察统计图知:6-10个的有6人,占10%,∴总人数为610%60÷=人, ∴16-20的有6066241212----=人,∴条形统计图为:
93
【解析】解:(1)如图所示,射线CM即为所求;
AD
AD AC6
EF=.∴2
3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年江苏省泰州市高港区中考数学模拟试卷及答案一、选择题(共6小题,每小题3分,满分18分)1.2的相反数是()A.﹣2 B.﹣ C.D.22.等于()A.﹣3 B.3 C.±3 D.3.南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为()A.10.2×105B.1.02×105C.1.02×106D.1.02×1074.如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°5.刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数6.如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2﹣ax﹣a的图象,则下列关于x、y轴的叙述,正确的是()A.l1为x轴,l3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l3为y轴D.l2为x轴,l4为y轴二、填空题(共10小题,每小题3分,满分30分)7.使式子有意义的x取值范围是.8.一组数据1,4,2,5,3的中位数是.9.在比例尺为1:200000的地图上,小明家到单位的图上距离为20cm,则小明家到单位的实际距离为千米.10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为.11.已知△ABC的周长为24,面积为48,则它的内切圆的半径为.12.若m<﹣2,则下列函数:①y=(x>0);②y=﹣mx+1;③y=mx;④y=(m+1)x﹣1中y随x的增大而增大的函数是.(填序号)13.如图,△ABC内接于⊙O,∠B=30°,AC=2cm,则⊙O半径长为cm.14.如图,在矩形ABCD中,点E为边CD上一点,沿AE折叠,点D恰好落在BC边上的F点处,若AB=3,BC=5,则tan∠EFC的值为.15.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=.16.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(共有10小题,共102分)17.(1)计算:()﹣2﹣(π﹣2011)0+|﹣2|+2cos45°.(2)先化简,再求值:( +)÷,其中x=﹣1.18.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.19.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.20.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y.以先后记下的两个数字(x,y)作为点P的坐标.(1)用列表或画树状图,求点P的横坐标与纵坐标的和为4的概率;(2)求点P落在以坐标原点为圆心、为半径的圆的内部的概率.21.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.(1)求上述反比例函数和一次函数的解析式;(2)求的值.22.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)23.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户每天能否获得比150元更大的利润?如果能请求出最大利润,如果不能请说明理由.24.如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.25.已知矩形ABCD中,AD=6,AB=12,P为边CD上的动点,过A点作AQ⊥AP,交CB的延长线于点Q,交AB于点E,若DP=x,CQ=y,(1)试写出y与x的函数关系式.(2)当x为何值时,△APE为等腰直角三角形?(3)直接写出P点由D向C运动过程中,PQ的中点F运动的路径的长?26.已知二次函数y=ax2﹣(3a+1)x+2a+1 (a≠0),与x轴交与A(x1,0)B(x2,0)两点,与y轴交与C点.(1)求出该函数的图象经过的定点的坐标.(2)若A为(1)中所求的某一定点,且x1、x2,之间的整数恰有3个(不包括x1、x2),试求a的取值范围.(3)当a=时,将与x轴重合的直线绕着D(﹣5,0)逆时针旋转得到直线l:y=kx+b,过点C、B分别作l的垂线段,距离为d1、d2,试分别求出当|d1﹣d2|最大和最小时b的值.2017年江苏省泰州市高港区中考数学三模试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.2的相反数是()A.﹣2 B.﹣ C.D.2【考点】14:相反数.【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.2.等于()A.﹣3 B.3 C.±3 D.【考点】22:算术平方根.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:==3,故选B3.南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为()A.10.2×105B.1.02×105C.1.02×106D.1.02×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1020000=1.02×106,4.如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130° D.140°【考点】JA:平行线的性质.【分析】由对顶角相等求出∠2的度数,再利用两直线平行同旁内角互补求出所求角度数即可.【解答】解:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则∠D=130°,故选C5.刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数【考点】WA:统计量的选择.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.6.如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2﹣ax﹣a的图象,则下列关于x、y轴的叙述,正确的是()A.l1为x轴,l3为y轴B.l1为x轴,l4为y轴C.l2为x轴,l3为y轴D.l2为x轴,l4为y轴【考点】H3:二次函数的性质.【分析】根据抛物线的开口向上,可得a>0,则﹣a<0,可确定l1为x轴,再根据左同右异的法则,可得出l3为y轴,即可得出答案.【解答】解:∵抛物线的开口向上,∴a>0,∴﹣a<0,∴抛物线与y轴的负半轴相交,∴l1为x轴,l3为y轴.故选A.二、填空题(共10小题,每小题3分,满分30分)7.使式子有意义的x取值范围是x≥﹣1.【考点】72:二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.8.一组数据1,4,2,5,3的中位数是3.【考点】W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将数据从小到大排列,可得1,2,3,4,5;第3个数为3,故这5个数的中位数是3.故填3.9.在比例尺为1:200000的地图上,小明家到单位的图上距离为20cm,则小明家到单位的实际距离为40千米.【考点】S2:比例线段.【分析】首先设这两地的实际距离是xcm,然后根据比例尺的性质,即可得方程1:200000=20:x,解此方程即可求得答案,注意统一单位.【解答】解:设这两地的实际距离是xcm,根据题意得:1:200000=20:x,解得:x=4000000,∵4000000cm=40km,∴这两地的距离是40千米.故答案为:40.10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为14πcm2.【考点】MP:圆锥的计算.【分析】先求得圆锥的底面周长,再根据圆锥的侧面积等于lr,l表示圆锥的底面周长,r表示圆锥的母线长或侧面展开扇形的半径.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,底面积为4πcm2,表面积为10π+4π=14πcm2,故答案为:14πcm2.11.已知△ABC的周长为24,面积为48,则它的内切圆的半径为4.【考点】MI:三角形的内切圆与内心.【分析】根据三角形的面积公式S=(a+b+c)•r(a、b、c为三角形的边长,r 为内切圆的半径),代入计算即可.【解答】解:设三角形的内切圆的半径为r,三边长分别为a、b、c.由题意,解得r=4.故答案为4;12.若m<﹣2,则下列函数:①y=(x>0);②y=﹣mx+1;③y=mx;④y=(m+1)x﹣1中y随x的增大而增大的函数是①②.(填序号)【考点】G4:反比例函数的性质;F5:一次函数的性质;F6:正比例函数的性质.【分析】①由m<﹣2,利用反比例函数的性质可得出当x>0时,函数y=中y 随x的增大而增大;②由m<﹣2,利用一次函数的性质可得出函数y=﹣mx+1中y随x的增大而增大;③由m<﹣2,利用正比例函数的性质可得出函数y=mx 中y随x的增大而减小;④由m<﹣2可得出m+1<﹣1,利用反比例函数的性质可得出函数y=(m+1)x﹣1在第二、四象限内y随x的增大而增大.综上即可得出结论.【解答】解:①∵m<﹣2,∴当x>0时,函数y=中y随x的增大而增大;②∵m<﹣2,∴﹣m>2,∴函数y=﹣mx+1中y随x的增大而增大;③∵m<﹣2,∴函数y=mx中y随x的增大而减小;④∵m<﹣2,∴m+1<﹣1,∴函数y=(m+1)x﹣1在第二、四象限内y随x的增大而增大.综上所述:y随x的增大而增大的函数是①②.故答案为:①②.13.如图,△ABC内接于⊙O,∠B=30°,AC=2cm,则⊙O半径长为2cm.【考点】M5:圆周角定理;KM:等边三角形的判定与性质.【分析】连接OA、OC,根据圆周角定理得到∠AOC等于60°,所以△AOC是等边三角形,半径即可求得.【解答】解:连接OA、OC,∵∠B=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=2.14.如图,在矩形ABCD中,点E为边CD上一点,沿AE折叠,点D恰好落在BC边上的F点处,若AB=3,BC=5,则tan∠EFC的值为.【考点】PB:翻折变换(折叠问题).【分析】根据折叠的性质得出三角形ABF的各边长,然后利用等角变换得出∠BAF=∠CFE,继而可得出答案.【解答】解:根据题意可得:在Rt△ABF中:AB=3,AF=AD=BC=5,则BF==4,又∵∠EFC+∠AFB=90°,∠AFB+∠BAF=90°,∴∠BAF=∠CFE,故tan∠EFC=tan∠BAF=.故答案为:.15.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=2.【考点】G5:反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:过D点作DE⊥x轴,垂足为E,∵在Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∴DE ∥AB , ∴△OED ∽△OAB ,∴两三角形的相似比为:=∵双曲线y=(k >0),可知S △AOC =S △DOE =k , ∴S △AOB =4S △DOE =2k ,由S △AOB ﹣S △AOC =S △OBC =3,得2k ﹣k=3, 解得k=2.故本题答案为:2.16.如图,矩形ABCD 中,AB=4,BC=3,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为 6π .【考点】MN :弧长的计算;LB :矩形的性质;R2:旋转的性质.【分析】如图根据旋转的性质知,点A 经过的路线长是三段:①以90°为圆心角,AD 长为半径的扇形的弧长;②以90°为圆心角,AB 长为半径的扇形的弧长;③90°为圆心角,矩形ABCD 对角线长为半径的扇形的弧长. 【解答】解:∵四边形ABCD 是矩形,AB=4,BC=3, ∴BC=AD=3,∠ADC=90°,对角线AC (BD )=5. ∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A 第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点A″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为: +2π+=6π.故答案是:6π.三、解答题(共有10小题,共102分)17.(1)计算:()﹣2﹣(π﹣2011)0+|﹣2|+2cos45°.(2)先化简,再求值:( +)÷,其中x=﹣1.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据负整数指数幂、零指数幂、绝对值、特殊角的三角函数值可以解答本题;(2)根据分式的加法和除法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:(1)()﹣2﹣(π﹣2011)0+|﹣2|+2cos45°=4﹣1+2﹣+2×=4﹣1+2﹣+=5;(2)(+)÷===,当x=﹣1时,原式=.18.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【考点】V8:频数(率)分布直方图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.19.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.【考点】L8:菱形的性质;KD:全等三角形的判定与性质;L5:平行四边形的性质.【分析】①欲证明△ADE≌△CBF,只要证明AD=BC,∠A=∠C,AE=CF即可.=2S△ABD,只要证明△ADB是直角三角形,求出AD、BD ②连接BD,根据S四边形ABCD即可解决问题.【解答】①证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为AB、CD的中点,∵AE=EB,DF=FC,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF,②连接BD,由①有AE=EB,∵四边形DEBF是菱形,∴DE=EB=AE,∴△ADB是直角三角形,在RT△ADB中,∵∠ADB=90°,AD=BC=2,AB=4,∴BD==2,∵四边形ABCD是平行四边形,=2•S△ADB=2××2×2=4.∴S平行四边形ABCD20.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y.以先后记下的两个数字(x,y)作为点P的坐标.(1)用列表或画树状图,求点P的横坐标与纵坐标的和为4的概率;(2)求点P落在以坐标原点为圆心、为半径的圆的内部的概率.【考点】X6:列表法与树状图法.【分析】(1)首先根据题意列出表格,然后根据表格即可求得点P坐标的所有可能的结果,然后利用概率公式求解即可;(2)确定满足条件的点的个数,利用概率公式求解,即可求得答案.【解答】解:(1)根据题意列表如下:则点P坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有3种,故P(和为4)==.(2)因为点P在以坐标原点为圆心,以为半径的圆的内部,所以x2+y2<10,这样的点P有4种形式:(1,1)、(1,2)、(2,1)、(2,2),所以点P在以坐标原点为圆心,以为半径的圆的内部的概率P=.21.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.(1)求上述反比例函数和一次函数的解析式;(2)求的值.【考点】GB:反比例函数综合题.【分析】(1)反比例函数的图象经过点A(﹣3,1),代入解析式就得到反比例函数的解析式,再把B(2,n)代入反比例函数解析式就可以求出A的坐标,因而利用待定系数法就可以求出一次函数的解析式;(2)过点A作AE⊥x轴于点E.易证Rt△OCD∽Rt△EAD,则,易证.【解答】解:(1)把x=﹣3,y=1代入,得:m=﹣3.∴反比例函数的解析式为.把x=2,y=n代入得.把x=﹣3,y=1;x=2,分别代入y=kx+b得,解得,∴一次函数的解析式为(2)过点A作AE⊥x轴于点E.∵A点的纵坐标为1,∴AE=1.由一次函数的解析式为得C点的坐标为,∴.在Rt△OCD和Rt△EAD中,∠COD=∠AED=90°,∠CDO=∠ADE,∴Rt△OCD∽Rt△EAD.∴=2.22.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=50,构造方程关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x,在Rt△CEF中,tan∠CFE=,则EF=x.在Rt△CEG中,tan∠CGE=,则GE=.∵EF=FG+EG,∴x,x=37.5.∴CD=CE+ED=37.5+1.5=39(米).答:古塔的高度约是39米.23.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户每天能否获得比150元更大的利润?如果能请求出最大利润,如果不能请说明理由.【考点】HE:二次函数的应用.【分析】(1)根据销售利润=销售量w×(销售价单x﹣成本单价),列出函数关系式;(2)根据销售利润y=(每千克销售价﹣每千克进价)×销售量w,列函数关系式,用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600;(2)y=(x﹣20)(﹣2x+80)=﹣2x2+80x+40x﹣1600=﹣2x2+120x﹣1600=﹣2(x ﹣30)2+200,∵a=﹣2<0,∴抛物线开口向下,且当x=30时,y最大=200;(3)当y=150时,150=﹣2(x﹣30)2+200,(x﹣30)2=25,x﹣30=±5,x=30±5,x1=25,x2=35(舍去)又∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=28时,能取得最大值为192.答:农户每天能获得比150元更大的利润,最大利润是192元.24.如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.【考点】MH:切割线定理;KX:三角形中位线定理;MC:切线的性质;MG:切线长定理;S9:相似三角形的判定与性质.【分析】(1)连接OC,BD,AE,根据OC∥BD,OC为△ABD的中位线,可知:BD=2OC,得BD的长;(2)连接AE,根据切线长定理知:AB=EB,可得:∠BAE=∠BEA;根据圆周角相等,得:∠D=∠AEB,可将∠ABE+2∠D的值求出;(3)根据△BGO∽△AGB,可将的值求出.【解答】解:(1)连接OC,BD,∵AB是小圆的切线,C是切点,∴OC⊥AB,∴C是AB的中点.∵AD是大圆的直径,∴O是AD的中点.∴OC是△ABD的中位线.∴BD=2OC=10.(2)连接AE.由(1)知C是AB的中点.同理F是BE的中点.即AB=2BC,BE=2BF,由切线长定理得BC=BF.∴BA=BE.∴∠BAE=∠E.∵∠E=∠D,∴∠ABE+2∠D=∠ABE+∠E+∠BAE=180°.(3)连接BO,在Rt△OCB中,∵OB=13,OC=5,∴BC=12.由(2)知∠OBG=∠OBC=∠OAC.∵∠BGO=∠AGB,∴△BGO∽△AGB.∴.25.已知矩形ABCD中,AD=6,AB=12,P为边CD上的动点,过A点作AQ⊥AP,交CB的延长线于点Q,交AB于点E,若DP=x,CQ=y,(1)试写出y与x的函数关系式.(2)当x为何值时,△APE为等腰直角三角形?(3)直接写出P点由D向C运动过程中,PQ的中点F运动的路径的长?【考点】LO:四边形综合题.【分析】(1)根据矩形的性质得到BC=AD=6,∠D=∠DAB=∠ABC=90°,求得∠ABQ=∠B,根据相似三角形的性质即可得到结论;(2)由于△APE为等腰直角三角形,于是得到∠APE=90°或∠AEP=90°,当∠APE=90°或∠AEP=90°时,则∠PAE=45°,推出△ADP是等腰直角三角形,得到PD=AD=6,于是得到结论;(3)以B为坐标原点,直线BC,BA分别为x轴与y轴建立如图所示的平面直角坐标系,求得A(0,12),C(6,0),D(6,12),当点P与D重合时,B与Q重合,得到P1Q1的中点F1的坐标为(3,6),当点P与C重合时,得到P3Q3的中点F3(﹣9,0),当P为CD的中点时,同理得F2(﹣3,3),求得直线F1F3的解析式为:y=x+,经检验F2(﹣3,3)在直线F1F3上,于是得到PQ的中点F运动的路径为线段F1F3,即△AQ3C的中位线,根据勾股定理即可得到结论.【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=6,∠D=∠DAB=∠ABC=90°,∴∠ABQ=∠B,∵AQ⊥AP,∴∠DAP=∠QAB=90°﹣∠PAB,∴△ADP∽△ABQ,∴=,∴=,∴y=2x+6,∴y与x的函数关系式为:y=2x+6;(2)∵△APE为等腰直角三角形,∴∠APE=90°或∠AEP=90°,当∠APE=90°或∠AEP=90°时,则∠PAE=45°,∵AB∥CD,∴∠APD=∠PAE=45°,∴△ADP是等腰直角三角形,∴PD=AD=6,即当x=6时,△APE为等腰直角三角形;(3)以B为坐标原点,直线BC,BA分别为x轴与y轴建立如图所示的平面直角坐标系,则A(0,12),C(6,0),D(6,12),当点P与D重合时,B与Q重合,∴P1Q1的中点F1的坐标为(3,6),当点P与C重合时,由(1)知,△ADP∽△ABQ,∴,∴BQ=24,∴P3Q3=30,∴P3Q3的中点F3(﹣9,0),当P为CD的中点时,同理得F2(﹣3,3),设直线F1F3的解析式为:y=kx+b,∴,∴,∴直线F1F3的解析式为:y=x+,当x=﹣3时,y=3,∴F2(﹣3,3)在直线F1F3上,∴PQ的中点F运动的路径为线段F1F3,即△AQ3C的中位线,∴AQ3==12,∴PQ的中点F运动的路径为6.26.已知二次函数y=ax2﹣(3a+1)x+2a+1 (a≠0),与x轴交与A(x1,0)B (x2,0)两点,与y轴交与C点.(1)求出该函数的图象经过的定点的坐标.(2)若A为(1)中所求的某一定点,且x1、x2,之间的整数恰有3个(不包括x1、x2),试求a的取值范围.(3)当a=时,将与x轴重合的直线绕着D(﹣5,0)逆时针旋转得到直线l:y=kx+b,过点C、B分别作l的垂线段,距离为d1、d2,试分别求出当|d1﹣d2|最大和最小时b的值.【考点】HF:二次函数综合题.【分析】(1)由y=ax2﹣(3a+1)x+2a+1 (a≠0),可得y=(x2﹣3x+2)a﹣x+1,由该函数的图象经过的定点,可得x2﹣3x+2=0,解方程即可解决问题;(2)分两种情形讨论求解,分别列出不等式组即可解决问题;(3)当B(4,0)时,①如图1中,CE⊥l于E,BF⊥l于F,连接BC交EF于K.当CE=BF时,|d1﹣d2|的值最小,易证明△CEK≌△BFK,可得CK=BK,推出K(2,1),求出直线DK的解析式即可解决问题;②如图2中,如图2中,作CK⊥BF 于K,则四边形CEFK是矩形,在Rt△CBK中,易知BK≤BC,推出当BC⊥DE时,|d1﹣d2|的值最大,由此求出直线DE的解析式即可解决问题;当点B坐标为(1,0)时,同法可求;【解答】解:(1)∵y=ax2﹣(3a+1)x+2a+1 (a≠0),∴y=(x2﹣3x+2)a﹣x+1,∵该函数的图象经过的定点,∴x2﹣3x+2=0,∴x=1或2,∵x=1时,y=0,x=2时,y=﹣1,∴定点的坐标为(1,0)或(2,﹣1).(2)易知A(1,0),B(2+,0),∵x1、x2,之间的整数恰有3个(不包括x1、x2),∴﹣3≤2+<﹣2或解得﹣<a≤﹣或≤a<1.(3)∵a=,∴C(0,2),B(1,0)或(4,0),①当B(4,0)时,①如图1中,CE⊥l于E,BF⊥l于F,连接BC交EF于K.当CE=BF时,|d1﹣d2|的值最小,易证明△CEK≌△BFK,∴CK=BK,∵C(0,2),B(4,0),∴K(2,1),设直线l的解析式为y=kx+b,把D(﹣5,0),K(2,1)代入得到,解得,②如图2中,如图2中,作CK⊥BF于K,则四边形CEFK是矩形,∵CE=FK,∴|d1﹣d2|=BF﹣CE=BK,在Rt△CBK中,易知BK≤BC,∴当BC⊥DE时,|d1﹣d2|的值最大,∵直线BC的解析式为y=﹣x+2,∴可以假设直线DE的解析式为y=2x+b,把D(﹣5,0)代入得到b=10,综上所述,满足条件的b的值为或10.当B点坐标为(1,0)时,同法可求b的值为或.。