第一章习题全解
复变函数答案 钟玉泉 第一章习题全解
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。
数学物理方程第一章、第二章习题全解
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
应用数学基础习题解答第一章 典型习题解答与提示.doc
第一章集合、不等式、简易逻辑典型习题解答与提示习题1-11.(1)列举法:{3,5,7,9,11,13}(2)描述法:[x\x = 3k,k eN](3)描述法:{x | x?+5x + 6 > 0}或{x | x <-3或x〉一2}(4)描述法:{(x,y)| y = 2x + l}(5)描述法:{x|l<x<3}2.(1) Z\ V3 e Q, A/3 e R--e Q(2) a G(6/),0刎{0},{Q} {a,b},Z Q,ag{b,c,d}(3){2,3}二{3,2},{Q}={Q},{Q,Z?}0{Q,Z?,C}3.略4.(1)因任意元素a】w B ,必有e A ;又存在元素a2e A ,如a2 =10 , {1 a2,所以A包含B,且B是A的真子集,即AUB ;(2)同上讨论,A0B o5.(1) AQBc A,AnB = BAA,AUB=)A,AAB<= AUB;(2)瘙(Ap|B)= n AU^5= fi A,^(AU5)= n Apl^B= n B,APl n B = 0;(3)AUB = {2,3,4,5,6,8},AnB = {2,4}.6 .如图1-2 所示,因A = {x | -1 < x < 3}, B = {x 11 < x < 5},所以-2- 1 01AnB = {^|l<^<3},AUB = {x|~l<^<5}.它们分别在数轴上表不如图1-2所不: 7. (1) AUB 表示该校全体师生的集合;(2) AQC 表示该校全体男学生的集合; (3) CUD 表示该校全体学生的集合。
8 .因£1= {小于 10 的正整数}, A = { 1 , 2 , 3 }, B = { 4, 5 , 6, 7 },所以郦= {4,5,6,7,8,9}詔= {1,2,3,8,9},4U 解= {1,2,3,8,9}, n AAB = {4,5,6,7}.9. 令A 表示订II 报的住户集合,B 表示订晚报的住户集合,则AQB 表示两报都订的住户 集合,AUB 表示至少订一种报的住户集合。
新课程标准数学必修1第一章课后习题解答[唐金制]
新课程标准数学必修1第一章课后习题解答第一章 集合与函数概念1.1集合练习(P5)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A.(2)∵A={x |x 2=x }={0,1},∴-1∉A. (3)∵B={x |x 2+x -6=0}={-3,2},∴3∉A.(4)∵C={x ∈N|1≤x ≤10}={1,2,3,4,5,6,7,8,9,10},∴8∈C ,9.1∉C.2.(1){x |x 2=9}或{-3,3}; (2){2,3,5,7};(3){(x ,y )|⎩⎨⎧+=+=6-2x y 3x y }或{(1,4)};(4){x ∈R |4x -5<3}或{x |x <2}. 练习(P7)1.∅,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.2.(1)a ∈{a ,b ,c }. (2)∵x 2=0,∴x =0.∴{x |x 2=0}={0}.∴0∈{0}.(3)∵x 2+1=0,∴x 2=-1.又∵x ∈R ,∴方程x 2=-1无解.∴{x ∈R |x 2+1=0}=∅.∴∅=∅. (4). (5)∵x 2=x ,∴x =0或x =1.∴{x |x 2=x }={0,1}.∴{0}{0,1}.(6)∵x 2-3x +2=0,∴x =1或x =2.∴{x |x 2-3x +2=0}={1,2}.∴{2,1}={1,2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴AB.(2)显然B ⊆A ,又∵3∈A ,且3∉B ,∴B A. (3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B.练习(P11)1.A∩B={5,8},A ∪B={3,5,6,7,8}.2.∵x 2-4x -5=0,∴x =-1或x =5.∴A={x |x 2-4x -5=0}={-1,5},同理,B={-1,1}.∴A ∪B={-1,5}∪{-1,1}={-1,1,5},A∩B={-1,5}∩{-1,1}={-1}.3.A∩B={x |x 是等腰直角三角形},A ∪B={x |x 是等腰三角形或直角三角形}.4.∵B={2,4,6},A={1,3,6,7},∴A∩(B)={2,4,5}∩{2,4,6}={2,4}, (A)∩(B)={1,3,6,7}∩{2,4,6}={6}.习题1.1 A 组(P11)1.(1)∈ (2)∈ (3)∉ (4)∈ (5)∈ (6)∈2.(1)∈ (2)∉ (3)∈3.(1){2,3,4,5}; (2){-2,1};(3){0,1,2}.(3)∵-3<2x -1≤3,∴-2<2x ≤4.∴-1<x ≤2.又∵x ∈Z ,∴x =0,1,2.∴B={x ∈Z |-3<2x -1≤3}={0,1,2}.4.(1){y |y ≥-4}; (2){x |x ≠0}; (3){x |x ≥54}. 5.(1)∵A={x |2x -3<3x }={x |x >-3},B={x |x ≥2},∴-4∉B ,-3∉A ,{2}B ,B A.(2)∵A={x |x 2-1=0}={-1,1},∴1∈A ,{-1}A ,∅A ,{1,-1}=A. (3);. 6.∵B={x |3x -7≥8-2x }={x |x ≥3},∴A ∪B={x |2≤x <4}∪{x |x ≥3}={x |x ≥2},A∩B={x |2≤x <4}∩{x |x ≥3}={x |3≤x <4}.7.依题意,可知A={1,2,3,4,5,6,7,8},所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B ,A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C.又∵B ∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.∴A∩(B ∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}.又∵B∩C={1,2,3}∩{3,4,5,6}={3},∴A ∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.8.(1)A ∪B={x |x 是参加一百米跑的同学或参加二百米跑的同学}.(2)A∩C={x |x 是既参加一百米跑又参加四百米跑的同学}.9.B∩C={x |x 是正方形}, B={x |x 是邻边不相等的平行四边形},A={x |x 是梯形}.10.∵A ∪B={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∴(A ∪B)={x |x ≤2或x ≥10}.又∵A∩B={x |3≤x <7}∩{x |2<x <10}={x |3≤x <7},∴(A∩B)={x |x <3或x ≥7}. (A)∩B={x |x <3或x ≥7}∩{x |2<x <10}={x |2<x <3或7≤x <10},A ∪(B)={x |3≤x <7}∪{x |x ≤2或x ≥10}={x |x ≤2或3≤x <7或x ≥10}.习题1.2 A 组(P24)1.∵A={1,2},A ∪B={1,2},∴B ⊆A ,∴B=∅,{1},{2},{1,2}.2.集合D={(x ,y )|2x -y =1}∩{(x ,y )|x +4y =5}表示直线2x -y =1与直线x +4y =5的交点坐标;由于D={(x ,y )|⎩⎨⎧=+=54y x 1y -2x }={(1,1)},所以点(1,1)在直线y =x 上,即D C. 3.B={1,4},当a =3时,A={3},则A ∪B={1,3,4},A∩B=∅;当a ≠3时,A={3,a },若a =1,则A ∪B={1,3,4},A∩B={1};若a =4,则A ∪B={1,3,4},A∩B={4};若a ≠1且a ≠4,则A ∪B={1,a ,3,4},A∩B=∅.综上所得,当a =3时,A ∪B={1,3,4},A∩B=∅;当a =1,则A ∪B={1,3,4},A∩B={1};当a =4,则A ∪B={1,3,4},A∩B={4};当a ≠3且a ≠1且a ≠4时,A ∪B={1,a ,3,4},A∩B=∅.4.作出韦恩图,如图1-1-3-16所示,图1-1-3-16由U=A ∪B={x ∈N|0≤x ≤10},A∩(B)={1,3,5,7},可知B={0,2,4,6,8,9,10}.1.2函数及其表示练习(P19)1.(1)要使分式741+x 有意义,需4x+7≠0,即x≠47-. 所以这个函数的定义域是(-∞,47-)∪(47-,+∞); (2)要使根式有意义,需1-x≥0,且x+3≥0,即-3≤x≤1.所以这个函数的定义域是[-3,1].2.(1)f(2)=28,f(-2)=-28,f(2)+f(-2)=0;(2)f(a)=3a 3+2a ,f(-a)=-3a 3-2a ,f(a)+f(-a)=0.3.(1)两个函数的对应法则相同,而表示导弹飞行高度与时间关系的函数y=500x-5x 2是有实际背景的,这里x≥0;函数y=500x-5x 2,x ∈R ,这两个函数的定义域不同,故这两个函数不相等.(2)函数g(x)=x 0=1(x≠0)与函数f(x)=1,x ∈R 的对应法则相同,但定义域不同,所以不是相等的函数.已知函数解析式求函数值及不同变量的函数值的关系.练习(P23)1.设矩形一边长为xcm ,则另一边长为22x -50=22500x -.由题意,得y=x 22500x -,x ∈(0,50).2.图(A)与事件(2).图(B)与事件(3).图(D)与事件(1)吻合得最好.图(C)可叙述为:我出发后,为了赶时间,加速行驶,走了一段后,发现时间还早,于是放慢了速度.3.解析:由绝对值的知识,有f(x)=⎩⎨⎧<+-≥-.2,2,2,2x x x x 所以,f(x)=|x-2|的图象如下图所示.图1-2-2-234.与A 中元素60°对应的B 中的元素是23;与B 中元素22相对应的A 中的元素是45°. 习题1.2 A 组(P24)1.(1)(-∞,4)∪(4,+∞). (2)R .(3)要使分式有意义,只需x 2-3x+2≠0,即x≠1,且x≠2,所以这个函数的定义域是(-∞,1)∪(1,2)∪(2,+∞).(4)要使函数有意义,只需⎩⎨⎧≠≤⇒⎩⎨⎧≠-≥-,1,40104x x x x 即x≤4,且x≠1. 所以这个函数的定义域是(-∞,1)∪(1,4]. 2.(1)g(x)=xx 2-1=x-1,x≠0,该函数虽然与f(x)的对应关系相同,但是定义域不同, 所以f(x)与g(x)不相等. (2)g(x)=(x )4=x 2,x≥0,该函数虽然与f(x)的对应关系相同,但是定义域不同,所以f(x)与g(x)不相等. (3)g(x)=36x =x 2,x ∈R ,该函数与f(x)的对应关系相同,定义域相同,所以f(x)与g(x)相等.3. (1) (2)x ∈R ,y ∈R . x ∈(-∞,0)∪(0,+∞),y ∈(-∞,0)∪(0,+∞).图1-2-2-24 图1-2-2-25(3) (4)x ∈R ,y ∈R . x ∈R ,y ∈[-2,+∞).图1-2-2-26 图1-2-2-27 4.f(2-)=8+52,f(-a)=3a 2+5a+2,f(a+3)=3a 2+13a+14; f(a)+f(3)=3a 2-5a+16.5.(1)点(3,14)不在f(x)的图象上;(2)f(4)=-3;(3)x=14.6.解析:由韦达定理知1+3=-b ,1×3=c ,∴b=-4,c=3.∴f(x)=x 2-4x+3.∴f(-1)=(-1)2-4×(-1)+3=8. 答案:f(-1)=8.7. (1) (2)图1-2-2-28 图1-2-2-29 8.y=x 10 x ∈(0,+∞),y=21l-x x ∈(0,21l), y=22x d - x ∈(0,d),l=2x+x 20(x>0),l=2202+d . 9.由题意,可知容器内溶液高度为x 的体积等于注入的溶液的体积,即π(2d )2·x=vt ,整理得x=24d v π·t. 当容器注满时有π(2d )2h=vt ,得t=vh d 42π. 所以该函数的定义域是t ∈[0,v h d 42π],值域是x ∈[0,h ]. 10.共8个映射.图1-2-2-30B 组1.(1)[-5,0]∪[2,6);(2)[0,+∞);(3)[0,2)∪(5,+∞).2.图1-2-2-31(1)点(x ,0)和(5,y),即纵坐标为0或横坐标为5的点不能在图象上. (2)略.3.略.4.(1)t=512342x x -++,x ∈[0,12];(2)t=58320+≈3小时. 1.3 函数的基本性质练习(P32)1.从生产效率与生产线上工人数量的关系看,在生产劳动力较少的情况下,随人数的增加效率随着增大,但是到了一定数量后,人数再增多效率反而降低了.这说明劳动力可能过剩,出现了怠工等现象.2.图象如图1-3-2-2所示,图1-3-2-2函数的单调增区间为[8,12),[13,18);函数的单调减区间为[12,13),[18,20].3.函数的单调区间是[-1,0),[0,2),[2,4),[4,5].在区间[-1,0),[2,4)上是减函数;在区间[0,2),[4,5]上是增函数.4.证明:设x 1、x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+1)-(-2x 2+1)=2(x 2-x 1).∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2).∴函数f (x )=-2x +1在R 上是减函数.5.如图1-3-2-3所示,图1-3-2-3从图象上可以发现f (-2)是函数的一个最小值.练习(P36)1.(1)对于函数f (x )=2x 4+3x 2,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=2(-x )4+3(-x )2=2x 4+3x 2=f (x ),所以函数f (x )=2x 4+3x 2为偶函数.(2)对于函数f (x )=x 3-2x ,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=(-x )3-2(-x )=-x 3+2x =-(x 3-2x )=-f (x ),所以函数f (x )=x 3-2x 为奇函数.(3)对于函数f (x )=xx 12+,其定义域为(-∞,0)∪(0,+∞). 因为对定义域内的每一个x ,都有f (-x )=x x -+-1)(2=xx 12+-=-f (x ), 所以函数f (x )=xx 12+-为奇函数. (4)对于函数f (x )=x 2+1,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=(-x )2+1=x 2+1=f (x ),所以函数f (x )=x 2+1为偶函数.2.f (x )的图象如图1-3-2-4所示,g (x )的图象如图1-3-2-5所示.图1-3-2-4 图1-3-2-5习题1.2 A 组(P39)1.(1)函数的单调区间是(-∞,25],(25,+∞). 函数y =f (x )在区间(-∞,25]上是减函数,在区间(25,+∞)上是增函数. (2)函数的单调区间是(-∞,0],(0,+∞).函数y =f (x )在区间(0,+∞)上是减函数,在区间(-∞,0]上是增函数. 图略.2.(1)设0<x 1<x 2,则有f (x 1)-f (x 2)=(x 12+1)-(x 22+1)=x 12-x 22=(x 1-x 2)(x 1+x 2).∵0<x 1<x 2,∴x 1-x 2<0,x 1+x 2<0. ∴f (x 1)>f (x 2). ∴函数f (x )在(-∞,0)上是减函数.(2)设0<x 1<x 2,则有f (x 1)-f (x 2)=(111x -)-(121x -)=21x 11x -=2121x x x x -. ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴f (x 1)<f (x 2). ∴函数f (x )在(-∞,0)上是增函数.3.设x 1、x 2是(-∞,+∞)上任意两个实数,且x 1<x 2.则y 1-y 2=(mx 1+b )-(mx 2+b )=m (x 1-x 2).∵x 1<x 2,∴x 1-x 2<0.当m <0时,∴y 1-y 2>0,即y 1>y 2.∴此时一次函数y =mx +b (m <0)在(-∞,+∞)上是减函数.同理可证一次函数y =mx +b (m >0)在(-∞,+∞)上是增函数.综上所得,当m <0时,一次函数y =mx +b 是减函数;当m >0时,一次函数y =mx +b 是增函数.4.心率关于时间的一个可能的图象,如图1-3-2-6所示,图1-3-2-65.y =502x -+162x -2100=501-(x 2-8100x )-2100=501-(x -4050)2+307 050. 由二次函数的知识,可得当月租金为4 050元时,租赁公司的月收入最大,最大收益为307 050元.6.图略,函数f (x )的解析式为⎩⎨⎧<-≥+.0),1(,0),1(x x x x x x B 组1.(1)函数f (x )在(-∞,1)上为减函数,在[1,+∞)上为增函数;函数g (x )在[2,4]上为增函数.(2)函数f (x )的最小值为-1,函数g (x )的最小值为0.2.设矩形熊猫居室的宽为x m ,面积为y m 2,则长为2330x -m , 那么y =x 2330x -=21(30x -3x 2)=23-(x -5)2+275.所以当x =5时,y 有最大值275, 即宽x 为5 m 时才能使所建造的每间熊猫居室面积最大,最大面积是275m 2. 3.函数f (x )在(-∞,0)上是增函数.证明:设x 1<x 2<0,则-x 1>-x 2>0.∵函数f (x )在(0,+∞)上是减函数,∴f (-x 1)<f (-x 2).∵函数f (x )是偶函数,∴f (-x )=f (x ).∴f (x 1)<f (x 2).∴函数f (x )在(-∞,0)上是增函数.第一章 复习参考题A 组(P44)1.(1)A={-3,3};(2)B={1,2};(3)C={1,2}.2.(1)线段AB 的垂直平分线;(2)以定点O 为原心,以3 cm 为半径的圆.3.属于集合的点是△ABC 的外接圆圆心.4.A={-1,1},(1)若a =0,则B=∅,满足B ⊆A ;(2)若a =-1,则B={-1},满足B ⊆A ;(3)若a =1,则B={1},满足B ⊆A.综上所述,实数a 的值为0,-1,1.5.A∩B={(x ,y )|⎩⎨⎧=+=0y 3x 0y -2x }={(x ,y )|⎩⎨⎧==0y 0x }={(0,0)}; A∩C={(x ,y )|⎩⎨⎧==3y -2x 0y -2x }=∅; B∩C={(x ,y )|⎩⎨⎧==+3y -2x 0y 3x }={(x ,y )|⎪⎪⎩⎪⎪⎨⎧-==5953y x }={(53,59-)}; (A∩B )∪(B∩C )={(0,0),(53,59-)}. 6.(1)要使函数有意义,必须|x |-2≥0,即x ≤-2或x ≥2,所以函数的定义域为{x |x ≤-2或x ≥2};(2)要使函数有意义,必须⎩⎨⎧≥+≥-,05,02x x 即⎩⎨⎧-≥≥,5,2x x 得x ≥2.所以函数的定义域为{x |x ≥2};(3)要使函数有意义,必须⎩⎨⎧≠-≥-,05||,04x x 即x ≥4,且x ≠5. 所以函数的定义域为{x |x ≥4,且x ≠5}.7.(1)f (a )+1=111++-a a =12+a ; (2)f (a +1)=)1(1)1(1+++-a a =a a +-2. 8.(1)∵f (-x )=22)(1)(1x x ---+=2211xx -+,∴f (-x )=f (x ). (2)∵f (x 1)=22)1(1)1(1x x -+=221111x x -+=222211x x x x -+=1122-+x x =2211x x -+-,∴f (x 1)=-f (x ). 9.二次函数f (x )的对称轴是直线x =8k ,则有8k ≤5或8k ≥20.解得k ≤40或k ≥160,即实数k 的取值范围是(-∞,40]∪[160,+∞).10.(1)函数y =x -2是偶函数; (2)它的图象关于y 轴对称;(3)函数在(0,+∞)上是减函数;(4)函数在(-∞,0)上是增函数.B 组 1.同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.提示:由题意知有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,所以15+8+14=37,知共有37人次参加比赛.由已知共有28名同学参赛,且没有人同时参加三项,而37-28=9,知共有9名同学参加两项比赛.已知同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,因此同时参加田径和球类的有3人;又已知有15人参加游泳比赛,因此只参加游泳一项的有9人.2.实数a 的取值范围为{a |a ≥0}.3.∵(A ∪B )=(A )∩(B )={1,3},A∩(B )={2,4},∴B={1,2,3,4}.∴B={5,6,7,8,9}.4.f (1)=1×(1+4)=5; f (-3)=-3×(-3-4)=21; f (a +1)=⎩⎨⎧-<++-≥++.1),3)(1(,1),5)(1(a a a a a a 5.证明:(1)f )2(21x x +=a ·221x x ++b =22221b ab b ax x +++=21(ax 1+b )+21(ax 2+b )=21[f (x 1)+f (x 2)], ∴f (221x x +)=21[f (x 1)+f (x 2)]. (2)g (221x x +)=(221x x +)2+a ·221x x ++b =21(21x +ax 1+b )+21(22x +ax 2+b )-41(x 1-x 2)2 =21[g (x 1)+g (x 2)]-41(x 1-x 2)2, ∵-41(x 1-x 2)2≤0, ∴g (221x x +)≤21[g (x 1)+g (x 2)]. 6.(1)奇函数f (x )在[-b ,-a ]上是减函数;(2)偶函数g (x )在[-b ,-a ]上是减函数.7.若全月纳税所得额为500元,则应交纳税款为500×5%=25(元).此时月工资为800+500=1 300(元);若全月纳税所得额为2000元,则应交纳税款为500×5%+1500×10%=175(元).此时月工资为800+500+1500=2800(元).由于此人交纳税款为26.78元,则此人的工资在区间(1300,2800)内,所以他当月的工资、薪金所得是800+500+1.02578.26-≈1317.8(元).奇、偶函数的性质(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立.(3)f (-x )=f (x )⇔f (x )是偶函数,f (-x )=-f (x )⇔f (x )是奇函数.(4)f (-x )=f (x )⇔f (x )-f (-x )=0,f (-x )=-f (x )⇔f (x )+f (-x )=0.(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y =f (x )和y =g (x )的奇偶性相同,那么复合函数y =f [g (x )]是偶函数,如果函数y =f (x )和y =g (x )的奇偶性相反,那么复合函数y =f [g (x )]是奇函数,简称为“同偶异奇”.(6)如果函数y =f (x )是奇函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相同的单调性;如果函数y =f (x )是偶函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相反的单调性.(7)定义域关于原点对称的任意函数f (x )可以表示成一个奇函数与一个偶函数的和,即f (x )=2)()(2)()(x f x f x f x f -++--.(8)若f (x )是(-a ,a )(a >0)上的奇函数,则f (0)=0;若函数f (x )是偶函数,则f (x )=f (-x )=f (|x |)=f (-|x |).若函数y =f (x )既是奇函数又是偶函数,则有f (x )=0。
高等数学上册第一章习题详解
习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈ f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒ ∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1); 解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xxy -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), - f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3; (3)2211xx y +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2xx a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f xx x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2); (2)y =cos 4x ; (3)y =1+sin πx ; (4)y =x cos x ; (5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π. (2)是周期函数, 周期为2π=l .(3)是周期函数, 周期为l =2. (4)不是周期函数. (5)是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ; (2)xx y +-=11;(3)d cx b ax y ++=(ad -bc ≠0);(4) y =2sin3x ; (5) y =1+ln(x +2);(6)122+=x xy .解 (1)由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为x x y +-=11.(3)由d cx b ax y ++=得a cy bdy x -+-=, 所以dcx b ax y ++=的反函数为a cx b dx y -+-=.(4)由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin 3x 的反函数为2arcsin 31x y =.(5)由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M , 即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;(2) y =sin u , u =2x , ,81π=x ,42π=x ;(3)u y =, u =1+x 2, x 1=1, x 2= 2; (4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 (1)y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)21x y +=, 21121=+=y , 52122=+=y . (4)2x e y =, 1201==e y , e e y ==212.(5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a )(a >0);(4)f (x +a )+f (x -a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4)由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f .()⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| ][101)(x e x x e e x f g x f , 即()⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1-37 解40sin h DC Ab ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以 h h S L40sin 40cos 20-+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定, 定义域为 40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元. (1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0. 01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0. 01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0. 01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=;(2)n x n n 1)1(-=;(3)212n x n +=;(4)11+-=n n x n ;(5) x n =n (-1)n .解 (1)当n →∞时, n n x 21=→0, 021lim =∞→n n .(2)当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)当n →∞时, 212nx n +=→2, 2)12(lim 2=+∞→n n .(4)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5)当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问nn x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ;(2)231213lim =++∞→n n n ;(3)1lim22=+∞→na n n (4)19 999.0lim =⋅⋅⋅∞→个n n . (1)分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n, 所以01lim 2=∞→n n .(2)分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n 41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)分析 要使ε<<++=-+=-+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >.证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→n a n n .(4)分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n .证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有εε=⋅<≤=-MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k -a |<ε ;∃K 2, 当2k +1>2K 2+1时, 有| x 2k +1-a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;(2)12)25(lim 2=+→x x ;(3)424lim22-=+--→x x x ; (4)21241lim31=+--→x x x . 证明 (1)分析 |(3x -1)-8|=|3x -9|=3|x -3|, 要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε >0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)分析 |(5x +2)-12|=|5x -10|=5|x -2|, 要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有|(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)分析 |)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 要使ε<--+-)4(242x x , 只须ε<--|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)分析|)21(|2|221|212413--=--=-+-x x x x , 要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim321=+--→x x x . 2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析333333||21212121x x x x x x =-+=-+, 要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=-, 要使ε<-0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx, 所以0sin lim =+∞→x xx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0. 001?解 由于x →2, |x -2|→0, 不妨设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0. 001, 只要0002.05001.0|2|=<-x , 取δ=0. 0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001. 4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只397301.04||=->x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 00-=-==---→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xxx x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小. 2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M xx>+21,所以当x →0时, 函数x xy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104.4. 求下列极限并说明理由:(1)xx n 12lim+∞→;(2)xx x --→11lim 20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim20=--→x x x . 5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取 πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ;解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim-+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=-++=-+→→→.(6))112(lim 2x x x +-∞→; 解 21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim242--+∞→x x x x x ; 解 013lim242=--+∞→x x x x x (分子次数低于分母次数, 极限为零) 或 012111lim13lim 4232242=--+=--+∞→∞→x x x x x x xx x x . (9)4586lim 224+-+-→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x .(6)nn n x2sin2lim ∞→(x 为不等于零的常数). 解 x x x x nn n n n =⋅=∞→∞→22sinlim 2sin 2lim . 2. 计算下列极限: (1)x x x 1)1(lim -→;解 {}111)1(101(1[lim (1[lim )1(lim --→-→→=-+=-+=-e x x x x x x x .(2)xx x 1)21(lim +→;解 []222122101)21(lim )21(lim )21(lim e x x x xx x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '.解4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为nn 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I, 111lim =+∞→nn .(2)()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2,22+,222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n nn n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-xx x .又因为11lim )1(lim 0==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小? 解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x ,所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小. (2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x -.证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x . (2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===-=-→→→→x xx x x x xx x x x x x ,所以当x →0时, 2~1sec 2x x -.4. 利用等价无穷小的性质, 求下列极限:(1)xxx 23tan lim0→;(2)mn x x x )(sin)sin(lim0→(n , m 为正整数);(3)xx x x 3sin sin tan lim -→;(4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim230320-=⋅-=-+-+-→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性).证明 (1)1lim=αα, 所以α ~α ; (2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, )1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);(3),1cos 2x y = x =0;(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型.解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.解(3)函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)3)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x xx x ;(6)ax ax a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以 1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(6)ax ax a x ax ax a x a x --+=--→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =⋅+=--⋅+=→→.。
大学物理上册-课后习题答案全解
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
第1章中国人民大学出版社(第四版)高等数学一第1章课后习题详解
8.下列各函数中哪些是周期函数?并指出其周期:
(1)
y cos x 1 ;
(2)
y x tan x ;
(3)
y sin 2 x 。
知识点:函数周期性。 思路:利用定义, 及基本初等函数性质, 或已知结论, 可按已知结论 (如弦函数 y A cos x C ,
后代数表达式相同)且定义域相同时,两函数相同;
2 解: (1) f ( x) lg x 的定义域 D= x x 0, x R ,g ( x) lg x 的定义域 D x x 0, x R} ,
虽然作用法则相同 lg x (2)
2
2 lg x ,但显然两者定义域不同,故不是同一函数;
偶函数; 当
f x , g x 为一奇一偶时,G x f x g x f x g x G x , 得 G x
为奇函数;
★
7.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数?
(1)
y tan x sec x 1 ;
由此,两函数相等 两要素相同; (与 自变量用何字母表示无关)
f
以及函数的定义域 D
解析表示法的函数类型:显函数,隐函数,分段函数; 局 部 有 界 性 函 数 局 部 函 数 特 性 单 调 性 对集合
X D ,若存在正数 M
上有界,或
,使对所有 x
X ,恒有 f x M
,称
2 sin 2 4 4
2 0 ;如图:
3 2
第一章课后习题答案
第一章课后习题答案1、5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A和B之间正好有3个女生的排列是多少?解:(a) 若女生在一起,可将5个女生看作一个整体参与排列,有8!种方式,然后5个女生再进行排列,有5!种方式,根据乘法法则,共有8!5!种方式。
(b) 若女生两两不相邻,可将7个男生进行排列,有7!种方式,考虑到两个男生之间的6个位置和两头的2个位置,每个位置安排一个女生均符合题意,故从中选出5个位置,然后5个女生再进行排列,按顺序安排到这5个位置,有C(8, 5)5!种方式,根据乘法法则,共有7!C(8, 5)5!=7!P(8, 5)种方式。
(c) 若两男生A和B之间正好有3个女生,可以按照顺序操作如下:首先将女生分为两组,一组3人,一组2人,有C(5, 3)种方式;将男生A和B看作一个整体,加上其他5个男生,2人一组的女生进行排列,有8!种方式;将3人一组的女生安排到男生A和B之间进行排列,有3!种方式;男生A和B进行排列,有2!种方式。
根据乘法法则,所求的排列方式为8!C(5, 3)3!2!=8!P(5, 3)2!2、求3000到8000之间的奇整数的数目,而且没有相同的数字。
解:设介于3000到8000之间的奇整数表示为abcd,则a∈{3, 4, 5, 6, 7}, d∈{1, 3, 5, 7, 9},对a进行分类如下:(1) 若a∈{3, 5, 7},则d有4种选取方式,bc有P(8, 2)种方式,根据乘法法则,此类数字有3⨯4⨯P(8, 2)=672个(2) 若a∈{4, 6},则d有5种选取方式,bc仍有P(8, 2)种方式,根据乘法法则,此类数字有2⨯5⨯P(8, 2)=560个根据加法法则,3000到8000之间数字不同的奇整数的数目为672+560=1232个3、证明nC(n-1, r)=(r+1)C(n, r+1),并给出组合解释。
高等数学(本科)第一章课后习题解答
习题1.11. 求下列函数的定义域. (1) 234y x x=- (2)2ln3x y x-=-(3) y = (4)1arcsin3x y -=解:(1)只要分母不为零即可,即0x ≠且4x ≠.定义域为(,0)(0,4)(4,)-∞+∞ (2)只要203x x->-即可,故定义域为(2,3)(3)只要240x -≥即可,故定义域为(,2][2,)-∞-+∞ (4)只要30x ->并且1113x --≤≤即可,易解得定义域为[2,3)-2. 下列各对函数是否相同?为什么? (1)(),()1x f x g x x==;(2)()()f x g x ==.解:(1)不同,因为定义域不同,()f x 的定义域为{|0,}x x x ≠∈ ,而()g x 的定义域为全体实数.(2)相同,因为定义域相同,均为全体实数,对应法则也相同. 3. 求下列函数的反函数,并指出其定义域.(1)(0)y x =≥ (2)31xy =-解:(1)由y =222y x =+,故222x y =-,由于0x ≥,所以x =原函数的反函数为y =x ≥(2)由31x y =-可得13xy +=,所以3l o g (1)x y =+,故原函数的反函数为3log (1)y x =+,定义域为1x >-4. 判断下列函数的奇偶性(1)sin ()cos x x f x x x -=(2)())f x x =(3)1()ln 1x f x x-=+ (4)()2xxa af x -+=解:(1)由于sin()sin sin ()()cos()cos cos x x x x x x f x f x x x x xx x----+--====---,所以()f x 为偶函数.(注:其中用到了sin()sin ,cos()cos x x x x -=--=)(2)())))f x x x x -====-()f x =-,所以()f x 为奇函数.(3)11()lnln()11x x f x f x xx+--==-=--+,所以()f x 为奇函数.(4)()()2xxaa f x f x -+-==,所以()f x 为偶函数.5.下列函数在指定区间内是否有界? (1)21,(,1],(1,0)y x=-∞-- (2)2,(1,2),(2,)1y x =+∞-解:(1)在(,1]-∞-上,2101x<≤,故有界;而在(1,0)-上,函数无上界,故无界.(2)在(1,2)上,函数无上界,故无界;而在(2,)+∞上,2021x <<-,故有界.6. 将下列复合函数进行分解(1)3sin (32)y x =+ (2)ln ln ln y x = (3)y =(4)2tan xy e=解:(1)3,sin ,32y u u t t x ===+ (2)ln ,ln ,ln y u u t t x === (3)y u x ==+(4)2,,tan uy e u t t x ===7. 已知2(1)3f x x x +=-,求(),(1)f x f x -解:令1x t +=,则1x t =-, 22(1)()(1)3(1)54f x f t t t t t +==---=-+,由于函数与变量符号的选择无关,故2()54f x x x =-+22(1)(1)5(1)4710f x x x x x -=---+=-+8. 设1,||1,()0,||1,()1,||1xx f x x g x e x <⎧⎪===⎨⎪->⎩,求[()],[()]f g x g f x解:当0x <时,0()1x g x e <=<,故[()]1f g x =,当0x =时,()1g x =,故[()]0f g x =,当0x >时,()1x g x e =>,故 [()]1f g x =-.当||1x <时,()1f x =,故[()]g f x e =,当||1x =时,()0f x =,故[()]1g f x =, 当||1x >时,()1f x =-,故1[()]g f x e=.综上,1,0,[()]0,0,1,0x f g x x x <⎧⎪==⎨⎪->⎩1,||1,[()]1,||1,,||1ee x gf x x x <⎧⎪==⎨⎪>⎩9. 两个单调增加的函数的复合函数是否一定单调增加?它们的乘积又如何? 答:两个单调增加的函数的复合函数一定单调增加.但是乘积不一定设()y f u =与()u g x =能够复合,并且都是单调增的函数,即对任意的12x x <,都有12()()g x g x <;对任意的12u u <,都有12()()f u f u <.特别对11()u g x =,22()u g x =,显然有12u u <,故12(())(())f g x f g x <,即证复合函数仍为单调增.下面看乘积,例如()()f x g x x ==,显然在(,)-∞+∞都是单调增的,但是2()()f x g x x = 在(,)-∞+∞并不是单调增的,而()()x f x g x e ==,显然在(,)-∞+∞都是单调增的,2()()xf xg x e= 仍在(,)-∞+∞上单调增.10. 设()f x 是周期为π的奇函数,当(0,]2x π∈时,()sin cos 2f x x x =-+;当(,]2x ππ∈ 时,求()f x 的表达式.解:由于()f x 是周期为π的函数,所以()(0)f f π=,又()f x 是奇函数,可知(0)0f =. 当(,0)2x π∈-时,(0,)2x π-∈,由()f x 是奇函数可得()()(sin()cos()2)sin cos 2f x f x x x x x =--=----+=+-当(,)2x ππ∈时,(,0)2x ππ-∈-,由s i n ()s i n ,c o s ()c o s x x x x ππ-=--=-以及()f x周期为π,可知()()sin()cos()2sin cos 2f x f x x x x x πππ=-=-+--=--- 综上可得sin cos 2,(,)()20,x x x f x x πππ⎧---∈⎪=⎨⎪=⎩11. 设1()2y f t x x=-,且21|52x ty t ==-+,求()f x解:由题即知211|(1)522x ty f t t ==-=-+,故2(1)210f t t t -=-+.令1t x -=,则1t x =+,22(1)()(1)2(1)109f t f x x x x -==+-++=+.所以2()9f x x =+12. 设(sin)1cos 2x f x =+,求(cos)2x f 解:利用二倍角公式22cos 12sin 2cos 122x x x =-=-.2(sin)1cos 22sin22x x f x =+=-,令sin2x t =,则2()22f t t =-.从而2(cos )22cos1cos 22x x f x =-=-.习题1.21. 从图象上观察并写出下列极限(1)0lim 2,lim 2,lim 2,lim 2x x x xx x x x →→∞→-∞→+∞(2)13lim ln ,lim ln ,lim ln ,lim ln x x x x x x x x +→→+∞→→(3)02lim cos ,lim cos ,lim cos ,lim cos x x x x x x x x π→→+∞→-∞→(4)1lim arctan ,lim arctan ,lim arctan ,lim arctan x x x x x x x x →→+∞→-∞→∞解:图略.(1)0lim 21xx →=,lim 2xx →∞不存在,lim 20xx →-∞=,lim 2xx →+∞=+∞(也是不存在)(2)1lim ln 0x x →=,0lim ln x x +→=-∞(不存在),lim ln x x →+∞=+∞(不存在),3lim ln ln 3x x →=(3)0lim cos 1x x →=,lim cos x x →+∞不存在,lim cos x x →-∞不存在,2lim cos 0x x π→=(4)1lim arctan 4x x π→=,lim arctan 2x x π→+∞=,lim arctan 2x x π→-∞=-,lim arctan x x →∞不存在.2. 设函数21,0,()0,0,1,0x x f x x x x ⎧->⎪==⎨⎪-<⎩求当0x →时,函数的左、右极限,并说明当0x →时函数的极限是否存在.解:左极限0lim ()lim (1)1x x f x x --→→=-=,右极限200lim ()lim (1)1x x f x x ++→→=-=-,由于左右极限都存在但是不相等,所以当0x →时函数的极限不存在. 3. 求函数||()x f x x=当0x →时的左、右极限,并说明当0x →时函数的极限是否存在.解:左极限0||lim ()limlim 1x x x x x f x x x---→→→-===-,右极限0||lim ()lim lim 1x x x x x f x xx+++→→→===,由于左右极限都存在但是不相等,所以当0x →时函数的极限不存在. 4. 设函数1,1,()0,1,1,1x x f x x x x +<⎧⎪==⎨⎪->⎩求013lim (),lim (),lim ()x x x f x f x f x →→→解:当0x →时,只关心离0很近的那些点,所以可以认为1x <,故0lim ()lim (1)1x x f x x →→=+=当1x →时,11lim ()lim (1)2x x f x x --→→=+=,11lim ()lim (1)0x x f x x ++→→=-=,左右极限都存在但是不相等,所以1lim ()x f x →不存在.当3x →时,只关心离3很近的那些点,所以可以认为1x >,故33lim ()lim (1)2x x f x x →→=-=.5. 设2||lim arctan 3||2x ax x x bx x π→∞+=--①,求,a b 的值.解:(1)当x →+∞时,可以认为0x >,故||x x =,故=-++∞→xbx x ax x 32lim 3232lim-+=-++∞→b a xbx x ax x ,从而2.32arctan 32limπ-+=-++∞→b a x xbx x ax x , 所以由①式,可知22.32ππ-=-+b a ,即213a b +=--; ② (2)当x →-∞时,可以认为0x <,故||x x =-,故3232lim+-=+--∞→b a xbx x ax x ,从而⎪⎭⎫⎝⎛-+-=+--∞→2.32arctan 32limπb a x xbx x ax x , 所以由①式,可知213a b -=+.综上,可得方程组2323a b a b +=-⎧⎨-=+⎩,解得32a b =⎧⎨=-⎩.(注:lim arctan 2x x π→+∞=,lim arctan 2x x π→-∞=-)6. 设2||()43||x x f x x x +=-.求:(1)lim ()x f x →+∞;(2)lim ()x f x →-∞;(3)0lim ()x f x +→;(4)0lim ()x f x -→;(5)0lim ()x f x →.解:由于23,0,2||43()2143||,0.437x xx x x x xf x x xx x x x x +⎧=>⎪+⎪-==⎨--⎪=<⎪+⎩故易得(1)lim ()3x f x →+∞= (2)1lim ()7x f x →-∞=(3)0lim ()3x f x +→= (4)01lim ()7x f x -→=(5)0lim ()x f x →不存在(左右极限都存在但是不相等).习题1.31. 下列函数在自变量怎样的变化过程中为无穷小量?在怎样的变化过程中为无穷大量? (1)242x y x -=-; (2)311y x =+; (3)21xy =-; (4)1x y e =解:(1)2422x y x x -==+-在2x =处无定义.由22lim lim (2)0x x y x →-→-=+=,可知此函数在2x →-时为无穷小量;由lim lim (2)x x y x →∞→∞=+=∞,可知此函数在x →∞时为无穷大量.(2)311y x =+在1x =-处无定义.由31lim lim01x x y x →∞→∞==+,可知此函数在x →∞时为无穷小量;由3111lim lim1x x y x →-→-==∞+,可知此函数在1x →-时为无穷大量.(3)由0lim lim (21)0xx x y →→=-=,可知此函数在0x →时为无穷小量;由lim lim (21)xx x y →+∞→+∞=-=+∞,可知此函数在x →+∞时为无穷大量.(4)1x y e =在0x =处无定义.由1lim lim 0x x x y e --→→==,可知此函数在0x -→时为无穷小量;由1lim lim x x x y e ++→→==+∞,可知此函数在0x +→时为无穷大量. 2. 两个无穷小量的商是否为无穷小量?请举例说明.答:不一定,比如说当0x →时,2x 与2(2)x 都是无穷小量,221lim0(2)4x xx →=≠,故不是无穷小量,又2x 与x 都是无穷小量,2lim lim 0x x xx x→→==,是无穷小量.3. 求下列极限. (1)sin limx x x→∞; (2)2arctan limx x x→∞; (3)3113lim ()11x x x →---; (4)2211lim23x x x x →-+-(5)322lim ()2121x xxx x →∞-+-; (6)321lim34x x x x →∞--+; (7)342lim1x x x x →∞+-+;(8)33221lim423x x x x →∞++-; (9)11lim()1nx x n x +→-∈-Z ; (10)0()lim()nnx a x an x+→+-∈Z解:(1)由于|sin |1x ≤,可知sin x 在(,)-∞+∞上为有界函数,而当x →∞时,10x→,为无穷小量,有界函数乘以无穷小量仍为无穷小量,故sin 1lim lim (sin )0x x x x xx→∞→∞== (2)由于|arctan |2x π<,可知arctan x 在(,)-∞+∞上为有界函数,而当x →∞时,210x→,为无穷小量,故22arctan 1limlim (arctan )0x x x x xx→∞→∞==(3)2332111131323lim ()lim ()lim ()111113x x x x x x x x x x x →→→++-+-====---++ (通分,消元)(4)22111121limlim23342x x x x x x x →→-+===+-+(5)3232222(21)(21)lim ()lim2121(21)(21)x x xxx x x x x x x x →∞→∞--+-=+-+-3232lim4221x x xx x x →∞--=-+-23111lim1114422x xxxx→∞--==--+-(6)322211limlim1134134x x x x xx x xx →∞→∞--==∞-+-+(7)3344411122limlim 0111x x x x xxxx x→∞→∞+-+-==++(8)33323122121limlim1142342423x x x xx x x x→∞→∞++===+-+-(注:5,6,7,8类型相同,当x →∞时,多项式的商的极限主要看分子分母的次数,分子次数大于分母次数,则极限为∞;分子次数小于分母次数,则极限为0;分子次数等于分母次数,极限为最高次项系数的商.做法见上) (9)12121111(1)(1)limlimlim (1)11nn n n n x x x x x xxxxn x x ----→→→--+++==+++=--(10) 12220()lim limn n n n nn nn x x a nax C ax x aa x axx--→→++++-+-=12221lim (())n n n n n x naC ax x na----→=++=4. 设21lim31x x ax b x→++=-,求,a b 的值.解:由于1lim (1)0x x →-=,故21lim()0x x ax b →++=,从而2x ax b ++可被1x -整除,不妨设2(1)()x ax b x x c ++=-+,则1,a cbc =-=-.由极限211limlim ()1x x x ax b x c x→→++=-+-13c =--=可知4c =-.故5,4a b =-=5. 设322()2ax bx cx df x x x +++=+-,满足:(1)lim ()1x f x →∞=;(2)1lim ()0x f x →=,求,a b ,,c d 的值.解:由lim ()1x f x →∞=可知分子次数等于分母次数,且此时极限为b ,故有0,1a b ==.由1lim ()0x f x →=,可知21lim ()0x x cx d →++=,从而2x cx d ++可被1x -整除,不妨设2(1)()x cx d x x e ++=-+,则1,c e d e =-=-.由极限2211limlim22x x x cx d x e x x x →→+++=+-+1012e +==+可知1e =-.故2,1c d =-=.6. 设()g x 在0x =的某邻域内有界,且(),0,()0,0.xg x x f x x ≠⎧=⎨=⎩求0lim ()x f x →.解:()g x 在0x =的某邻域内有界,而当0x →时x 为无穷小量,从而可知0lim ()0x f x →=.7. 设1lim ()x f x →存在,且21()23lim ()x f x x x f x →=+,求().f x解:由题可知,只需求出1lim ()x f x →即可,在21()23lim ()x f x x x f x →=+两边同时求当1x →时的极限.21111lim ()lim (23lim ())23lim ()x x x x f x x x f x f x →→→→=+=+,易解得1lim ()1x f x →=-,从而2()23f x x x =-.习题1.41. 利用数列极限存在的准则Ⅰ,求下列极限. (1)222111lim ()(1)()n nn n n →∞+++++ (2)1lim n n n →∞(3)22212lim ()2n n n n n n πππ→∞++++++ (4)limn →∞解:(1)设222111(1)()n a nn n n =+++++ ,显然有2222222211111111()()()()n n n a n n n n n n n n nnnn++=+++<<+++=++++ ,而2211limlim0()n n n n n n n→∞→∞++==+,由两边夹原理可知222111lim ()0(1)()n nn n n →∞+++=++ .(2)当1n >时,11nn >,令11n n n a -=,则显然0n a >.且由二项式公式有2(1)(1)12nnn n n n n n n a na a a -=+=++++ ,故2(1)2n n n n a ->,从而0n a <<而lim0n →∞=,不等式左边常数也是0,由两边夹原理可知lim 0n n a →∞=,从而1lim 1n n n →∞=.(3)设222122n n a n n n n πππ=++++++ ,显然有22222222(1)1212(1)2()2()n n n n n n n a n n n n n n n n n n n n ππππππππ++=+++<<+++=++++++++ 而22(1)(1)1limlim2()2()2n n n n n n n n n ππ→∞→∞++==++,由两边夹原理可知222121lim ()22n nn n n n πππ→∞+++=+++ .(4<<limlim3n n →∞→∞==,由两边夹原理可知lim 3n →∞=.2. 利用数列极限存在的准则Ⅱ,求下列数列的极限 (1; (2)1103,n x x +<<=(3)111,(),(,0)2n n nb x a x x a b x +==+>.解:(1)显然数列为单调增的,设12a=<,22a=<=,依次得32a=<=,归纳可得2na<.即数列有上界,由单调有界原理可知此数列有极限,不妨设为a.对1na+=a=2a=或者1a=-(显然不可能).故数列极限为2.(2)(i)当132x=时,232x==,依次可得32nx=,故此数列为常数数列,显然极限存在,且为32.(ii)当132x≠时,利用几何算术平均值不等式可知1123322x xx+-=<=,依次可得32nx<<(1n>).而11nnxx+=>=(1n>),故此数列除了1x以外,均为单调增加的,且有界.由单调有界原理可知数列2{}n nx∞=有界,而数列的极限与前有限项无关,故原数列极限也存在,不妨设为a.对1nx+=a=32a=或者0a=(显然不可能).故数列极限为32.综合(i)(ii)可知数列极限为32.(3)(i)当1x a==2111()2bx xx=+=nx=(ii)当1x≠时,利用几何算术平均值不等式可知2111()2bx xx=+>=,依次可得nx>1n>).而11()02n n nnbx x xx+-=-<(1n>),故此数列除了1x以外,由单调有界原理可知数列2{}n nx∞=有界,而数列的极限与前有限项无关,故原数列极限也存在,不妨设为A.对11()2n nnbx xx+=+两端同时取极限,可得1()2bA AA=+,解得A=或者A=..综合(i)(ii)可知数列极限为3. 若lim n n x a →∞=,证明:lim ||||n n x a →∞=.证明:由lim n n x a →∞=,可知对0ε∀>,都0N ∃>,当n N >时,就有||n x a ε-<.从而当n N >时,||||||n n x a x a ε-≤-<,由定义可知lim ||||n n x a →∞=.(注:此结论对函数极限也同样成立,即“若lim ()x f x A →∙=,则lim |()|||x f x A →∙=”.反过来不对.但是有“若lim |()|0x f x →∙=,则lim ()0x f x →∙=”,对数列也成立.)4. 对于数列{}n x ,若212lim lim k k k k x x a -→∞→∞==,证明:lim n n x a →∞=.证明:第一种证法,用几何意义来说(不严格).由212lim lim k k k k x x a -→∞→∞==可知,对0ε∀>,数列21{}k x -中落在区间(,)a a εε-+外的只有有限多项,数列2{}k x 中落在区间(,)a a εε-+外的也只有有限多项.而对于数列{}n x 来说,其中的项不在数列21{}k x -之中就在数列2{}k x 之中,从而落在区间(,)a a εε-+外的也只有有限多项.由几何意义即知lim n n x a →∞=.第二种证法:用极限定义.由21lim k k x a -→∞=,可知对0ε∀>,都10K ∃>,当1k K >时,就有21||k x a ε--<.由2lim k k x a →∞=,可知对上述的0ε>,都20K ∃>,当2k K >时,就有2||k x a ε-<.令12m ax{,}K K K =,2N K =,则当n N >时,有||n x a ε-<.由定义可知lim n n x a →∞=.习题1.51. 求下列各极限. (1)0sin 5limx x x → (2)0sin lim(0)sin x ax b bx→≠ (3)3tan sin limx x xx→- (4)1lim sinx x x→∞(5)lim (1)m xx k x →∞-(6)22lim ()1xx x x →∞++ (7) cot 0lim (13tan )xx x →- (8) 111lim (32)xx x -→-(9)2sin 0lim (1)x x x →+ (10)lim tan n x n n→∞(11)11lim (sin cos)x x xx→∞+ (12)2sec 2lim (1cos )xx x π→-解:(1)0sin 5sin 5limlim (5)55x x x x xx→→==(2)0sin sin limlim ()sin sin x x ax ax bx ax a bxax bx bx b→→== (3)23200022sintan sin sin 1cos sin 112lim lim ()lim ()cos cos 24()2x x x xx x x x x x x x x x x x →→→--=== (4)1sin 1lim sinlim11x x x x xx→∞→∞== (当x →∞时,10t x =→) (5)令x t k=-,则m x m kt =-,且当x →∞时,t →∞,所以11lim (1)lim (1)lim[(1)]m xm kt t m k m kx t t k ex t t---→∞→∞→∞-=+=+= (6)2221lim ()lim (1)11x xx x x x x →∞→∞+=+++,令1t x =+,则1x t =-,且当x →∞时,t →∞,所以22(1)2222111lim ()lim (1)lim[(1)](1)1xt t x t t x e x t t t--→∞→∞→∞+=+=++=+(7)令3tan t x =-,则3cot x t=-,且当0x →时,0t →.所以31cot 3300lim (13tan )lim (1)lim[(1)]xtt x t t x t t e---→→→-=+=+=(8)111111lim (32)lim[13(1)]x x x x x x --→→-=+-,令3(1)t x =-,则当1x →时,0t →,所以1313311lim (32)lim (1)lim[(1)]xtt x t t x t t e----→→→-=+=+=(9)2122sin sin 0lim (1)lim[(1)]xx x x x x x x e →→+=+=(10)因为0tan sin 1limlim1cos x x x x xxx→→== ,由数列极限与函数极限的关系可知1tan1limlim tan 11n n n n n n→∞→∞==,从而当0x ≠时,tan lim tan limn n x x n n x x x n n→∞→∞==当0x =时,lim tan 0n x n n →∞=.综合可知lim tan n xn x n →∞=.(11)1111lim (sin cos )lim [1(sin cos 1)]x xx x x x x x →∞→∞+=++-11(sincos1)111sin cos 111lim [1(sin cos 1)]x x x x xx x x +-+-→∞⎧⎫⎪⎪=++-⎨⎬⎪⎪⎩⎭,令11sincos1t xx=+-,则当x →∞时,0t →,又1111lim (sincos1)lim sinlim (cos1)x x x x x x xxxx→∞→∞→∞+-=+-2111sin cos12()2limlim1lim1111x x x x x x xxx→∞→∞→∞--=+=+=,故11lim (sincos)xx e xx→∞+=.(12)令cos t x =-,则22sec x t=-,且当2x π→时,0t →,所以212sec 222lim (1cos )lim (1)lim[(1)]xtt t t x x t t e π---→→→-=+=+=.2. 求下列各极限. (1)0limx x→ (2)lim x →+∞(3)0limx →(4)0lim(,0)x m n →> (5)01lim []x x x +→ (6)limx →+∞(7)lim (ln(1)ln )x x x x →+∞+- (8)0lim x +→解:(1)000limlimlim1x x x x→→→===(2)lim limlim0x x x →+∞→+∞→+∞===(3)0sin 41)limlimlimx x x x x→→→==s i n 4l i m11)84x x x→=+= (4)22limlim2x x n n mm→→===(分子分母同时有理化)(5)讨论0x +→时函数的极限时,我们只关心那些离0很近的正数,不妨设01x <<,有11x >,故1111[]x x x-<≤,不等式三边同时乘以x ,不改变不等号的方向,故有111(1)[]1x x x x x x -<≤=,而001lim (1)lim (1)1x x x x x++→→-=-=,不等式右边为常数1,由两边夹原理可知01lim []1x x x+→=.(622211ln(cos 2sin )ln(1sin )x x x xxee++==,其中20ln(1sin )ln 2x ≤+≤,2ln(1sin )x +为有界函数,而当x →+∞时,10x→,为无穷小量,故21limln(1sin )0x x x→+∞+=.从而可得0lim1x e →+∞==(7)111lim (ln(1)ln )lim lnlim ln(1)lim ln[(1)]ln 1xx x x x x x x x x x e xxx→+∞→+∞→+∞→+∞++-==+=+==(8)11limlim (coslim [1(cos1)]xx x x x +++→→→==+1l i m {[1(s }x +→=+-,而222sin2sin cos112lim lim lim 22x x x xx +++→→→--===-,故12limx e+-→=.习题1.61. 比较下列无穷小的阶.(1) 当0x →时,323x x +与sin x (2) 当1x →-时,1x +与31x +(3) 当0x →时,3tan x x x +与(1cos )x x +(4) 当0x →1与1-解:(1)由于32322033lim limlim (3)0sin x x x x x x xx x xx→→→++==+=,故323x x +是sin x 的高阶无穷小. (2)由于3211111limlim113x x x xx x →-→-+==+-+,故1x +是31x +的同阶无穷小.(3)由于33tan tan limlimlim0(1cos )(1cos )(1cos )x x x x x xx x xx x x x x x →→→+=+=+++,故3tan x x x +是(1cos )x x +的高阶无穷小.(4)由于21(1lim lim1x x x →→+==1与1-是等价无穷小.2. 证明:当0x →时, (1)x x 21~1+; (2)322(tan )x x o x +=证明:(1)由于01lim 1)lim02x x x →→-==,从而要证x x 21~1+只需计算极限即可.0limlim111)22x x xxx →→==,由定义即知x x 21~1+.(2)由于32lim (2)lim tan 0x x x x x →→+==,从而要证322(tan )x x o x +=只需计算极限即可.32322022limlimlim (2)0tan x x x x x x xx x xx→→→++==+=,由定义即知322(tan )x x o x +=.3. 利用极限的运算法则和无穷小的有关性质求下列极限. (1)21limcos 1xx ex →-- (2)21limsin1x xx x→∞+ (3)0limtan x x→(4)sin 01limln(13)xx ex →-+ (5)21limx x→-(6)0lim1x e →-(7)1limx → (8)213sin coslim(1cos )tan x x x x x x→++ (9)0limx +→(10)31lim [sin ln(1)sin ln(1)]x x xx →∞+-+.解:(1)2221limlim21cos 12xx x ex x x→→-==--- (2)222211limsinlimlim111x x x xxxx xx xx x→∞→∞→∞===+++ (x →∞时,10x→,所以11sinxx)(3)0limlimlimlimtan tan tan tan x x x x xxxx→→→→==-(由()x x αα~1+)001111532lim lim236x x x x xx→→-=-=+=(4)sin 01sin 1limlimln(13)33xx x ex x x→→-==+(5)22201()1limlimlim 4x x x kx kx→→→-===(6)0limlim1xx x e →→=-lim1x →==,其中第一步用到了有理化.(7)111limlimlimx x x →→→===(8)222001113sin cos3sin cos cos3sin limlimlimlim(1cos )tan (1cos )(1cos )(1cos )x x x x x x x x x x x x x x xx xx xx x→→→→++==+++++1cos33lim2(1cos )2x x x x →=+=+,其中第二项中,01lim cos 0x x x →= (无穷小乘以有界函数仍为无穷小) (9)01limlim 2x x ++→→==(10)3131lim [sin ln(1)sin ln(1)]lim sin ln(1)lim sin ln (1)x x x x x x xxxx→∞→∞→∞+-+=+-+3131lim ln(1)lim ln(1)lim lim 312x x x x x x xxxxxx→∞→∞→∞→∞=+-+=-=-=习题1.71. 讨论函数2,01,()2,1 2.x x f x x x ⎧≤≤=⎨-<≤⎩ 在1x =处的连续性.解:由于211lim ()lim 1(1)x x f x x f --→→===,故()f x 在1x =处左连续,又11lim ()lim (2)1(1)x x f x x f ++→→=-==,故()f x 在1x =处右连续,因此()f x 在1x =处连续.2. 求函数23()6x f x x x +=+-的连续区间,并求极限2lim ()x f x →、3lim ()x f x →-、0lim ()x f x →.解:由于()f x 为初等函数,所以()f x 在(,3)-∞-、(3,2)-和(2,)+∞上都连续.2lim ()x f x →=∞,2333311lim ()limlim625x x x x f x x x x →-→-→-+===-+--,031lim ()62x f x →==--3. 讨论下列函数的间断点,并指出间断点的类型. (1)21()2f x x x =+- (2)sin xy x=(3)21()cos f x x= (4)112xy =解:(1)由于()f x 为初等函数,故只有两个间断点,1x =和2x =-,而221211limlim 22x x x x x x →→-==∞+-+-,所以这两个都是第二类间断点.(2)由于sin xy x=为初等函数,故只在sin 0x =处间断,从而间断点为x k π=(k ∈Z ).当0k =时,0lim 1sin x x x →=,故0x =为可去间断点;当0k ≠时,lim sin x k xx π→=∞,故x k π=(0k ≠)为第二类间断点.(3)由于()f x 为初等函数,故只在0x =处间断,而当0x →时()f x 的左右极限都不存在,故0x =为第二类间断点.(4)由于()f x 为初等函数,故只在0x =处间断,而11lim2x x-→=∞(当0x -→时,1x→-∞,120x →),故0x =为第二类间断点 4.已知函数0,(),0,2,0x f x a x x b x <==⎨⎪+>⎪⎩在0x =处连续,求a 与b 的值.解:由于()f x 在0x =处连续,故()f x 在0x =处既是左连续又是右连续,从而0lim ()lim 2lim ()lim (2)x x x x f x a f x x b b --++→→→→=====+=,即得2a b ==.5. 证明:方程531x x -=在区间(1,2)内至少有一个实根.证明:令5()31f x x x =--,显然()f x 在[1,2]上连续.又(1)13130f =--=-<,5(2)23213261250f =--=--=> ,由零点定理可知(1,2)ξ∃∈,使得()0f ξ=.即方程531x x -=在区间(1,2)内至少有一个实根. 6. 证明:方程3sin x x =在区间(,)2ππ内至少有一个实根.证明:令()3sin f x x x =-,显然()f x 在[,]2ππ上连续.又()3sin302222f ππππ=-=->,()3sin 0f ππππ=-=-<,由零点定理可知(,)2πξπ∃∈,使得()0f ξ=.即方程3sin x x =在区间(,)2ππ内至少有一个实根.7. 确定,a b 的值,使下式成立.(1)21lim ()01x x ax b x →+∞+--=+(2)lim )0x ax b →-∞-=.解:(1)由221(1)()1lim ()lim011x x x a x a b x bax b x x →+∞→+∞+--++---==++可知分子次数小于分母次数,从而10a -=,0a b +=.故1a =,1b =-. (2)由222lim )limx x ax b →-∞→-∞-=221(1)(12)(1)lim0x a x ab b →-∞--++-==可知21a =(若21a ≠,则极限为∞)且1a ≠(若1a =,则极限不能确定),因此1a =-.并且120ab +=,故12b =.8. 设函数()f x 在区间[],a b 上连续,且()a f x b ≤≤,证明:必存在点[],c a b ∈,使得()f c c =.证明:令()()F x f x x =-,显然()F x 在区间[],a b 上连续,()()0F a f a a =-≥,()()0F b f b b =-≤.(i ) 若()0F a =,取c a =即得. (ii ) 若()0F b =,取c b =即得.(iii )若()F a 与()F b 都不等于0,则有()()0F a F b < ,由零点定理可知(,)c a b ∃∈,使得()0F c =,即()f c c =.综合(i )(ii )(iii )可得必存在点[],c a b ∈,使得()f c c =.复习题11. 已知2()x f x e =,[()]1f x x ϕ=-,且()0x ϕ≥,求()x ϕ并写出它的定义域.解:2()[()]1x f x e x ϕϕ==-,故2()ln(1)x x ϕ=-,而()0x ϕ≥,所以()x ϕ=,其定义域为(,0]-∞.2. 设函数1,0,()1,0.x f x x ≥⎧=⎨-<⎩ 2,0,()1,0.x x g x x x ⎧≥=⎨-<⎩ 求[()]f g x ,[()]g f x .解:当0x ≥时,2()0g x x =≥ ,所以[()]1f g x =;当0x <时,()10g x x =->,所以[()]1f g x =.因此[()]1f g x ≡.当0x ≥时,()10f x =≥ ,所以2[()]11g f x ==;当0x <时,()10f x =-<,所以[()]1(1)2g f x =--=.因此1,0,[()]2,0.x g f x x ≥⎧=⎨<⎩.3. (1)设()f x 定义在区间(,)l l -内,判断函数1()[()()]2F x f x f x =+-与1()[()()]2G x f x f x =--的奇偶性;(2)证明:定义在区间(,)l l -内的任何函数()f x 都可以表示为一个偶函数与一个奇函 数之和.解:(1)由11()[()(())][()()]()22F x f x f x f x f x F x -=-+--=-+=可知()F x 为偶函数;由1()[()()]()2G x f x f x G x -=--=-,可知()G x 为奇函数.(2)显然()()()f x F x G x =+,故得证.4. 设函数()f x 在(,)-∞+∞内有定义,()g x 是()f x 的反函数,求()2xy f =及(21)y f x =+的反函数.解:由()2x y f =可得()2xg y =,故2()x g y =,所以()2xy f =的反函数为2()y g x =;由(21)y f x =+可得21()x g y +=,故()12g y x -=,所以(21)y f x =+的反函数为()12g x y -=.5. 求下列极限.(1)21111lim ()3153541n n →∞++++- ;(2)()()()nx x x n 22111lim +++∞→ ,(||1x <); (3)2lim coscoscos222nn x x x →∞; (4)limn →∞; (5)142sin lim ()||1xx xe x x e →+++;(6)20lim (cot )sin xx ex x→-; (7)0lim (cosxx π+→; (8)1lim ()xx x x e →+.解:(1)2111111111111(1)31535412335572121n n n ++++=-+-+-++---+11(1)221n =-+,故21111111lim ()lim (1)31535412212n n n n →∞→∞++++=-=-+ . (2)()()()1111lim 22<+++∞→x xx x nn因()()()()()()()[]xxxx x x x x x x n nn--=-+++-=++++111111.1111122222 ,故()()()xxxxx x n nn n -=--=++++∞→∞→1111lim 111lim 1222.(注意到当||1x <时,12lim 0n n x+→∞=)(3)当0x ≠时,nnx x x x 2sin2cos2cos 2cos 2nn nnnx x x x x 2sin22sin2cos 2cos2cos 22=nnx x 2s i n2s i n =故=∞→nnn x x x x 2sin2cos2cos2coslim 2nnn x x 2sin 2sin lim∞→xx x x nnn sin 2.2sin lim==∞→;当0x =时,12sin 2cos2cos2coslim 2=∞→nnn x x x x .综合可知⎪⎩⎪⎨⎧=≠=∞→.0,1,0,sin 2sin2cos2cos2coslim 2x x xxx x x x nnn (4≤≤,以及limlim1n n →∞→∞==,由两边夹原理可知lim1n →∞=.(5)1141302sin 21sin lim ()lim lim 1||1xxx x x xxxe x e x x xeee+++-→→→-+++=+=++,(1l i m x x e +→=∞)11442sin 2sin lim ()lim lim 211||11x xx x x xxe x e x x xee---→→→+++=+=-=-++(1lim 0x x e -→=)左右极限都存在并且相等,所以142sin lim ()1||1xx xe x x e →++=+.(6)2220cos (cos 1)(1)lim (cot )limlimsin sin xxxx x x ex e x ex x x x→→→-----==2201cos 1122limlimlimlim2xx x x x xx ex xxxx→→→→---=-=-=-.(7)0limlim lim x xxxx x eeπππ+→++→→==,而2112lim ln(coslim lim lim 2x x x x xxxxπππ++++→→→→-====-从而2lim xx e ππ+-→=(8)0111ln()limln()lim ()lim xxx x e x e xxxxx x x e ee→++→→+==,而1ln[1(1)]11limln()limlimlimlim2xxxxx x x x x x e x e x e x e xxxxx→→→→→++-+--+===+=,从而12lim ()x x x x e e →+=.6. (1)如果数列{}n x ,{}n y 都发散,问数列{}n n x y +是否发散? (2)如果数列{}n x 收敛,{}n y 发散,问数列{}n n x y 是否一定发散?答:(1)不一定,比如{}{}{}n n x n y ==都发散,{}{2}n n x y n +=也发散.又{}{}n x n =与{}{}n y n =-都发散,但是{}{0}n n x y +=为常数列显然收敛.(2)也不一定.比如1{}{}n x n=收敛,{}{}n y n =发散,{}{1}n n x y =为常数列显然收敛;。
运筹学第一章习题完整版
其中: (0,0,9,8)T ⎯对⎯应⎯→ A(0, 0) (8/5,0,21/5,0)T ⎯对⎯应⎯→ B(8 / 5, 0) (1,3/2,0,0)T ⎯对⎯应⎯→C(1,3 / 2)
9.2)
∴A 点最大 Z= 8
max z = 2x1 − x2 + 0x3 + 0x4 化为标准形: st. 3x1 + 5x2 + x3 = 15
7.1)系数矩阵
⎜ A: ⎜⎜⎝
8 3
1 −4 0 000
C63 = 20种组合
0 0⎞ 2 0 ⎟⎟=(p1 p2 p3 p4 p5 p6 ) 0 −1⎟⎠
12 3 6 B1 = P1 P2 P3 = 8 1 −4 = −54 ≠ 0;∴ B1可构成基。
30 0
求B1的基本解,
⎛ 12 3 6
⎢⎣2 0⎥⎦
⎡1 0 6 1⎤ ⎡1 0 0 -13/5⎤
(B,b)= ⎢⎢2
1
3 4 ⎥⎥ → ⎢⎢0
1
0
37/5
⎥ ⎥
⎢⎣3 1 4 2⎥⎦ ⎢⎣0 0 Nhomakorabea 3/5 ⎥⎦
∴B 对应的基解:(-13/5,37/5,0,0,3/5)
9.解:(1)
由图知:
x* = (1, 3 / 2)T ; Z * = 35 / 2;
-1/2 3 1/6 4 -1/3 -8
0 点(0,0,15,24)
A 点(4,0,3,0)
Zmax=8
10.解 1)要使 A(0,0)成为最优解则需 C ≤ 0 且 d ≤ 0; 2)要使 B(8/5,0)成为最优解则 C ≥ 0 且 d=0 或 C>0 且 d<0 或 C/d ≥ 5/2 且 Cd>0; 3)要使 C(1,3/2)成为最优解则 -5/2 ≤ -C/d ≤ -3/4 且 Cd>0;即 5/2 ≥ C/d ≥ 3/4 且 Cd>0; 4)要使 D(0,9/4)成为最优解则 C<0 且 d>0 或 C=0,d>0
线性代数第一章习题及解答
n(n−1) 2
D. a11 . . . a1n ··· ··· ··· D an1 . . . ann
因为 D = D , 而 D =
T
对 DT 作上述行交换得, 于是
D2 = (−1)
n(n−1) 2
D = (−1)
T
n(n−1) 2
5
对 D2 依次进行相邻列交换, 然后转置得
D2 = (−1)
4
a+b 1 Dk = 0 ··· 0 0
ab a+b 1 ··· 0 0 1
0 ab a+b ··· 0 0 a+b 0 ··· 0 0 a+b 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ab a+b 1 ··· 0 0 ab a+b 1 ··· 0 0
0 0 0 ··· a+b 1 0 ab a+b ··· 0 0 0 ab a+b ··· 0 0
··· ··· ··· ···
(a − n)n (a − n)n−1 . . . a−n
1 1 ··· 1 解:将 Dn 一次进相邻行交换, 然后进行相邻列交换得 1 1 ··· 1 a−n a−n+1 ··· a 2 2 (a − n + 1) · · · a2 (xj = a − j, j = 0, 1, . . . , n) Dn = ( a − n ) . . . . . . . . ··· . (a − n)n (a − n + 1)n ∏ = (xj − xi ) 0≤i<j ≤n ∏ = (i − j )
a a . . . x ··· a 0 . . . x−a (rj − r1 , j = 1, 2, . . . , n)
线性代数课本第一章详细答案
第一章课后习题及解答计算下列二、三阶行列式(用沙路法和定义):1..02222=-=abab b a babab a2..1)sin sin (cos cos cos sin sin cos =--=-αααααααα3. .)(222))((2222222b a ab b a ab i b a ab bi a bi a bia ab bi a -=-+=--=--+=-+4. .5)3(422)2(351)4(24)4(5)2(2)3(13325214423-=-⨯⨯-⨯-⨯-⨯⨯--⨯⨯-+⨯-⨯+-⨯⨯=--- 5. .0942861753843762951987654321=⨯⨯-⨯⨯-⨯⨯-⨯⨯+⨯⨯+⨯⨯=6..1810142199)1(22021119941202)1(210112101199202114122-=⨯⨯-⨯-⨯-⨯⨯-⨯⨯+⨯-⨯+⨯⨯=-7. 111222ωωωωωω,其中.2321i+-=ω=36331ωωω-++=0.8..662323213212322233+-=---++⨯⨯=x x x x x x x xxx x xx计算下列数字元素行列式(利用行列式性质展开):9. .2564)1(123423403400400046=-=10.!.10!10)1(1000009000800020001000)09876543211(=-=ι11.111111111111---)4,3,2,(1=-i r r i=.8)2(20200002011113-=-=---12.3214214314324321(将2,3,4行加到第1行,提取公因子10)=103214214314321111(122334,,r r r r r r ---)=10113113110321--)4,3,2,(1=-i r r i=104040012101111---=102)4(-⨯=160.13.1111021*********-(41r r ↔)=245021*********--(1413125,4,r r r r r r ---)=315423001201111--------(32r r -)=315423043101111-------(24235,3r r r r ++)=1714870043101111-(342r r -)=710870043101111-=-.14. 1111156452243633545246563--(,2413,r r r r --提取第3行公因子2-)=11111210001110035452465632---(21r r -)=11111210001110035452111112---(,,21512r r r r --提取第5行公因子2-)=41121000111001323011111(45r r -)=4121000111001323011111-=4)3(-⨯=.12-15..32)16()2(1531432115310000430021=-⨯-=-⨯=-16. 11010420003100010987654321(,21r r -提取第1行公因子,5-提取第4行公因子2)=10-11010210003100010987611111(233445,,r r r r r r ↔↔↔)=1021310001098761101011111(4513,6r r r r --)=10131000432101101011111-(23r r -)=10131000322001101011111-=10.202-=-17. 8521310421042002030021100--(122334,,r r r r r r ↔↔↔)=8521304200203002110010421---(233445,,r r r r r r ↔↔↔)=04220300211008521310421-- =.6012)5(0422032111321-=⨯-=- 18.0BA*, 其中.0050004000300020*******,321021001⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛=B ABA *(换行)=AB *-0=!.3!5=-A B证明下列恒等式:19. .)1(3332221112333332222211111c b a c b a c b a x c b x a xb ac b x a xb ac b x a xb a -=++++++ 证:333332222211111c b x a xb ac b x a x b a c b x a x b a ++++++=333222111333222111333222111333222111c b xb c b xb c b x b c xa xb c x a x b c x a x b c b a c b a c b a c xa a c x a a c x a a +++ =003332221112333222111+++c a b c a b c a b x c b a c b a c b a =3332221112)1(c b a c b a c b a x - .111111111111111122y x yy x x =-+-+证:yy x x-+-+1111111111111111=yy x x yy x -+-+--11111101110111010010010001=yy x x xy -+-+1111111112=)11110110101001(2yy x yy x xy -+-+-+=))((222y x y x xy ---+=22y x 21. ).)()()((111333b c a c a b c b a cbac b a---++= 证:333322221111dcbad c b a d c b a (范德蒙行列式)=))()()()()((a b a c b c a d b d c d ------,其中,2d -的系数即为333111cbac b a∴ ))()()((111333a b a c b c c b a cbac b a---++=. 22. .111)(111222323232ccb b aa ca bc ab ccb b a a ++= 证:323232321111dddc c c b b b a a a (范德蒙行列式)=))()()()()((a b a c b c ad b d c d ------其中,d 的系数即为323232111ccb b aa ∴ 222323232111)())()()((111ccb b a a ca bc ab a b a c b c ca bc ab ccb b a a ++=---++=.计算下列各题:23.543002201dc b a =540020cb a d -=02ba cd -=.abcd24.dc b a1110011001---=dc dc b a 111001)1(11101------ =dc ddc ba 11)10111(-+-+-=.)1)(1(ad cd ab +++25.2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d dc c c c b b b b a a a a=0(因为按照行列式的求和性质展开时,每一项中均有两列成比例)26.1222111b a a c c b b a c a c bc b a +++(将2, 3列加到第1列)=122111b a a c cb a b ac b a a c cb ac b c b a ++++++++++ (第1,4列成比例)=0.27.44332211000000a b a b b a b a (按第1行展开)=00000433221433221b a b b a b a a b b a a - =332241332241a b b a b b a b b a a a -=))((32324141b b a a b b a a --.28.nn 222221222223222222222221-22321,,c c c c c c n ---=2203020001200002000021---n n(按照第1列展开)=22030200120002---n n=)!2(2--n .29.nn n nn a a a an a a a a na a a a)()2()1()()2()1(2111112222---------(范德蒙行列式)=∏≤<≤---ni j j a i a 0))((=∏=+-nk n n k 12)1(!)1(.30.nn n n n n n n n n n nn nn n n nn n n n n b b a b a b a a b b a b a b a a b b a b a b a a 111121211111212222222122111121211111+-+++-++-++------(第i 行提取公因子1,,1,+=n i a ni ,然后应用范德蒙行列式)=)(11∏+≤<≤-n i j j i jib a ab .用克拉默法则解下列线性方程组:31. ⎪⎪⎩⎪⎪⎨⎧=+++=++=++-=++.0,124,12,324543213214321431x x x x x x x x x x x x x x解:,71111021*********-=-=D ,71110211121124031-=-=D ,71110214121124352==D,71110114111123053=-=D ,701111214121134054-=-=D∴ .1,1,1,144332211==-==-====DD x DD x DD x DD x32. ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++=+++.5,4,3,1,143215321542154315432x x x x x x x x x x x x x x x x x x x x解:类似31题求解可得:.45,41,43,47,41154321-=-====x x x x x33. 问:齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+-+=+++=+++0,03,02,04321432143214321bx ax x x x x x x x x x x ax x x x有非零解时,b a ,必须满足什么条件?解:,011131********=-baa 即.4)1(2b a =+34. 求平面上过两点),(11y x 和),(22y x 的直线方程(用行列式表示).解:设直线方程为0=++c by ax ,则其满足:⎪⎩⎪⎨⎧=++=++=++0,0,02211c by ax c by ax c by ax有非零解,从而所求直线方程为:01112211=y x y x y x . 35. 求三次多项式332210)(x a x a x a a x f +++=, 使得.16)3(,3)2(,4)1(,0)1(====-f f f f解:由题意,得下列线性方程组: ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=-+-162793,3842,4,03210321032103210a a a a a a a a a a a a a a a a用克拉默法则求解,得:2,5,0,73210=-===a a a a , 从而,32257)(x x x f +-=.补充题证明下列恒等式:36.∏∑==+=+++ni i ni ina a a a a 1121.)11(111111111(1)用数学归纳法证明之;(2)利用线性性质,将原行列式表示为n 2个行列式之和的方法,计算行列式; (3)利用递推公式,计算行列式.解:(1)1=n 时,左边=1111a a +=+,右边=11a +,结论成立。
数学物理方程第一章、第二章习题全解
u x
d
x,
因此小段( x, x + d x) 的伸长( 压缩 ) 为 ud x, 其相对 伸长 (压 缩) 为 x
u x
,
即
x 点处的应变为
u x
(
x,
t)
。若 略
去垂
直杆 长方
向
的形
变
,
根
据
Hooke 定律 , 应力与应变 u 成正比 , 即 x
P=
E
u x
比例系数 E 称为杆的杨氏模量,故所求的纵振动方程为
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
nπl x
= φ( x )
得
∫ An =
2
l
φ(
x) sin
nπx d x
=
l0
l
∫ ∫ 2 l h xsin nπxd x + 2 l h ( l - x ) si n nπxd x =
《线性代数》第一章习题及解答
2x x 1 2 例 8 设 f (x) = 1 x 1 − 1 ,则 x 4 的系数为( ), x 3 的系数为( ).
3 2x 1 1 11 x
分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦
时,再考虑用行列式的计算方法进行计算.
解 从 f (x) 的表达式和行列式的定义可知,当且仅当 f (x) 的主对角线的 4 个元素的
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
故逆序数为 1;于是这个排列的逆序数为 t= 0+0+2+4+1= 7,故正确答案为(B).
例 2 下列排列中( )是偶排列.
因此
(−1)t a1n−1a2n−2 Lan−11ann ,其中
t = (n −1)(n − 2) , 2
( 2007 −1)( 2007 − 2 )
D = (−1) 2 2007!= −2007!.
此题也可以按行(列)展开来计算.
例 11 计算 n 阶行列式
2 1 1L1
1 2 1L1
Dn = 1 1 2 L 1
于是 A31 + A32 + A33 = 0, A34 + A35 = 0.
12345
12345
11122
11122
A51 + A52 + A53 + A54 + A55 = 3 2 1 4 6 r4 + r2 3 2 1 4 6 = 0
22211
33333
初二数学第一章练习题答案和解析
初二数学第一章练习题答案和解析1. 基础知识题1) 解:第2板书为1/3页,第3板书为1/9页,第4板书为1/27页。
所以总共的页数为:1/3 + 1/9 + 1/27 = 3/27 + 9/27 + 1/27 = 13/27页。
2) 解:第3块糖的重量为1克,第4块糖的重量为第3块糖重量的平方。
所以第4块糖的重量为:1 * 1 = 1克。
3) 解:150元钱共有5种组合方式:1张100元 + 1张50元,共有2种组合方式;5张20元,共有1种组合方式;3张50元,共有1种组合方式;2张100元 + 5张20元,共有1种组合方式;10张15元,共有1种组合方式。
所以共有2 + 1 + 1 + 1 + 1 = 6种组合方式。
2. 解方程题设一小时汽车速度为x公里,高铁速度为2x公里。
公式为:2x * 4 + x * 2 = 280化简得:8x + 2x = 280合并同类项得:10x = 280解得:x = 28所以汽车的速度为28公里/小时,高铁的速度为2 * 28 = 56公里/小时。
2) 解:设钢笔售价为x元,铅笔售价为y元。
公式为:2x + y = 15化简得:y = 15 - 2x又已知:10x + 5y = 60将y带入公式中得:10x + 5(15 - 2x) = 60化简得:10x + 75 - 10x = 60合并同类项得:75 = 60显然等式不成立,所以无解。
3. 图形题由图可得:∠AOB = ∠COD(两顶点在圆上所对圆心的角相等)∠AOB + ∠COD = 180°(互补角)所以∠AOB = ∠COD = 90°2) 解:由正方形的特性可知:AB = BC = CD = DA所以∠BAC = ∠BCA = 45°3) 解:由图可得:AB = AE = DC = DE(正六边形的边相等)所以四边形ABCD为菱形。
4. 应用问题1) 解:已知长方形的长是宽的5倍,周长为30米。
完整版高等代数习题解答(第一章)
完整版高等代数习题解答(第一章)高等代数题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)=x-5与g(x)=a(x-2)^2+b(x+1)+c(x^2-x+2)相等?提示:比较系数得a=-1,b=-1,c=6.补充题2.设f(x),g(x),h(x)∈[x],f^2(x)=xg^2(x)+x^3h^2(x),证明:假设f(x)=g(x)=h(x)不成立。
若f(x)≠0,则∂(f^2(x))为偶数,又g^2(x),h^2(x)等于或次数为偶数,由于g^2(x),h^2(x)∈[x],首项系数(如果有的话)为正数,从而xg^2(x)+x^3h^2(x)等于或次数为奇数,矛盾。
若g(x)≠0或h(x)≠0,则∂(xg^2(x)+x^3h^2(x))为奇数,而f^2(x)为偶数,矛盾。
综上所证,f(x)≠g(x)或f(x)≠h(x)。
1.用g(x)除f(x),求商q(x)与余式r(x):1)f(x) =x^3-3x^2-x-1,g(x) =3x^2-2x+1;2)f(x) =x^4-2x+5,g(x) =x^2-x+2.1)解法一:待定系数法。
由于f(x)是首项系数为1的3次多项式,而g(x)是首项系数为3的2次多项式,所以商q(x)必是首项系数为1的1次多项式,而余式的次数小于2.于是可设q(x)=x+a,r(x)=bx+c。
根据f(x)=q(x)g(x)+r(x),即x^3-3x^2-x-1=(x+a)(3x^2-2x+1)+bx+c,右边展开,合并同类项,再比较两边同次幂的系数,得a=-1/3,b=-2/3,c=-1,故得q(x)=x-1/3,r(x)=-x-1/3.2)解法二:带余除法。
用长除法得商q(x)=x^2+x-1,余式r(x)=-5x+7.2.m,p,q适合什么条件时,有1)x^2+mx-1/x^3+px+q;2)x^2+mx+1/x^4+px^2+q.解:1)将x^3+px+q除以x^2+mx-1得商为x+m+1/(x+m-1),所以当m≠1时有解。
第一章 习题详解.doc
第一章习题Al.设A、B、C为二事件,用A、B、C及其运算关系表示下列事件.(DA发生而B与C不发生;(2)A、B、C中恰好发生一个;(3)A、B、C中至少有一个发生;(4)A、B、C中恰好有两个发生;(5) A、B、C中至少有两个发生;(6)A、B、C中有不多于一个事件发生.解:(1) ABC 或A?B ?C 或A?(B UC) ;(2) ABC U ABC U ABC ;(3) A UB UC 或ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4)ABC U ABC U ABC. (5) ABU AC U BC 或ABC U ABC U ABC UABC ;(6) ABC U ABC U ABC U ABC . 2.桓簸究占淑腥簸镜悖?其对应的概率分别为2p,p2,4p?l,求p的值.解:由于样本空间所有的样本点构成一个必然事件,所以2p + p2 + 4p?l = l.解之得pl = ?3 + ll,p2 = ?3?ll , 又因为一个事件的概率总是大于0,应以p = ?3+ 11 . 3.已知P( A) =0.3, P( B)=0.5, P(A U B) =0.8,求(l)P(AB) ;(2) P( A ? B) ;1(3) P ( AB ),解:⑴由P(A U B) = P( A) + P( B) ? P( AB)得P ( AB) = P( A) + P( B) ? P( A UB) = 03 + 0.5 ? 0.8 = 0 . (2) P ( A ? B) = P( A) ? P( AB) = 0.3 ? 0 = 0.3 . (3) P ( AB ) = 1 ? P ( AB ) = 1 ? P ( A U B ) = 1 ? 0.8 = 0.2. 4.设P ( AB)=P( AB ),旦P ( A) = p ,求P(B ). I?:由P ( AB) = P ( AB ) = 1 ? P ( AB ) = 1 ? P (A U B) = 1 ? P( A) ? P( B) + P( AB)得P ( A) + P( B) = 1 ,从而P( B) = 1 ?p. 5.设3 个事件A、B、, P(A) = 0.4 , P( B) = 0.5 , P(C ) = 0.6 , P( AC )= 0.2 , C P( BC ) = 0.4 ft AB = O ,求P (A U B U C).解:P( A U B U C ) = P( A) + P ( B ) + P(C ) ? P( AB) ?P( AC ) ? P( BC ) + P( ABC ) = 0.4 + 0.5 + 0.6 ? 0 ? 0.2 ? 0.4 + 0 = 0.9. 6.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1, 2, 3的概率.解:依题意可知,基本事件总数为43个.以Ai, i= 1, 2,3表示事件“杯子中球的最大个数为i”,则A1表示每个杯子最多3放一个球,共有A4种方法,故P( A1 ) = 3 A4 6 = . 43 16 A2表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3 1 1个杯子中,放法总数为C32C4C3种,故2P ( A2 ) = 1 1 C32C4C3 9 = . 43 16 1 A3表示3个球放入同一个杯子中,共有C4种放法,故P( A3 ) = 1 C4 1 = . 43 16 7.在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9中任取4个数进行排列共有10x9x8x7种排法.其中有(4x9x8x7 —4x8x7+9x8x7)种能成4位偶数.故所求概率?= 4x9x8x774x8x7 + 9x8x7 41. = 10x9x8x7 90 8.一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第二卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以p = 2x4!/5!=2/5.(2) 可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下二卷可在中间二人上位置上任意排,所以p = 2x3 !/5 != 1/10. (3) p = P {第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出2 2 17现在旁边)= + ? = . 5 5 10 10 (4)这里事件是(3)中事件的对立事件,所以P = 1 ?7 / 10 = 3/10.(5)第二卷居中,其余四卷在剩下四个位置上可任意排,所以P=lx4!/5 !=1/5. 9.把2, 3, 4, 5诸数各写在一张小纸片上,任取其二而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下四个数2 3字中选排,所以P =2 x A4 / A5 = 2 / 5 . 10. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层3都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为9 7 .事件A“没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含A97个样本点,于是A97 P( A) = 7.9 11.两艘轮船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达.设两船停靠泊位的时间分别为1小时与2小时,求有一艘船停靠泊位时必须等待一段时间的概率.解:分别用x, y表示第一、二艘船到达泊位的时间.一艘船到达泊位时必须等待当旦仅当OMx? y M 2,0 M y ? x M 1 .因此所求概率为1 1 24 2 ? x 23 2 ? x 22 2 2 2 P ( A) = ~ 0.121 . 24 2 12. 10个考签中有4个难签,3个人参加抽签考试,不重复地抽取,每人一次,甲先,乙次,丙最后.证明3人抽到难签的概率相同.证明:设甲、乙、丙分别抽到难签的事件为A,B,C ,贝U,显然P(A)= 4.10 P(B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 521,22121ππ==⋅3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+ )Re(2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+ 可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点.6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域.(7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+=代入化简得 0)(21)(21=+++-c z bi a z bi a令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径所以 ()()2000z z z z z z 2γ=-=-- 0000z z z z z z z z =⋅-⋅-⋅+⋅令2001,,A B z C z 2==-=-γ,从而圆周可以写成0AZZ BZ BZ C +++=,A C 为实数,且22200B z z AC 2=>-γ= 9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支.11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u 这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周.(2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xix x i i x iv u 22121)1(1-=--=+=+ 于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+于是,1,1122y y v y u +-=+=且u yy y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w 所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明n n z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nMεδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续.13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1)若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2)若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3)其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续. 15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n nε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n .18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x x ε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有 i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有 221ε<++n z z z N故 ε<+++++≤'++nz z z n z z z z nN N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==--因此 nt z z nt z z nnn n sin 21,cos 21=-=+3.证明:已知(155122cos sin 233nnn n n n n n x iy i ⎛⎫⎛⎫+=-==+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin 33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦ ()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以 22221a abz abz b b abz abz a+++==+++故1az bbz a+=+ 7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =. 9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π 但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143argarg arg z z z z z zz z z z z z z z z z ----+=⋅----,因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111k z z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。