概率论与数理统计(排版)
概率论与数理统计(完整版)
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?
注
实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验 ,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
概率论与数理统计教案模板
定义若X的分布律为P(X=x i)=p i,i=1,2…当级数绝对收敛时(即收敛)就说是离散型随机变量X的说明:(1)若X取值为有限个x1,x2,…,x n则(2)若X取值为可列无限多个x1,x2,…,x n…则这时才要求无穷级数绝对收敛。
很明显,X的期望EX体现随机变量X取值的平均概念,所以EX也叫X的均值。
4.1.2 下面介绍几种重要离散型随机变量的数学期望。
1.两点分布随机变量X的分布律为分布EXX~(0,1)X~B(n,p)X~P(λ)p np4.1.3下面介绍离散型随机变量函数的数学期望。
定理4-1 设离散型随机变量X的分布律为P{X=x k}=p k,k=1,2,…。
令Y=g(X),若级数绝对收敛,则随机变量Y的特别情形4.1.4 连续型随机变量的期望对于连续型随机变量的期望,形式上可类似于离散型随机变量的期望给予定义,只需将和式中的x i改变x,p i改变为f(x)dx(其中f(x)为连续型随机变量的概率密度函数)以及和号“Σ”演变为积分号“∫”即可。
定义4-2 设连续型随机变量X的概率密度为f(x),若广义积分绝对收敛,则称该积分为随机变量X的数学期望(简称期望或均值),记为EX,即1.均匀分布设随机变量X在[a,b]上服从均匀分布,其概率密度为则在区间[a,b]上服从均匀分布的随机变量的期望是该区间中点。
2.指数分布设随机变量X服从参数为λ>0的指数分布,其概率密度为解:在微积分中有即指数分布的数学期望为参数λ的倒数。
3.正态分布设其概率密度为则X的期望E(X)=μ。
(不证)上面三种情况列表如下(可以作为公式使用)分布EXX~U(a,b)X~E(λ)X~N(μ,σ2)μ下面介绍连续型随机变量函数的数学期望。
定理4-2 设X为连续型随机变量,其概率密度为f X(x),又随机变量Y=g(X),则当收敛时,有4.1.5二维随机变量函数的期望定理4-3 (1)若(X,Y)为离散型随机变量,若其分布律为p ij=P{X=x i,Y=y i},边缘分布律为则(2)其(X,Y)为二维连续型随机变量,f(x,y),f x(x),f (X,Y)的概率密度与边缘概率密度,则证明略。
《概率论与数理统计》全套课件PPT(完整版)
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
概率论与数理统计课件(共199张PPT)
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计总结之第三章
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
概率论与数理统计电子版教材
概率论与数理统计电子版教材概率论与数理统计是一门重要的数学学科,它旨在研究随机现象和数据的统计规律,是自然科学、社会科学和工程技术等领域中不可或缺的基础学科。
本文将简要介绍概率论与数理统计的基本概念、分布、随机变量、随机过程和大数定律等内容。
一、概率论的基本概念概率是指一个事件在所有可能性中出现的可能性大小,它是一个0和1之间的实数。
概率论是一个基于集合论的数学理论,它研究随机事件,即不确定性事件的概率规律。
基本的概念包括样本空间、样本点、基本事件、和事件、差事件、交事件等。
样本空间是指所有可能的结果的集合,样本点是指样本空间中的一个元素,基本事件是指随机事件中最简单的一种,和事件是指随机事件中两个或多个事件发生的交集,差事件是指B事件不包含A事件的部分,交事件是指随机事件中两个或多个事件发生的并集。
二、分布概率论中的分布是指随机变量的概率分布模型,通常用于描述随机变量的概率密度函数或累积分布函数。
常见的分布包括离散分布和连续分布。
离散分布适用于描述一些离散的取值,像二项分布和泊松分布,而连续分布适用于描述取值连续的情况,像正态分布和t分布。
三、随机变量随机变量是指一个随机事件对应于一个实数或者一组实数的函数。
随机变量可以是离散的或连续的,离散的随机变量通常用概率质量函数描述,而连续的随机变量则用概率密度函数描述。
随机变量的期望和方差是随机变量的两个重要指标,它们可以用来描述随机变量的总体性质。
四、随机过程随机过程是指随机事件随时间变化的过程,它尤其适用于描述在不断变化的状态下的随机事件。
随机过程主要包括马尔科夫链、布朗运动和泊松过程等。
其中,马尔科夫链是指每一个状态都只依赖于前一步的状态,布朗运动是指在固定时间段内任意时刻的随机步长相加所得的路径,而泊松过程则是以随机变量为时间间隔的增量为标记的过程。
五、大数定律大数定律是概率论中的重要结果之一,它意味着随着试验次数的增加,随机事件的频率将趋近于其真实概率。
概率论与数理统计(第4版)浙江大学 盛聚编
对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.
概率论和数理统计(第三学期)第7章数理统计的基本概念
n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20
10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3
求
2 0.05
60 .
解
2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。
(完整版)概率论与数理统计公式整理(超全版)
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
概率论与数理统计常用的统计分布
Y X ~ N ( 0 ,1) , 2 (n 1)S 2 ~ 2 (n 1)
/ n
2
且 Y 与 2 独立,由 t 分布的定义有
X
X
S/ n
/ n (n 1)S 2 / 2
Y S2/n
~ t(n 1)n 1概率论与数理统计 例1 设 X ~ N (21,22 ), X1, X 2,, X 25 为X的一个样本,求: (1) 样本均值的数学期望与方差; (2) P{| X 21| 0.24}.
试估计未知参数 .
解 E(X )
认为可以用 X 代替 E( X )
ˆ X 是的估计量
ˆ x 172.7是的估计值
概率论与数理统计
点估计没有给出估计值接近总体参数程度 的信息;同时,也可以看到, 对于同一个 参数, 用不同的估计方法求出的估计量可 能不相同。
那么那一个估计量好坏的标准是什么?
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
(1) 样本均值的数学期望与方差;
(2) P{| X 21| 0.24}.
P{| X 21| 0.24} P{21 0.24 X 21 0.24}
P{19.76 21 X 21 21.24 21}
0.4
0.4
0.4
( 21.24 21) (19.76 21) 2(0.6) 1
概率论与数理统计整理(一二章)
一、随机事件和概率考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点:1. 随机事件:可能发生也可能给不发生的事件。
0<概率<1。
2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成的集合叫做样本空间,大写字母S表示。
3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。
(2)相等:事件A包含事件B且事件B包含事件A。
(3)和:事件的并,记为A∪B。
(4)差:A-B称为A与B的差,A发生而B不发生,A-B=A-AB。
(5)积:事件的交,事件A与B都发生,记为AB或A∩B。
(6)互斥:事件A与事件B不能同时发生,AB=空集。
(7)对立:A∪B=S。
4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C) (AB)C=A(B C) (3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特别地:互不相容的完全事件组)。
概率论与数理统计答案 浙江大学 张帼奋 主编
第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。
所以,(1)试验的样本空间共有9个样本点。
(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。
即A 所包含的样本点为(0,a ),(1,a ),(2,a )。
(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。
即B 所包含的样本点为(0,a ),(0,b ),(0,c )。
2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBCAC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生); 3(1)错。
依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。
(2)错。
举反例 (3)错。
举反例(4)对。
证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。
4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。
概率论与数理统计公式整理(超全免费版)
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为
,
的分布列( 互不相等)如下:
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2
…
概率论与数理统计超全公式总结
~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±
zα
/2
⎝
σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2
≥
χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij
概率论与数理统计(数理统计的基本概念)
简单随机样本:经简单随机抽样取得的个体的集合
一般 (X 1,用 X 2, ,X n)表示
样本点:样本中的个体 样本容量:样本中包含的个体的数量 样本观测值:对样本进行观测的结果,
一般 (x1,x用 2, ,xn)表示
以后未经声明 抽样即为简单随机抽样 样本即为简单随机样本
10
常见的要求和叙述:
引入统计量的概念
12
定义 设 (X1,X2, ,Xn)为来X 自 的总 一体 ,个样
若n元函f(数 X1,X2,,Xn)不含任何未 , 知参 则f(称 X 1,X 2, ,X n)为 X 1,X 2, ,X n 的一个 . 统
f(X1,X2,,Xn)是否为统计量 含关 未键 知是
13
例1 设 (X 1,X 2, ,X n)为来N 自 (,2 总 )的体 一个
2分布的期望和方差 E (2)n , D (2)2n
E (2 ) E (X 1 2 X 2 2 X n 2 )
E (X 1 2 ) E (X 2 2 ) E (X n 2 ) nE(Xi2) n {D (X i)[E (X i)2]} n(102)n
D (2 ) D (X 1 2 X 2 2 X n 2 )
其
中X
1 n
n i1
Xi
为一个统计量
(5 ) f5(X 1,X 2, ,X n )1 2n(X iX )2
i 1 不是统计量
(6 ) f6(X 1,X 2, ,X n)n 1i n 1(X iX )k
其中k为常数 为一个统计量
15
常见统计量:
样本均值 样本方差
X
1 n
n i1
Xi
n 1(X1X2Xn)
S2
概率论和数理统计知识点总结(超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结(免费超详细版)
概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国地质大学(武汉)远程与继续教育学院期末考试
考试科目名称:概率论与数理统计
层次:专升本考试方式:考查
要求:
1、独立完成;
2、答题要求正确运用所学本课程知识,同时联系实际进行分析;
3、逻辑清晰,内容完整,文字流畅;
4、抄袭、雷同、非手写稿均记0分。
一、论随机事件与概率(本大题共3小问,每小问11分,共33分)
1. 概率论与数理统计是研究和揭示随机现象统计规律性的一门数学学科.请问什么是随机现象?你能任意举出两种以上身边的随机现象吗?
2. 表征随机事件在一次试验中发生的可能性大小的数叫概率,请问概率必须满足哪三条性质?
3. 给出三种以上计算随机事件概率的方法.(指出名称与计算公式)
二、论随机变量与随机变量的数字特征(本大题共3小问,每小问11分,共33分)
1. 请阐述什么是随机变量,通常我们讨论的主要是哪两种基本类型的随机变量?
2. 设是离散型随机变量,则其概率分布律应满足什么性质?
3. 随机变量的期望与方差有着怎样的含义?试指出下列常见分布的期望与方差:(1)离散型的二项分布:~;(2)连续型的正态分布~ .
三、论数理统计的基本知识(本大题共3小问,共34分)
1. 什么是总体与个体?一个简单随机样本应具备哪两个性质?(11分)
2. 统计量的定义是什么?如果总体~,其中已知,未知,是从中抽取的1个简单随机样本,则以下哪个不是统计量?为什么?(11分)
3. 数理统计中的四大抽样分布是哪四个分布?在单个正态总体均值的置信区间的讨论中,分布适用于怎样的问题?其置信区间的公式为?(12分)。