2014年普通高等学校招生全国统一考试 理科
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,学科网只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b|a-b,则a ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.B.C. 6332D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.D.12.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.19. (本小题满分12分)(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,学科网同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点 E.证明:(Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的学科网取值范围.。
2014年全国高考理综试题及答案-新课标2卷(解析版)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科综合试卷第Ⅰ卷一、选择题(每小题6分,只有一个符合题意)1、关于细胞的叙述,错误的是A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的粘着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖【答案】D【解析】本题考查的是细胞结构和化学成份这两个知识点。
细胞膜的功能之一信息传递,其方式如通过胞间连丝,A项正确。
糖蛋白与细胞相互识别有关,又与细胞间的粘着性有关,癌变后的细胞由于糖蛋白减少所以易转移和扩散, B项正确。
ATP水解后有能量可用于各项生命活动,如电能、热能等其他细胞内的吸能反应,C项正确。
蔗糖是植物内的一种二糖,在哺乳动物的细胞不可以合成,故D项是错误的。
2.同一动物个体的神经细胞与肌肉细胞在功能上是不同的,造成这种差异的主要原因是A.两者所处的细胞周期不同B.两者合成的特定蛋白不同C.两者所含有的基因组不同D.两者核DNA复制的方式不同【答案】B【解析】本题考查的是细胞分化这个知识点。
同一生物个体的不同细胞,在形态结构与功能上是不同的,是基因的选择性表达的结果,其DNA分子或遗传物质并没有差异,A、C、D都不正确,基因的选择性表达之后,形成了不同的蛋白质,使各细胞中的蛋白质有所不同,故B项正确。
3.关于在正常情况下组织液的生成与回流的叙述,错误的是A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液【答案】D【解析】本题考查的是内环境成份这一个知识点。
内环境中的各种成份是处于动态平衡之中,氧气在生成的组织液中会高于回流的组织液,因为组织细胞在不断消耗氧气,这样氧气就能以自由扩散形式从组织液进入组织细胞,故A不正确,B正确。
因为毛细血管壁有一定通透性,所以血浆中的小分子物质可以透过毛细血管动脉端进入组织液,同理,组织液中的有些物质经毛细血管静脉端进入血液,血浆与组织液可以发生物质相互渗透。
【恒心】2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科综合能力测试试题(模拟题3)及参考答案
生物部分答案1-6CCCBDB以下没有特殊注明,每空1分,其他合理答案也可酌情给分29.(9分)(1)光合作用(或光反应)运输(2)B缺水,气孔开度降低,二氧化碳的吸收减少(2分)(3)缺水,叶绿素合成受阻,类胡萝卜素相对含量增加而呈现黄色(2分)ATP和[H] (2分)30.(15分)(1)载体蛋白脱氧核苷酸(2)有氧呼吸和无氧呼吸(2分)①②③(3分)产生大量的中间产物,为合成DNA和蛋白质等重要物质提供原料(意思对即给分)(2分)(3)原癌酶①④(2分)(4)免疫系统吞噬细胞、淋巴细胞等31.(7分)(1)乳白花白花∶乳白花∶黄花=1∶2∶1(2分)(2)8 1/5(3)YyHhNn 乳白花32. (8分)(1)能量流动和物质循环(多了信息传递、答一项均不给分)(2) C C是最高营养级,能量不再传给下一营养级(2分)(3)人的作用突出(4)合理调整生态系统中的能量流动关系,使能量持续高效地流向对人类最有益的部分(2分) 生物防治或化学防治39.(15分)(1)①水、无机盐、碳源、氮源(4分)②液体③无菌(2)①沸点高充分溶解胡萝卜素不与水混溶②有机溶剂易燃(2分)(3)绿色具有全能性(或含本物种全部遗传信息)(2分)(4)纸层析40.(15分)(1)单引物DNA聚合(或Taq酶)(2分)(2)增殖(脱分化)再分化ABC(2分)(3)空间结构氨基酸脱氧核苷酸(4)物质循环环境污染经济效益生态效益化学参考答案及评分标准7B 8C 9D 10C 11A 12D 13B26.(15分)(1)C (2分)(2)①关闭支口开关K 1并打开K 2(1分),将最后的导管通入水中,微热大试管(1分),若看到从导管中出现气泡,且停止加热后在导管中上升一段水柱,则证明气密性好(1分)。
(共3分)②打开K 1,用蘸有浓盐酸的玻璃棒靠近支口,有白烟生成(或者不加试剂看到白烟也给分)(2分)(用各种试纸检验不得分);(NH 4)2SO 4或(NH 4)2SO 3或SO 3(或酸式盐及以上物质的混合物也给分)(2分)③Al 2O 3 +2OH −=2AlO 2−+H 2O 或Al 2O 3 +3H 2O +2OH −=2Al(OH)4−(2分,配平错误得0分) ④B 或C ,或BC (2分)(3)1:3(2分)27.(14分)(1)2.5ΔH 2-0.5ΔH 3(2分)(2)①0.6mol·L -1·min -1(2分,不带单位扣1分),1024 或者45(3分)② (2分) ③AC (2分,选对一个得1分,有错选得0分)(3)8.96%(3分)28.(14分)(1)MnCO 3+H 2 SO 4 =MnSO 4+ CO 2↑+H 2O (3分)(2)MnO 2+2Fe 2++4H +=Mn 2++2Fe 3++2H 2O (3分)(3)CoS 和NiS (2分,错、漏均扣1分) (4)阴(2分);Mn 2++2e −=Mn (2分)(5)沉降得到MnS ,进一步除去废水中的Mn 2+。
2014年普通高等学校招生全国统一考试理科综合能力测试
5. 下图为某种单基因常染色体隐性遗传病系谱图( 深色代表的个体是该遗传病患者,其余为表现型正常 个体)。近亲结婚时该遗传病发病率较高,假定图中 第Ⅳ代的两个个体婚配生出一个患该遗传病子代的概 率为1/48,那么,得出此概率值需要的限定条件是
A.Ⅰ-2和Ⅰ-4必 须是纯合子 B.Ⅱ-1、Ⅲ-1和 Ⅲ-4必须是纯合子 C.Ⅱ-2、Ⅱ-3、 Ⅲ-2和Ⅲ-3必须是 杂合子 D.Ⅱ-4、Ⅱ-5、 Ⅳ-1和Ⅳ-2必须是 杂合子
4、某植物花冠切成大小和形状相同的细条,分为a、b、c、d、e 和f组(每组的细条数相等),取上述6组细条数分别置于不同浓 度的蔗糖溶液中,浸泡相同时间后测量各组花冠细条的长度,结 果如图所示。假如蔗糖溶液与花冠细胞之间只有水分交换则 A.试验后,a组液泡中的溶质浓度比b组的高 D B.浸泡导致f组细胞中液泡的失水量小于b组的 C.A组细胞在蔗糖溶液中失水或吸水所耗ATP大于b组 D.使细条在浸泡前后长度不变的蔗糖浓度介于0.4~0.5mol-L-1之 间
A
B
该小组将得到的菌株接种到液体培养基中并混匀,一 部分进行静置培养,另一部分进行震荡培养。结果发 现:振荡培养的细菌比静置培养的细菌生长速度快。 O2 分析其原因是:震荡培养能提高养液中________ 的含 量,同时可使用菌体与培养液充分接触,提高 营养物质 的利用率。 __________
1.关于细胞膜结构和功能的叙述,错误的是 C A.脂质和蛋白质是组成细胞膜的主要物质 B.当细胞衰老时,其细胞膜的通透性会发生改变 C.甘油是极性分子,所以不能以自由扩散的方式通过细胞膜 D.细胞产生的激素与靶细胞膜上相应受体的结合可实现细胞间 的信息传递 2. 正常生长的绿藻,照光培养一段时间后,用黑布迅速将培养 瓶罩上,此后绿藻细胞的叶绿体内不可能发生的现象是 B A.O2的产生停止 B.CO2的固定加快 C.ATP/ADP比值下降 D.NADPH/NADP+比值下降 3. 内环境稳态是维持机体正常生命活动的必要条件,下列叙述 错误的是 D A.内环境保持相对稳定有利于机体适应外界环境的变化 B.内环境稳态有利于新陈代谢过程中酶促反应的正常进行 C.维持内环境中Na+、K+浓度的相对稳定有利于维持神经细胞 的正常兴奋性 D.内环境中发生的丙酮酸氧化分解给细胞提供能量,有利于生 命活动的进行
2014年全国一卷高考理科数学试卷及答案
2014年全国一卷高考理科数学试卷及答案2014年普通高等学校招生全国统一考试全国课标I理科数学第Ⅰ卷(选择题共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x|x-2x-3≥0},B={x|-2≤x<2},则A∩B=A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)2.(1+i)³/(1-i)²=A.1+iB.1-iC.-1+iD.-1-i3.设函数f(x),g(x)的定义域都为R,且f(x)时奇函数,g(x)是偶函数,则下列结论正确的是A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.已知F是双曲线C:x-my=3m(m>0)的一个焦点,则点F 到C的一条渐近线的距离为A.3B.3mC.3D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率=A.1/3B.5/8C.7/8D.16.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]上的图像大致为图片无法显示)7.执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=图片无法显示)A.2016B.715C.35D.288.设α∈(0,π/2),β∈(0,π/2),且tanα=(1+sinβ)/cos²β,则3α-β=A.2α-βB.2α+βC.3α+βD.3α-β9.不等式组{x+y≥1,x-2y≤4}的解集记为D。
有下面四个命题:p1:对于任意的(x,y)∈D,有x+2y≥-2;p2:存在(x,y)∈D,使得x+2y≥2;p3:对于任意的(x,y)∈D,有x+2y≤3;p4:存在(x,y)∈D,使得x+2y≤-1.其中真命题是A.p2,p3B.p1,p4C.p1,p2D.p1,p310.已知抛物线C:y=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个焦点,若2FP=4FQ,则|QF|=A.7/5B.3C.√3D.21.已知函数$f(x)=ax-3x+1$,若$f(x)$存在唯一的零点$x$,且$x>0$,则$a$的取值范围为$\textbf{(C)}$($1$,$+\infty$)。
2014年高考理综四川卷(含详细答案)
理科综合能力测试试卷 第1页(共48页)理科综合能力测试试卷 第2页(共48页)绝密★启用前 2014年普通高等学校招生全国统一考试(四川卷)理科综合 • 物理理科综合考试时间共150分钟,满分300分。
其中,物理110分,化学100分,生物90分。
物理试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共42分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共7题,每题6分。
每题给出的四个选项中,有的只有一个选项、有的有多个选项符合题目要求 ,全部选对的得6分,选对但不全的得3分,有选错和不选的得0分。
1. 如图所示,甲是远距离输电线路的示意图,乙是发电机输出电压随时间变化的图象,则( )A. 用户用电器上交流电的频率是100 HzB. 发电机输出交流电的电压有效值是500 VC. 输电线的电流只由降压变压器原、副线圈的匝数比决定D. 当用户用电器的总电阻增大时,输电线上损失功率减小2. 电磁波已广泛运用于很多领域,下列关于电磁波的说法符合实际的是 ( )A. 电磁波不能产生衍射现象B. 常用的摇控器通过发出紫外线脉冲信号来摇控电视机C. 根据多普勒效应可以判断遥远天体相对于地球的运动速度D. 光在真空中运动的速度在不同惯性系中测得的数值可能不同3. 如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则 ( )A. 小球必须位于缸底中心才能从侧面看到小球B. 小球所发的光能从水面任何区域射出C. 小球所发的光从水中进入空气后频率变大D. 小球所发的光从水中进入空气后传播速度变大4. 有一条两岸平直、河水均匀流动、流速恒为v 的大河。
小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直。
去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.B.C.D.5. 如图所示,甲为 1 s t =时某横波的波形图象,乙为该波传播方向上某一质点的振动图象,距该质点0.5 m x ∆=处质点的振动图象可能是( )A. B.C. D.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科综合能力测试试卷 第3页(共48页)理科综合能力测试试卷 第4页(共48页)6. 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小。
2014年高考真题——理科综合(新课标Ⅰ卷)解析版.pdf
本实验中加入过量乙酸的目的是:实验中加入少量无水硫酸镁的目的是:在蒸馏操作中,仪器选择及安装都正确的
是:(填标号)
本实验的产率是:A.30
B.40
C.50
D.60
(8)在进行蒸馏操作时,若从130 ℃开始收集馏分,产率偏
(填高或者低)原因是
27、(15分)
次磷酸(H3PO)是一种精细化工产品,具有较强还原性,回答下列问题:
反应的速率与I-的浓度有关 B. IO-也是该反应的催化剂
C反应活化能等于98KJ·mol-1 D.v(H2O2)=v(H2O)=v(O2)
10.W、X、Y、Z均是周期元素,X、Y处于同一周期,X、Z的最低价离子分别为X2-和Z- ,Y+和Z-离子具有相同
的电子层结构。下列说法正确的是( )
氨气会降低肥效DFeCl3溶液可用于铜质印刷线路板制作FeCl3能从含有Cu2+的溶液中置换出铜9.已知分解1 mol H2O2
放出热量98KJ,在含少量I-的溶液中,H2O2的分解机理为:
H2O2+ I- →H2O +IO-
慢H2O2+ IO-→H2O +O2+ I- 快
下列有关反应的说法正确的是( )
分泌抗A抗体的杂交瘤细胞。
回答下列问题:
(1)制备融合所需的B淋巴细胞时,所用免疫小鼠的血清抗体效价需达到16000以上,则小鼠最少需要经过
次免疫后才能有符合要求的。达到要求的X、Y、Z这3只免疫小鼠中,最适合用于制备B淋巴细胞的是
小
鼠,理由是
。
(2)细胞融合实验完成后,融合体系中除含有未融合的细胞和杂交细胞外,可能还有 ,体系中出现多种类型
细胞的原因是
。
(3)杂交瘤细胞中有
个细胞核,染色体数目最多是
2014年高考理科数学湖南卷答案及解析(word版)
2014年普通高等学校招生全国统一考试(湖南卷)一.选择题. 1.【答案】B 【解析】由题可得()111122z i i i z i zi z i i z i z i +-=⇒+=⇒-=-⇒==--,故选B. 【考点定位】复数2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查3.【答案】C【解析】分别令1x =和1x =-可得()()113f g -=且()()111f g ---=()()111f g ⇒+=,则()()()()()()1131211111f g f f g g -==⎧⎧⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩()()111f g ⇒+=,故选C.【考点定位】奇偶性4.【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭, 则2n =时, ()()2532351121022022nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,故选A.【考点定位】二项式定理5.【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <,所以命题q 为假命题,所以②③为真命题,故选C. 【考点定位】命题真假 逻辑连接词6.【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D.【考点定位】程序框图 二次函数7.【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则862r r r -+-==,故选B.【考点定位】三视图 内切圆 球8.【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒=,故选D.【考点定位】实际应用题9.【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,因为()232sin 0cos cos 03x dx ππϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰sin 03πϕ⎛⎫⇒-= ⎪⎝⎭, 所以23k πϕπ=+或423k ππ+,则56x π=是其中一条对称轴,故选A.【考点定位】三角函数图像 辅助角公式10.【答案】B【解析】由题可得存在()0,0x ∈-∞满足()()0220001ln 2xx e x x a +-=-+-+ ()001ln 2x e x a ⇒--+-0=,当0x 取决于负无穷小时,()001ln 2x e x a --+-趋近于-∞,因为函数()1ln 2x y e x a =--+-在定义域内是单调递增的,所以()01ln 002e a-+->ln a a ⇒<<故选B.【考点定位】指对数函数 方程二.填空题.11.【答案】sin 42πρθ⎛⎫-=- ⎪⎝⎭ 【解析】曲线C 的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()2,1到直线l 的距离d =,所以圆心在直线l上,故1y x=-sin cos 1sin 42πρθρθρθ⎛⎫⇒=-⇒-=- ⎪⎝⎭,故填sin 42πρθ⎛⎫-=- ⎪⎝⎭.【考点定位】极坐标 参数方程12.【答案】32【解析】设线段AO 交BC 于点D 延长AO 交圆与另外一点E ,则BD DC ==由三角形ABD 的勾股定理可得1AD =,由双割线定理可得2BD DC AD DE DE =⇒=,则直径332AE r =⇒=,故填32.【考点定位】勾股定理 双割线定理13.【答案】3-【解析】由题可得52331233a a ⎧--=⎪⎪⎨⎪-=⎪⎩3a ⇒=-,故填3-. 【考点定位】绝对值不等式14.【答案】2-【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且,4y x x y ≤+≤的可行域如图,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=, 因为2k ≤,所以2k =-,故填2-.【考点定位】线性规划15.1【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,则2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩1a b ⇒=,1. 【考点定位】抛物线16.【答案】【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3c o s ,s i n 0,2θθθπ+∈,则(3OA OB OD ++==因为cos sin θθ的最大值为2,所以OA OB OD ++的最大值为=,故填【考点定位】参数方程 圆 三角函数17.某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B .设甲,乙两组的研发是相互独立的. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获得120万元,若新产品B 研发成功,预计企业可获得利润100万元,求该企业可获得利润的分布列和数学期望. 17.【答案】(1)1315(2)详见解析 【解析】(1)解:设至少有一组研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功,因为甲,乙成功的概率分别为23,35, 则()2312211353515P B ⎛⎫⎛⎫=-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,再根据对立事件概率之间的公式可得()()13115P A P B =-=,所以至少一种产品研发成功的概率为1315. (2)由题可得设该企业可获得利润为ξ,则ξ的取值有0,1200+,1000+,120100+,即0,120,100,220ξ=,由独立试验的概率计算公式可得:()2320113515P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭;()23412013515P ξ⎛⎫==⨯-= ⎪⎝⎭;()2311001355P ξ⎛⎫==-⨯= ⎪⎝⎭;()232220355P ξ==⨯=;所以ξ的分布列如下:则数学期望0120100220151555E ξ=⨯+⨯+⨯+⨯322088130=++=. 【考点定位】分布列 期望 独立试验的概率18.如图5,在平面四边形ABCD 中,1,2,AD CD AC ===. (1)求cos CAD ∠的值;(2)若cos 14BAD ∠=-,sin 6CBA ∠=,求BC 的长.18.【答案】(1) cos CAD ∠=(2)67【解析】解:(1)由DAC ∆关于CAD ∠的余弦定理可得222cos 2AD AC DC CAD AD AC +-∠==7=,所以cos 7CAD ∠=. (2)因为BAD ∠为四边形内角,所以s i n 0BAD ∠>且sin 0CAD ∠>,则由正余弦的关系可得s i n BAD ∠=14=且sin 7CAD ∠==,再有正弦的和差角公式可得()sin sin sin cos sin cos BAC BAD CAD BAD CAD CAD BAD ∠=∠-∠=∠∠-∠∠⎛= ⎝⎭=714+7=再由ABC ∆的正弦定理可得 sin sin AC BC CBA BAC =∠∠BC ⇒=⎝⎭67=. 【考点定位】正余弦定理 正余弦之间的关系与和差角公式19.如图6,四棱柱1111ABCD A BC D -的所有棱长都相等,11111,AC BD O AC B D O ==,四边形11ACC A 和四边形11BDD B 为矩形. (1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D --的余弦值.19.【答案】(1) 详见解析 (2) 【解析】(1)证明:四棱柱1111ABCD A BC D -的所有棱长都相等∴四边形ABCD 和四边形1111A B C D 均为菱形11111,ACBD O AC B D O ==∴1,O O 分别为11,BD B D 中点四边形11ACC A 和四边形11BDD B 为矩形∴1//OO 11//CC BB 且11,CC AC BB BD ⊥⊥ 11,OO BD OO AC ∴⊥⊥又AC BD O =且,AC BD ⊆底面ABCD1OO ∴⊥底面ABCD .(2)过1O 作1B O 的垂线交1B O 于点E ,连接11,EO EC .不妨设四棱柱1111ABCD A BC D -的边长为2a . 1OO ⊥底面ABCD 且底面ABCD //面1111A B C D 1OO ∴⊥面1111A B C D又11O C ⊆面1111A B C D111OC OO ∴⊥四边形1111A B C D 为菱形1111O C O B ∴⊥又111OC OO ⊥且1111OO O C O =,111,O O O B ⊆面1OB D11O C ∴⊥面1OB D又1B O ⊆面1OB D111B O OC ∴⊥又11BO O E ⊥且1111O C O E O =,111,O C O E ⊆面11O EC 1B O ∴⊥面11O EC∴11O EC ∠为二面角11C OB D --的平面角,则1111cos O EO EC EC ∠=060CBA ∠=且四边形ABCD 为菱形11O C a ∴=,11,BO=112,OO a B O ===, 则111111111221sin 37OO O E B OO B O B Oa a B O a=∠=== 再由11O EC ∆的勾股定理可得1EC===, 则1111cos O E O EC EC ∠===,所以二面角11C OB D --. 【考点定位】线面垂直 二面角20.已知数列{}n a 满足111,nn n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值; (2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列n a 的通项公式. 20.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数【解析】解:(1)因为数列{}n a 为递增数列,所以10n n a a +-≥,则11nnn n n n a a p a a p ++-=⇒-=,分别令1,2n =可得22132,a a p a a p -=-=2231,1a p a p p ⇒=+=++,因为123,2,3a a a 成等差数列,所以21343a a a =+()()224113130p p p p p ⇒+=+++⇒-=13p ⇒=或0,当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.(2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为 (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以21210n n a a+-->且2220n n a a +-<()2220n n a a +⇒-->,两不等式相加可得()21212220n n n n a a a a +-+--->2212221n n n n a a a a -++⇒->-,又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=,同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n n n a a +-=-,则当2n m =()*m N ∈时,21324322123211111,,,,2222m m m a a a a a a a a ---=-=--=-=,这21m -个等式相加可得2113212422111111222222m m m a a --⎛⎫⎛⎫-=+++-+++⎪ ⎪⎝⎭⎝⎭212222111111111224224113321144m m m -----=-=+--22141332m m a -⇒=+. 当21n m =+时, 2132432122321111,,,,2222m m m a a a a a a a a +-=-=--=-=-,这2m 个等式相加可得2111321242111111222222m m m a a +-⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭21222111111112242243321144m m m---=-=--- 21241332m m a +=-,当0m =时,11a =符合,故212241332m m a --=- 综上1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数.【考点定位】叠加法 等差数列 等比数列21.如图7,O 为坐标原点,椭圆1:C ()222210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2:C 22221x y a b -=的左右焦点分别为34,F F ,离心率为2e ,已知122e e =,且241F F =. (1)求12,C C 的方程;(2)过1F 点的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.21.【答案】(1) 2212x y += 2212x y -= (2)4 【解析】解:(1)由题可得12e e ==,且12F F =,因为12e e =,且24F F =,所以22212b a+=且1a ⇒=且1,b a ==所以椭圆1C 方程为2212x y +=,双曲线2C 的方程为2212x y -=. (2)由(1)可得()21,0F -,因为直线AB 不垂直于y 轴,所以设直线AB 的方程为1x ny =-,联立直线与椭圆方程可得()222210n y ny +--=,则222A B n y y n +=+,则22mny n =+,因为(),M M M x y 在直线AB 上,所以2222122M n x n n -=-=++,因为AB 为焦点弦,所以根据焦点弦弦长公式可得21222M AB e x n =+=++)2212n n +=+,则直线PQ 的方程为2M M y n y x y x x =⇒=-,联立直线PQ 与双曲线可得22202n x x ⎛⎫---= ⎪⎝⎭2284x n ⇒=-,22224n y n =-则24022n n ->⇒-<<,所以,P Q 的坐标为,⎛ ⎝,则点,P Q 到直线AB 的距离为221224n n n d n +-=,222224n nn d n --=,因为点,Q P 在直线AB 的两端所以()2221222224n n nn dd n ++-+==+,则四边形APBQ 面积()1212S AB d d =+= =因为2440n ≥->,所以当242n n =⇒=±时, 四边形APBQ 面积取得最小值为4.【考点定位】弦长 双曲线 椭圆 最值22.已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围. 【答案】(1)详见解析【解析】解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时,()'0f x x =⇒=则函数()f x 在区间⎛ ⎝⎭单调递减,在⎫⎪∞⎪⎝⎭单调递增的.(2) 解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时, ()'0f x x =⇒=,则函数()f x 在区间⎛ ⎝⎭单调递减,在⎫⎪+∞⎪⎝⎭单调递增的.(2)函数()f x的定义域为1,a⎛⎫-+∞⎪⎝⎭,由(1)可得当01a<<时,()'0f x x=⇒=,则1a>-⇒12a≠,则()f x的两个极值点,()()12ln1ln1f x f x⎡⎡+=++-+⎣⎣()ln141a a=--+⎡⎤⎣⎦,因为112a<<或12a<<,则12<,则设t=12t⎛⎫<<⎪⎝⎭,则()()()212ln144f x f x t t+=-+,设函数()()2ln144g x x x=-+12t⎛⎫<<⎪⎝⎭, 后续有待更新!!!【考点定位】导数含参二次不等式对数。
2014年高考全国Ⅰ卷理科综合试题(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试理科综合能力测试适用地区:注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后.将本试题和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 A 127 P 31 S 32Ca 40 Fe 56 Cu 64 Br 80 Ag 108第Ⅰ卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于细胞膜结构和功能的叙述,错误的是A. 脂质和蛋白质是组成细胞膜的主要物质B. 当细胞衰老时,其细胞膜的通透性会发生改变C. 甘油是极性分子,所以不能以自由扩散的方式通过细胞膜D. 细胞产生的激素与靶细胞膜上相应受体的结合可实现细胞间的信息传递2.正常生长的绿藻,照光培养一段时间后,用黑布迅速将培养瓶罩上,此后绿藻细胞的叶绿体内不可能发生的现象是A. O2的产生停止B. CO2的固定加快C. ATP/ADP比值下降D.NADPH/NADP+比值下降3.内环境稳态是维持机体正常生命活动的必要条件,下列叙述错误的是A. 内环境保持相对稳定有利于机体适应外界环境的变化B. 内环境稳态有利于新陈代谢过程中酶促反应的正常进行C. 维持内环境中Na+、学科网K+浓度的相对稳定有利于维持神经细胞的正常兴奋性D. 内环境中发生的丙酮酸氧化分解给细胞提供能量,有利于生命活动的进行4.下列关于植物细胞质壁分离实验的叙述,错误的是A. 与白色花瓣相比,采用红色花瓣有利于实验现象的观察B. 用黑藻叶片进行实验时,叶绿体的存在会干扰实验现象的观察C. 用紫色洋葱鳞片叶外表皮不同部位观察到的质壁分离程度可能不同D. 紫色洋葱鳞片叶外表皮细胞的液泡中有色素,有利于实验现象的观察5.下图为某种单基因常染色体隐性遗传病系谱图(深色代表的个体是该遗传病患者,其余为表现型正常个体)。
2014年高考全国卷1理科数学试题及答案-
2014年普通高等学校招生全国统一考试一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1s in ta n c o s βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x yD x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x yD x y ∃∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4F P F Q =,则||QF =A .72 B .52C .3D .2 11. 已知函数()f x =3231a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4二.填空题:本大题共四小题,每小题5分。
2014年全国高考试题及答案
绝密★启用前2014年普通高等学校招生全国统一考试(安徽卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷第1页至第5页,第Ⅱ卷第6至第12页。
全卷满分300分。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘帖的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上....对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题时可先用铅笔在答题卡...规定的位置绘出,确认后用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效................,在试题卷....、草稿纸上答题无效.....。
4. 考试结束,务必将试题卷和答题卡一并上交。
可能用到的相对原子量:li 7 O 16 F 19 P 31 S 32 Fe 56第Ⅰ卷(选择题共120分)本卷共20小题,每小题6分.共120分。
在每题给出的四个选项中,只有一项是最符合题目要求的。
1.关于线粒体的叙述,正确的是A.线粒体外膜的蛋白质含量比内膜高B.葡萄糖分解为丙酮酸的过程发生在线粒体基质中C.成人心肌细胞中线粒体数量比腹肌细胞的多D.哺乳动物精子中的线粒体聚集在其头部和尾的基部Na进出肾小管上皮细胞的示意图,下表选2. 右图为氨基酸和+项中正确的是3. 分别用β—珠蛋白基因、卵清蛋白基因和丙酮酸激酶(与细胞呼吸相关的酶)基因的片断为探针,与鸡的成红细胞、输卵管细胞和胰岛细胞中提取的总DNA分子进行分子杂交,结果见下表(注:“+”表示阳性,“-”表示阴性)。
下列叙述不正确的是A.在成红细胞中,β—珠蛋白基因处于活动状态,卵清蛋白基因处于关闭状态。
2014年高考理综试题及答案全国卷
2014年普通高等学校招生全国统一考试理科综合能力测试一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 关于细胞的叙述,错误的是A. 植物细胞的细胞连丝具有物资运输的作用B. 动物细胞间的粘着性细胞膜上的糖蛋白有关C. A TP水解释放的能量可用于细胞内的吸能反应D. 哺乳动物的细胞可以合成蔗糖,也可以合成乳糖2.同一动物个体的神经细胞与肌细胞在功能上是不同的,造成这种差异的主要原因是A.二者所处的细胞周期不同B. 二者合成的特定蛋白不同C. 二者所含有的基因组不同D. 二者核DNA的复制方式不同3.关于在正常情况下组织液生成与回流的叙述,错误的是A.生成与回流的组织液中氧气的含量相等B. 组织液不断生成与回流,并保持动态平衡C. 血浆中的有些物质经毛细血管动脉端进入组织液D. 组织液中的有些物质经毛细血管静脉端进入血液4.讲某植物花冠切成大小和形状相同的细条,分为a、b、c、d、e和f组(每组的细条数相等),取上述6组细条数分别置于不同浓度的蔗糖溶液中,浸泡相同时间后测量各组花冠细条的长度,结果如图所示。
假如蔗糖溶液与花冠细胞之间只有水分交换则A.试验后,a组液泡中的溶质浓度比b组的高B.浸泡导致f组细胞中液泡的失水量小于b组的C.A组细胞在蔗糖溶液中失水或吸水所耗ATP大于b组D.使细条在浸泡前后长度不变的蔗糖浓度介于0.4~0.5mol-L-1之间5.关于核酸的叙述,错误的是A.细胞核中发生的转录过程有RNA聚合酶的参与B.植物细胞的线粒体和叶绿素体中均可发生DNA的复制C.双链DNA分子中一条链上的磷酸和核糖是通过氨键链接的D.用甲基绿和吡罗红染色可观察DNA和RNA在细胞中的分布6.关于光合作用和呼吸作用的叙述,错误的是A.磷酸是光反应中合成A TP所需的反应物B.光合作用中叶绿素吸收光能不需要酶的参与C.人体在剧烈运动时所需要的能量由乳酸分解提供D.病毒核酸的复制需要宿主细胞的呼吸作用提供能量7.下列过程没有发生化学反应的是A.用活性炭去除冰箱中的异味B.用热碱水清除炊具上残留的污垢C.用浸泡过高锰酸钾溶液的硅藻土保鲜水果D.用含硅胶、铁粉的透气小袋与食品一起密封包装8.四联苯的一氯代物有A. 3种B. 4种C. 5种D. 6种9.下列反应中,反应后固体物质增重的是A.氢气通过灼热的CuO粉末B. 二氧化碳通过Na2O2粉末C. 铝与Fe2O3发生铝热反应D.将锌粒投入Cu(NO3)2溶液10.下列图示试验正确的是11.一定温度下,下列溶液的离子浓度关系式正确的是A. pH=5的H2S溶液中,c(H+)=c(HS-)=1×10-5mol·L-1B. pH=a的氨水溶液,稀释10倍后,其pH=b,则a=b+1C. pH=2的H2C2O4溶液与pH=12的NaOH溶液任意比例混合:O)c(Na+)+c(H+)=c(OH-)+c(HC24D. pH相同的①CH3COONa②NaHCO3③NaCIO三种溶液的c(Na+):①>②>③12. 2013年3月我国科学家报道了如图所示的水溶液锂离子电池体系。
2014年高考全国卷1理科数学试题及答案-(word版)
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12 小题,每小题 5 分,共60 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={ x| 2 2 3 0x x } ,B={ x| -2≤x<2=,则 A B =A .[-2,-1]B .[-1,2 )C .[-1,1]D .[1,2)3 (1 i)2. =2(1 i)A .1 iB .1 iC . 1 iD . 1 i3. 设函数 f (x) ,g( x) 的定义域都为R,且 f ( x) 时奇函数,g( x) 是偶函数,则下列结论正确的是A . f (x) g( x) 是偶函数B .| f (x) |g(x) 是奇函数C . f (x) | g( x) |是奇函数D .| f ( x) g( x) |是奇函数4. 已知F 是双曲线 C : 2 2 3 ( 0)x my m m 的一个焦点,则点 F 到C 的一条渐近线的距离为A . 3B .3C . 3mD . 3m5. 4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A . 18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x的函数 f ( x) ,则y = f (x) 在[0, ] 上的图像大致为5. 执行下图的程序框图,若输入的 a, b, k 分别为 1,2,3,则输出的 M =A .20 3B .165C .7 215 8D .6. 设(0, ) 2 ,(0, ) 2,且tan 1 sin cos,则A .3B . 222C .3D . 22 27. 不等式组xy 1 x 2y 4的解集记为 D .有下面四个命题:p : (x, y) D, x 2y2 , p 2 : ( x, y) D ,x 2y 2 ,1P : (x, y) D, x 2y 3 , 3p : (x, y) D ,x 2y1 .4其中真命题是A . p 2 , PB . 3p , p 4C . 1 p , p 2D . 1p , 1P38. 已知抛物线 C :28yx 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF 与C 的一个焦点,若F P 4FQ ,则 | QF |=A .7 2B .5 2C .3D .29. 已知函数 f (x) =33 2 1 axx ,若 f ( x) 存在唯一的零点 x 0 ,且 x 0 >0,则 a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)10. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .6 2B .4 2C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年高考新课标1全国卷理科数学试题及答案
2014年普通高等学校招生全国统一考试全国新课标1理科数学 第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1。
已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ).A 。
[]2,1--B 。
[)1,2-C 。
[]1,1-D 。
[)1,22。
32(1)(1)i i +=-( ). A .1i + B .1i - C 。
1i -+ D 。
1i --3。
设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )。
A .()()f x g x 是偶函数B 。
()()f x g x 是奇函数C 。
()()g x f x 是奇函数D 。
()()f x g x 是奇函数4。
已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A 。
3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C 。
58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7。
执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )。
A .203 B . 72 C . 165 D 。
1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A 。
32παβ-=B . 32παβ+=C 。
22παβ-=D 。
22παβ+=9。
不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-。
2014年江西卷高考理科数学真题及答案
【解析】俯视图为在底面上的投影,易知选:B
6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是()
A.成绩B.视力C.智商D.阅读量
【答案】D
【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D
2014年普通高等学校招生全国统一考试
(江西卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 是 的共轭复数.若 ,( ( 为虚数单位),则 ()
A. B. C. D.
【答案】D
【解析】
所以选D。
2.函数 的定义域为()
A. B. C. D.
【答案】C
【解析】A(0,0,0),E(4,3,12), (8,6,0), ( ,7,4), (11, ,9), , , ,
……
二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
11(1).(不等式选做题)对任意 , 的最小值为()
【答案】C
【解析】
所以选C.
3.已知函数 , ,若 ,则 ()
A.1 B.2 C. 3 D. -1
【答案】A
【解析】
所以选A。
4.在 中,内角A,B,C所对应的边分别为 ,若 则 的面积()
A.3 B. C. D.
【答案】C
【解析】
所以选C。
5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()
已知函数 .
2014年全国2卷高考理科综合(物理部分)试题及答案
2014年普通高等学校招生全国统一考试理综物理部分 (全国2-甲卷)二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.甲乙两汽车在一平直公路上同向行驶。
在t =0到t=t 1—t 图像如图所示。
在这段时间内 A .汽车甲的平均速度比乙大B .汽车乙的平均速度等于221v v + C .甲乙两汽车的位移相同 D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大【答案】A【解析】由于图线与坐标轴所夹的面积表示物体的位移,在0-t 1时间内,甲车的位移大于乙车,由x v t=可知,甲车的平均速度大于乙车,A 正确, C 错误;因为乙车做变减速运动故平均速度不等于122v v +,B 错误;又图线的切线的斜率等于物体的加速度,则甲乙两车的加速度均逐渐减小,选项D 错误。
15.取水平地面为重力势能零点。
一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。
不计空气阻力,该物块落地时的速度方向与水平方向的夹角为A .6πB .4πC .3πD .125π 【答案】 B【解析】设物体水平抛出的初速度为v 0,抛出时的高度为h ,则2012mv mgh =,故0v =竖直速度y v =则落地时速度方向与水平方向的夹角0tan 1y y x v v v v θ===,则4πθ=,选项B 正确.16.一物体静止在粗糙水平地面上,现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v ,若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v ,对于上述两个过程,用1F W 、2F W 分别表示拉力F 1、F 2所做的功,1f W 、2f W 分别表示前后两次克服摩擦力所做的功,则A .214F F W W >,212f f W W >B .214F F W W >,122f f W W =C .214F F W W <,122f f W W =D .214F F W W <,212f f W W <【答案】C【解析】由于物体两次受恒力作用做匀加速运动,由于时间相等,末速度之比为1:2,则加速度之比为1:2,位移之比为1:2。
2014年高考新课标I卷数学(理科)试题及参考答案(含解答题评分标准)
2014年普通高等学校招生全国统一考试全国课标I理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2) 2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p 10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两个部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试 理科
(新课标卷二Ⅱ)
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,学科网只有一项是符合题目要求的.
1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}
B. {2}
C. {0,1}
D. {1,2}
2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5
B. 5
C. - 4+ i
D. - 4 - i
3.设向量a,b 满足|a+b
|a-b
a ⋅
b = ( ) A. 1
B. 2
C. 3
D. 5
4.钝角三角形ABC 的面积是12
,AB=1,
,则AC=( )
A. 5
B.
C. 2
D. 1
5.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A. 0.8
B. 0.75
C. 0.6
D. 0.45
6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13
7.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7 8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3
9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪
-+⎨⎪--⎩
≤≤≥,则2z x y =-的最大值为
( ) A. 10 B. 8 C. 3 D. 2
10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )
A.
B.
C. 6332
D. 94
11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,
则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25
C.
D.
12.设函数(
)x f x m
π=.若存在()f x 的极值点0x 满足()2
2200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.
()(),66,-∞-⋃∞
B.
()(),44,-∞-⋃∞
C.
()(),22,-∞-⋃∞
D.
()(),14,-∞-⋃∞
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必
须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题
13.()10
x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.
15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.
16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.
三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)
已知数列{}n a 满足1a =1,131n n a a +=+.
(Ⅰ)证明{
}
12
n a +是等比数列,并求{}n a 的通项公式;
(Ⅱ)证明:123111n
++<…+.
18. (本小题满分12分)
如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;
(Ⅱ)设二面角D-AE-C 为60°,AP=1,
E-ACD 的体积.
19. (本小题满分12分)
某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:
(Ⅰ)求y 关于t 的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:
()()
()
1
2
1
n
i
i
i n
i i t t y y b t t ∧
==--=
-∑∑,ˆˆa
y bt =-
20. (本小题满分12分)
设1F ,2F 分别是椭圆()222210y x a b a b
+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.
(Ⅰ)若直线MN 的斜率为34
,求C 的离心率;
(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b . 21. (本小题满分12分)
已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;
(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;
(Ⅲ)已知1.4142 1.4143<
<,估计ln2的近似值(精确到0.001)
请考生在第22、23、24题中任选一题做答,如果多做,学科网同按所做的第一题计分,做答时请写清题号.
22.(本小题满分10)选修4—1:几何证明选讲
如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交
于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明:
(Ⅰ)BE=EC ;
(Ⅱ)AD ⋅DE=22PB
23. (本小题满分10)选修4-4:坐标系与参数方程
在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,
0,2πθ⎡⎤∈⎢⎥
⎣⎦
. (Ⅰ)求C 的参数方程;
(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.
24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a
++->
(Ⅰ)证明:()f x ≥2;
(Ⅱ)若()35f <,求a 的取值范围.。