高中数学选修1-1第一章课后习题解答

合集下载

高中数学选修1-1(全册)习题(答案详细讲解)

高中数学选修1-1(全册)习题(答案详细讲解)

高中数学选修1-1(全册)习题(答案详细讲解)目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是()A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是()A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有()A .0个B .1个C .2个D .3个 4.下列说法中正确的是()A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ?是q ?的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ?不为零,则,a b 都不为零”的逆否命题是。

北师版高中数学选修1-1课后习题 第一章 §1 命 题

北师版高中数学选修1-1课后习题 第一章 §1 命 题

第一章DIYIZHANG 常用逻辑用语§1 命 题课后篇巩固提升①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤A.若sin x<12,则x<π6B.若x≥π6,则sin x≥12C.若x<π6,则sin x<12D.若sin x≤12,则x≤π6A.m<2B.m<4C.m>2D.m>4,可知m<4的范围要比题干中m 的范围大,所以取m<4,故选B.A.若log 2x<2,则0<x<4B.若a 与b 共线,则a 与b 的夹角为0°C.已知各项都不为零的数列{a n }满足a n+1-2a n =0,则该数列为等比数列D.点(π,0)是函数y=sin x 图像上一点A.[-3,+∞)B.(-3,+∞)C.(-∞,-3]D.(-∞,-3)-3}.)A=60°,B=30°时,sin2A=sin120°=√32,sin2B=sin60°=√32,此时sin2A=sin2B,但A 与B 不相等.故A=60°,B=30°.Δ=(a -1)2-4≤0,即-1≤a≤3.(1)若x≥10,则2x+1>20;(2)如果两圆外切,那么两圆圆心距等于两圆半径之和;(3)在整数中,奇数不能被2整除.ax 2-2ax-3>0不成立,所以ax 2-2ax-3≤0恒成立.(1)当a=0时,-3≤0成立.(2)当a≠0时,应满足{a <0,Δ≤0,解得-3≤a<0. 由(1)(2)得a 的取值范围为[-3,0].。

高中数学选修1-1课后习题答案

高中数学选修1-1课后习题答案

高中数学选修1-1课后习题答案高中数学选修1-1课后习题答案在高中数学的学习过程中,选修课是一个很重要的部分。

选修课的内容相对于必修课来说更加深入和拓展,可以帮助学生更好地理解和应用数学知识。

本篇文章将为大家提供高中数学选修1-1课后习题的答案,希望能够帮助到学习这门课程的同学们。

第一章:函数与导数1. 设函数f(x) = x^2 + 2x - 3,求f(1)的值。

答案:将x = 1代入函数f(x)中,得到f(1) = 1^2 + 2*1 - 3 = 0。

2. 已知函数f(x) = x^3 - 3x + 2,求f(-1)的值。

答案:将x = -1代入函数f(x)中,得到f(-1) = (-1)^3 - 3*(-1) + 2 = 0。

3. 设函数f(x) = 2x^2 - 4x + 1,求f(2)的值。

答案:将x = 2代入函数f(x)中,得到f(2) = 2*(2)^2 - 4*2 + 1 = 5。

4. 已知函数f(x) = x^3 + 2x^2 + x,求f(0)的值。

答案:将x = 0代入函数f(x)中,得到f(0) = 0^3 + 2*0^2 + 0 = 0。

5. 设函数f(x) = x^2 - 4x,求f(3)的值。

答案:将x = 3代入函数f(x)中,得到f(3) = (3)^2 - 4*3 = 9 - 12 = -3。

第二章:三角函数1. 已知sinθ = 1/2,求θ的值。

答案:根据sinθ = 1/2,可以知道θ = π/6 或5π/6。

2. 已知cosθ = -1/2,求θ的值。

答案:根据cosθ = -1/2,可以知道θ = 2π/3 或4π/3。

3. 已知tanθ = √3,求θ的值。

答案:根据tanθ = √3,可以知道θ = π/3 或 4π/3。

4. 已知cotθ = -√3,求θ的值。

答案:根据cotθ = -√3,可以知道θ = 5π/6 或11π/6。

5. 已知secθ = 2,求θ的值。

人教B版高中数学选修1-1同步练习题及答案全册汇编

人教B版高中数学选修1-1同步练习题及答案全册汇编

人B版高中数学选修1-1同步习题目录第1章1.1.1~1.1.2同步练习第1章1.2.1同步练习第1章1.2.2同步练习第1章1.3.1同步练习第1章1.3.2同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.2.1同步练习第2章2.2.2同步练习第2章2.3.1同步练习第2章2.3.2同步练习第2章章末综合检测第3章3.1.1~3.1.2同步练习第3章3.1.3同步练习第3章3.2.1~3.2.2同步练习第3章3.2.3同步练习第3章3.3.1同步练习第3章3.3.2第1课时同步练习第3章3.3.2第2课时同步练习第3章3.3.3同步练习第3章章末综合检测人教B 版选修1-1同步练习1.下列是全称命题且是真命题的是( ) A .∀x ∈R ,x 2>0 B .∀x ∈Q ,x 2∈Q C .∃x 0∈Z ,x 20>1 D .∀x ,y ∈R ,x 2+y 2>0 答案:B2.下列命题是真命题的为( )A .若1x =1y,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x <y 2解析:选A.由1x =1y,得x =y ,A 正确,B 、C 、D 错误.3.判断下列命题的真假: ①3≥3:________;②100或50是10的倍数:________. 答案:①真命题 ②真命题4.(1)用符号“∀”表示命题“不论m 取什么实数,方程x 2+x -m =0必有实根”; (2)用符号“∃”表示命题“存在实数x ,使sin x >tan x ”. 解:(1)∀m ∈R ,x 2+x -m =0有实根. (2)∃x 0∈R ,sin x 0>tan x 0.一、选择题1.下列命题为存在性命题的是( ) A .偶函数的图象关于y 轴对称 B .正四棱柱都是平行四面体 C .不相交的两条直线是平行直线 D .存在实数大于等于3 答案:D2.下列命题是真命题的是( ) A .{∅}是空集B.{}x ∈N ||x -1|<3是无限集 C .π是有理数D .x 2-5x =0的根是自然数解析:选D.x 2-5x =0的根为x 1=0,x 2=5,均为自然数. 3.(2010年高考湖南卷)下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0 D .∀x ∈R,2x >0解析:选C.对于A ,当x =1时,lg x =0,正确;对于B ,当x =π4时,tan x =1,正确;对于C ,当x <0时,x 3<0,错误;对于D ,∀x ∈R,2x >0,正确.4.下列命题中,是正确的全称命题的是( )A .对任意的a ,b ∈R ,都有a 2+b 2-2a -2b +2<0B .菱形的两条对角线相等C .∃x 0∈R ,x 20=x 0D .对数函数在定义域上是单调函数解析:选D.A 中含有全称量词“任意”,a 2+b 2-2a -2b +2=(a -1)2+(b -1)2≥0,是假命题.B 、D 在叙述上没有全称量词,实际上是指“所有的”.菱形的对角线不一定相等;C 是特称命题.所以选D.5.下列存在性命题不正确的是( ) A .有些不相似的三角形面积相等 B .存在一个实数x ,使x 2+x +1≤0C .存在实数a ,使函数y =ax +b 的值随x 的增大而增大D .有一个实数的倒数是它本身解析:选B.B 中因为x 2+x +1=(x +12)2+34≥34,所以不存在x 使x 2+x +1≤0;A 中等底等高的三角形面积相等但不一定相似;C 中a >0时,成立;D 中1的倒数是它本身.6.下列命题中真命题的个数为( ) ①面积相等的两个三角形是全等三角形; ②若xy =0,则|x |+|y |=0; ③若a >b ,则a +c >b +c ; ④矩形的对角线互相垂直. A .1 B .2 C .3 D .4解析:选A.①错;②错,若xy =0,则x ,y 至少有一个为0,而未必|x |+|y |=0;③对,不等式两边同时加上同一个常数,不等号开口方向不变;④错.二、填空题7.填上适当的量词符号“∀”“∃”,使下列命题为真命题. (1)________x ∈R ,使x 2+2x +1≥0;(2)________α,β∈R ,使cos(α-β)=cos α-cos β.解析:(1)中(x +1)2≥0所以对∀x ∈R 恒成立;(2)为存在性命题. 答案:(1)∀;(2)∃8.下列语句中是命题的有________,其中是假命题的有________.(只填序号) ①垂直于同一条直线的两条直线必平行吗? ②一个数不是正数就是负数;③大角所对的边大于小角所对的边.解析:根据命题的概念,判断是否是命题;若是,再判断其真假.①是疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题; ②是假命题,因为0既不是正数也不是负数;③是假命题,没有考虑到“在两个三角形中”的情况. 答案:②③ ②③9.给出下列几个命题:①若x ,y 互为相反数,则x +y =0; ②若a >b ,则a 2>b 2;③若x >-3,则x 2+x -6≤0;④若a ,b 是无理数,则a b 也是无理数. 其中的真命题有________个.解析:①是真命题.②设a =1>b =-2,但a 2<b 2,假命题.③设x =4>-3,但x 2+x -6=41>0,假命题.④设a =(2)2,b =2,则a b =(2)2=2是有理数,假命题.答案:1 三、解答题10.用量词符号“∀”或“∃”表示下列命题. (1)一定有整数x ,y ,使得3x +2y =10成立; (2)对所有的实数x ,都能使x 2+2x +2≤0成立. 解:(1)∃x ,y ∈Z ,使3x +2y =10; (2)∀x ∈R ,有x 2+2x +2≤0.11.判断下列语句是不是全称命题或存在性命题,如果是,找出命题中的量词.(1)中国的所有党派都由中国共产党统一领导; (2)0不能作除数;(3)存在一个x ∈R ,使2x +1=3;(4)至少有一个x ∈Z ,使x 能被2和3整除. 解:(1)全称命题,命题中的量词是“所有”; (2)是命题,但不是全称命题或者存在性命题; (3)存在性命题,命题中的量词是“存在一个”; (4)存在性命题,命题中的量词是“至少有一个”.12.已知p :x 2+mx +1=0有两个不等的负根,q :方程4x 2+4(m -2)x +1=0(m ∈R )无实根,求使p 正确且q 正确的m 的取值范围.解:若p 为真,则⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0,解得m >2.若q 为真,则Δ=16(m -2)2-16<0,解得1<m <3.p 真,q 真,即⎩⎪⎨⎪⎧m >2,1<m <3.故m 的取值范围是(2,3).人教B版选修1-1同步练习1.如果命题“p∨q”是真命题,那么()A.命题p与命题q都是真命题B.命题p与命题q同为真命题或同为假命题C.命题p与命题q只有一个是真命题D.命题p与命题q至少有一个是真命题答案:D2.由下列各组命题构成的新命题“p或q”“p且q”,都为真命题的是()A.p:4+4=9,q:7>4B.p:a∈{a,b,c};q:{a}{a,b,c}C.p:15是质数;q:8是12的约数D.p:2是偶数;q:2不是质数答案:B3.判断下列命题的形式(从“p∨q”、“p∧q”中选填一种):(1)6≤8:________;(2)集合中的元素是确定的且是无序的:________.答案:p∨q p∧q4.分别指出下列各命题的形式及构成它的简单命题,并判断其真假.(1)8或6是30的约数;(2)矩形的对角线垂直平分.解:(1)p或q,p:8是30的约数(假),q:6是30的约数(真).“p或q”为真.(2)p且q,p:矩形的对角线互相垂直(假),q:矩形的对角线互相平分(真).“p且q”为假.一、选择题1.下列命题是真命题的是()A.5>2且7>8B.3>4或3<4C.7-1≥7 D.方程x2-3x+4=0有实根解析:选B.虽然p:3>4假,但q:3<4真,所以p∨q为真命题.2.如果命题p∨q为真命题,p∧q为假命题,那么()A.命题p,q都是真命题B.命题p,q都是假命题C.命题p,q只有一个是真命题D.命题p,q至少有一个是真命题解析:选C.p∨q为真命题,则p,q中至少有一个是真命题;p∧q为假命题,则p,q 中至少有一个是假命题,因此,p,q中必有一个真命题,一个假命题.因此选C.3.命题p:x=π是y=|sin x|的对称轴.命题q:2π是y=|sin x|的最小正周期.下列命题中,是真命题的个数是()①p∨q②p∧q③p④qA.0 B.1C.2 D.3答案:C4.“xy≠0”指的是()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少有一个不为0D.不都是0解析:选A.x 、y 都不为0,即x ≠0且y ≠0.5.已知集合A ={x |p (x )}={x |x 是等腰三角形},B ={x |q (x )}={x |x 是直角三角形},用特征性质描述法表示A ∩B 是( )A .{x |p 且q }={x |x 是等腰直角三角形}B .{x |p 或q }={x |x 是等腰三角形或直角三角形}C .{x |p 且q }={x |x 是等腰三角形}D .{x |p 或q }={x |x 是直角三角形} 答案:A 6.若命题p :圆(x -1)2+(y -2)2=1被直线x =1平分;q :在△ABC 中,若sin2A =sin2B ,则A =B ,则下列结论中正确的是( )A .“p ∨q ”为假B .“p ∨q ”为真C .“p ∧q ”为真D .以上都不对 答案:B 二、填空题7.“10既是自然数又是偶数”为________形式. 解析:注意逻辑联结词“且”的含义. 答案:p ∧q8.用“或”、“且”填空,使命题成为真命题: (1)若x ∈A ∪B ,则x ∈A ________x ∈B ; (2)若x ∈A ∩B ,则x ∈A ________x ∈B ; (3)若ab =0,则a =0________b =0;(4)a ,b ∈R ,若a >0________b >0,则ab >0. 答案:(1)或 (2)且 (3)或 (4)且9.设命题p :2x +y =3;q :x -y =6.若p ∧q 为真命题,则x =________,y =________. 解析:若p ∧q 为真命题,则p ,q 均为真命题,所以有⎩⎪⎨⎪⎧ 2x +y =3,x -y =6.解得⎩⎪⎨⎪⎧x =3,y =-3.答案:3 -3 三、解答题10.判断下列命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边; (2)-1是偶数或奇数.解:(1)这个命题是p ∧q 的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边.因为p 真、q 真,则p ∧q 真,所以该命题是真命题.(2)此命题是p ∨q 的形式,其中p :-1是偶数,q :-1是奇数.因为p 为假命题,q 为真命题,所以p ∨q 为真命题,故原命题为真命题.11.分别指出由下列各组命题构成的“p ∧q ”、“p ∨q ”形式的命题的真假. (1)p :正多边形有一个内切圆;q :正多边形有一个外接圆.(2)p ;角平分线上的点到角的两边的距离不相等;q :线段垂直平分线上的点到线段的两端点的距离相等.(3)p :2∈{2,3,4};q :{矩形}∩{菱形}={正方形}.(4)p :正六边形的对角线都相等;q :凡是偶数都是4的倍数. 解:(1)因为p 真q 真,所以“p ∧q ”真,“p ∨q ”真. (2)因为p 假q 真,所以“p ∧q ”假,“p ∨q ”真. (3)因为p 真q 真,所以“p ∧q ”真,“p ∨q ”真. (4)因为p 假q 假,所以“p ∧q ”假,“p ∨q ”假.12.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若p ∧q 为假,p ∨q 为真,求a 的取值范围.解:∵y =a x 在R 上单调递增,∴p :a >1; 又不等式ax 2-ax +1>0对∀x ∈R 恒成立,∴Δ<0,即a2-4a<0,∴0<a<4,∴q:0<a<4.而命题p∧q为假,p∨q为真,那么p、q中有且只有一个为真,一个为假.(1)若p真,q假,则a≥4;(2)若p假,q真,则0<a≤1,∴a的取值范围为(0,1]∪[4,+∞).人教B版选修1-1同步练习1.(2011年高考辽宁卷)已知命题p:∃n∈N,2n>1000,则¬p为()A.∀n∈N,2n≤1000B.∀n∈N,2n>1000C.∃n∈N,2n≤1000 D.∃n∈N,2n<1000答案:A2.命题“一次函数都是单调函数”的否定是()A.一次函数都不是单调函数B.非一次函数都不是单调函数C.有些一次函数是单调函数D.有些一次函数不是单调函数解析:选D.命题的否定只对结论进行否定,“都是”的否定是“不都是”,即“有些”.3.A⃘(A∪B)是________形式;该命题是________(填“真”“假”)命题.答案:“¬p”假4.写出下列命题的否定,并判断真假(1)所有的矩形都是平行四边形;(2)有些实数的绝对值是正数.解:(1)存在一个矩形不是平行四边形;假命题;(2)所有的实数的绝对值都不是正数;假命题.一、选择题1.如果命题“p∨q”与命题“¬p”都是真命题,那么()A.命题p不一定是假命题B.命题q一定为真命题C.命题q不一定是真命题D.命题p与命题q的真假相同解析:选B.“p∨q”为真,则p、q至少有一个为真.¬p为真,则p为假,∴q是真命题.2.命题“对任意的x∈R,x3-x2+1≤0”的否定是()A.不存在x∈R,使得x3-x2+1≤0B.存在x∈R,使得x3-x2+1≤0C.存在x∈R,使得x3-x2+1>0D.对任意的x∈R,x3-x2+1>0解析:选C.全称命题的否定为存在性命题.3.若p、q是两个简单命题,且“p∨q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真解析:选B.∵“p∨q”的否定为真,则p∨q为假,即p、q均为假.故选B.4.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题为真命题的是()A.(¬p)∨q B.p∧qC.(¬p)∧(¬q) D.(¬p)∨(¬q)解析:选D.p为真,q为假,所以¬q为真,(¬p)∨(¬q)为真.5.下列命题的否定是假命题的是()A.p:能被3整除的整数是奇数;¬p:存在一个能被3整除的整数不是奇数B.p:每一个四边形的四个顶点共圆;¬p:存在一个四边形的四个顶点不共圆C.p:有些三角形为正三角形;¬p:所有的三角形都不是正三角形D .p :∃x 0∈R ,x 20+2x 0+2≤0;¬p :∀x ∈R ,都有x 2+2x +2>0 解析:选C.p 为真命题,则¬p 为假命题.6.给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若1x<1,则x >1,那么在下列四个命题中,真命题是( )A .(¬p )∨qB .p ∧qC .(¬p )∧(¬q )D .(¬p )∨(¬q )解析:选D.对于p ,函数对应的方程x 2-x -1=0的判别式Δ=(-1)2-4×(-1)=5>0. 可知函数有两个不同的零点,故p 为真.当x <0时,不等式1x<1恒成立;当x >0时,不等式的解为x >1.故不等式1x<1的解为x <0或x >1.故命题q 为假命题. 所以只有(¬p )∨(¬q )为真.故选D. 二、填空题7.写出命题“每个函数都有奇偶性”的否定:________.解析:命题的量词是“每个”,即为全称命题,因此否定是特称命题,用量词“有些、有的、存在一个、至少有一个”等,再否定结论.答案:有些函数没有奇偶性8.命题“存在实数x ,y ,使得x +y >1”,用符号表示为________;此命题的否定是________(用符号表示),是________命题(填“真”或“假”).解析:原命题为真,所以它的否定为假.也可以用线性规划的知识判断. 答案:∃x 0,y 0∈R ,x 0+y 0>1 ∀x ,y ∈R ,x +y ≤1 假 9.命题“方程x 2=4的解是x =2或x =-2”的否定是____________________________.解析:x 2=4的解是x =2或x =-2,则它的否定:解不是2也不是-2. 答案:方程x 2=4的解不是2也不是-2. 三、解答题10.写出下列各命题的否定: (1)x =±3;(2)圆既是轴对称图形又是中心对称图形; (3)a ,b ,c 都相等.解:(1)x ≠3,且x ≠-3;(2)圆不是轴对称图形或不是中心对称图形;(3)a ,b ,c 不都相等,即a ≠b 或b ≠c 或c ≠a ,即a ,b ,c 中至少有两个不相等. 11.用“∀”“∃”写出下列命题的否定,并判断真假: (1)二次函数的图象是抛物线;(2)直角坐标系中,直线是一次函数的图象; (3)∀a ,b ∈R ,方程ax +b =0恰有一解. 解:(1)¬p :∃x 0∈{二次函数},x 0的图象不是抛物线.假命题. (2)¬p :在直角坐标系中,∃x 0∈{直线},x 0不是一次函数的图象.真命题. (3)¬p :∃a 0,b 0∈R ,方程a 0x +b 0=0无解或至少有两解.真命题.12.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.若¬p 则¬q 成立,求实数a 的取值范围.解:由x 2-4ax +3a 2<0得 (x -3a )(x -a )<0,又a >0,所以a <x <3a ,由⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,得2<x ≤3, 若¬p 则¬q 成立, 设A ={x |¬p },B ={x |¬q },则A ⊆B , 又A ={x |¬p }={x |x ≤a 或x ≥3a }, B ={x |¬q }={x ≤2或x >3},则0<a ≤2,且3a >3,所以实数a 的取值范围是{a |1<a ≤2}.人教B 版选修1-1同步练习1.(2011年高考福建卷)若a ∈R ,则“a =1”是“|a |=1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析:选A.若a =1,则有|a |=1是真命题,即a =1⇒|a |=1,由|a |=1可得a =±1,所以若|a |=1,则有a =1是假命题,即|a |=1⇒a =1不成立,所以a =1是|a |=1的充分而不必要条件,故选A.2.“θ=0”是“sin θ=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.由于“θ=0”时,一定有“sin θ=0”成立,反之不成立,所以“θ=0”是“sin θ=0”的充分不必要条件.3.用符号“⇒”或“”填空:(1)整数a 能被4整除________a 的个位数为偶数;(2)a >b ________ac 2>bc 2.答案:(1)⇒ (2)4.“a =2”是“直线ax +2y =0平行于直线x +y =1”的什么条件?解:当a =2时,直线ax +2y =0,即2x +2y =0与直线x +y =1平行,因为直线ax +2y =0平行于直线x +y =1,所以a 2=1,a =2, 综上,“a =2”是“直线ax +2y =0平行于直线x +y =1”的充要条件.一、选择题1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.2.(2010年高考福建卷)若向量a =(x,3)(x ∈R ),则“x =4是|a |=5”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析:选A.由x =4知|a |=42+32=5;反之,由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分而不必要条件,故选A.3.“b =c =0”是“二次函数y =ax 2+bx +c (a ≠0)经过原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.b=c=0⇒y=ax2,二次函数一定经过原点;二次函数y=ax2+bx+c经过原点⇒c=0,b不一定等于0,故选A.4.已知p,q,r是三个命题,若p是r的充要条件且q是r的必要条件,那么q是p 的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:选B.p是r的充要条件且q是r的必要条件,故有p⇔r⇒q,即p⇒q,q p,所以q是p的必要条件.5.已知条件p:y=lg(x2+2x-3)的定义域,条件q:5x-6>x2,则q是p的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.p:x2+2x-3>0,则x>1或x<-3;q:5x-6>x2,即x2-5x+6<0,则2<x<3.由小集合⇒大集合,∴q⇒p,但p q.故选A.6.下列所给的p、q中,p是q的充分条件的个数是()①p:x>1,q:-3x<-3;②p:x>1,q:2-2x<2;③p:x=3,q:sin x>cos x;④p:直线a,b不相交,q:a∥b.A.1B.2C.3 D.4解析:选C.①由于p:x>1⇒q:-3x<-3,所以p是q的充分条件;②由于p:x>1⇒q:2-2x<2(即x>0),所以p是q的充分条件;③由于p:x=3⇒q:sin x>cos x,所以p是q的充分条件;④由于p:直线a,b不相交q:a∥b,所以p不是q的充分条件.二、填空题7.不等式x2-3x+2<0成立的充要条件是________.解析:x2-3x+2<0⇔(x-1)(x-2)<0⇔1<x<2.答案:1<x<28.在△ABC中,“sin A=sin B”是“a=b”的________条件.解析:在△ABC中,由正弦定理及sin A=sin B可得2R sin A=2R sin B,即a=b;反之也成立.答案:充要9.下列不等式:①x<1;②0<x<1;③-1<x<0;④-1<x<1.其中,可以是x2<1的一个充分条件的所有序号为________.解析:由于x2<1即-1<x<1,①显然不能使-1<x<1一定成立,②③④满足题意.答案:②③④三、解答题10.下列命题中,判断条件p是条件q的什么条件:(1)p:|x|=|y|,q:x=y;(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形.解:(1)∵|x|=|y|x=y,但x=y⇒|x|=|y|,∴p是q的必要条件,但不是充分条件.(2)△ABC是直角三角形△ABC是等腰三角形.△ABC是等腰三角形△ABC是直角三角形.∴p 既不是q 的充分条件,也不是q 的必要条件.(3)四边形的对角线互相平分 四边形是矩形.四边形是矩形⇒四边形的对角线互相平分.∴p 是q 的必要条件,但不是充分条件.11.命题p :x >0,y <0,命题q :x >y ,1x >1y,则p 是q 的什么条件? 解:p :x >0,y <0,则q :x >y ,1x >1y成立; 反之,由x >y ,1x >1y ⇒y -x xy>0, 因y -x <0,得xy <0,即x 、y 异号,又x >y ,得x >0,y <0.所以“x >0,y <0”是“x >y ,1x >1y”的充要条件. 12.已知条件p :A ={x |x 2-(a +1)x +a ≤0},条件q :B ={x |x 2-3x +2≤0},当a 为何值时(1)p 是q 的充分不必要条件;(2)p 是q 的必要不充分条件;(3)p 是q 的充要条件?解:由p :A ={x |(x -1)(x -a )≤0},由q :B =[1,2].(1)∵p 是q 的充分不必要条件,∴A ⊆B 且A ≠B ,故A =[1,a ]⇒1≤a <2.(2)∵p 是q 的必要不充分条件,∴B ⊆A 且A ≠B ,故A =[1,a ]且a >2⇒a >2.(3)∵p 是q 的充要条件,∴A =B ⇒a =2.人教B 版选修1-1同步练习1.命题“若a >0,则3a 4a =34”的逆命题为( ) A .若a ≤0,则3a 4a ≠34 B .若3a 4a ≠34,则a >0 C .若3a 4a ≠34,则a ≤0 D .若3a 4a =34,则a >0 解析:选D.逆命题为把原命题的条件和结论对调.2.(2011年高考山东卷)已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =3解析:选A.a +b +c =3的否定是a +b +c ≠3,a 2+b 2+c 2≥3的否定是a 2+b 2+c 2<3.3.命题“若A ∪B =B ,则A ⊆B ”的否命题是________.答案:若A ∪B ≠B ,则A ⃘B4.已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假.解:(1)命题p 的否命题为:“若ac <0,则二次方程ax 2+bx +c =0有实根”;(2)命题p 的否命题是真命题.证明如下:∵ac <0,∴-ac >0⇒Δ=b 2-4ac >0⇒二次方程ax 2+bx +c =0有实根.∴该命题是真命题.一、选择题1.若“x >y ,则x 2>y 2”的逆否命题是( )A .若x ≤y ,则x 2≤y 2B .若x >y ,则x 2<y 2C .若x 2≤y 2,则x ≤yD .若x <y ,则x 2<y 2解析:选C.由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.故选D. 3.已知原命题“菱形的对角线互相垂直”,则它的逆命题、否命题、逆否命题的真假判断正确的是( )A .逆命题、否命题、逆否命题都为真B .逆命题为真,否命题、逆否命题为假C.逆命题为假,否命题、逆否命题为真D.逆命题、否命题为假,逆否命题为真解析:选D.因为原命题“菱形的对角线互相垂直”是真命题,所以它的逆否命题为真;其逆命题:“对角线互相垂直的四边形是菱形”显然是假命题,所以原命题的否命题也是假命题.4.若命题p的逆命题是q,命题q的否命题是r,则p是r的()A.逆命题B.逆否命题C.否命题D.以上判断都不对解析:选B.命题p:若x,则y,其逆命题q:若y,则x,那么命题q的否命题r:若¬y,则¬x,所以p是r的逆否命题.所以选B.5.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:选B.一个命题与它的逆否命题是等价命题,选项B中的命题恰为已知命题的逆否命题.6.存在下列三个命题:①“等边三角形的三个内角都是60°”的逆命题;②“若k>0,则一元二次方程x2+2x-k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题.其中真命题的个数是()A.0 B.1C.2 D.3解析:选C.①②正确.二、填空题7.命题“若a>1,则a>0”的逆命题是________,逆否命题是________.答案:若a>0,则a>1若a≤0,则a≤18.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若a+b是无理数,则a,b都是无理数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案:③9.在空间中,①若四点不共面,则这四点中任意三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________.解析:①中的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC1做模型来观察:上底面A1B1C1D1中任意三点都不共线,但A1,B1,C1,D1四点共面,所以①中的逆命题不是真命题.②中的逆命题是:若两条直线是异面直线,则两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线不会有公共点.所以②中的逆命题是真命题.答案:②三、解答题10.写出下列原命题的其他三种命题,并分别判断真假.(1)在△ABC中,若a>b,则∠A>∠B;(2)正偶数不是质数.解:(1)逆命题:在△ABC中,若∠A>∠B,则a>b,真命题;否命题:在△ABC中,若a≤b,则∠A≤∠B,真命题;逆否命题:在△ABC中,若∠A≤∠B,则a≤b,真命题.(2)逆命题:若一个数不是质数,则它一定是正偶数,假命题;否命题:若一个数不是正偶数,则它一定是质数,假命题;逆否命题:若一个数是质数,则它一定不是正偶数,假命题.11.判断下列命题的真假:(1)“若x∈A∪B,则x∈B”的逆命题与逆否命题;(2)“若自然数能被6整除,则自然数能被2整除”的逆命题.解:(1)逆命题:若x∈B,则x∈A∪B.根据集合“并”的定义,逆命题为真.逆否命题:若x∉B,则x∉A∪B.逆否命题为假.如2∉{1,5}=B,A={2,3},但2∈A∪B.(2)逆命题:若自然数能被2整除,则自然数能被6整除.逆命题为假.反例:2,4,14,22等都不能被6整除.12.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解:∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真命题.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真命题.人教B 版选修1-1第1章章末综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .4解析:选B.原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真.故共有2个真命题.2.若命题p :x =2且y =3,则¬p 为( )A .x ≠2或y ≠3B .x ≠2且y ≠3C .x =2或y ≠3D .x ≠2或y =3解析:选A.由于“且”的否定为“或”,所以¬p :x ≠2或y ≠3.故选A.3.命题“若a >b ,则a -5>b -5”的逆否命题是( )A .若a <b ,则a -5<b - 5B .若a -5>b -5,则a >bC .若a ≤b ,则a -5≤b - 5D .若a -5≤b -5,则a ≤b解析:选D.逆否命题是把原命题条件的否定作为结论,把原命题结论的否定作为条件而构成的.4.下列语句中,命题和真命题的个数分别是( )①垂直于同一条直线的两条直线平行吗?②一个数不是奇数就是偶数;③x +y 是有理数,则x 、y 也都是有理数;④求证:x ∈R ,方程x 2+x +1=0无实数根.A .3,1B .2,2C .2,0D .2,1解析:选C.命题是②、③,它们都是假命题,所以选C.5.下列全称命题中假命题的个数是( )①2x +1是整数(x ∈R ) ②对所有的x ∈R ,x >3 ③对任意一个x ∈Z,2x 2+1为奇数A .0B .1C .2D .3 解析:选C.对于①,当x =14时,2x +1=32不是整数,假命题.对于②,当x =0时,0<3,假命题.对于③,当x ∈Z 时,2x 2是偶数,进而2x 2+1是奇数,所以①②是假命题,故选C.6.“x >0”是“3x 2>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件解析:选A.因为当x >0时,一定有3x 2>0,但当3x 2>0时,x <0也成立,因此,x >0是3x 2>0成立的充分非必要条件.7.下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C.∃x∈R,lg x<1 D.∃x∈R,tan x=2解析:选B.对于A,正确;对于B,当x=1时,(x-1)2=0,错误;对于C,当x∈(0,1)时,lg x<0<1,正确;对于D,正确.8.(2011年高考大纲全国卷)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b-1C.a2>b2D.a3>b3解析:选A.由a>b+1得a>b+1>b,即a>b;且由a>b不能得出a>b+1.因此,使a>b成立的充分不必要条件是a>b+1,故选A.9.f(x)、g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x)、g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选B.若f(x)、g(x)均为偶函数,则h(x)一定是偶函数,但h(x)是偶函数,并不能保证f(x)、g(x)均为偶函数,例如:f(x)=x,g(x)=-x,f(x)+g(x)=0是偶函数,但f(x)与g(x)均为奇函数.10.已知p:x=1,¬q:x2+8x-9=0,则下列为真命题的是()A.若p,则q B.若¬q,则pC.若q,则¬p D.若¬p,则q解析:选C.p:x=1,q:x≠1且x≠-9,易判断A、B为假命题,∵x2+8x-9≠0⇒x≠1,∴选项C正确.11.下列说法错误的是()A.命题“若m>0,则方程x2+3x-m=0有实根”的逆否命题为“若方程x2+3x-m=0无实根,则m≤0”B.“x=2”是“x2-5x+6=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.若命题p:∃x0∈R,使得x20+x0+1<0,则¬p:∀x∈R,均有x2+x+1≥0解析:选C.C项p∧q为假命题,则只要p、q中至少有一个为假即可.12.已知命题p:存在x∈R,使tan x=22,命题q:x2-3x+2<0的解集是{x|1<x<2},则下列结论:①命题“p且q”是真命题;②命题“p且¬q”是假命题;③命题“¬p或q”是真命题;④命题“¬p或¬q”是假命题.其中正确的是()A.②③B.①②④C.①③④D.①②③④解析:选D.∵p、q都是真命题,∴①②③④均正确.二、填空题(本大题共4小题.把答案填在题中横线上)13.命题p:内接于圆的四边形的对角互补,则p的否命题是________,非p是________.答案:不内接于圆的四边形的对角不互补内接于圆的四边形的对角不互补14.用量词符号“∀”或“∃”表示下列命题:(1)凸n边形的外角和等于2π:________;(2)存在一个有理数x0,使得x20=8:________.答案:(1)∀x∈{凸n边形},x的外角和等于2π(2)∃x0∈Q,x20=815.a=3是“直线l1:ax+2y+3a=0和直线l2:3x+(a-1)y=a-7平行且不重合”的________条件.解析:当a=3时,l1:3x+2y+9=0,l2:3x+2y+4=0,∴l1∥l2.反之,若l1∥l2,则a(a-1)=6,即a=3或a=-2,但a=-2时,l1与l2重合.答案:充要16.给出下列命题:①已知a =(3,4),b =(0,-1),则a 在b 方向上的投影为-4;②函数y =tan(x +π3)的图象关于点(π6,0)成中心对称; ③若a ≠0,则a ·b =a ·c 是b =c 成立的必要不充分条件.其中正确命题的序号是________.(将所有正确命题的序号都填上)解析:①∵|a |=5,|b |=1,a ·b =-4,∴cos 〈a ,b 〉=-45, ∴a 在b 方向上的投影为|a |·cos 〈a ,b 〉=-4,①正确.②当x =π6时,tan(x +π3)无意义, 由正切函数y =tan x 的图象的性质知,②正确.③当a ≠0,b =c 时,a ·b =a ·c 成立.(当a ≠0,a ·b =a ·c 时不一定有b =c .)∴③正确.答案:①②③三、解答题(本大题共6小题.解答时应写出必要的文字说明、证明过程或演算步骤)17.已知命题p :∀非零向量a 、b 、c ,若a ·(b -c )=0,则b =c .写出其否定和否命题,并说明真假.解:¬p :∃非零向量a 、b 、c ,若a ·(b -c )=0,则b ≠c .¬p 为真命题.否命题:∀非零向量a 、b 、c ,若a ·(b -c )≠0,则b ≠c .否命题为真命题.18.指出下列命题中,p 是q 的什么条件:(1)p :{x |x >-2或x <3};q :{x |x 2-x -6<0};(2)p :a 与b 都是奇数;q :a +b 是偶数.解:(1)∵{x |x >-2或x <3}=R ,{x |x 2-x -6<0}={x |-2<x <3},∴{x |x >-2或x <3}{x |-2<x <3},而{x |-2<x <3}⇒{x |x >-2或x <3}.∴p 是q 的必要不充分条件.(2)∵a 、b 都是奇数⇒a +b 为偶数,而a +b 为偶数a 、b 都是奇数,∴p 是q 的充分不必要条件.19.根据条件,判断“p ∨q ”,“p ∧q ”,“¬p ”的真假:(1)p :9是144的约数,q :9是225的约数;(2)p :不等式x 2-2x +1>0的解集为R ,q :不等式x 2-2x +1≤0的解集为∅.解:(1)p ∨q :9是144或225的约数.p ∧q :9是144与225的公约数.¬p :9不是144的约数.∵p 真,q 真,∴p ∨q 为真,p ∧q 为真,而¬p 为假.(2)p ∨q :不等式x 2-2x +1>0的解集为R 或不等式x 2-2x +1≤0的解集为∅.p ∧q :不等式x 2-2x +1>0的解集为R 且不等式x 2-2x +1≤0的解集为∅.¬p :不等式x 2-2x +1>0的解集不为R .∵p 假,q 假,∴p ∨q 为假,p ∧q 为假,而¬p 为真.20.已知p :A ={x |a -4<x <a +4},q :B ={x |x 2-4x +3<0},且x ∈A 是x ∈B 的必要条件,求实数a 的取值范围.解:因为p :A ={x |a -4<x <a +4},q :B ={x |1<x <3}.又因为x ∈A 是x ∈B 的必要条件,所以q ⇒p ,即B ⊆A .所以⎩⎪⎨⎪⎧ a -4≤1a +4≥3⇒⎩⎪⎨⎪⎧a ≤5,a ≥-1,即-1≤a ≤5.∴实数a 的取值范围是{a |-1≤a ≤5}.21.已知p :x 2-x ≥6,q :x ∈Z .若p ∧q 和¬q 都是假命题,求x 的值.解:∵p ∧q 为假命题,∴p 、q 至少有一个为假.。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)

一、选择题1.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +< 2.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 3.“0m >”是“方程22112x y m m+=+表示焦点在x 轴的椭圆”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件 4.要证明命题“所有实数的平方都是正数”是假命题,只需( ) A .证明所有实数的平方都不是正数B .证明平方是正数的实数有无限多个C .至少找到一个实数,其平方是正数D .至少找到一个实数,其平方不是正数5.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( )A .000(0,),lg x x x ∃∈+∞≤B .(0,),lg x x x ∀∈+∞≤C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞< 6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( )A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞ 8.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.“a b >”是“||||a a b b >”的( )A .充分不必要条件B .必要不充分条件C .既不充分又不必要条件D .充要条件11.一个平面内存在一条与另一个平面垂直的直线是这两个平面垂直的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 二、填空题13.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为_________.14.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________.15.已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题,则实数k 的取值范围是___________.16.若命题:p x R ∃∈,230x x -≥,则命题p 的否定为_________.17.命题:p x R ∃∈,10x +>的否定形式p ⌝为____.18.命题“2,0x R x x ∀∈+≤”的否定是__________.19.设p :关于x 的不等式1x a >的解集是{}0x x <;q :函数y =为R .若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围______.20.命题:“x R ∀∈,2210x x ++>”的否定为____________; 三、解答题21.已知命题:p 实数m 满足22430m am a -+<,其中0a >;命题:q 方程()22 68y m m x =-+表示经过第二、三象限的抛物线.(1)当1a =时,若命题p 为假,且命题q 为真,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.22.已知0a >,设命题p :当(],1x ∈-∞]时,函数()2f x x ax =-+单调递增,命题q :双曲线22218x y a -=的离心率[)3,e ∈+∞. (1)若命题p 为真命题,求正数a 的取值范围;(2)若命题p 和q 中有且只有一个真命题,求正数a 的取值范围.23.已知命题p :2680x x -+<,命题q :21m x m -<<+.(1)若p 为假命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.24.写出命题“若2x ≥,3y ≥,则5x y +≥”的逆命题、否命题和逆否命题,并判断这四种命题的真假.25.已知命题p :2,10x R ax ax ∀∈++>,命题:213q a -<.(1)若命题p 是真命题,求实数a 的取值范围;(2)若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.26.已知:p 22a -<<,q :关于x 的方程20x x a -+=有实数根.(1)若q 为真命题,求实数a 的取值范围;(2)若p q ∨为真命题,q ⌝为真命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据特称命题的否定可得出结论.【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥.故选:C.2.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B3.B解析:B【分析】根据椭圆的定义及标准方程的形式,以及充分条件、必要条件的判定方法,即可求解.【详解】 由题意,方程22112x y m m+=+表示焦点在x 轴上的椭圆, 则满足120m m +>>,解得01m <<;又由当01m <<则必有0m >,但若0m >则不一定有01m <<成立,所以“0m >”是“方程22112x y m m+=+表示焦点在x 轴上的椭圆”的必要非充分条件.4.D解析:D【分析】全称命题是假命题,则其否定一定是真命题,判断选项.【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D5.A解析:A【分析】直接根据全称命题的否定写出结论.【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.6.C解析:C【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.【详解】充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立; 必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件.故选:C.7.D解析:D【分析】根据充分不必要条件的定义及集合包含的关系求解.【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥,故选:D .命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆;(2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.8.C解析:C【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案.【详解】若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',又m ⊥β,∴m '⊥β,又∵m '⊂α,∴α⊥β,若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',∵m n ⊥,∴m n '⊥,又∵α⊥β,α∩β=n ,∴m β'⊥,∴m β⊥,故“m ⊥β”是“α⊥β”的充要条件,【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.9.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.10.D解析:D【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件.故选:D.【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题. 11.C【分析】利用线面垂直的判定定理来判断.【详解】根据线面垂直的判定定理:一个平面内存在一条与另一个平面垂直的直线可以推出这两个平面垂直;反过来,两个平面垂直也能够推出一个平面内存在一条与另一个平面垂直的直线.故选:C【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.12.B解析:B【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论.【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件.故选:B. 二、填空题13.【分析】直接利用存在量词命题的定义求解【详解】命题存在实数使得大于用符号语言可表示为:故答案为:解析:000,23x x x R ∃∈> 【分析】直接利用存在量词命题的定义求解.【详解】命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为:000,23x x x R ∃∈>,故答案为:000,23x x x R ∃∈>14.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为:解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围.【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立, 故240a ∆=-<即22a -<<.故答案为:(2,2)-.15.【分析】分与两种情况讨论结合已知条件可得出关于实数的不等式组由此可解得实数的取值范围【详解】已知命题恒成立是真命题当时则有恒成立合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】结论点 解析:(]3,0-【分析】分0k =与0k ≠两种情况讨论,结合已知条件可得出关于实数k 的不等式组,由此可解得实数k 的取值范围.【详解】已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题. 当0k =时,则有308-<恒成立,合乎题意; 当0k ≠时,则有22030k k k <⎧⎨∆=+<⎩,解得30k -<<. 综上所述,实数k 的取值范围是(]3,0-.故答案为:(]3,0-.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 16.【分析】利用特称命题的否定可得出结论【详解】命题为特称命题该命题的否定为:故答案为:解析:x R ∀∈,230x x -<【分析】利用特称命题的否定可得出结论.【详解】命题p 为特称命题,该命题的否定为:x R ∀∈,230x x -<.故答案为:x R ∀∈,230x x -<17.【分析】根据特称命题的否定是全称命题即可得出答案【详解】命题的否定形式为:故答案为:解析:,10x R x ∀∈+≤.【分析】根据特称命题的否定是全称命题即可得出答案.【详解】命题:p x R ∃∈,10x +>的否定形式p ⌝为: ,10x R x ∀∈+≤,故答案为:,10x R x ∀∈+≤18.【分析】利用全称命题的否定是特称命题解答【详解】因为全称命题的否定是特称命题命题是全称命题所以命题的否定是故答案为:解析:2000,0x R x x ∃∈+>【分析】利用全称命题的否定是特称命题解答.【详解】因为全称命题的否定是特称命题,命题“2,0x R x x ∀∈+≤”是全称命题,所以命题“2,0x R x x ∀∈+≤”的否定是“2000,0x R x x ∃∈+>”.故答案为:2000,0x R x x ∃∈+>.19.【分析】p 或q 是真命题p 且q 是假命题故命题pq 一真一假分类求出a 的范围综合可得答案【详解】若命题p :关于x 的不等式的解集是;则若命题q :函数的定义域为则解得:∵p 或q 是真命题p 且q 是假命题故命题pq 解析:[)10,1,2⎛⎫+∞ ⎪⎝⎭. 【分析】p 或q 是真命题,p 且q 是假命题,故命题p ,q 一真一假,分类求出a 的范围,综合可得答案.【详解】若命题p :关于x 的不等式1x a >的解集是{}0x x <;则()0,1a ∈,若命题q :函数y =R .则20140a a >⎧⎨-≤⎩,解得:1,2a ⎡⎫+∞⎢⎣∈⎪⎭, ∵p 或q 是真命题,p 且q 是假命题,故命题p ,q 一真一假,若p 真q 假,则10,2a ⎛⎫∈ ⎪⎝⎭若p 假q 真,则[)1,a ∈+∞故实数a 的取值范围为[)10,1,2⎛⎫+∞ ⎪⎝⎭, 故答案为:[)10,1,2⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查了复合命题的真假,根据命题的真假求参数的取值范围,属于基础题. 20.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可.【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤.故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.三、解答题21.(1)[3,4);(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】利用一元二次不等式的解法和抛物线的性质,先求得命题,p q 分别为真命题时,实数m 的取值范围,(1)根据命题p 为假且q 为真命题,列出不等式组,即可求解;(2)由p 是q 的必要不充分条件,得到集合q 是集合p 的真子集,列出不等式,即可求解.【详解】由题意,命题p 中,由22430m am a -+<,可得()()30m a m a --<,因为0a >,所以3a m a <<,即命题:3p a m a <<,命题q 中,由方程()2268y m m x =-+表示经过第二、三象限的抛物线,可得2680m m -+<且()()240m m --<,解得24m <<,即命题:24q m <<,(1)若1a =,可得命题:13p m <<,因为命题p 为假且q 为真命题,所以2431m m m <<⎧⎨≤≤⎩或,解得34m ≤<, 所以的m 的取值范围为[3,4).(2)由p 是q 的必要不充分条件,即集合q 是集合p 的真子集, 由(1)可得234a a ≤⎧⎨≥⎩,解得423a ≤≤, 经检验43a =和2a =满足条件, 所以实数a 的取值范围是4,23⎡⎤⎢⎥⎣⎦. 22.(1)[)2,+∞;(2)(][)0,12,+∞.【分析】 (1)由命题为真命题,根据二次函数的性质可得12a ≥,即可求解. (2)由q 为真命题可得22819e a =+≥,解出01a <≤,结合(1)即可求解. 【详解】解:(1)命题p 为真命题时,函数()2f x x ax =-+在(],1-∞单调递增,∴12a ≥. 解得2a ≥,所以a 的取值范围是[)2,+∞.(2)由(1)可知p 为真命题时,2a ≥.当q 为真命题时,22819e a=+≥,解得01a <≤ ①当p 真q 假时,2a ≥且1a >,即2a ≥. ②当p 假q 真时,02a <<且01a <≤,即01a <≤.综上所述,正数a 的取值范围为(][)0,12,+∞.23.(1)(][),24,-∞-⋃+∞;(2){}34m m ≤≤.【分析】(1)求解一元二次不等式即可求出实数x 的取值范围;(2)把p 是q 的充分条件,转化为集合的包含关系,列不等式组求解.【详解】解:(1)∵p 为假命题,则2680x x -+≥成立,解2680x x -+≥得2x ≤或4x ≥,∴实数x 的取值范围是(][),24,-∞-⋃+∞.(2)∵p 是q 的充分条件,又∵p :24x <<,q :21m x m -<<+, ∴{}{}2421x x x m x m <<⊆-<<+, ∴2241m m -≤⎧⎨≤+⎩. 解得34m ≤≤.∴实数m 的取值范围是{}34m m ≤≤.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.24.答案见解析.【分析】根据原命题与其逆命题、否命题、逆否命题的关系直接写结果,再举例说明假命题.【详解】原命题“若2x ≥,3y ≥,则5x y +≥,真;①逆命题:若5x y +≥,则2x ≥,3y ≥,当1x =时,4y =时,命题不成立,故为假命题.②否命题:若2x <或3y <,则5x y +<,当1x =,5y =时命题不成立,故为假命题,③逆否命题:若5x y +<,则2x <或3y <,为真命题.25.(1) [)0,4 (2) ()[)1,02,4-【分析】(1)根据命题为真命题,分类讨论a 是否为0;再根据开口及判别式即可求得a 的取值范围.(2)根据复合命题的真假关系,得出p ,q 一个为真命题,一个为假命题,然后进行求解可得范围.【详解】根据复合命题真假,讨论p 真q 假,p 假q 真两种情况下a 的取值范围.(1)命题p 是真命题时,21>0ax ax ++在R 范围内恒成立,∴①当0a =时,有10≥恒成立;②当0a ≠时,有2040a a a >⎧⎨∆=-<⎩,解得:04a <<; ∴a 的取值范围为:[)0,4.(2)∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个为真命题,一个为假命题,由q 为真时得由213a -<,解得1a 2-<<,故有:①p 真q 假时,有041a a ≤<⎧⎨≤-⎩或042a a ≤<⎧⎨≥⎩,解得:24a ≤<; ②p 假q 真时,有012a a <⎧⎨-<<⎩或412a a ≥⎧⎨-<<⎩,解得:10a -<<; ∴a 的取值范围为:()[)1,02,4-.【点睛】 本题考查了命题真假及复合命题真假的简单应用,求参数的取值范围,属于基础题. 26.(1)14a ≤;(2)124a << 【分析】(1)关于x 的方程x 2﹣x+a=0有实数根,则△=1﹣4a≥0,解得a 的范围.(2)由题意得p 为真命题,q 为假命题求解即可.【详解】(1)方程20x x a -+=有实数根,得::140q a ∆=-≥得14a ≤; (2)p q ∨为真命题,q ⌝为真命题∴ p 为真命题,q 为假命题,即2214a a -<<⎧⎪⎨>⎪⎩得124a <<. 【点睛】本题考查了一元二次方程的实数根与判别式的关系、复合命题真假的判断方法,考查了推理能力,属于基础题.。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(答案解析)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(答案解析)

一、选择题1.命题p :0x ∀>,21x >,则命题p 的否定形式是( ) A .0x ∀>,21x ≤ B .0x ∀≤,21x >C .00x ∃>,021x ≤D .00x ∃≤,021x >2.命题“对任意的[3,)x ∈+∞,都有29x ”的否定是( ) A .对任意的[3,)x ∈+∞,都有29x < B .对任意的(,3)x ∈-∞,都有29x C .存在[3,)x ∈+∞,使得29x <D .存在[3,)x ∈+∞,使得29x 3.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .不充分也不必要条件 4.已知命题:,sin cos p x R x x ∀∈<,则p 命题的否定为( )A .:,sin cos p x R x x ⌝∃∈>B .:,sin cos p x R x x ⌝∀∈>C .:,sin cos p x R x x ⌝∃∈≥D .:,sin cos p x R x x ⌝∀∈≥5.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃6.命题“a ∀∈R ,20a >或20a =”的否定形式是( ) A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <7.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞8.已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C.21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 9.设x ∈R ,则“20x -=”是“24x =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.“关于x 的不等式2340x mx -+≥的解集为R ”的一个必要不充分条件是( ) A .4433m -≤≤ B .423m -<≤C .4433m -<≤ D .403m -≤<11.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π12.“2,6a k k Z ππ=+∈”是“cos a =”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.命题“若0x >,则220x y +≠”的逆否命题为___________.14.命题“若实数a ,b 满足25a b +>,则2a >且1b >”是_______命题(填“真”或“假”). 15.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.16.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”) 17.给出下列命题:①命题“x R ∃∈,20x x -≤”的非命题是“x R ∃∈,20x x ->”;②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”的逆否命题是真命题; ③命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题是真命题;④命题“p q ∨为真”是命题“p q ∧为真”的充分不必要条件; ⑤若n 组数据()11,x y ,,(),n n x y 的散点都在21y x =-+上,则相关系数1γ=-;其中是真命题的有______.(把你认为正确的命题序号都填上) 18.命题“若a 、b 都是偶数,则+a b 是偶数”的逆命题是_____________________________________. 19.设集合0,{03}1x A xB x x x ⎧⎫=<=<<⎨⎬-⎩⎭,那么“m A ∈”是“m B ∈”的_______条件.(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个)20.已知ABC △中,AC ==BC ABC △BA 的延长线上存在点D ,使4BDC π∠=,则CD =__________.三、解答题21.已知命题p :22310x x -+≤和命题q :2(21)(1)0x a x a a -+++≤(1)若12a =,且p 和q 都是真命题,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知命题p :方程22121x y m m+=+-表示焦点在y 轴上的双曲线;命题q :不等式()24421x m x >+-恒成立.若p q ∨为真,p q ∧为假,求实数m 的取值范围.23.若a ,b ,c ∈R ,写出命题“若ac<0,则ax 2+bx +c =0有两个相异实根”的逆命题、否命题、逆否命题,并判断它们的真假.24.已知命题:p 实数x 满足2650x x -+≤,命题:q 实数x 满足11m x m -≤≤+ (1)当5m =时,若“p 且q ”为真,求实数x 的取值范围; (2)若q 是p 的充分条件,求实数m 的取值范围.25.已知0a >,设命题:p 函数x y a =在R 上单调递减,:q 不等式21x x a +->的解集为R,若p 和q 中有且只有一个命题为真命题,求a 的取值范围. 26.已知0m >,p :(2)(6)0x x +-≤,q :22m x m -≤≤+ . (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题否定的定义,命题p 的否定形式是:00x ∃>,021x ≤.故选:C2.C解析:C 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以“对任意的[3,)x ∈+∞,都有29x ”的否定是“存在[3,)x ∈+∞,使得29x <”, 故选:C.3.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项. 【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件. 故选:B4.C解析:C 【分析】根据全称命题与存在性命题的关系,准确改写,即可求解. 【详解】根据全称命题与存在性命题的关系,可得全称命题:“:,sin cos p x R x x ∀∈<”的否定为“:,sin cos p x R x x ⌝∃∈≥”. 故选:C.5.D解析:D 【分析】利用全程命题的否定直接写出答案. 【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.6.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.7.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解. 【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.8.B解析:B 【分析】根据全称命题的否定直接写出答案.【详解】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R故选:B 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.9.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±, 不一定是2x =,不必要,因此应为充分不必要条件. 故选:A . 10.B解析:B 【分析】求出“关于x 的不等式2340x mx -+≥的解集为R ”成立时实数m 的取值范围,再结合必要不充分条件的定义可得出结论. 【详解】由关于x 的不等式2340x mx -+≥的解集为R ,可得()23440m ∆=--⨯≤,解得4433m -≤≤,所以m 的取值范围是4433m -≤≤. 根据必要不充分条件的概念可知B 项正确. 故选:B.11.B解析:B 【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 3π=.故满足条件的选项为B. 故选:B.12.A解析:A 【分析】根据两者之间的推出关系可得条件关系. 【详解】若2,6a k k Z ππ=+∈,则cos cos6a π==,若cos 2a =,则2,6a k k Z ππ=+∈或2,6a k k Z ππ=-+∈,故“2,6a k k Z ππ=+∈”是“cos a =”的充分不必要条件, 故选:A.二、填空题13.若则【分析】直接根据逆否命题的概念即可得结果【详解】依题意原命题的逆否命题为若则故答案为:若则解析:若220x y +=,则0x ≤ 【分析】直接根据逆否命题的概念即可得结果. 【详解】依题意,原命题的逆否命题为“若220x y +=,则0x ≤”, 故答案为:若220x y +=,则0x ≤.14.假【分析】列举特殊值判断真假命题【详解】当时所以命题若实数ab 满足则且是假命题故答案为:假解析:假 【分析】列举特殊值,判断真假命题. 【详解】当0,6a b ==时,25a b +>,所以,命题“若实数a ,b 满足25a b +>,则2a >且1b >”是假命题. 故答案为:假15.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.16.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键解析:假 【分析】根据否命题的定义,写出并判断命题的真假. 【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假. 【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.17.②④⑤【分析】根据四种命题的相互转化即可判断②③真假判断利用特称命题的否定即可判断①利用充分必要条件的定义即可判断④利用相关系数的概念即可判断⑤【详解】①命题的非命题是;不正确②命题已知x 若则或的逆解析:②④⑤ 【分析】根据四种命题的相互转化即可判断②、③真假判断.利用特称命题的否定,即可判断①,利用充分必要条件的定义即可判断④,利用相关系数的概念即可判断⑤. 【详解】①命题“x ∃∈R ,20x x -≤”的非命题是“x ∀∈R ,20x x ->”;不正确②命题“已知x ,y ∈R ,若3x y +≠,则2x ≠或7y ≠”的逆否命题是“已知x ,y ∈R ,若2x =且7y =,则3x y +=”正确③命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题是“若函数()221f x ax x =+-只有一个零点,则1a =-”a 有可能是零,不正确④命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,正确⑤若n 组数据()11,x y ,…,(),n n x y 的散点都在21y x =-+上,则x ,y 成负相关相关系数1r =-,正确 故答案为:②④⑤ 【点睛】本题主要考查了四大命题的转化,以及特称命题的否定,考查了充分必要条件的判断,以及相关系数的判断,属于综合类题目,属于中档题.18.若是偶数则都是偶数【解析】逆命题就是将结论和条件互换位置即可故逆命题应该为:若是偶数则都是偶数故答案为若是偶数则都是偶数解析:若+a b 是偶数,则a 、b 都是偶数 【解析】逆命题就是将结论和条件互换位置即可.故逆命题应该为:若a b +是偶数,则a 、b 都是偶数.故答案为若a b +是偶数,则a 、b 都是偶数.19.充分不必要【分析】先化简集合A 再利用集合法判断即可【详解】因为所以AB 所以是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法属于基础题解析:充分不必要 【分析】先化简集合A ,再利用集合法判断即可. 【详解】 因为{}001,{03}1x A xx x B x x x ⎧⎫=<=<<=<<⎨⎬-⎩⎭,所以A B ,所以“m A ∈”是“m B ∈”的充分不必要条件, 故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法,属于基础题.20.【解析】的面积为或若可得与三角形内角和定理矛盾在中由余弦定理可得:在中由正弦定理可得:故答案为【方法点睛】以三角形为载体三角恒等变换为手段正弦定理余弦定理为工具对三角函数及解三角形进行考查是近几年高解析:3【解析】2,6,AC BC ABC==∆的面积为311··sin26sin22AC BC ACB ACB=∠=∠,1sin,26ACB ACBπ∴∠=∴∠=或56π,若5,64ACB BDC BACππ∠=∠=<∠,可得546BAC ACBπππ∠+∠>+>,与三角形内角和定理矛盾,6ACBπ∴∠=,∴在ABC∆中,由余弦定理可得:2232?·cos2622622AB AC BC AC BC ACB=+-∠=+-⨯⨯⨯=6Bπ∴∠=,∴在BCD∆中,由正弦定理可得:16·sin23sin2BC BCDBDC===∠,故答3【方法点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.三、解答题21.(1)112x≤≤;(2)12a≤≤.【分析】(1)由一元二次不等式可得命题p :112x ≤≤,命题q :1322x ≤≤,即可得解;(2)由命题间的关系转化条件为112x x ⎧⎫≤≤⎨⎬⎩⎭{}1x a x a ≤≤+,即可得解. 【详解】不等式22310x x -+≤即()()2110x x --≤,解得112x ≤≤, 不等式2(21)(1)0x a x a a -+++≤即()()10x a x a ---≤,解得1a x a ≤≤+, 则命题p :112x ≤≤,命题q :1a x a ≤≤+, (1)当12a =时,命题p :112x ≤≤,命题q :1322x ≤≤, 若p 和q 都是真命题,则112x ≤≤; (2)因为p 是q 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭{}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且等号不同时成立,解得102a ≤≤,所以实数a 的取值范围为102a ≤≤.22.(][),32,1-∞--【分析】由p q ∨为真,p q ∧为假判断p ,q 中一真一假,分别求出p ,q 为真的参数m 的取值范围,再分类讨论解不等式即可. 【详解】若命题p 为真命题,则2010m m +<⎧⎨->⎩,解得2m <-.若命题q 为真命题,则216(2)160m ∆=+-<, 解得3<1m -<-.又∵p q ∨为真,p q ∧为假,∴p ,q 中一真一假.①若p 真q 假,则满足2m ≤-①,1m ≥-或3m ≤-②,①②必须同时满足,解得3m ≤-;②若p 假q 真,则231m m ≥-⎧⎨-<<-⎩,解得21m -≤<-;综上:(][),32,1m ∈-∞--.【点睛】本题考查由复合命题的真假求解参数范围,属于中档题23.逆命题:若ax 2+bx +c =0(a ,b ,c ∈R)有两个相异实根,则ac<0,是假命题; 否命题:若ac≥0,则ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,是假命题; 逆否命题:若ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,则ac≥0,是真命题.【分析】本题考查的知识点是四种命题及其真假关系,解题的思路:认清命题的条件p 和结论q ,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.【详解】原命题为真命题.逆命题:若ax 2+bx +c =0(a ,b ,c ∈R)有两个相异实根,则ac<0,是假命题; 否命题:若ac≥0,则ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,是假命题; 逆否命题:若ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,则ac≥0,是真命题.【点睛】若原命题为:若p ,则q .逆命题为:若q ,则p .否命题为:若┐p ,则┐q .逆否命题为:若┐q ,则┐p .解答命题问题,识别命题的条件p 与结论q 的构成是关键,24.(1) 45x ≤≤;(2) 24m ≤≤【分析】(1)先由题意得到:p 15x ≤≤,:q 46x ≤≤,再由“p 且q ”为真,即可得出结果;(2)根据q 是p 的充分条件,得到{}|11x m x m -≤≤+是{}x |15x ≤≤的子集,列出不等式求解,即可得出结果.【详解】解:()1由题意:p 15x ≤≤,:q 46x ≤≤,“p 且q ”为真,p ∴, q 都为真命题,得45x ≤≤()2又q 是p 的充分条件,则{}|11x m x m -≤≤+是{}x |15x ≤≤的子集,1115m m -≥⎧∴⎨+≤⎩24m ∴≤≤【点睛】本题主要考查由命题的真假求参数的问题,熟记复合命题真假的判断即可,属于常考题型. 25.102a <≤或1a ≥. 【分析】先通过指数函数的单调性求出p 为真命题的a 的范围,再通过构造函数求绝对值函数的最值进一步求出命题q 为真命题的a 的范围,分p 真q 假与p 假q 真两类求出a 的范围即可.【详解】由函数x y a =在R 上单调递减知01a <<所以命题p 为真命题时a 的取值范围是01a << 令2y x x a =+-则222),{2(2).x a x a y a x a -≥=<(,不等式21x x a +->的解集为R 只要min 1y >即可,而函数y 在R 上的最小值为2a所以21a >,即1.2a >即q 真⇔1.2a > 若p 真q 假,则10;2a <≤若p 假q 真,则1a ≥ 所以命题p 和q 有且只有一个命题正确时a 的取值范围是102a <≤或1a ≥. 【点睛】解决复合命题的真假问题一般通过真值表将复合命题的真假问题转化为构成它的简单命题的真假来解决.26.(1)[)4,+∞;(2)[)(]3,26,7-.【分析】(1)p 是q 的充分条件转化为集合的包含关系即可求解;(2)“p q ∨”为真命题,“p q ∧”为假命题转化为,p q 一真一假,分情况讨论,然后求并集即可.【详解】解:(1):26p x -≤≤,∵p 是q 的充分条件,∴[]2,6-是[]2,2m m -+的子集,022426m m m m >⎧⎪-≤-⇒≥⎨⎪+≥⎩,∴m 的取值范围是[)4,+∞.(2)由题意可知,当5m =时,,p q 一真一假, p 真q 假时,即[]2,6x ∈-且()(),37,x ∈-∞-+∞,所以x ∈∅, p 假q 真时,()(),26,x ∈-∞-+∞且[]3,7x ∈-,所以[)(]3,26,7x ∈--, 所以实数x 的取值范围是[)(]3,26,7-.【点睛】考查由充分条件确定参数的范围以及由命题的真假确定参数的范围,中档题.。

(典型题)高中数学选修1-1第一章《常用逻辑用语》检测(有答案解析)

(典型题)高中数学选修1-1第一章《常用逻辑用语》检测(有答案解析)

一、选择题1.命题“2,10x R x x ∀∈-+>”的否定是( )A .2,10x R x x ∃∈-+<B .2,10x R x x ∃∈-+≤C .2,10x R x x ∀∈-+<D .2,10x R x x ∀∈-+≤2.已知命题:,sin cos p x R x x ∀∈<,则p 命题的否定为( ) A .:,sin cos p x R x x ⌝∃∈> B .:,sin cos p x R x x ⌝∀∈> C .:,sin cos p x R x x ⌝∃∈≥D .:,sin cos p x R x x ⌝∀∈≥3.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃4.现有下列说法:①若0x y +=,则||x y x y -=-; ②若a b >,则a c b c ->-;③命题“若0x ,则21x x +”的否命题是“若0x ,则21x x +<”. 其中正确说法的个数为( ) A .0 B .1C .2D .35.“22320x x --<”的一个必要不充分条件可以是( )A .1x >-B .01x <<C .1122x -<< D .1x <6.命题“x R ∀∈,24cos 0x x +>”的否定为( ) A .x R ∀∈,24cos 0x x +< B .x R ∀∈,24cos 0x x +≤ C .x R ∃∈,24cos 0x x +<D .x R ∃∈,24cos 0x x +≤7.方程“22ax by c +=表示双曲线”是“0ab <”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件8.设α,β为两个不同的平面,l ,m 为两条不同的直线,且m α⊥,l β//,则“//l m ”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID -19(新冠肺炎)新冠肺炎,患者症状是发热、干咳、浑身乏力等外部表征.“新冠肺炎患者”是“患者表现为发热、干咳、浑身乏力”的( ) 已知该患者不是无症状感染者.............A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.命题“[]1,0x ∀∈-,2320x x -+>”的否定是( )A .[]1,0x ∀∈-,2320x x -+<B .[]1,0x ∀∈-,2320x x -+≤C .[]01,0x ∃∈-,200320x x -+≤D .[]01,0x ∃∈-,200320x x -+<11.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要12.命题“00x ∃>,200230x x -+<”的否定是( ) A .00x ∃≤,200230x x -+<B .0x ∀≤,2230x x -+<C .00x ∃>,200230-+≥x xD .0x ∀>,2230x x -+≥二、填空题13.命题“2,0x R x x ∀∈+>”的否定是___________.14.命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,则m 的取值范围为__________.15.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________.16.已知p :“关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆”q :“实数m 满足()(4)0m a m a ---<.若p 是q 的充分不必要条件”,则实数a 的取值范围是__________.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”) 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________.20.能够说明“存在两个不相等的正数a 、b ,使得a b ab -=是真命题”的一组有序数对(),a b 为______.三、解答题21.已知集合{}2680A x x x =-+<,集合()(){}30,0B x x m x m m =--. (1)若1B ∈,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.22.已知命题2:30p x mx -+≥对x R ∀∈恒成立,命题:q 方程22126x ym m+=--表示的曲线为焦点在x 轴上的椭圆,且p q ∨为真命题,求m 的取值范围.23.命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线. (1)若命题q 为真命题,求实数m 的取值范围; (2)若Р是q 的充分不必要条件,求实数a 的取值范围.24.已知命题:“{}|22x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设关于x 的不等式()()80x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的必要条件,求a 的取值范围.25.已知命题P :[1,2]x ∀∈,20x a -≥;命题Q :0x R ∃∈,使得200(1)10x a x +-+<.若“P或Q ”为真,“P 且Q ”为假,求实数a 的取值范围.26.若a ,b ,c ∈R ,写出命题“若ac<0,则ax 2+bx +c =0有两个相异实根”的逆命题、否命题、逆否命题,并判断它们的真假.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】全称命题的否定是特称命题 【详解】命题“2,10x R x x ∀∈-+>”的否定是“2,10x R x x ∃∈-+≤”.故选:B2.C解析:C 【分析】根据全称命题与存在性命题的关系,准确改写,即可求解. 【详解】根据全称命题与存在性命题的关系,可得全称命题:“:,sin cos p x R x x ∀∈<”的否定为“:,sin cos p x R x x ⌝∃∈≥”. 故选:C.3.D解析:D 【分析】利用全程命题的否定直接写出答案.由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.4.B解析:B 【分析】根据绝对值的定义,不等式的性质,命题的否命题的定义分别判断. 【详解】逐一考查所给的说法:①当1x =-,1y =时,0x y +=,不满足||x y x y -=-,①错误;②由不等式的性质可知,若a b >,则a c b c ->-,②正确;③命题的否命题为“若0x <,则21x x +<”,③错误综上可得,正确的说法只有1个. 故选:B .5.A解析:A 【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可. 【详解】22320x x --<等价于122x -<<,对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件;对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A .方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.6.D解析:D 【分析】全称命题的否定为特称命题,即可选出答案. 【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D7.A解析:A 【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果. 【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠;若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A8.A解析:A 【分析】根据充分条件的定义,结合线面关系的性质、定理判断推出关系,即可知“//l m ”与“αβ⊥”的充分、必要关系. 【详解】由m α⊥,//l m ,则l α⊥,而l β//,所以αβ⊥; 由l β//,αβ⊥,m α⊥,不能确定//l m . ∴“//l m ”是“αβ⊥”的充分不必要条件. 故选:A9.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征,充分的同,但有发热、干咳、浑身乏力等外部表征的不一定是新冠肺炎患者,不必要,即为充分不必要条件. 故选:A .10.C解析:C 【分析】利用全称命题的否定为特称命题可直接得. 【详解】根据全称命题的否定是特称命题可得,“[]1,0x ∀∈-,2320x x -+>”的否定为“[]01,0x ∃∈-,200320x x -+≤”.故选:C.11.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.12.D解析:D 【分析】直接利用特称命题的否定是全称命题求解即可. 【详解】因为特称命题的否定是全称命题,否定特称命题时既要改变量词又要否定结论,所以命题“00x ∃>,200230x x -+<”的否定是0x ∀>,2230x x -+≥,故选:D.二、填空题13.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤” 故答案为:2,0x R x x ∃∈+≤14.【分析】根据命题满足不等式是假命题转化为不等式恒成立利用判别式法求解【详解】因为命题满足不等式是假命题所以不等式恒成立则解得所以m 的取值范围为故答案为: 解析:[]4,4-【分析】根据命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,转化为x R ∀∈,不等式240x mx ++≥,恒成立,利用判别式法求解.【详解】因为命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,所以x R ∀∈,不等式240x mx ++≥,恒成立, 则2160m ∆=-≤, 解得44m -≤≤, 所以m 的取值范围为[]4,4-, 故答案为:[]4,4-15.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.16.【分析】根据充分不必要条件的定义结合圆的方程特征一元二次不等式的解法集合之间的关系进行求解即可【详解】当关于xy 的方程表示圆时由所以有即当实数m 满足时由即因为p 是q 的充分不必要条件所以即因此实数a解析:[3,2]--【分析】根据充分不必要条件的定义,结合圆的方程特征、一元二次不等式的解法、集合之间的关系进行求解即可. 【详解】当关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆时,由2222224520(2)2x y mx m m x m y m m +-++-=⇒-+=--+, 所以有22021m m m --+>⇒-<<,即(2,1)∈-m , 当实数m 满足()(4)0m a m a ---<时,由()(4)04m a m a a m a ---<⇒<<+,即(,4)m a a ∈+ 因为p 是q 的充分不必要条件,所以(2,1)- (,4)a a +,即14322a a a ≤+⎧⇒-≤≤-⎨≤-⎩, 因此实数a 的取值范围是[3,2]--. 故答案为:[3,2]--17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键解析:假 【分析】根据否命题的定义,写出并判断命题的真假. 【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假. 【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.答案不唯一【分析】由得出由得出然后取一对特殊值即可【详解】由得出由得取则所以满足题中条件的一组有序实数对可以是故答案为答案不唯一【点睛】本题考查存在量词与特称命题主要考查学生的运算能力和转化能力属于解析:11,2⎛⎫⎪⎝⎭答案不唯一【分析】由a b ab -=得出1ba b=-,由0a >,0b >,得出01b <<,然后取一对特殊值即可. 【详解】由a b ab -=得出1b a b =-,由01ba b=>-,0b >,得01b <<, 取12b =,则1a =,所以满足题中条件的一组有序实数对可以是11,2⎛⎫⎪⎝⎭. 故答案为11,2⎛⎫⎪⎝⎭答案不唯一.【点睛】本题考查存在量词与特称命题,主要考查学生的运算能力和转化能力,属于中等题.三、解答题21.(1)1(,1)3;(2)4[,2]3.【分析】(1)根据不等式的解法,先求得集合,A B ,根据1B ∈,列出不等式组,即可求得实数m 的取值范围;(2)由“x A ∈”是“x B ∈”成立的充分不必要条件,得到集合A 是集合B 的真子集,列出不等式组,即可求解.(1)由不等式2(2)(48)06x x x x --+=<-,解得24x <<,所以集合{}|24A x x =<<,因为0m >,所以3m m <,所以集合{}|3B x m x m =<<,因为1B ∈,所以131m m <⎧⎨>⎩ ,解得113m <<,即实数m 的取值范围1(,1)3. (2)若“x A ∈”是“x B ∈”成立的充分不必要条件,即集合A 是集合B 的真子集, 则满足243m m ≤⎧⎨<⎩或243m m<⎧⎨≤⎩,解得423m <≤或423m ≤<,所以423m ≤≤,即实数m 的取值范围4[,2]3.22.[(4,6)-【分析】分别求出命题,p q 为真时m 的范围,然后求并集求得结论. 【详解】若p 为真命题,则2120m ∆=-≤,即m -≤若q 为真命题,则206026m m m m ->⎧⎪->⎨⎪->-⎩,得46m <<由于p q ∨为真命题,则m -≤46m <<∴m的取值范围为[(4,6)-.故答案为:[(4,6)-.【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:23.(1)15m <<;(2)512a ≤≤【分析】 (1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m 满足方程22115x y m m +=--表示双曲线, 则()()150m m --<,解得15m <<,(2)实数m 满足不等式()223200m am a a -+<>,解得2<<a m a , 若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,所以1250a a a ≥⎧⎪≤⎨⎪>⎩,解得512a ≤≤, 所以若p 是q 的充分不必要条件,求实数a 的取值范围是512a ≤≤. 【点睛】易错点睛:若p 是q 的充分不必要条件则{}|2a a m a <<是{}|26m m <<的真子集,一般情况下需要考虑{}|2a a m a <<=∅的情况,此情况容易被忽略,但题目中已经给出0a >,很明显{}|2a a m a <<≠∅. 24.(1)164⎡⎫-⎪⎢⎣⎭,;(2)124⎡⎫--⎪⎢⎣⎭,. 【分析】(1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的取值范围,从而可求集合M ;(2)若x ∈N 是x M ∈的必要条件,则M N ⊆即可得到不等式,从而求出参数的取值范围;【详解】解:(1)由题意可知20x x m --=,所以221124m x x x ⎛⎫=-=-- ⎪⎝⎭,因为{}|22x x x ∈-<<,所以21116244x ⎛⎫⎡⎫--∈- ⎪⎪⎢⎝⎭⎣⎭,,即164m -≤<,则实数m 的取值集合M=164⎡⎫-⎪⎢⎣⎭,; (2)由()()80x a x a ---<,可得()8N a a =+,,因为“x N ∈”是“x M ∈”的必要条件,所以M N ⊆,则1486a a ⎧<-⎪⎨⎪+≥⎩,解得124a -≤<-,所以a 的取值范围为124⎡⎫--⎪⎢⎣⎭,. 【点睛】本题考查必要条件求参数的取值范围,一般可根据如下规则判断计算:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对的集合与p 对应集合互不包含. 25.3a >或11a -≤≤.【分析】分别判断出P ,Q 为真时的a 的范围,通过讨论P ,Q 的真假,得到关于a 的不等式组,解出即可.【详解】11a -≤≤或3a >由条件知,2a x ≤对[]1,2x ∀∈成立,∴1a ≤;∵0x R ∃∈,使得()200110x a x +-+<成立.∴不等式()200110x a x +-+<有解,∴()2140a ∆=-->,解得3a >或1a <-; ∵P 或Q 为真,P 且Q 为假,∴P 与Q 一真一假.①P 真Q 假时,11a -≤≤;②P 假Q 真时,3a >.∴实数a 的取值范围是3a >或11a -≤≤.【点睛】本题借助考查了复合命题的真假判定,考查了特称命题与全称命题,解决此类问题应该先求出简单命题为真时参数的范围.26.逆命题:若ax 2+bx +c =0(a ,b ,c ∈R)有两个相异实根,则ac<0,是假命题; 否命题:若ac≥0,则ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,是假命题; 逆否命题:若ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,则ac≥0,是真命题.【分析】本题考查的知识点是四种命题及其真假关系,解题的思路:认清命题的条件p 和结论q ,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.【详解】原命题为真命题.逆命题:若ax2+bx+c=0(a,b,c∈R)有两个相异实根,则ac<0,是假命题;否命题:若ac≥0,则ax2+bx+c=0(a,b,c∈R)没有两个相异实根,是假命题;逆否命题:若ax2+bx+c=0(a,b,c∈R)没有两个相异实根,则ac≥0,是真命题.【点睛】若原命题为:若p,则q.逆命题为:若q,则p.否命题为:若┐p,则┐q.逆否命题为:若┐q,则┐p.解答命题问题,识别命题的条件p与结论q的构成是关键,。

(典型题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)

(典型题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)

一、选择题1.下列选项中,p 是q 的必要不充分条件的是( ) A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 2.“0m >”是“不等式20x x m -+>在R 上恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充分必要条件 3.“22320x x --<”的一个必要不充分条件可以是( )A .1x >-B .01x <<C .1122x -<< D .1x <4.“ 1.5x >-”是“10x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞6.方程“22ax by c +=表示双曲线”是“0ab <”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件7.语句“若a b >,则a c b c +>+”是( ) A .不是陈述句B .真命题C .假命题D .不能判断真假8.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭9.一个平面内存在一条与另一个平面垂直的直线是这两个平面垂直的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 10.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 11.设直线l 的方向向量是a ,平面α的法向量是n ,则“//l α”是“a n ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 12.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;14.已知命题p :0R x ∃∈,使得20010ax ax +-≥.若p ⌝是真命题,则实数a 的取值范围为________.15.已知命题“x R ∀∈,240x x a -+>”的否定是______.16.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________.17.若命题“x R ∃∈,使得2kx x k >+成立”是假命题,则实数k 的取值范围是________. 18.下列五个命题中正确的是_____.(填序号)①若ABC 为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则2a b =;②若cos cos a A b B =,则ABC 是等腰三角形;③若a b <,x ∈R ,则b b x a a x+<+; ④设等差数列{}n a 的前n 项和为n S ,若202011S S -=,则20211S >; ⑤函数2()f x =的最小值为2.19.写出命题“若22am bm <,则a b <”的否命题______. 20.命题“对任意x ∈R ,都有2x x ≤”的否定是____________.三、解答题21.已知命题p :不等式240x x m -+≥对x R ∀∈恒成立,命题q :2450m m --≥.若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.22.已知0m >,2:4120p x x --≤,:22q m x m -≤≤+.(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,命题p 、q 其中一个是真命题,一个是假命题,求实数x 的取值范围. 23.已知25m >且2523,()23,()log 5m m f x x x g x x -≠=++=,:p 当x ∈R 时,()f x m >恒成立,:()q g x 在(0,)+∞上是增函数.(1)若q 为真命题,求m 的取值范围; (2)若p 为真命题,求m 的取值范围;(3)若在“p 且q ”和“p 或q ”中有且仅有一个是真命题,求m 的取值范围.24.设命题:p 关于x 的不等式1x a >(0a >且1)a ≠的解集为(,0)-∞;命题:q 函数()2()ln 2f x ax x =-+的定义域是R .如果命题“p q ∨”为真命题,“p q ∧”为假命题,求a的取值范围.25.已知:p 22a -<<,q :关于x 的方程20x x a -+=有实数根. (1)若q 为真命题,求实数a 的取值范围;(2)若p q ∨为真命题,q ⌝为真命题,求实数a 的取值范围.26.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.2.B解析:B 【分析】不等式20x x m -+>在R 上恒成立转化为14m >,根据充分条件、必要条件可求解. 【详解】不等式20x x m -+>在R 上恒成立,等价于=140m ∆-<,即14m >当0m >时推不出14m >,104m m >⇒>成立,故“0m >”是“不等式20x x m -+>在R 上恒成立”的必要不充分条件, 故选:B3.A解析:A 【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可. 【详解】22320x x --<等价于122x -<<,对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件;对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A . 【点睛】方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.4.B解析:B 【分析】 用集合法判断,即可. 【详解】10x +>,得1x >-,所以“ 1.5x >-是“1x >-”的必要不充分条件.故选B . 【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.5.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解. 【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.6.A解析:A 【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果. 【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠;若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A7.B解析:B 【分析】利用不等式的性质以及命题与真命题的定义求解即可. 【详解】因为可以判断真假的语句叫命题,判断为真的语句叫做真命题,而当a b >时,a c b c +>+一定 成立. 所以语句“若a b >,则a c b c +>+”是真命题 故选:B .8.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.9.C解析:C 【分析】利用线面垂直的判定定理来判断. 【详解】根据线面垂直的判定定理:一个平面内存在一条与另一个平面垂直的直线可以推出这两个平面垂直;反过来,两个平面垂直也能够推出一个平面内存在一条与另一个平面垂直的直线. 故选:C 【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.10.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.11.A解析:A 【分析】分别从充分性和必要性两方面判断. 【详解】由//l α,得a n ⊥,则“//l α”是“a n ⊥”的充分条件,而a n ⊥不一定有//l α,也可能l α⊂,则“//l α”不是“a n ⊥”的必要条件.故选:A 【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.12.A解析:A 【分析】由条件推结论可判断充分性,由结论推条件可判断必要性. 【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==. 所以“αβ=”是“sin sin αβ=”成立的充分不必要条件. 故选:A.二、填空题13.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥,故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.14.【分析】由得出然后分和讨论即可得结果【详解】解:由于则当时显然满足题意;当时解得综上可知:实数a 的取值范围是 解析:(]1,0-【分析】由p 得出p ⌝,然后分0a =和0a ≠讨论即可得结果. 【详解】解:由于2000:,210p x R ax ax ∃∈+-≥,则200020:,1p x R ax ax ∀∈+-<⌝, 当0a =时,10-<,显然满足题意; 当0a ≠时,2440a a a <⎧⎨∆=+<⎩,解得10a -<<, 综上可知:实数a 的取值范围是(]1,0-.15.【分析】由全称命题的否定即可得解【详解】因为命题为全称命题所以该命题的否定为故答案为:解析:x R ∃∈,240x x a -+≤ 【分析】由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.16.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围. 【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立, 又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 17.【分析】由题意可知命题是真命题可得出由此可解得实数的取值范围【详解】由于命题使得成立是假命题则命题是真命题所以解得因此实数的取值范围是故答案为:【点睛】本题考查利用特称命题的真假求参数同时也考查了一 解析:[]0,4【分析】由题意可知,命题“x R ∀∈,20x kx k -+≥”是真命题,可得出0∆≤,由此可解得实数k 的取值范围. 【详解】由于命题“x R ∃∈,使得2kx x k >+成立”是假命题,则命题“x R ∀∈,20x kx k -+≥” 是真命题.所以,240k k ∆=-≤,解得04k ≤≤. 因此,实数k 的取值范围是[]0,4. 故答案为:[]0,4. 【点睛】本题考查利用特称命题的真假求参数,同时也考查了一元二次不等式恒成立问题的求解,考查计算能力,属于基础题.18.①④【分析】利用三角函数恒等变换公式和正弦定理余弦定理判断①②由不等式的性质判断③根据等差数列前项和与等差数列性质判断④应用基本不等式判断⑤【详解】①∵∴∴又为锐角∴由正弦定理和①正确;②∵由正弦定解析:①④ 【分析】利用三角函数恒等变换公式和正弦定理、余弦定理判断①②,由不等式的性质判断③,根据等差数列前n 项和与等差数列性质判断④,应用基本不等式判断⑤. 【详解】①∵()sin 12cos 2sin cos cos sin B C A C A C +=+,∴sin 2sin cos sin cos sin()sin cos sin B B C A C A C A C B +=++=+,∴2sin cos sin cos B C A C =,又C 为锐角,cos 0C ≠,∴2sin sin B A =,由正弦定理和2b a =.①正确;②∵cos cos a A b B =,由正弦定理得sin cos sin cos A A B B =,即2sin cos 2sin cos A A B B =,sin 2sin 2A B =,又,A B 是三角形内角,∴22A B =或22180A B +=︒,∴A B =或90A B +=︒,ABC 是等腰三角形或直角三角形,②错;③0x =时,b b xa a x+=+,不等式不成立,③错误;④∵{}n a 是等差数列,202011S S -=,∴2320201a a a +++=,220202019()12a a +=,2202022019a a +=, ∴120212021220202021()2021202122021()122220192019a a S a a +==+=⨯=>,④正确;⑤22()2f x ===≥=,=,即241x +=时,等号成立,但2441x +≥>,因此不等式中等号不成立,2不是()f x 的最小值(可利用单调性得最小值为52).⑤错. 故答案为:①④ 【点睛】本题考查命题的真假判断,考查正弦定理、三角函数的恒等变换,不等式的性质,等差数列的性质与前n 项和,考查基本不等式求最值的条件.需要掌握的知识点较多,属于中档题.19.若则【分析】根据否命题的定义即可求出【详解】命题若则的否命题为若则故答案为若则【点睛】本题考查了四种命题之间的关系属于基础题解析:若22am bm ≥,则a b ≥ 【分析】根据否命题的定义即可求出. 【详解】命题“若22am bm <,则a b <”的否命题为若22am bm ≥,则a b ≥, 故答案为若22am bm ≥,则a b ≥ 【点睛】本题考查了四种命题之间的关系,属于基础题.20.存在使得【分析】全称改存在再否定结论即可【详解】命题对任意都有的否定是存在使得故答案为:存在使得【点睛】本题考查全称命题的否定属于基础题解析:存在0x R ∈,使得002x x >【分析】全称改存在,再否定结论即可 【详解】命题“对任意x ∈R ,都有2x x ≤”的否定是“存在0x R ∈,使得002x x >”故答案为:存在0x R ∈,使得002x x >【点睛】本题考查全称命题的否定,属于基础题三、解答题21.(,1][4,5)-∞-【分析】先求得命题,p q 为真命题时,实数m 的范围,再根据p q ∧为假命题,p q ∨为真命题,得到p 和q 一真一假,分类讨论,即可求解.【详解】若p 为真命题,即不等式240x x m -+≥对x R ∀∈恒成立,可得1640m -≤,解得4m ≥,若q 为真命题,由2450m m --≥,解得5m ≥或1m ≤-,因为p q ∧为假命题,p q ∨为真命题,所以p 和q 一真一假当p 真q 假时,可得415m m ≥⎧⎨-<<⎩,解得45m ≤< 当p 假q 真时,可得451m m m <⎧⎨≥≤-⎩或,解得1m ≤- 综上所述,实数m 的取值范围是(,1][4,5)-∞-.22.(1)[)4,+∞;(2)[)(]3,26,7--.【分析】 (1)由p 是q 的充分条件,可得出[][]2,62,2m m -⊆-+,可得出关于正实数m 的不等式组,由此可解得实数m 的取值范围;(2)求出q ,分p 真q 假和p 假q 真两种情况讨论,求出两种不同情况下x 的取值范围,综合可求得结果.【详解】解:解不等式24120x x --≤,解得26x -≤≤,即:26p x -≤≤.(1)p 是q 的充分条件,[]2,6-∴是[]2,2m m -+的子集,故02226m m m >⎧⎪-≤-⎨⎪+≥⎩,解得:4m ≥,所以m 的取值范围是[)4,+∞; (2)当5m =时,:37p m -≤≤,由于命题p 、q 其中一个是真命题,一个是假命题,分以下两种情况讨论:①p 真q 假时,2673x x x -≤≤⎧⎨><-⎩或,解得x ∈∅; ②p 假q 真时,6237x x x ><-⎧⎨-≤≤⎩或,解得32x -≤<-或67x <≤. 所以实数x 的取值范围为[)(]3,26,7--.【点睛】结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 23.(1)3,5⎛⎫+∞ ⎪⎝⎭;(2)233,(,2)555⎛⎫⋃⎪⎝⎭;(3)23,[2,)55⎛⎫⋃+∞ ⎪⎝⎭. 【分析】(1)根据q 为真命题,由对数函数的底数大于1求解;(2)根据p 为真命题,则由min ()f x m >求解;(3)根据在“p 且q ”和“p 或q ”中有且仅有一个是真命题,则分p 真q 假,p 假q 真两种情况讨论求解.【详解】(1)因为q 为真命题,所以521m ->, 解得35m >,又25m >,且35m ≠, 所以m 的取值范围是3,5⎛⎫+∞ ⎪⎝⎭; (2)因为p 为真命题,所以min ()f x m >而()22()23122f x x x x =++=++≥,所以2m <,又25m >,且35m ≠, 所以m 的取值范围是233,(,2)555⎛⎫⋃⎪⎝⎭; (3)若在“p 且q ”和“p 或q ”中有且仅有一个是真命题,则可能有两种情况,p 真q 假,p 假q 真,当p 真q 假时,233,(,2)555m ⎛⎫∈⋃⎪⎝⎭,且23,55m ⎛⎫∈ ⎪⎝⎭, 所以23,55m ⎛⎫∈ ⎪⎝⎭, 当p 假q 真时,[2,)m ∈+∞,且3,5m ⎛⎫∈+∞ ⎪⎝⎭, 所以[2,)m ∈+∞,综上:m 的取值范围是23,[2,)55⎛⎫⋃+∞⎪⎝⎭【点睛】 本题主要考查命题真假的应用以及对数函数的单调性,不等式恒成立问题,还考查了逻辑推理的能力,属于中档题.24.()10,1,8⎛⎤+∞ ⎥⎝⎦【分析】先分别假设p ,q 为真命题,求出对应的a 的范围,再根据题意,得到p 和q 有且只有一个是真命题,由此可求出结果.【详解】由题意,若p 为真命题,则01a <<;若q 为真命题,则220ax x -+>对任意x ∈R 恒成立,所以0180a a >⎧⎨∆=-<⎩,解得18a >; 因为命题“p q ∨”为真命题,“p q ∧”为假命题,所以p 和q 有且只有一个是真命题. 若p 真q 假,则0118a a <<⎧⎪⎨≤⎪⎩,解得108a <≤; 若p 假q 真,则118a a >⎧⎪⎨>⎪⎩,综上所述:()10,1,8a ⎛⎤∈+∞ ⎥⎝⎦. 【点睛】本题主要考查由复合命题的真假求参数的问题,涉及一元二次不等式恒成立问题,属于基础题型.25.(1)14a ≤;(2)124a << 【分析】(1)关于x 的方程x 2﹣x+a=0有实数根,则△=1﹣4a≥0,解得a 的范围.(2)由题意得p 为真命题,q 为假命题求解即可.【详解】(1)方程20x x a -+=有实数根,得::140q a ∆=-≥得14a ≤; (2)p q ∨为真命题,q ⌝为真命题∴ p 为真命题,q 为假命题,即2214a a -<<⎧⎪⎨>⎪⎩得124a <<. 【点睛】本题考查了一元二次方程的实数根与判别式的关系、复合命题真假的判断方法,考查了推理能力,属于基础题.26.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<; (2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<. 所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.。

数学选修1-1第一章试卷及答案

数学选修1-1第一章试卷及答案

绝密★启用前第一章复习题没想到吧,我(第一章)又回来了!!!考试范围:第一章;考试时间:100分钟;命题人MJW分卷I一、单选题(注释)分卷II二、填空题(注释)三、解答题(注释)1、已知p:3x+m<0,q:x2-2x-3>0,若p是q的一个充分不必要条件,求m的取值范围.2、已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若非p是非q的充分不必要条件,求实数m 的取值范围.3、求关于x的方程ax2+x+1=0至少有一个负实根的充要条件.4、设命题p:函数f(x)=log a a|x|在(0,+∞)上单调递增,命题q:关于x的方程x2+2x+log a a=0的解集只有一个子集.若“p或q”为真,“非p或非q”也为真,求实数a的取值范围.5、若x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.6、(1)已知关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,求实数a的取值范围;(2)令p(x):ax2+2x+1>0,若对x∈R,p(x)是真命题,求实数a的取值范围.7、已知命题p:“至少存在一个实数x∈[1,2],使不等式x2+2ax+2-a>0成立”为真,试求参数a的取值范围.8、已知a>0,且a≠1,设命题p:函数y=log a a(x+1)在(0,+∞)上单调递减,命题q:曲线y =x2+(2a-3)x+1与x轴交于不同的两点,若“非p且q”为真命题,求实数a的取值范围.9、已知p:2x2-9x+a<0,q:且p是q的充分条件,求实数a的取值范围.10、已知:p:方程x2+mx+1=0有两个不等的负实数根;q:方程4x2+4(m-2)x+1=0无实数根,若“p∨q”为真命题,且“p∧q”是假命题,求实数m的取值范围.。

高中数学选修1-1全册章节测试题集含答案

高中数学选修1-1全册章节测试题集含答案

人教A版高中数学选修1-1全册章节测试题目录1.1命题及其关系(同步练习)1.2 充分条件与必要条件同步测试.1.3_1.4试题(新人教选修1-1).1.3简单的逻辑联结词(同步练习)1.4全称量词与存在量词同步测试(新人教选修1-1).2.1《椭圆的几何性质》测试题2.1椭圆同步测试2.2双曲线几何性质测试2.2双曲线及其标准方程练习2.3抛物线及其标准方程习题精选2.3抛物线及其标准方程同步试题3.1变化率与导数(同步练习)3.2.1导数习题3.2.2 导数的运算法则习题3.3.3 函数的最大值与最小值练习题3.3《导数在研究函数中的应用》习题3.4生活中的优化问题举例(同步练习)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。

2017-2018学年高中数学人教A版选修1-1教学案:第一章1.1命题及其关系含答案

2017-2018学年高中数学人教A版选修1-1教学案:第一章1.1命题及其关系含答案

第1课时命题[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P4,回答下列问题.观察教材P2“思考”中的6个语句.(1)这6个语句都是陈述句吗?提示:是.(2)能否判断这6个语句的真假性?提示:能.2.归纳总结,核心必记命题及相关概念命题错误![问题思考](1)“x〉5”是命题吗?提示:不是.(2)陈述句一定是命题吗?提示:不一定.(3)命题“当x=2时,x2-3x+2=0”的条件和结论各是什么?提示:条件:x=2;结论:x2-3x+2=0.(4)“若p则q"形式的命题一定是真命题吗?提示:不一定.(5)数学中的定义、公理、定理、推论是真命题吗?提示:是.[课前反思](1)命题的定义是:;(2)真、假命题的定义是:;(3)命题的条件和结论的定义是:.[思考]一个语句是命题应具备哪两个要素?提示:(1)是陈述句;(2)可以判断真假.讲一讲1.判断下列语句中,哪些是命题?(链接教材P2-例1) (1)函数f(x)=错误!在定义域上是减函数;(2)一个整数不是质数就是合数;(3)3x2-2x〉1;(4)在平面上作一个半径为4的圆;(5)若sin α=cos α,则α=45°;(6)2100是一个大数;(7)垂直于同一个平面的两条直线一定平行吗?(8)若x∈R,则x2+2>0.[尝试解答] (1)是陈述句,且能判断真假,是命题.(2)是陈述句,且能判断真假,是命题.(3)当x∈R时,3x2-2x与1的大小关系不确定,无法判断其真假,不是命题.(4)不是陈述句,不是命题.(5)是陈述句,且能判断真假,是命题.(6)是陈述句,但是“大数"的标准不确定,所以无法判断其真假,不是命题.(7)不是陈述句,不是命题.(8)是陈述句,且能判断真假,是命题.(1)一个语句是命题应具备两个条件:一是陈述句;二是能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假.若能,就是命题;若不能,就不是命题.(3)还有一些语句,目前无法判断真假,但从事物的本质而论,这些语句是可辨别真假的,尤其是科学上的一些猜想等,这类语句也叫做命题.(4)数学中的定义、公理、定理和推论都是命题.练一练1.下列语句中是命题的有________.(填序号)①地球是太阳的一个行星.②甲型H1N1流感是怎样传播的?③若x,y都是无理数,则x+y是无理数.④若直线l不在平面α内,则直线l与平面α平行.⑤60x+9〉4。

(易错题)高中数学选修1-1第一章《常用逻辑用语》检测(答案解析)(2)

(易错题)高中数学选修1-1第一章《常用逻辑用语》检测(答案解析)(2)

一、选择题1.命题“x R ∃∈,2230x x -+<”的否定是( )A .x R ∃∈,2230x x -+≥B .x R ∀∈,2230x x -+≥C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥2.“∀x ∈R ,e x -x +1≥0”的否定是( )A .∀x ∈R ,e x -x +1<0B .∃x ∈R ,e x -x +1<0C .∀x ∈R ,e x -x +1≤0D .∃x ∈R ,e x -x +1≤0 3.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.“ 1.5x >-”是“10x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列说法中,正确的是( )A .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++>”C .命题“若a b >,则221a b >-”的否命题为“若a b >,则221a b ≤-”D .“a b >”是“22ac bc >”的充分不必要条件7.下列说法错误的是( )A .“1a >”是“11a<”的充分不必要条件 B .“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” C .命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥ D .若p q ∧为假命题,则p ,q 均为假命题8.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin 3πB .13C .2D .π9.命题“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是( ) A .0,4x π⎡⎤∃∉⎢⎥⎣⎦,cos sin x x < B .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <C .0,4x π⎡⎤∀∉⎢⎥⎣⎦,cos sin x x <D .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x ≤ 10.已知命题p :对任意1x >,都有21x >,则p ⌝为( )A .对任意1x >,都有21x ≤B .不存在1x <,使得21x ≤C .存在1x ≤,使得21x >D .存在1x >,使得21x ≤ 11.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.命题“0x ∀≥,20x x -≥”的否定是( ) A .0x ∃<,20x x -< B .0x ∀>,20x x -<C .0x ∃≥,20x x -≥D .0x ∃≥,20x x -< 二、填空题13.已知命题:0p x ∀>,x e ex >,写出命题p 的否定:___________.14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件;③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题;15.已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题,则实数k 的取值范围是___________.16.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 17.命题“2,0x R x x ∀∈+≤”的否定是__________.18.命题“0x ∃>,30x >”的否定为______.19.已知命题p :“∀x ∈[1,2],x 2+1≥a ”,命题q :“∃x 0∈R ,x 02+2ax 0+1=0”,若命题“¬p ∨¬q ”是假命题,则实数a 的取值范围是_____.20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________. 三、解答题21.已知集合{}1A x a x a =-≤≤,{}2430B x x x =-+≤.若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.22.已知命题p :“存在a R ∈,使函数2()21f x x ax =-+在[1,)+∞上单调递增”,命题q :“存在a R ∈,使x R ∀∈,210x ax -+≠”.若命题“p q ∧”为真命题,求实数a 的取值范围.23.已知a R ∈,命题p :函数()()22log 1f x ax ax =++的定义域为R ;命题q ;关于α的不等式210x ax -+≤在1,22⎡⎤⎢⎥⎣⎦上有解. (1)若命题p 是真命题,求实数a 的取值范围;(2)若命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.24.已知命题[]2:1,2,320p x x mx ∀∈-+<;命题q :函数m y x x=+在区间0,1上单调递减.其中m 为常数.(1)若p 为真命题,求m 的取值范围;(2)若()p q ⌝∧为真命题,求m 的取值范围.25.设命题:p 关于x 的不等式1x a >(0a >且1)a ≠的解集为(,0)-∞;命题:q 函数()2()ln 2f x ax x =-+的定义域是R .如果命题“p q ∨”为真命题,“p q ∧”为假命题,求a 的取值范围.26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用特称命题的否定可得出结论.【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.2.B解析:B【分析】由全称命题的否定即可得解.【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题,所以该命题的否定为:∃x ∈R ,e x -x +1<0.3.A解析:A【分析】根据充分条件和必要条件的定义即可求解.【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l ,若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件,故选:A4.B解析:B【分析】用集合法判断,即可.【详解】10x +>,得1x >-,所以“ 1.5x >-是“1x >-”的必要不充分条件.故选B .【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.5.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.6.A【分析】对四个选项,一个一个选项验证:对于A:由复合命题的真假,结合真值表,即可判断;对于B: 全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题;对于C:由否命题直接写出结论;对于D:利用充要条件判断.【详解】对于A:由“非p ”为真,知p 假,“p 或q ”为真,所以q 为真,故A 正确;对于B: 命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++≥”,故B 错误;对于C: 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故C 错误; 对于D:若c=0,由 “a b >”不能推出 “22ac bc >”,故D 错误故选:A.【点睛】判断命题真假的题目,四个选项内容各不相干,需要对四个选项一一验证.7.D解析:D【分析】根据充分条件和必要条件的定义可判断选项A ,根据逆否命题的定义可判断选项B ,根据特称命题的否定是全称命题即可判断选项C ,根据复合命题的真假判断命题的真假可判断选项D ,进而可得正确选项.【详解】对于选项A :1a >可得11a <,但11a <可得1a >或0a <,所以“1a >”是“11a<”的充分不必要条件,所以选项A 说法是正确的, 对于选项B :“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” 所以选项B 说法是正确的,对于选项C :命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥,所以选项C 说法是正确的,对于选项D :若p q ∧为假命题,则p 和q 至少有一个为假命题,不一定都是假命题,所以选项D 说法是错误的,故选:D.8.B解析:B【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项.【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=. 故满足条件的选项为B.故选:B. 9.B解析:B【分析】由全称命题的否定是特称命题可得选项.【详解】由全称命题的否定是特称命题得:“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是“0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <”, 故选:B.10.D解析:D【分析】根据全称量词命题的否定是存在量词命题,写出结果即可.【详解】因为全称量词命题的否定时存在量词命题,所以命题“对任意1x >,都有21x >”的否定是:“存在1x >,使21x ≤”,故选:D.11.A解析:A【分析】由条件推结论可判断充分性,由结论推条件可判断必要性.【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==.所以“αβ=”是“sin sin αβ=”成立的充分不必要条件.故选:A.12.D解析:D【分析】直接利用全称命题的否定是特称命题,将任意改成存在,并将结论否定即可.【详解】根据全称命题的否定的定义可知,命题“0x ∀≥,20x x -≥”的否定是0x ∃≥,20x x -<.故选:D.二、填空题13.【分析】全称命题的否定全称量词改为存在量词结论否定【详解】解:命题的否定为故答案为:解析:0x ∃>,x e ex ≤【分析】全称命题的否定,全称量词改为存在量词,结论否定.【详解】解:命题:0p x ∀>,x e ex >的否定为0x ∃>,x e ex ≤故答案为:0x ∃>,x e ex ≤14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误,故答案为:①②15.【分析】分与两种情况讨论结合已知条件可得出关于实数的不等式组由此可解得实数的取值范围【详解】已知命题恒成立是真命题当时则有恒成立合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】结论点 解析:(]3,0-【分析】分0k =与0k ≠两种情况讨论,结合已知条件可得出关于实数k 的不等式组,由此可解得实数k 的取值范围.【详解】已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题. 当0k =时,则有308-<恒成立,合乎题意; 当0k ≠时,则有22030k k k <⎧⎨∆=+<⎩,解得30k -<<. 综上所述,实数k 的取值范围是(]3,0-.故答案为:(]3,0-.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 16.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为:解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案.【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a .故答案为:1a >.17.【分析】利用全称命题的否定是特称命题解答【详解】因为全称命题的否定是特称命题命题是全称命题所以命题的否定是故答案为:解析:2000,0x R x x ∃∈+>【分析】利用全称命题的否定是特称命题解答.【详解】因为全称命题的否定是特称命题,命题“2,0x R x x ∀∈+≤”是全称命题,所以命题“2,0x R x x ∀∈+≤”的否定是“2000,0x R x x ∃∈+>”.故答案为:2000,0x R x x ∃∈+>.18.【分析】根据特称命题的否定是全称命题可得【详解】由特称命题的否定是全称命题则命题的否定为故答案为:解析:0x ∀>,30x ≤【分析】根据特称命题的否定是全称命题可得.【详解】由特称命题的否定是全称命题,则命题“0x ∃>,30x >”的否定为0x ∀>,30x ≤.故答案为:0x ∀>,30x ≤19.∪12【分析】利用复合命题的真假性判断出的真假性即可求解【详解】若为真则;若为真则△即或;命题是假命题均为假命题即均为真命题;;或;故答案为:【点睛】本题考查了复合命题的真假性考查学生的分析能力计算 解析:(],1-∞∪[1,2]【分析】利用复合命题的真假性判断出p ,q 的真假性即可求解.【详解】若p 为真,则:2p a ;若q 为真,则△2440a =-,即1a -或1a ;命题“p q ⌝∨⌝”是假命题,p ∴⌝,q ⌝均为假命题,即p ,q 均为真命题;∴211a a a ⎧⎨-⎩或; 1a ∴-或12a ;故答案为:(-∞,1][1-,2].【点睛】本题考查了复合命题的真假性,考查学生的分析能力,计算能力,推理能力;属于中档题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】解:p 是q 的充分而不必要条件,p q ∴⇒,20xx a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.[]2,3.【分析】首先求出集合B ,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,即可得到不等式组,解得即可;【详解】 解:由题意知,{}1A x a x a =-≤≤不为空集,{}2|430{|13}B x x x x x =-+≤=≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,则113a a -≥⎧⎨≤⎩,解得23a ≤≤. 所以实数a 的取值范围是[]2,3.22.(1,1)-.【分析】“p q ∧”为真命题,则,p q 都为真命题.分别分析两个命题都为真命题时的a 的取值范围,求交集即可.【详解】解:若p 为真,则对称轴22a x a -=-=在区间[1,)+∞的左侧, 1a ∴≤.若q 为真,则方程210x ax -+=无实数根.2(2)40a ∴∆=--<,11a ∴-<<.命题“p q ∧”为真命题,∴命题p ,q 都为真,111a a ≤⎧∴⎨-<<⎩11a ∴-<<.故实数a 的取值范围为(1,1)-.23.(1)04a ≤<;(2)[)[)0,24,⋃+∞.【分析】(1)若命题p 是真命题,等价于210ax ax ++>在R 上恒成立,分别由0a =和00a >⎧⎨∆<⎩即可求解; (2)由题意可知命题p 和命题q 一真一假,分别讨论p 真q 假、p 假q 真两种情况即可求解.【详解】(1).当p 为真时,210ax ax ++>在R 上恒成立,①当0a =,不等式化为20010x x ++>,符合题意.②当0a ≠时,则0a >,且240a a ∆=-<故04a <<,即当p 真时有04a ≤<.(2)[)[)0,24,⋃+∞.由题意知:当q 为真时,1a x x ≥+在1,22⎡⎤⎢⎥⎣⎦上有解. 令()1g x x x =+,则()y g x =在1,12⎡⎤⎢⎥⎣⎦上递减,在[]1,2上递增, 所以()()min 12a g x g ≥==所以当q 假时,2a < ,由(1)知当p 假时0a <或4a ≥,又因为p q ∨为真,p q ∧为假,所以命题p 和命题q 一真一假,当p 真q 假时,所以042a a ≤<⎧⎨<⎩解得02a ≤<, 当p 假q 真时,0a <或4a ≥且2a ≥,所以4a ≥综上所述:a 的取值范围是[)[)0,24,⋃+∞.【点睛】方法点睛:不等式有解求参数常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.24.(1)()7,+∞;(2)[]1,7.【分析】(1)由二次函数的性质得出()10f <且()20f <,求解得出m 的取值范围;(2)由()p q ⌝∧为真命题得出p 为假命题,q 为真命题,再讨论0,0m m ≤>两种情况,由函数m y x x=+在区间0,1的单调性,列出不等式得出m 的取值范围. 【详解】 (1)令()232f x x mx =-+,其图像是开口向上的抛物线要使p 为真命题,则()10f <且()20f <即320,12220,m m -+<⎧⎨-+<⎩,所以7m > 所以m 的取值范围是()7,+∞.(2)若()p q ⌝∧为真命题,则p 为假命题,q 为真命题由(1)知,p 为假命题等价于7m ≤.对于命题,q 当0m ≤时,函数m y x x =+在0,1上单调递增,不满足条件; 当0m >时,函数m y x x =+在(上单调递减,在)+∞上单调递增 要使m y x x=+在0,11≥,即m 1≥, 综上所述,若()p q ⌝∧为真命题,m 的取值范围是[]1,7.【点睛】关键点睛:解决第二问的关键在于熟知对勾函数的单调性,从而求出m 的取值范围.25.()10,1,8⎛⎤+∞ ⎥⎝⎦【分析】先分别假设p ,q 为真命题,求出对应的a 的范围,再根据题意,得到p 和q 有且只有一个是真命题,由此可求出结果.【详解】由题意,若p 为真命题,则01a <<;若q 为真命题,则220ax x -+>对任意x ∈R 恒成立,所以0180a a >⎧⎨∆=-<⎩,解得18a >; 因为命题“p q ∨”为真命题,“p q ∧”为假命题,所以p 和q 有且只有一个是真命题. 若p 真q 假,则0118a a <<⎧⎪⎨≤⎪⎩,解得108a <≤;若p 假q 真,则118a a >⎧⎪⎨>⎪⎩,综上所述:()10,1,8a ⎛⎤∈+∞ ⎥⎝⎦. 【点睛】本题主要考查由复合命题的真假求参数的问题,涉及一元二次不等式恒成立问题,属于基础题型.26.(1)112a >;(2)11124a <<. 【分析】(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(有答案解析)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(有答案解析)

一、选择题1.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件2.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( )A .30,0x x x ∀≤+≤B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃ 3.已知22:1,:1p x y q x y +≤+≤,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞< 5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.方程“22ax by c +=表示双曲线”是“0ab <”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件8.已知函数y =f (x )的定义域为A ,则“x A ∀∈,都有f (x )≥4”是“函数y =f (x )最小值为4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.“关于x 的不等式2340x mx -+≥的解集为R ”的一个必要不充分条件是( ) A .4433m -≤≤ B .423m -<≤ C .4433m -<≤ D .403m -≤< 10.命题“[]1,0x ∀∈-,2320x x -+>”的否定是( )A .[]1,0x ∀∈-,2320x x -+<B .[]1,0x ∀∈-,2320x x -+≤C .[]01,0x ∃∈-,200320x x -+≤D .[]01,0x ∃∈-,200320x x -+<11.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“a b =”是“()sin sin 2sin C A A B -=-”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件二、填空题13.命题“0x ∃≥,220x x -<”的否定是__________.14.若命题:P x R ∀∈,210ax a ++-≥是真命题,则实数a 的取值范围是______. 15.已知p :“关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆”q :“实数m 满足()(4)0m a m a ---<.若p 是q 的充分不必要条件”,则实数a 的取值范围是__________.16.若,m n R ∈,则“0+≥m n ”是“0m ≥且0n ≥”的_________条件.17.设命题p :x >4;命题q :x 2﹣5x +4≥0,那么p 是q 的_______条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).18.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________.19.已知集合A ={x |﹣1<x <2},B ={x |﹣1<x <m +1},若x ∈A 是x ∈B 成立的一个充分不必要条件,则实数m 的取值范围是_____..20.命题p :[1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题p q ∧为假,p q ∨为真,则实数a 的取值范围为_______. 三、解答题21.已知命题p :“关于x 的方程2x 2x m 0-+=有实数根”,命题q :“23m -<<”,命题r :“1t m t <<+”.(1)若p q ∧是真命题,求m 的取值范围;(2)若r 是q 的充分不必要条件,求t 的取值范围.22.已知a R ∈,命题p :[]1,2x ∀∈,2a x ≤;命题q :0x R ∃∈,2002(2)0x ax a +--=.(1)若p 是真命题,求a 的最大值;(2)若p q ∨是真命题,p q ∧是假命题,求a 的取值范围.23.已知命题p :不等式240x x m -+≥对x R ∀∈恒成立,命题q :2450m m --≥.若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.24.已知集合{}2 680A x x x =-+<,集合()(){}30,0B x x m x m m =--. (1)若1B ∈,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.25.已知0a >,设命题:p 函数x y a =在R 上单调递减,:q 不等式21x x a +->的解集为R,若p 和q 中有且只有一个命题为真命题,求a 的取值范围.26.已知集合3{}3|A x a x a =-≤≤+,{|0B x x =≤或4}x ≥.(1)当2a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B2.D解析:D【分析】利用全程命题的否定直接写出答案.【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.3.B解析:B【分析】分别把221x y +≤和1x y +≤表示的区域表示出来,利用集合法判断.【详解】不等式221x y +≤表示单位圆及其内部的区域,1x y +≤表示以(1,0)±和(0,1)±为顶点的正方形及其内部的区域,画图可知q 对应的区域被p 对应的区域包含,所以p 是q 的必要不充分条件.故选:B【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.4.A解析:A【分析】直接根据全称命题的否定写出结论.【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.A解析:A【分析】根据充分条件和必要条件的定义即可求解.【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l ,若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件,故选:A6.C解析:C【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.【详解】充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立; 必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件.故选:C.7.A解析:A【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果.【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠; 若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A8.B解析:B【分析】根据充分必要条件,函数最值可判断必要性,利用特殊函数形式,可判断充分性,即可得解.【详解】若“()f x 在A 上的最小值为4”则“x A ∀∈,()4f x ≥”成立,即必要性成立; 函数()254f x x =+≥恒成立,但()f x 在A 上的最小值不是4,即充分性不成立, “x A ∀∈,()4f x ≥”是“()f x 在A 上的最小值为4”的必要不充分条件.故选:B.9.B解析:B【分析】求出“关于x 的不等式2340x mx -+≥的解集为R ”成立时实数m 的取值范围,再结合必要不充分条件的定义可得出结论.【详解】由关于x 的不等式2340x mx -+≥的解集为R ,可得()23440m ∆=--⨯≤,解得4433m -≤≤,所以m 的取值范围是4433m -≤≤. 根据必要不充分条件的概念可知B 项正确.故选:B. 10.C解析:C【分析】利用全称命题的否定为特称命题可直接得.【详解】根据全称命题的否定是特称命题可得,“[]1,0x ∀∈-,2320x x -+>”的否定为“[]01,0x ∃∈-,200320x x -+≤”.故选:C.11.B解析:B【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论.【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件.故选:B. 12.A解析:A【分析】由题意结合三角恒等变化化简,由等腰三角形的性质可判定充分性和必要性是否成立即可.【详解】在ABC 中,()sin sin 2sin sin()sin 2sin()C A A B A B A A B -=-⇔+-=-2cos sin sin 22sin cos A B A A A ⇔==sin sin A B ⇔=或cos 0A =所以a b =或90A ︒=因此“a b =”是“()sin sin 2sin C A A B -=-”成立的充分不必要条件.故选:A二、填空题13.【分析】根据全称命题与存在性命题的关系准确改写即可求解【详解】根据全称命题与存在性命题的关系可得命题的否定为故答案为:解析:20,20x x x ∀≥-≥【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题“2200,x x x ∃-≥<”的否定为“20,20x x x ∀≥-≥”.故答案为:20,20x x x ∀≥-≥. 14.【分析】将问题转化为成立分和利用判别式法求解【详解】因为成立当时不恒成立当时解得综上:实数a 的取值范围是故答案为:解析:[2,)+∞【分析】将问题转化为x R ∀∈,22210ax x a ++-≥成立,分0a =和 0a ≠,利用判别式法求解.【详解】因为x R ∀∈,22210ax x a ++-≥成立,当0a =时,2210x -≥,不恒成立,当0a ≠时,()08410a a a >⎧⎨∆=--≤⎩, 解得2a ≥,综上:实数a 的取值范围是[2,)+∞,故答案为:[2,)+∞15.【分析】根据充分不必要条件的定义结合圆的方程特征一元二次不等式的解法集合之间的关系进行求解即可【详解】当关于xy 的方程表示圆时由所以有即当实数m 满足时由即因为p 是q 的充分不必要条件所以即因此实数a解析:[3,2]--【分析】根据充分不必要条件的定义,结合圆的方程特征、一元二次不等式的解法、集合之间的关系进行求解即可.【详解】当关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆时,由2222224520(2)2x y mx m m x m y m m +-++-=⇒-+=--+,所以有22021m m m --+>⇒-<<,即(2,1)∈-m ,当实数m 满足()(4)0m a m a ---<时,由()(4)04m a m a a m a ---<⇒<<+,即(,4)m a a ∈+因为p 是q 的充分不必要条件, 所以(2,1)- (,4)a a +,即14322a a a ≤+⎧⇒-≤≤-⎨≤-⎩, 因此实数a 的取值范围是[3,2]--.故答案为:[3,2]--16.必要不充分【分析】根据充分必要条件的定义判断【详解】时成立是必要的时有即时不一定有且不充分因此应是必要不充分条件故答案为:必要不充分 解析:必要不充分【分析】根据充分必要条件的定义判断.【详解】0,0m n ≥≥时,0+≥m n 成立,是必要的.2,1m n ==-时,有10m n +=>,即0+≥m n 时不一定有0m ≥且0n ≥.不充分, 因此应是必要不充分条件.故答案为:必要不充分.17.充分不必要【分析】化简命题根据充分不必要条件的定义判断可得结果【详解】命题q :x2﹣5x+4≥0⇔x≤1或x≥4∵命题p :x >4;故p 是q 的充分不必要条件故答案为:充分不必要【点睛】结论点睛:本题考解析:充分不必要【分析】化简命题,p q ,根据充分不必要条件的定义判断可得结果.【详解】命题q :x 2﹣5x +4≥0⇔x ≤1或x ≥4, ∵命题p :x >4;故p 是q 的充分不必要条件,故答案为:充分不必要【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.18.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围.【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 19.(1+∞)【分析】由充分必要条件与集合的关系得:A B 列不等式组运算得解【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件得:AB 即即m >1故答案为:(1+∞)【点睛】本题考查了充分必要条件与集合间解析:(1,+∞).【分析】由充分必要条件与集合的关系得:A B ,列不等式组运算得解【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件,得:A B ,即1112m m +>-⎧⎨+>⎩,即m >1, 故答案为:(1,+∞).【点睛】本题考查了充分必要条件与集合间的包含关系,属简单题.20.【分析】首先求出命题为真时的取值范围再根据复合命题的真假求集合的运算得结论【详解】命题:使得成立时则命题不等式恒成立则当时当且仅当时等号成立∴若命题为假为真则一真一假真假时∴假真时综上或故答案为:【 解析:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦【分析】首先求出命题,p q 为真时a 的取值范围,再根据复合命题的真假求集合的运算得结论.【详解】命题p :[1,1]x ∃∈-,使得2x a <成立,[1,1]x ∈-时,1,222x ⎡⎤∈⎢⎥⎣⎦,则12a >, 命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立,则211x a x x x +<=+,当0x >时,12x x+≥,当且仅当1x =时等号成立,∴2a <. 若命题p q ∧为假,p q ∨为真,则,p q 一真一假, p 真q 假时,122a a ⎧>⎪⎨⎪≥⎩,∴2a ≥, p 假q 真时,122a a ⎧≤⎪⎨⎪<⎩,12a ≤, 综上,2a ≥或12a ≤. 故答案为:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.【点睛】 本题考查复合命题的真假,由复合命题的真假求参数取值范围,本题还考查了不等式恒成立与能成立问题.属于中档题.三、解答题21.(1)21m -<≤;(2)22t -≤≤.【分析】(1)由p 为真可得1m ,从而123m m ≤⎧⎨-<<⎩,进而可得答案; (2)由r 是q 的充分不必要条件,可得213t t ≥-⎧⎨+≤⎩(等号不同时成立),进而可得答案. 【详解】(1)若p 为真:440m ∆=-≥,解得1m若“p q ∧”是真命题,则p ,q 均为真命题即123m m ≤⎧⎨-<<⎩,解得21m -<≤. m ∴的取值范围21m -<≤(2)由r 是q 的充分不必要条件,可得(,1)t t +是(2,3)-的真子集,即213t t ≥-⎧⎨+≤⎩(等号不同时成立),解得22t -≤≤. t ∴的取值范围22t -≤≤22.(1)1;(2)()()2,11,-⋃+∞.【分析】(1)根据题意可得[]1,2x ∀∈,2a x ≤为真,令()2f x x =,只需()min a f x ≤即可求解. (2)根据题意可得p 与q 一真一假,当q 是真命题时,可得2a ≤-或1a ≥,分别求出当p 真q 假或p 假q 真时a 的取值范围,最后取并集即可求解.【详解】解:(1)若命题p :[]1,2x ∀∈,2a x ≤为真,∴则令()2f x x =,()min a f x ≤, 又∵()min 1f x =,∴1a ≤,∴a 的最大值为1.(2)因为p q ∨是真命题,p q ∧是假命题,所以p 与q 一真一假,当q 是真命题时,()24420a a ∆=--≥,解得2a ≤-或1a ≥, 当p 是真命题,q 是假命题时,有121a a ≤⎧⎨-<<⎩,解得21a -<<; 当p 是假命题,q 是真命题时,有121a a a >⎧⎨≤-≥⎩或,解得1a >; 综上,a 的取值范围为()()2,11,-⋃+∞.23.(,1][4,5)-∞-【分析】先求得命题,p q 为真命题时,实数m 的范围,再根据p q ∧为假命题,p q ∨为真命题,得到p 和q 一真一假,分类讨论,即可求解.【详解】若p 为真命题,即不等式240x x m -+≥对x R ∀∈恒成立,可得1640m -≤,解得4m ≥,若q 为真命题,由2450m m --≥,解得5m ≥或1m ≤-,因为p q ∧为假命题,p q ∨为真命题,所以p 和q 一真一假当p 真q 假时,可得415m m ≥⎧⎨-<<⎩,解得45m ≤< 当p 假q 真时,可得451m m m <⎧⎨≥≤-⎩或,解得1m ≤- 综上所述,实数m 的取值范围是(,1][4,5)-∞-.24.(1)1(,1)3;(2)4[,2]3. 【分析】(1)根据不等式的解法,先求得集合,A B ,根据1B ∈,列出不等式组,即可求得实数m 的取值范围;(2)由“x A ∈”是“x B ∈”成立的充分不必要条件,得到集合A 是集合B 的真子集,列出不等式组,即可求解.【详解】(1)由不等式2(2)(48)06x x x x --+=<-,解得24x <<,所以集合{}|24A x x =<<,因为0m >,所以3m m <,所以集合{}|3B x m x m =<<,因为1B ∈,所以131m m <⎧⎨>⎩ ,解得113m <<,即实数m 的取值范围1(,1)3. (2)若“x A ∈”是“x B ∈”成立的充分不必要条件,即集合A 是集合B 的真子集, 则满足243m m ≤⎧⎨<⎩或243m m <⎧⎨≤⎩,解得423m <≤或423m ≤<, 所以423m ≤≤,即实数m 的取值范围4[,2]3. 25.102a <≤或1a ≥. 【分析】先通过指数函数的单调性求出p 为真命题的a 的范围,再通过构造函数求绝对值函数的最值进一步求出命题q 为真命题的a 的范围,分p 真q 假与p 假q 真两类求出a 的范围即可.【详解】由函数x y a =在R 上单调递减知01a <<所以命题p 为真命题时a 的取值范围是01a << 令2y x x a =+-则222),{2(2).x a x a y a x a -≥=<(,不等式21x x a +->的解集为R 只要min 1y >即可,而函数y 在R 上的最小值为2a所以21a >,即1.2a >即q 真⇔1.2a > 若p 真q 假,则10;2a <≤若p 假q 真,则1a ≥ 所以命题p 和q 有且只有一个命题正确时a 的取值范围是102a <≤或1a ≥. 【点睛】解决复合命题的真假问题一般通过真值表将复合命题的真假问题转化为构成它的简单命题的真假来解决.26.(1){|45}A B x x ⋂=≤≤;(2)01a <<.【分析】(1)由2a =,得到{|15}A x x =≤≤,再利用交集的运算求解.(2)根据{|0B x x =≤或4}x ≥,得到{|04}R B x x =<<,然后根据“x A ∈”是“R x B ∈”的充分不必要条件,由A 是R B 的真子集,且A ≠∅求解.【详解】(1)∵当2a =时,{|15}A x x =≤≤,{|0B x x =≤或4}x ≥,∴{|45}A B x x ⋂=≤≤;(2)∵{|0B x x =≤或4}x ≥,∴{|04}R B x x =<<,因为“x A ∈”是“R x B ∈”的充分不必要条件, 所以A 是R B 的真子集,且A ≠∅,又{|33}(0)A x a x a a =-≤≤+>,∴30,34,a a ->⎧⎨+<⎩, ∴01a <<.【点睛】本题主要考查集合的基本运算以及逻辑条件的应用,属于基础题.。

高中人教选修一数学课本习题答案

高中人教选修一数学课本习题答案

高中人教选修一数学课本习题答案在高中数学的学习过程中,习题是检验学生对知识点掌握程度的重要手段。

以下是人教版高中数学选修一课本中的部分习题答案,供同学们参考:第一章:集合与函数习题1:集合的表示方法有两种,列举法和描述法。

例如,集合A={1, 2, 3}是列举法表示,而集合B={x | x是小于10的正整数}是描述法表示。

习题2:若集合A={1, 2, 3},B={2, 3, 4},则A∩B={2, 3},A∪B={1, 2, 3, 4}。

习题3:函数f(x)=x^2+1在x=-1处的导数为2。

习题4:若f(x)=x^2,g(x)=3x+1,则复合函数f(g(x))=(x^2)(3x+1)。

第二章:三角函数与解三角形习题1:正弦定理:在三角形ABC中,a/sinA = b/sinB = c/sinC,其中a、b、c分别为角A、B、C所对的边。

习题2:余弦定理:在三角形ABC中,c^2 = a^2 + b^2 - 2ab*cosC。

习题3:若sinA = 3/5,且A在第一象限,则cosA = 4/5。

习题4:在三角形ABC中,若a=7,b=5,c=6,且cosC = 1/2,则角C=60°。

第三章:不等式习题1:解不等式x^2 - 4x + 4 ≤ 0,解集为[2, 2]。

习题2:若a > 0,b < 0,且|a| < |b|,则不等式ax + b > 0的解集为x < -b/a。

习题3:证明不等式:对于任意正数a、b,有a + b ≥ 2√(ab)。

习题4:若x > 0,y > 0,且x + y = 1,则x^2 + y^2 ≥ 1/2。

第四章:数列习题1:等差数列的通项公式为an = a1 + (n-1)d。

习题2:等比数列的通项公式为an = a1 * r^(n-1)。

习题3:若等差数列的前n项和为S,首项为a1,公差为d,则S = n/2 * (2a1 + (n-1)d)。

高中数学人教A版选修1-1课时作业:1.1命题及其关系 word版含答案

高中数学人教A版选修1-1课时作业:1.1命题及其关系 word版含答案

第一章第1节命题及其关系本节教材分析(一)三维目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(2)教学重点:命题的概念、命题的构成(3)教学难点:分清命题的条件、结论和判断命题的真假(4)教学建议:通过学生的参与,激发学生学习数学的兴趣。

(一)三维目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(2)教学重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.(3)教学难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.(4)教学建议:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力新课导入设计学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?导入二一、创设情境在我们日常生活中,经常涉及到逻辑上的问题。

无论是进行思考、交流,还是从事各项工作,都需要用逻辑用语表达自己的思想,需要用逻辑关系进行判断和推理。

因此,正确使用逻辑用语和逻辑关系是现代社会公民应该具备的基本素质。

本章我们将从命题及其关系入手,学习四种命题的相互关系、充分条件和必要条件,学习逻辑用语,了解数理逻辑的有关知识,体会逻辑用语在表述或论证中的作用,使以后的论证和表述更加准确、清楚和简洁。

高中数学选修1-1第一章课后习题解答

高中数学选修1-1第一章课后习题解答

新课程标准数学选修1—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题. 否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1).3、(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n +∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x y y ∈是有理数}.6、(1)32≠; (2)54≤; (3)00,0x R x ∃∈≤;(4)存在一个正方形,它不是平行四边形.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.。

高中数学选修1-1各章节作业练习题(附答 案解析)

高中数学选修1-1各章节作业练习题(附答 案解析)

第一章常用逻辑用语§1.1 命题及其关系1.1.1命题课时目标 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句中,能作为命题的是()A.3比5大B.太阳和月亮C.高年级的学生D.x2+y2=03.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行题号123456答案7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是__________________________,结论q 是________________________________.9.下列语句是命题的是________. ①求证3是无理数; ②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数; ⑤若x ∈R ,则x 2+4x +7>0. 三、解答题10.把下列命题改写成“若p ,则q ”的形式,并判断真假. (1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.11.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.能力提升12.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .313.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题. 2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.第一章 常用逻辑用语 §1.1 命题及其关系1.1.1 命题答案知识梳理1.真假 陈述句 真 假 2.条件 结论 作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [判断一个语句是不是命题,关键在于能否判断其真假.“3比5大”是一个假命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D 7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形. 8.若一个函数是奇函数 这个函数的图象关于原点对称 9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题.11.解 若命题p 为真命题,可知m ≤1; 若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2.故m 的取值范围是1<m <2.12.D [①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.]13.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m 、n 相交于一点这一条件,故不正确; ③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确. 综上所述知,③,④正确.]1.1.2四种命题课时目标 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:________________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数题号123456答案二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是________________________;逆命题是______________________;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.11.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.能力提升12.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数13.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题答案知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.11.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.12.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]13.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.1.1.3四种命题间的相互关系课时目标1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(2)四种命题的真假性之间的关系①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a 2+b 2=0 (a ,b ∈R ),则a =b =0”的逆否命题是( ) A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0 B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题 题号 1 2 3 4 5 6 答案 二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是______________________________________,它是______(填“真”“或”“假”)命题.8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”或“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.能力提升12.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为() A.0B.1C.2D.313.a、b、c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a、b、c的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系答案知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.] 2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.B[①用“分部分式”判断,具体:a1+a≥b1+b⇔1-11+a≥1-11+b⇔11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2 (x>0,y>0),取x=m,y=n-m,知本命题为真.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.]13.解能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.§1.2充分条件与必要条件课时目标 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.1.如果已知“若p,则q”为真,即p⇒q,那么我们说p是q的____________,q是p 的____________.2.如果既有p⇒q,又有q⇒p,就记作________.这时p是q的______________条件,简称________条件,实际上p与q互为________条件.如果p⇒q且q⇒p,则p是q的________________________条件.一、选择题1.“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件题号123456答案7.用符号“⇒”或“⇒”填空.(1)a>b________ac2>bc2;(2)ab≠0________a≠0.8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是________.9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.三、解答题10.下列命题中,判断条件p 是条件q 的什么条件: (1)p :|x |=|y |,q :x =y .(2)p :△ABC 是直角三角形,q :△ABC 是等腰三角形; (3)p :四边形的对角线互相平分,q :四边形是矩形.11.已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},若x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.能力提升12.记实数x 1,x 2,…,x n 中的最大数为max {}x 1,x 2,…,x n ,最小数为min {}x 1,x 2,…,x n .已知△ABC 的三边边长为a ,b ,c (a ≤b ≤c ),定义它的倾斜度为l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ,则“l =1”是“△ABC 为等边三角形”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件13.已知数列{a n }的前n 项和为S n =(n +1)2+c ,探究{a n }是等差数列的充要条件.1.判断p 是q 的什么条件,常用的方法是验证由p 能否推出q ,由q 能否推出p ,对 于否定性命题,注意利用等价命题来判断.2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A 的充要条件为B ”的命题的证明:A ⇒B 证明了必要性;B ⇒A 证明了充分性.“A 是B 的充要条件”的命题的证明:A ⇒B 证明了充分性;B ⇒A 证明了必要性.§1.2 充分条件与必要条件 答案知识梳理1.充分条件 必要条件2.p ⇔q 充分必要 充要 充要 既不充分又不必要 作业设计1.A [对于“x >0”⇒“x ≠0”,反之不一定成立. 因此“x >0”是“x ≠0”的充分而不必要条件.] 2.A [∵q ⇒p ,∴綈p ⇒綈q ,反之不一定成立,因此綈p 是綈q 的充分不必要条件.]3.B [因为N M .所以“a ∈M ”是“a ∈N ”的必要而不充分条件.]4.A [把k =1代入x -y +k =0,推得“直线x -y +k =0与圆x 2+y 2=1相交”;但“直线x -y +k =0与圆x 2+y 2=1相交”不一定推得“k =1”.故“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分而不必要条件.]5.A [l ⊥α⇒l ⊥m 且l ⊥n ,而m ,n 是平面α内两条直线,并不一定相交,所以l ⊥m 且l ⊥n 不能得到l ⊥α.]6.B [当a <0时,由韦达定理知x 1x 2=1a<0,故此一元二次方程有一正根和一负根,符合题意;当ax 2+2x +1=0至少有一个负数根时,a 可以为0,因为当a =0时,该方程仅有一根为-12,所以a 不一定小于0.由上述推理可知,“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的充分不必要条件.]7.(1) ⇒ (2)⇒ 8.a >2解析 不等式变形为(x +1)(x +a )<0,因当-2<x <-1时不等式成立,所以不等式的解为-a <x <-1.由题意有(-2,-1)(-a ,-1),∴-2>-a ,即a >2.9.b ≥-2a解析 由二次函数的图象可知当-b2a≤1,即b ≥-2a 时,函数y =ax 2+bx +c 在[1,+∞)上单调递增.10.解 (1)∵|x |=|y |⇒x =y , 但x =y ⇒|x |=|y |,∴p 是q 的必要条件,但不是充分条件.(2)△ABC 是直角三角形⇒△ABC 是等腰三角形. △ABC 是等腰三角形⇒△ABC 是直角三角形. ∴p 既不是q 的充分条件,也不是q 的必要条件. (3)四边形的对角线互相平分⇒四边形是矩形. 四边形是矩形⇒四边形的对角线互相平分. ∴p 是q 的必要条件,但不是充分条件. 11.解 由题意知,Q ={x |1<x <3},Q ⇒P , ∴⎩⎪⎨⎪⎧a -4≤1a +4≥3,解得-1≤a ≤5. ∴实数a 的取值范围是[-1,5].12.A [当△ABC 是等边三角形时,a =b =c ,∴l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =1×1=1.∴“l =1”是“△ABC 为等边三角形”的必要条件.∵a ≤b ≤c ,∴max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ca .又∵l =1,∴min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ac,即a b =a c 或b c =a c, 得b =c 或b =a ,可知△ABC 为等腰三角形,而不能推出△ABC 为等边三角形. ∴“l =1”不是“△ABC 为等边三角形”的充分条件.] 13.解 当{a n }是等差数列时,∵S n =(n +1)2+c ,∴当n≥2时,S n-1=n2+c,∴a n=S n-S n-1=2n+1,∴a n+1-a n=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c,∵{a n}是等差数列,∴a2-a1=2,∴1-c=2.∴c=-1,反之,当c=-1时,S n=n2+2n,可得an=2n+1 (n≥1)为等差数列,∴{an}为等差数列的充要条件是c=-1.§1.3简单的逻辑联结词课时目标 1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.1.用逻辑联结词构成新命题(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作__________,读作__________.(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作________或____________.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q綈p真真真真假真假真假假假真真假真假假假假真一、选择题1.已知p:2+2=5;q:3>2,则下列判断错误的是()A.“p∨q”为真,“綈q”为假B.“p∧q”为假,“綈p”为真C.“p∧q”为假,“綈p”为假D.“p∨q”为真,“綈p”为真2.已知p:∅{0},q:{2}∈{1,2,3}.由它们构成的新命题“綈p”,“綈q”,“p∧q”,“p∨q”中,真命题有()A.1个B.2个C.3个D.4个3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有()A.0个B.1个C.2个D.3个4.设p、q是两个命题,则新命题“綈(p∨q)为假,p∧q为假”的充要条件是() A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为假D.p为真,q为假5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧q为真6.下列命题中既是p∧q形式的命题,又是真命题的是()A.10或15是5的倍数B.方程x2-3x-4=0的两根是-4和1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形题号123456答案二、填空题7.“2≤3”中的逻辑联结词是________,它是________(填“真”,“假”)命题.8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、綈p中的真命题是________.三、解答题10.写出由下列各组命题构成的“p或q”、“p且q”、“綈p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;(4)p:5≤5;q:27不是质数.11.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.能力提升12.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y =|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真13.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.1.从集合的角度理解“且”“或”“非”.设命题p:x∈A.命题q:x∈B.则p∧q⇔x∈A且x∈B⇔x∈A∩B;p∨q⇔x∈A或x∈B ⇔x∈A∪B;綈p⇔x∉A⇔x∈∁U A.2.对有逻辑联结词的命题真假性的判断当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;綈p与p的真假性相反且一定有一个为真.3.含有逻辑联结词的命题否定“或”“且”联结词的否定形式:“p或q”的否定形式“綈p且綈q”,“p且q”的否定形式是“綈p或綈q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.§1.3简单的逻辑联结词答案知识梳理1.(1)p∧q“p且q”(2)p∨q“p或q”(3)綈p“非p”“p的否定”作业设计1.C[p假q真,根据真值表判断“p∧q”为假,“綈p”为真.]2.B[∵p真,q假,∴綈q真,p∨q真.]3.C[①③命题使用逻辑联结词,其中,①使用“且”,③使用“非”.]4.C[因为命题“綈(p∨q)”为假命题,所以p∨q为真命题.所以p、q一真一假或都是真命题.又因为p∧q为假,所以p、q一真一假或都是假命题,所以p、q中有且只有一个为假.] 5.C[命题p、q均为假命题,∴p∨q为假.]6.D[A中的命题是p∨q型命题,B中的命题是假命题,C中的命题是綈p的形式,D中的命题为p∧q型,且为真命题.]7.或真8.[1,2)解析x∈[2,5]或x∈(-∞,1)∪(4,+∞),即x∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x<2,即x∈[1,2).9.綈p解析对于p,当a>0,b>0时,|a|+|b|=|a+b|,故p假,綈p为真;对于q,抛物线y=x2-x+1的对称轴为x=12,故q假,所以p∨q假,p∧q假.这里綈p应理解成|a|+|b|>|a+b|不恒成立,而不是|a|+|b|≤|a+b|.10.解(1)p为假命题,q为真命题.p或q:1是质数或是方程x2+2x-3=0的根.真命题.p且q:1既是质数又是方程x2+2x-3=0的根.假命题.綈p:1不是质数.真命题.(2)p为假命题,q为假命题.p 或q :平行四边形的对角线相等或互相垂直.假命题. p 且q :平行四边形的对角线相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题. (3)∵0∉∅,∴p 为假命题,又∵x 2-3x -5<0,∴3-292<x <3+292,∴{x |x 2-3x -5<0} =⎩⎨⎧⎭⎬⎫x |3-292<x <3+292⊆R 成立. ∴q 为真命题.∴p 或q :0∈∅或{x |x 2-3x -5<0}⊆R ,真命题, p 且q :0∈∅且{x |x 2-3x -5<0}⊆R ,假命题,綈p :0∉∅,真命题.(4)显然p :5≤5为真命题,q :27不是质数为真命题,∴p 或q :5≤5或27不是质数,真命题,p 且q :5≤5且27不是质数,真命题,綈p :5>5,假命题.11.解 若方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2,即p :m >2. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3,即q :1<m <3.因p 或q 为真,所以p 、q 至少有一个为真. 又p 且q 为假,所以p 、q 至少有一个为假.因此,p 、q 两命题应一真一假,即p 为真,q 为假,或p 为假,q 为真.所以⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2.12.D [当a =-2,b =2时,从|a |+|b |>1不能推出|a +b |>1,所以p 假,q 显然为真.] 13.解 对于p :因为不等式x 2-(a +1)x +1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数, 则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题, 所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,当p 假q 真时有a ≥1. 综上所述,a 的取值范围是(-3,0]∪[1,+∞).§1.4 全称量词与存在量词课时目标 1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.2.会判定全称命题和特称命题的真假.3.能正确的对含有一个量词的命题进行否定.4.知道全称命题的否定是特称命题,特称命题的否定是全称命题.1.全称量词和全称命题(1)短语“______________”“____________”在逻辑中通常叫做全称量词,并用符号“______”表示,常见的全称量词还有“对一切”“对每一个”“任给”“所有的”等.(2)含有______________的命题,叫做全称命题.(3)全称命题:“对M中任意一个x,有p(x)成立”,可用符号简记为____________.2.存在量词和特称命题(1)短语“______________”“________________”在逻辑中通常叫做存在量词,并用符号“________”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等.(2)含有______________的命题,叫做特称命题.(3)特称命题:“存在M中的一个x0,有p(x0)成立”,可用符号简记为____________.3.含有一个量词的命题的否定(1)全称命题p:∀x∈M,p(x),它的否定綈p:____________;(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:____________.4.命题的否定与否命题命题的否定只否定________,否命题既否定______,又否定________.一、选择题1.下列语句不是全称命题的是()A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小2.下列命题是特称命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于等于33.下列是全称命题且是真命题的是()A.∀x∈R,x2>0 B.∀x∈Q,x2∈QC.∃x0∈Z,x20>1 D.∀x,y∈R,x2+y2>04.下列四个命题中,既是特称命题又是真命题的是()A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x20>0C.任一无理数的平方必是无理数D.存在一个负数x0,使1x0>25.已知命题p:∀x∈R,sin x≤1,则()A.綈p:∃x0∈R,sin x0≥1B.綈p:∀x∈R,sin x≥1C.綈p:∃x0∈R,sin x0>1D.綈p:∀x∈R,sin x>16.“存在整数m0,n0,使得m20=n20+2 011”的否定是()A.任意整数m,n,使得m2=n2+2 011B.存在整数m0,n0,使得m20≠n20+2 011C.任意整数m,n,使得m2≠n2+2 011D.以上都不对题号123456答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课程标准数学选修1—1第一章课后习题解答第一章常用逻辑用语1.1命题及其关系练习(P4)1、略•2、(1)真;⑵假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等.这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称.这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行.这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0.这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除.这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0.这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等.这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等.这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等•这是真命题.3、逆命题:图象关于原点对称的函数是奇函数.这是真命题.否命题:不是奇函数的函数的图象不关于原点对称•这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数•这是真命题.练习(P8)证明:若a -b = 1,则a2「b2• 2a「4b「3=(a b)a -b )2(b - )b -2=a b 2- 2D -3=a「b _1 = 0所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数a与b的和a b是偶数,则a,b都是偶数•这是假命题.否命题:若两个整数a,b不都是偶数,则a b不是偶数.这是假命题.逆否命题:若两个整数a与b的和a b不是偶数,则a,b不都是偶数.这是真命题.(2)逆命题:若方程x2,x-m=0有实数根,则m・0.这是假命题.否命题:若m乞0,贝y方程X2• x-m =0没有实数根•这是假命题.逆否命题:若方程x2,x-m=0没有实数根,则m^0.这是真命题.3、(1 )命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.新课程标准数学选修1—1第一章课后习题解答(第1页共4页)否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等• 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分 线上.这是真命题•(2)命题可以改写成:若一个四边形是矩形,贝y 四边形的对角线相等逆命题:若四边形的对角线相等,则这个四边形是矩形•这是假命题. 否命题:若一个四边形不是矩形,则四边形的对角线不相等 •这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形 •这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形 是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等 •这就证明了原命题的逆否 命题,表明原命题的逆否命题为真命题 •所以,原命题也是真命题•习题1.1 B 组(P8)证明:要证的命题可以改写成“若 p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 •此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径 • 可以先证明此逆否命题:设 AB,CD 是L O 的两条互相平分的相交弦,交点是 E ,若E 和圆 心0重合,则AB,CD 是经过圆心0的弦,AB,CD 是两条直径•若E 和圆心0不重合,连结 AO, BO,CO 和DO ,则0E 是等腰 AOB , COD 的底边上中线,所以,0E _ AB , 0E _ CD • AB 和CD 都经过点E ,且与0E 垂直,这是不可能的.所以,E 和0必然重合•即AB 和CD 是 由互为逆否命题的相同真假性,知原命题是真命题p 是q 的充要条件; p 是q 的充要条件;p 是q 的必要条件• p 是q 的充分条件; p 是q 的充要条件• (3) 真• 2)充要条件; (4) 充分条件,或充分不必要条件(第2页共4页)圆的两条直径•原命题的逆否命题得证,1. 2充分条件与必要条件练习(P10)1、(1)=;⑵=;(3)=;4、(1)真; ⑵真;(3)假; 练习(P12) 1、 ( 1)原命题和它的逆命题都是真命题, (2) 原命题和它的逆命题都是真命题,(3) 原命题是假命题,逆命题是真命题,2、 ( 1) p 是q 的必要条件; (2)(3) p 是q 的充要条件; (4)习题1.2 A 组(P12)1、略•2、(1)假; (2)真;3、 (1)充分条件,或充分不必要条件;(3)既不是充分条件,也不是必要条件;2、(1)3、(1) 新课程标准数学选修 1— 1第一章课后习题解答 (4)真•习题1.2 B 组(P13)1、 ( 1)充分条件; (2)必要条件; (3)充要条件.2、 证明:(1)充分性:如果 a 2 b 2 c^ ab ac bc ,那么 a 2 • b 2 • c 2 -ab -ac -be = 0 .所以(a-b)2 (a -c)2 (b-c)2 =0所以,a-b=0, a-c = 0, b-c = 0. 即a = b 二c ,所以, ABC 是等边三角形.(2) 必要性:如果厶ABC 是等边三角形,那么a =b =c所以(a-b)2 (a -c)2 (b -c)2 =0所以 a 2 b 2 c 2 -ab -ac -be 二 0所以 a 2 b 2 c 2 二 ab ac bc1. 3简单的逻辑联结词练习(P18)1、 (1) 4 {2,3}或 2 {2,3},真命题;(2) 4 {2,3}且 2 {2,3},假; (3) 2是偶数或3不是素数,真命题;(4) 2是偶数且3不是素数,假命题 2、 (1)真; (2)假.3、 (1) 2 • 2 =5,真命题;(2) 3不是方程x 2 -9 =0的根,假命题; (3) ,(-1) - -1,真命题.习题1.3 A 组(P18)1、 (1) {2,3}或 2 {2,3},真命题; (3) 2是偶数或3不是素数,真命题;2、 ( 1)真命题; (2)真命题;3、 ( 1). 2不是有理数,真命题; (3) 2 一3,假命题;(5) 空集不是任何集合的真子集,真命题习题1.3 B 组(P18)1. 4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; 新课程标准数学选修1— 1第一章课后习题解答(第3页共4页)(2) 4 {2,3}且 2 {2,3},假命题;(4) 2是偶数且3不是素数,假命题(3) 假命题.(2) 5是15的约数,真命题;(4) 8 • 7=15,真命题; (1) 真命题.因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2) 真命题.因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3) 假命题.因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4) 假命题.因为 p 为假命题, q 为假命题,所以 p q 为假命题.(3)假命题.2、( 1)真命题; (2)真命题;练习(P26)1、 ( 1) n 0 Z, n/Q ; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数 .2、 ( 1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、 ( 1)真命题;(2)真命题; (3)真命题; (4)假命题. 2、 ( 1)真命题;(2)真命题; (3)真命题. 3、 ( 1) x^ N,x ?<x o ;(2)存在一个可以被5整除的整数,末位数字不是 0; (3) -x ・R,x^x 1 0 ;(4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1) 假命题.存在一条直线,它在y 轴上没有截距;(2) 假命题.存在一个二次函数,它的图象与 x 轴不相交;(3) 假命题.每个三角形的内角和不小于180 ;(4) 真命题.每个四边形都有外接圆. 第一章 复习参考题A 组(P30)1、 原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形 •是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等 •是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形•是真命题. 2、 略. 3、( 1)假;(2)假;(3)假;(4)假.4、 ( 1)真;(2)真;(3)假;(4)真;(5)真.5、 ( 1) n^N + n 2 A 0 ; (2) \/P€{PP 在圆 x 2 + y 2= r 2 上}, OP=r (O 为圆心); (3) (x,y ) {(x,y )x,y 是整数},2x 4y=3 ;(4) 三x 严{xx 是无理数},£^{yy 是有理数}.6、( 1) 3=2 ; ( 2) 5乞4 ; ( 3) x 。

R,x 。

乞 0 ;(4)存在一个正方形,它不是平行四边形. 第一章复习参考题B 组(P31)1、( 1) P q ;( 2) (—p ) (—q ),或—(p q ).新课程标准数学选修1— 1第一章课后习题解答(第4页共4页) (3)真命题. 2、( 1) —Rt ABC , C =90 , o o o• A 厂B 厂C 的对边分别是a,b,c ,则c 二a b ;(2) 一 ABC ,A 厂B 厂C 的对边分别是a,b,c ,则 a bsin A sin B c sin C。

相关文档
最新文档