上海地区高一上学期测试题(数学)(函数的奇偶性及单调性).doc

合集下载

高中数学沪教版高一函数的单调性与奇偶性单元测试卷含答案

高中数学沪教版高一函数的单调性与奇偶性单元测试卷含答案

高中数学沪教版高一(上)函数的奇偶性与单调性单元测试一、填空题1、已知函数6)(35-++=cx bx ax x f (a,b,c 为常数),若f(-8)=8,则f(8)的值是 2、函数2341xx y -+=的单调递减区间是3、定义在区间(-1,1)上的函数f(x)既是奇函数又是减函数,则不等式0)1()1(2<-+-t f t f 成立的实数t 的取值范围是____________4、已知偶函数f(x)在),0[+∞上是增函数,则不等式)2()52(2+<+x f x f 的解集为_______5、已知函数f(x)是定义在R 上的偶函数,且对任意的R x ∈都有)()2(x f x f -=+,当]2,0[∈x 时,f(x)=3x+2,则函数f(x)在区间[-4,0]的解析式为_____________6、已知y=f(x) 是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2-=,则当x<0时,f(x)的表达式为________ 7、如果函数bx x x f +-=3)((b 为常数),且y=f(x)在区间(0,1)上单调递增;并且函数y=f(x)的图像与x 轴交点的横坐标都在区间[-2,2]内,则b 的一个可能取值为________8、试写一个在区间]1,21[上是单调递减,在区间),1[+∞上是单调递增且在定义域D 上为偶函数的函数解析式:__________________二、选择题9、下列四个命题:①f(0)=0是函数f(x)为奇函数的必要非充分条件; ②既是函数又是偶函数的函数其解析式比为f(x)=0,R x ∈ ③若函数)0)()((≠x f x f 在定义域上递增,则函数)(1)(x f x g =在定义域上递减 ④若函数+∈R x x f ),(为减函数,则+∈R x x g f )),((为减函数 其中正确的命题个数有( )(A) 0 个 (B )1个 (C ) 2 个 (D ) 3个10、关于函数)0()()(2≠++=x ax a x x x f 与函数)0()(2≠=x x x g 的四个结论中正确的是( ) (A) f(x)与g(x)是同一个函数(B) f(x)一定是非奇非偶函数,g(x)一定是偶函数 (C) f(x)与g(x)在区间),(+∞-a 上具有相同的单调性(D) f(x)与g(x)的值域相同11、设函数f(x)是定义在R 上任意一个减函数,设函数F(x)=f(x)-f(-x),那么函数F(x)必为( ) (A) 增函数且是奇函数 (B )增函数且是偶函数 (C) 减函数且是奇函数 (D) 减函数且是偶函数 12、已知函数m mx x x f --=2)(和n nx x x g --=2)(在区间)3,(--∞上都是减函数,则下列判断中正确的是( )(A )m=n (B) 2322≤≤-n(C) 322-=m (D) m 、n 的取值范围相同,均为],322[+∞-三、解答题13、已知函数 ⎪⎩⎪⎨⎧≥+<<+-=,t ,t t ,t ,t t t S 21)1(21210)1(2)(2试确定函数S(t)的单调区间,并加以证明14、设函数)2,4(,32)(131--=∈++-=D x x x x f ,求函数22),(D x x f ∈,使⎩⎨⎧∈∈==2211),(),()(D x x f D x x f x f y 为偶函数;能否用一个代数式表示f(x)?若能,请给出。

上海市高一上学期期末考试数学试卷含答案

上海市高一上学期期末考试数学试卷含答案
【答案】
【解析】易知当 时,函数 单调递增,且 ,故当 时, ,
当 时, ,所以当 时,不等式 的解集为 .
因为函数 的图象关于原点对称,所以 ,且当 时,不等式
的解集为 .故不等式 的解集为 .
故答案为: .
【说明】本题考查利用函数的单调性解不等式,涉及到函数的奇偶性,考查学生的数形结合的思想,是一道中档题.
当 时, ,不满足题意;
当 时, ,满足题意;
当 时, ,满足题意;
当 时, ,满足题意;
当 时, ,此时分母为零,不满足题意;
当 时, ,满足题意;
当 时, ,满足题意;
当 时, ,满足题意;
当 时, ,不满足题意;
当 时, ,不满足题意;
当 时, ,满足题意;
综上可得,集合 .
故答案为: .
2、若关于 的不等式 的解集是 ,则 ________
(1)证明: ;
(2)建立变量 与 之间的函数关系式 ,并写出函数 的定义域;
(3)求 的最大面积以及此时的 的值.
18、已知函数 是定义域为 上的奇函数.
(1)求 的值;
(2)用定义法证明函数的单调性,并求不等式 的解集;
(3)若 在 上的最小值为 ,求 的值.
四. 附加题
19、设函数 ,其中 .
(1) ;(2) ;(3) ;(4) ;与 相同的集合有()
A. 4个B. 3个C. 2个D. 1个
三、解答题:(共48分)
15、已知全集 ,集合 , .
(1)若 ,求 ;
(2)若 ,求实数 的取值范围.
16、已知函数 , .
(1)求 的值;
(2)设 ,求函数 在 上的值域.
17、如图所示,设矩形 ( )的周长为20厘米,把 沿 向 折叠, 折过去后交 于点 ,设 厘米, 厘米.

上海市高一数学上学期期末试卷及答案(共3套)

上海市高一数学上学期期末试卷及答案(共3套)

上海市金山中学高一上学期期末考试数学试卷一、填空题(本题共36分)1. 已知集合}1,0,1,2{--=A ,集合{}R x x x B ∈≤-=,012,则=B A _______. 2.已知扇形的圆心角为43π,半径为4,则扇形的面积=S . 3. 函数12)(-+=x x x f 的定义域是___________. 4. 已知1log log 22=+y x ,则y x +的最小值为_____________.5.已知31sin =α(α在第二象限),则=++)tan()2cos(απαπ. 6. 已知x x g x x x f -=-=1)(,1)(,则=⋅)()(x g x f . 7. 方程2)54(log 2+=-x x 的解=x . 8. 若函数3212++=kx kx y 的定义域为R ,则实数k 的取值范围是___________.9.若3132)(--=x x x f ,则满足0)(>x f 的x 的取值范围 .10. 若函数2+-=x bx y 在)2)(6,(-<+b a a 上的值域为(2,)+∞,则b a += . 11. 设a 为正实数,()y f x =是定义在R 上的奇函数,当0x <时,7)(++=xax x f ,若a x f -≥1)( 对一切0x ≥成立,则a 的取值范围为________ .12. 定义全集U 的子集A 的特征函数为1,()0,A U x Af x x A∈⎧=⎨∈⎩,这里U A 表示A 在全集U 中的补集,那么对于集合U B A ⊆、,下列所有正确说法的序号是 . (1))()(x f x f B A B A ≤⇒⊆ (2)()1()U A A f x f x =- (3)()()()A B A B f x f x f x =+ (4)()()()A B A B f x f x f x =⋅ 二、选择题(本题共12分)13.设x 取实数,则()f x 与()g x 表示同一个函数的是 ( )A.22)(,)(x x g x x f == B. 22)()(,)()(x xx g x x x f == C. 0)1()(,1)(-==x x g x fD. 3)(,39)(2-=+-=x x g x x x f14.已知11:<-x α,a x ≥:β,若α是β的充分非必要条件,则实数a 的取值范围是( )A.0≥aB.0≤aC.2≥aD. 2≤a15.若函数)1,0()1()(≠>--=-a a a a k x f x x 在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是 ( )A. B. C. D.16.定义一种新运算:⎩⎨⎧<≥=⊗)(,)(,b a b b a a b a ,已知函数x x x f 22)(⊗=,若函数k x f x g -=)()(恰有两个零点,则实数k 的取值范围为 ( )A.(0,1)B.C.),2[+∞D. ),2(+∞三、解答题(本题共8+8+10+12+14分)17.解不等式组⎪⎩⎪⎨⎧>-+≥--221062x x x x .18.已知不等式)R m mx x ∈<+-(022的解集为{}1,x x n n R <<∈,函数)(2)(2R a ax x x f ∈+-=. (1)求,m n 的值;(2)若()y f x =在]1,(-∞上单调递减,解关于x 的不等式0)23(log 2<-++m x nx a .19. 某工厂某种航空产品的年固定成本为250万元,每生产x 件.,需另投入成本为()C x ,当年产量不足80件时,21()103C x x x =+(万元).当年产量不小于80件时,10000()511450C x x x=+-(万元).每件..商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (件.)的函数解析式; (2)年产量为多少件.时,该厂在这一商品的生产中所获利润最大?20. 设幂函数),()1()(Q k R a x a x f k ∈∈-=的图像过点)2,2(. (1)求a k ,的值;(2) 若函数()()21h x f x b =-+-在]2,0[上的最大值为3,求实数b 的值.21. 已知函数()1log 1ax f x x -=+(其中0a >且1a ≠),()g x 是()2f x +的反函数. (1)已知关于x 的方程()()()log 17amf x x x =+-在[]2,6x ∈上有实数解,求实数m 的取值范围;(2)当01a <<时,讨论函数()f x 的奇偶性和单调性;(3)当01a <<,0x >时,关于x 的方程()()2230g x m g x m +++=有三个不同的实数解,求m 的取值范围.参考答案一、填空题(本题共36分)1. 已知集合}1,0,1,2{--=A ,集合{}R x x x B ∈≤-=,012,则=B A _{}1,0,1-_. 2.已知扇形的圆心角为43π,半径为4,则扇形的面积=S π16 .8. 若函数3212++=kx kx y 的定义域为R ,则实数k 的取值范围是_____.)3,0[9.若3132)(--=x x x f ,则满足0)(>x f 的x 的取值范围 .)1,0(10. 若函数2+-=x bx y 在)2)(6,(-<+b a a 上的值域为(2,)+∞,则b a += .10- 11. 设a 为正实数,()y f x =是定义在R 上的奇函数,当0x <时,7)(++=xax x f ,若a x f -≥1)( 对一切0x ≥成立,则a 的取值范围为________ .4≥a12. 定义全集U 的子集A 的特征函数为1,()0,A U x Af x x A ∈⎧=⎨∈⎩,这里U A 表示A 在全集U 中的补集,那么对于集合U B A ⊆、,下列所有正确说法的序号是 .(1)(2)(4) (1))()(x f x f B A B A ≤⇒⊆ (2)()1()UA A f x f x =-(3)()()()ABA B f x f x f x =+ (4)()()()A B A B f x f x f x =⋅二、选择题(本题共12分)13.设x 取实数,则()f x 与()g x 表示同一个函数的是 ( B )A.22)(,)(x x g x x f == B. 22)()(,)()(x xx g x x x f == C. 0)1()(,1)(-==x x g x f D. 3)(,39)(2-=+-=x x g x x x f 14.已知11:<-x α,a x ≥:β,若α是β的充分非必要条件,则实数a 的取值范围是( B ) A.0≥aB.0≤aC.2≥aD. 2≤a15.若函数)1,0()1()(≠>--=-a a a a k x f xx在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是 ( A )A. B. C. D. 16.定义一种新运算:⎩⎨⎧<≥=⊗)(,)(,b a b b a a b a ,已知函数xx x f 22)(⊗=,若函数k x f x g -=)()(恰有两个零点,则实数k 的取值范围为 ( D ) A.(0,1) B.]2,1( C.),2[+∞ D. ),2(+∞ 三、解答题(本题共8+8+10+12+14分)17.解不等式组⎪⎩⎪⎨⎧>-+≥--221062x x x x .解:解062≥--x x 得:2-≤x 或3≥x ;解221>-+x x 得52<<x ;即不等式组的解集为)5,3[。

上海市重点高一上学期期末数学试题(解析版)

上海市重点高一上学期期末数学试题(解析版)

一、填空题1.已知全集,集合,则________.{}1,2,3,4,5U ={}4,5A =A =【答案】{}1,2,3【分析】根据补集的定义计算可得.【详解】解:因为全集,集合,{}1,2,3,4,5U ={}4,5A =所以.{}1,2,3A =故答案为:{}1,2,32.不等式的解集为_________.2650x x ++≤【答案】{}51x x -<<【分析】转化为二次函数的函数值为负时,自变量的取值范围.265y x x =++x 【详解】2650x x ++≤()()150x x ∴++≤对应的二次函数为265y x x =++画出函数图像为:所以时2650y x x =++<51x -<<-不等式的解集为2650x x ++≤{}51x x -<<故答案为:{}51x x -<<3.函数_________.()f x 【答案】(][),11,-∞-⋃+∞【分析】根据二次根式的性质得到绝对值不等式,解出即可.【详解】由题意得:,解得:或,10x -≥1x ≥1x ≤-故函数的定义域是.()f x (][),11,-∞-⋃+∞故答案为: .(][),11,-∞-⋃+∞4.已知,则的值为_________.2log 3,l 0(og ,1)a a m n a a ==>≠m n a +【答案】6【分析】由对数的运算法则可得,进而可得.log 6a m n +=log 66a m n a a +==【详解】解:因为,2log 3,l 0(og ,1)a a m n a a ==>≠所以,log 3log 2log 6a a a m n +=+=所以.log 66a m n a a +==故答案为:65.若一个奇函数的定义域为,则的值为______________.{},,2a b a b +【答案】2-【分析】根据奇函数的定义域关于原点对称可得的值,即可得的值.,a b a b +【详解】解:若奇函数的定义域为,则,必有{},,2a b {}2,,2a b ∈{}2,,2a b -∈故或;2a =-2b =-若,则,必有,则,所以;2a =-{},,2b a b ∈{},,2b a b -∈b b =-0b =若,则,必有,则,所以;2b =-{},,2a a b ∈{},,2a a b -∈a a =-0a =综上:.2a b +=-故答案为:.2-6.若,,已知是的充分条件,则实数的取值范围是_________.:13x α≤≤:x m β≥αβm 【答案】1m £【分析】依题意可得推得出,即可求出参数的取值范围.αβ【详解】解:因为,且是的充分条件,:13x α≤≤:x m β≥αβ即推得出,所以.αβ1m £故答案为:1m £7.已知,则的值为__________. e ,0()(3),0x x f x f x x ⎧≤=⎨->⎩()5f 【答案】 1e【分析】由题意可得,再将代入计算即可.(5)(1)f f =-=1x -【详解】解:由题意可得,()5(53)(2)f f f =-=又因为. 1(2)(23)(1)f f f -=-=-==1e e 故答案为: 1e8.用列举法表示_________. 6,N,N x x a x a ⎧⎫=∈∈⎨⎬⎩⎭【答案】{}6,3,2,1【分析】根据元素的特征用列举法表示即可.【详解】解:. {}6,N,N 6,3,2,1x x a x a ⎧⎫=∈∈=⎨⎬⎩⎭故答案为:{}6,3,2,19.设方程解集为A ,解集为B ,解集为C ,且22210x mx m -+-=2680x x -+=2320x x -+=,,则_________.A B ⋂=∅A C ⋂≠∅m =【答案】4-【分析】先求出集合,根据题意和找到集合中有的元素和没有的元素,,A B A B ⋂=∅A C ⋂≠∅A 根据集合中有的元素求出参数的值,然后再检验是否符合和.m A B ⋂=∅A C ⋂≠∅【详解】2680x x -+= ,即或()()240x x ∴-⋅-=2x =4x ={}2,4B ∴=又2320x x -+= ,即或()()210x x ∴-⋅-=2x =1x ={}2,1C ∴=又因为A B ⋂=∅所以且2A ∉4A ∉又因为A C ⋂≠∅所以或1A ∈2A ∈所以只有成立,1A ∈所以是方程的根,即122210x mx m -+-=21210m m -+-=故,即2200m m --=()()540m m -⋅+=所以或5m =4m =-当时,方程变为5m =22210x mx m -+-=()()254140x x x x -+=--=所以不满足,故不符合题意舍去.{}1,4A =4A ∉当时,方程变为4m =-22210x mx m -+-=()()245510x x x x +-=+-=所以满足,和,满足题意.{}1,5A =-A B ⋂=∅{}1A C ⋂=≠∅故答案为:4-10.已知函数是定义在上的偶函数,且在上是严格增函数,,则不等式()f x R [)0,∞+()10f -=的解集为__________.()2log 0f x <【答案】 1(,2)2【分析】结合函数的奇偶性和单调性的关系,将不等式进行等价转化,进行求解即可.【详解】是定义在上的偶函数,且在上是增函数,,()f x R [0,)+∞(1)0f -=,则不等式等价为不等式,(1)(1)0f f ∴=-=()2log 0f x <()()2log 1f x f <∴,即,可得,即不等式的解集为. 2|log |1x <21log 1x -<<122x <<1(,2)2故答案为:. 1(,2)211.已知,,若,则的最小值为__________. a b ∈R 2a b -=122a b+【答案】4【分析】利用基本不等式计算可得.【详解】解:因为,且,则,, a b ∈R 2a b -=20a >102b >所以,当且仅当,即,时取等号; 1242a b +≥==122a b =1a =1b =-所以的最小值为. 122a b +4故答案为:412.2020年11月23日国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,脱贫攻坚取得重大突破、为了使扶贫工作继续推向深入,2021年某原贫困县对家庭状况较困难的农民实行购买农资优惠政策.(1)若购买农资不超过2000元,则不给予优惠;(2)若购买农资超过2000元但不超过5000元,则按原价给予9折优惠;(3)若购买农资超过5000元,不超过5000元的部分按原价给予9折优惠,超过5000元的部分按原价给予7折优惠.该县家境较困难的一户农民预购买一批农资,有如下两种方案:方案一:分两次付款购买,实际付款分别为3600元和5200元;方案二:一次性付款购买.若采取方案二购买这批农资,则比方案一节省________元.【答案】800【分析】根据方案一先判断出两次实际付款元与元对应的原价,然后根据两次的原价可36005200计算出方案二的实际付款,由此可计算出所节省的钱.【详解】解:因为且,所以实际付款元对应的原价为3600400050000.9=<36002000>36004000元,实际付款元对应的原价大于元,52005000设实际付款元对应的原价为元,5200()5000x +所以,解得,50000.90.75200x ⨯+⨯=1000x =所以实际付款元对应的原价为元,52006000所以两次付款的原价之和为元,4000600010000+=若按方案二付款,则实际付款为:元,50000.950000.78000⨯+⨯=所以节省的钱为元,()360052008000800+-=故答案为:.80013.若不等式在上恒成立,则实数的取值范围为________. 2log 69a x x x <+-[]2,4x ∈a 【答案】()1,2【分析】把不等式变形为,分和情况讨论,数形结合求出答案.29l 6og a x x x <-+01a <<1a >【详解】解:因为不等式在上恒成立,2log 69a x x x <+-[]2,4x ∈所以在上恒成立,29l 6og a x x x <-+[]2,4x ∈令,,, ()log a f x x =()()22369x g x x x ==--+[]2,4x ∈则问题转化为在上恒成立,()()f x g x >[]2,4x ∈若,此时在上单调递减,,而当01a <<()log a f x x =[]2,4x ∈()log log 20a a f x x =<<[]2,4x ∈时,,显然不合题意;()[]0,1g x ∈当时,画出两个函数的图象,1a >要想满足在上恒成立,只需,即,解得()()f x g x >[]2,4x ∈()()22f g >log 21log a a a >=12a <<.综上:实数的取值范围是.a ()1,2故答案为:()1,214.已知函数,若存在实数,使得关于的方程恰有三个不同()223,,x x x a f x x x a⎧--<=⎨-≥⎩m x ()f x m =的实数根,则的取值范围是__________.a 【答案】14a <<【分析】在直角坐标系中画出,的图象,对分类讨论,结合函数图象即可2123y x x =--2y x =-a 判断.【详解】解:在直角坐标系中画出,的图象,2123y x x =--2y x =-由,解得, 223x x x --=-x =其中,对称轴为,,()2212314y x x x =--=--1x =()1min 4y =-对于,令,解得,2y x =-24y =-4x =当时,任意,恰有个实数根,如下图所示: a ≤m ()f x m =1时,任意,至多有2个实数根,如下图所示: 1a <≤m ()f x m =当时,存在使得恰好有3个实数根,如下图所示:14a <<m ()f x m =当时,任意,至多有2个实数根,如下图所示:4a ≤m ()f x m =综上可得:的取值范围为.a 14a <<故答案为:14a <<二、单选题15.已知是集合A 到集合B 的函数,若对于实数,在集合A 中没有实数与之,2x A B y ===R k B ∈对应,则实数k 的取值范围是( )A .B .C .D .(],0-∞()0,∞+(),0∞-[)0,∞+【答案】A【分析】求出函数的值域,再根据函数的定义,即可得答案;y 【详解】,20,>===x A B y R 根据函数的定义可得. 0k ≤故选:A.16.下列命题是真命题的是( )A .若,则B .若,则 ac bc >a b >22a b >a b >C .若,则D .若,则 0a b >>11a b<,a b c d >>a c b d ->-【答案】C【分析】根据不等式的性质判断A 、C ,利用特殊值判断B 、D.【详解】解:对于A :因为,当时,当时,故A 错误; ac bc >0c >a b >0c <a b <对于B :因为,则,无法得到,如,,显然满足,但是22a b >a b >a b >1a =-0b =22a b >a b <,故B 错误; 对于C :因为,所以,故C 正确; 0a b >>11a b<对于D :因为,则,无法得到,,a b c d >>a c b d +>+a c b d ->-如,,,,满足,但是,,故D 错误; 10a =9b =8c =10d =-,a b c d >>2a c -=19b d -=故选:C17.函数的零点所在的大致区间是( ) ()23log f x x x =-A .B .C .D . ()0,1()1,2()2,3()3,+∞【答案】C 【分析】根据零点存在性定理分析判断即可. 【详解】因为和在上单调递增, 2log y x =3y x=-(0,)+∞所以在上单调递增, ()23log f x x x =-(0,)+∞因为,, ()2312log 2022f =-=-<()2233log 3log 3103f =-=->所以在上有唯一零点,()f x ()2,3即的零点所在的大致区间是,()f x ()2,3故选:C18.已知函数,若对于任意,存在,使得()()()21lg 1,2xf x xg x m ⎛⎫= ⎪⎝⎭=+-[]10,3x ∈[]21,2x ∈,则实数的取值范围为( )()()12f x g x ≤m A . B . C . D . 1,2⎛⎤-∞- ⎥⎝⎦1,4⎛⎤-∞- ⎥⎝⎦1,2⎡⎫+∞⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】根据对数函数、指数函数的性质求出、的值域,依题意可得()f x ()g x ()()12max max f x g x ≤,即可得到不等式,解得即可.【详解】解:因为,所以,所以,即,[]0,3x ∈[]211,10x +∈()[]2lg 10,1x +∈()[]0,1f x ∈由,则,即,[]1,2x ∈111,242xm m m ⎛⎫ ⎪⎥⎝⎭⎡⎤-∈--⎢⎣⎦()11,42g x m m ⎡⎤∈--⎢⎥⎣⎦因为对于任意,存在,使得,[]10,3x ∈[]21,2x ∈()()12f x g x ≤所以,则,解得,即.()()12max max f x g x ≤112m -≥12m ≤-1,2m ⎛⎤∈-∞- ⎥⎝⎦故选:A三、解答题 19.解答下列问题:(1)用表示ln ,ln ,ln x y z (2)已知,且,求M 的值. 23xyM ==231x yxy+=【答案】(1);11ln 4ln ln 32x y z +-(2). 72【分析】(1)根据对数的运算公式化简即可;(2)由题意可得,再根据换底公式可得由,可23log ,log x M y M ==11log 2,log 3,M M x y ==231x yxy+=得,代入计算即可. 231y x+=【详解】(1)解:因为; 4411ln ln 4ln ln 32y x y z =-=-=+-(2)解:因为,所以, 23x y M ==23log ,log x M y M ==所以11log 2,log 3,M M x y==又因为, 231x yxy+=即, 231y x+=所以, 2log 33log 2log 721M M M +==所以.72M =20.设集合,集合,21,A x x x ⎧⎫=>∈⎨⎬⎩⎭R {}21,B x x x =-<∈R (1)求集合,集合; A B (2)求,.A B ⋂A B ⋃【答案】(1), {}02,A x x x =<<∈R {}13,B x x x =<<∈R (2), {}03,A B x x x ⋃=<<∈R {}12,A B x x x ⋂=<<∈R【分析】(1)解分式不等式求出集合,解绝对值不等式求出集合; A B (2)根据交集、并集的定义计算可得. 【详解】(1)解:由,即,等价于,解得, 21x>2210xx x --=>()20x x ->02x <<所以,{}21,02,A x x x x x x ⎧⎫=>∈=<<∈⎨⎬⎩⎭R R 由,即,解得,所以 21x -<121x -<-<13x <<{}{}21,13,B x x x x x x =-<∈=<<∈R R (2)解:由,, {}02,A x x x =<<∈R {}13,B x x x =<<∈R 所以,.{}03,A B x x x ⋃=<<∈R {}12,A B x x x ⋂=<<∈R 21.已知函数为奇函数. ()122xxf x a =⋅-(1)求实数的值;a (2)判断并证明在上的单调性. ()f x R 【答案】(1)1a =(2)为上的增函数,证明见解析 ()f x R【分析】(1)首先求出函数的定义域,根据奇函数的性质,求出参数的值,再检验即可; ()00f =(2)根据题意,由(1)的结论可得函数的解析式,设,由作差法分析可得结论.()f x 12x x <【详解】(1)解:函数的定义域为,又函数为奇函数, ()122x xf x a =⋅-R所以,即,解得, ()00f =01202a ⋅-=1a =所以,则, ()122xxf x =-()()112222xx x x f x f x --⎛⎫-=-=--=- ⎪⎝⎭故为奇函数,符合题意,所以. ()122xxf x =-1a =(2)解:由(1)可知,,则为上的增函数, ()12222xx x x f x -=-=-()f x R 证明如下:设,12x x <则, ()()()11221212121()()222222122x x x x x xx x f x f x --⎛⎫-=---=-+⎪⎝⎭又由,则,即,, 12x x <12022x x <<12220x x -<1211022x x +>则, 12())0(f x f x -<则函数在上为增函数.()f x R 22.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量x 低于40万部时,每销售1万部手机的收入()0x x >万元;当年销售量x 不低于40万部时,每销售1万部手机的收入()4005R x x =-万元 ()2900040000R x x x =-(1)写出年利润y 万元关于年销售量x 万部的函数解析式; (2)年销售量为多少万部时,利润最大,并求出最大利润.【答案】(1) 2538050,04040000208950,40x x x y x x x ⎧-+-<<⎪=⎨--+≥⎪⎩(2)38万部时,最大利润为7170万元.【分析】(1)依题意,分和两段分别求利润=收入-成本,即得结果;040x <<40x ≥(2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润. 040x <<40x ≥【详解】(1)依题意,生产万部手机,成本是(万元),()0x x >5020x +故利润,而,()()5020y x R x x =⋅-+()24005,040900040000,40x x R x x xx -<<⎧⎪=⎨-≥⎪⎩故,()()()240055020,0409000400005020,40x x x x y x x x x x ⎧-⋅-+<<⎪=⎨⎛⎫-⋅-+≥ ⎪⎪⎝⎭⎩整理得,;2538050,04040000208950,40x x x y x x x ⎧-+-<<⎪=⎨--+≥⎪⎩(2)时,,开口向下的抛物线,在时,利040x <<()225380505387170y x x x =--+-+-=38x =润最大值为;max 7170y =时,, 40x ≥4000040000208950208950y x x x x ⎛⎫=--+=-++ ⎪⎝⎭其中,在上单调递减,在上单调递增,因40000()20202000h x x x x x ⎛⎫=+=+ ⎪⎝⎭40,⎡⎣()+∞为 ,故时,4445<<4000040000(45)2045(44)20444544h h =+⨯<=+⨯45x =取得最小值 40000()20h x x x=+故在 时,y 取得最大值40000208950y x x ⎛⎫=-++⎪⎝⎭45x =max 400008000900895080507162459y =--+=-< 而,71627170<故年销售量为38万部时,利润最大,最大利润为7170万元.23.已知定义域为R 的函数,,若对任意,均有()f x S ⊆R 1212,,x x x x S ∈-∈R ()()12f x f x S -∈,则称是S 关联. ()f x (1)判断函数是否是关联,并说明理由: ()()12112f x xg x x =-=-、[)1,+∞(2)若是关联,当时,,解不等式:;()f x {}2[)0,2x ∈()2f x x x =-()02f x ≤≤(3)判断“是关联”是“是关联”的什么条件?试证明你的结论. ()f x {}2()f x []1,2【答案】(1)函数是关联,函数不是关联,理由见解析 ()21f x x =-[)1,+∞1()12g x x =-[)1,+∞(2)或{|13x x ≤≤}0x =(3)必要不充分条件,证明见解析【分析】(1)根据给定的定义为时,求的取值区间即可判断作答. [)1,+∞12()()f x f x -(2)根据给定条件,可得,再结合已知函数分段解不等式并求并集作答. (2)()2f x f x +-=(3)利用给定的定义,利用推理证明命题的充分性和必要性作答. 【详解】(1)函数是关联,证明如下:()21f x x =-[)1,+∞任取R ,若,则,12,x x ∈12[1,)-∈+∞x x ()()()[)121222,[1,)f x f x x x -=-∈+∞⊂+∞()()()12122[1,)f x f x x x ∴-=-∈+∞所以函数是关联; ()21f x x =-[)1,+∞函数不是关联,证明如下:: 1()12g x x =-[)1,+∞若,则, 12[1,)-∈+∞x x 121211()()(),22⎡⎫-=-∈+∞⎪⎢⎣⎭f x f x x x 所以函数不是关联; 1()12g x x =-[)1,+∞(2)因是关联,则,有,即,()f x {}2122x x -=12()()2f x f x -=(2)()2f x f x +-=当时,,而,[)0,2x ∈22111(),2244⎛⎫⎡⎫=-=--∈- ⎪⎪⎢⎝⎭⎣⎭f x x x x ()02f x ≤≤即,解得或,所以不等式的解集为或,202≤-≤x x 12x ≤≤10x -≤≤{|12x x ≤<}0x =当时,,[2,22),,0x n n n Z n ∈+∈≠()2112224f x x n n ⎛⎫=---+ ⎪⎝⎭所以当时,,[2,4)x ∈2577()(2)2,4244⎛⎫⎡⎫=-+=-+∈ ⎪⎪⎢⎝⎭⎣⎭f x f x x 而,得,解得,所以不等式的解集为,0()2f x ≤≤2570224⎛⎫≤-+≤ ⎪⎝⎭x 23x ≤≤{}|23x x ≤≤当时,或当时,,此时不等式无解; 0n <()0f x <2n ≥()2f x >0()2f x ≤≤综上得或,13x ≤≤0x =所以不等式的解集为或,.2()3f x ≤≤{|13x x ≤≤}0x =(3)“是关联”是“是关联”的必要不充分条件,证明如下,()f x {}2()f x []1,2易得函数是关联,但时,所以函数不是,()1,x x Zf x x x Z ∈⎧=⎨-∉⎩{}21 2.112≤-≤2)(2.1()0f f <-()f x 关联; [1,2]所以充分性不成立;当函数是关联时,即,,()f x [1,2]2112x x ≤-≤21)1(()2f x f x -≤≤则有,,即有, 1(2)(1)2f x f x -≤++≤)1(1()2f x f x -≤+≤)2(2()4f x f x -≤+≤又,则有,于是得,1(2)2x x ≤+-≤)1(2()2f x f x -≤+≤(2)()2f x f x +-=从而得,即函数是{2}关联; ()()21212,=2x x f x f x -=-()f x 所以“是关联”是“是关联”的必要不充分条件.()f x {}2()f x []1,2【点睛】思路点睛:涉及函数新定义问题,理解新定义,找出数量关系,联想与题意有关的数学知识和方法,再转化、抽象为相应的数学问题作答.。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

上海高一上学期期末数学试题(解析版)

上海高一上学期期末数学试题(解析版)

一、填空题1.已知集合,,则__________. {1,1,2}A =-{}20B x x x =+=A B = 【答案】{}1-【分析】可求出集合,然后进行交集的运算即可.B 【详解】解:,1,,,,{1A =- 2}{1B =-0}.{1}A B ∴=- 故答案为:.{}1-2.设a 、b 都为正数,且,则的最小值为________. 4a b +=11a b +【答案】1【分析】把变形为:利用已知,结合基本不等式进行求解即可. 11a b +1114()4a b ⨯⋅+【详解】因为a 、b 都为正数,所以有:, 111111114(()((2)(214444b a a b a b a b a b ⨯⋅+=+⋅+=⋅++≥⋅+=当且仅当时取等号,即时取等号,b a a b=2a b ==故答案为:13.函数,则______________. 2()1y f x x ==-1(3)f -=【答案】 53【解析】3在反函数的定义域中,它必在原函数的值域中,因为反函数与原函数的对应关系相反,故由解得值为所求. 231x =-x 【详解】由解得,所以. 231x =-53x =15(3)3f -=故答案为: 534.已知且,若,,则_______________.0a >1a ≠log 2a m =log 3a n =m n a +=【答案】6【解析】利用指数式与对数式的互化,再利用同底数幂相乘即可.【详解】,同理:log 2,2m a m a =∴= 3n a =∴236m n m n a a a +==⨯=故答案为:6【点睛】对数运算技巧:(1)指数式与对数式互化;(2)灵活应用对数的运算性质;(3) 逆用法则、公式;(4) 应用换底公式,化为同底结构.5.已知函数,是偶函数,则的值为______.()()221f x ax b x =+++22,x a a ⎡⎤∈-⎣⎦a b +【答案】1-【分析】根据奇偶定义可建立方程求解即可.【详解】由题意得,所以,所以.2220202b a a a a +=⎧⎪-+=⎨⎪-<⎩1,2a b ==-1a b +=-故答案为:1-6.若幂函数(为整数)的定义域为,则的值为______.22mm y x -++=m R m 【答案】或01【分析】依题意可得,解得的取值范围,再由为整数,求出参数的值.220m m -++>m m 【详解】由题意得,解得,又为整数,所以或.220m m -++>12m -<<m 0m =1故答案为:或017.用“二分法”求方程在区间内的实根,首先取区间中点进行判断,那么下一340x x +-=()1,32x =个取的点是______.x =【答案】1.5## 32【分析】先确定函数单调性,根据二分法求解即可得解.【详解】设函数,易得函数为严格增函数,3()4f x x x =+-因为,,(1)20f =-<(2)60f =>所以下一个有根区间是,(1,2)那么下一个取的点是.1.5x =故答案为:1.58.已知函数的最小值为-2,则实数a =________.22([0,1])y x ax x =+∈【答案】 32-【分析】根据二次函数的对称轴与所给区间的相对位置进行分类讨论求解即可.【详解】,所以该二次函数的对称轴为:,222()2()y f x x ax x a a ==+=+-x a =-当时,即,函数在时单调递减,1a ≤-1a ≤-2()2f x x ax =+[0,1]x ∈因此,显然符合; min 3()(1)1222f x f a a ==+=-⇒=-1a ≤-当时,即时,; 01a <-<10a -<<2min ()2f x a a =-=-⇒=10a -<<当时,即时,函数在时单调递增,0a -≤0a ≥2()2f x x ax =+[0,1]x ∈因此,不符合题意,综上所述:, min ()(0)02f x f ==≠-32a =-故答案为: 32-9.设方程的实根,其中k 为正整数,则所有实根的和为22log 1122x a a --=-+12,,,k x x x ______.【答案】4【分析】画出的图象,由图象的特征可求.2()log 11g x x =--【详解】令,,2()|log ||1|f x x =-22()|log ||1||log ||1|()f x x x f x -=--=-=所以函数图象关于轴对称,2()|log ||1|f x x =-y 令,则的图象关于直线对称,2()log 11g x x =--()(1)g x f x =-1x =因为方程的实根,可以看作函数的图象与直线22log 1122x a a --=-+2()log 11g x x =--的交点横坐标.222y a a =-+由图可知方程有4个实根,且关于直线对称.22log 1122x a a --=-+1x =所以.12344x x x x +++=故答案为:4.10.设函数,,如果对任意的实数,任意的实数,不等()2x f x =2()2g x x x a =-+1[1,2]x ∈2[1,2]x ∈式恒成立,则实数a 的取值范围为________.()()121f x g x -≥【答案】(,1][6,)-∞+∞U【分析】分别求出函数,在上的值域,把问题转化为关于的不等式()2x f x =2()2g x x x a =-+[1,2]a 组,求出解集即可【详解】解:因为在上为增函数,()2x f x =[1,2]所以,min max ()(1)2,()(2)4f x f f x f ====所以在上的值域为,()2x f x =[1,2][2,4]因为的对称轴为直线,2()2g x x x a =-+1x =所以在上为增函数,2()2g x x x a =-+[1,2]所以,min max ()(1)1,()(2)g x g a g x g a ==-==所以在上的值域为,2()2g x x x a =-+[1,2][1]a a -,因为对任意的实数,任意的实数,不等式恒成立,1[1,2]x ∈2[1,2]x ∈()()121f x g x -≥所以,解得, (1)4121a a ⎧--≥⎪⎨-≥⎪⎩4613a a a a ≤≥⎧⎨≤≥⎩或或所以或,1a ≤6a ≥所以实数a 的取值范围为,(,1][6,)-∞+∞U 故答案为:(,1][6,)-∞+∞U 【点睛】此题考查函数在闭区间上的最值问题和不等式恒成立问题,考查了数学转化思想,解题的关键是求出函数,在上的值域,把问题转化为,从而()2x f x =2()2g x x x a =-+[1,2](1)4121a a ⎧--≥⎪⎨-≥⎪⎩可求出实数a 的取值范围,属于中档题二、单选题11.已知x ,y 是实数,则“”是“”的( )x y >33x y >A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C【分析】由充要条件的定义求解即可【详解】因为 , 2233223()()()24y y x y x y x xy y x y x ⎡⎤⎛⎫-=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦若,则, x y >223()024y y x y x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦若,则,即, 223()024y y x y x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦0x y ->x y >所以 ,即“”是“”的充要条件,33x y x y >⇔>x y >33x y >故选:C.12.如果,那么( )12log 0.8log 0.80x x <<A .B . 2101x x <<<1201x x <<<C .D .121x x <<211x x <<【答案】C【分析】根据换底公式可得,再利用单调性可以判断C 正0.820.810.8log log 0log 1x x <<=0.8log y x =确.【详解】因为,则,12log 0.8log 0.80x x <<0.820.810.8log log 0log 1x x <<=又因为在上单调递减,0.8log y x =()0,∞+那么,121x x <<故选:C .13.在同一直角坐标系中,二次函数与幂函数图像的关系可能为( ) 2y ax bx =+(0)b a y x x =>A . B . C .D .【答案】A【分析】根据题意,结合二次函数和幂函数的性质依次分析选项,即可得到答案.【详解】对于A ,二次函数开口向上,则,其对称轴,则,即2y ax bx =+0a >b x 02a =->0b a<幂函数为减函数,符合题意;(0)b a y x x =>对于B , 二次函数开口向下,则,其对称轴,则,即幂函数2y ax bx =+a<0b x 02a =->0b a <为减函数,不符合题意;(0)b a y x x =>对于C ,二次函数开口向上,则,其对称轴,则,即幂函数2y ax bx =+0a >12b x a=-=-2b a =为增函数,且其增加的越来越快,不符合题意;(0)b a y x x =>对于D , 二次函数开口向下,则,其对称轴,则,即幂函2y ax bx =+a<0122b x a =->-01b a <<数为增函数,且其增加的越来越慢快,不符合题意;(0)b a y x x =>故选:A 【点睛】关键点点睛:本题考查函数图像的分析,在同一个坐标系中同时考查二次函数和幂函数性质即可得解,考查学生的分析试题能力,数形结合思想,属于基础题.14.若函数与在区间上都是严格减函数,则实数的取值范围为( ) ||y x a =--1a y x =+[1,2]a A .B .C .D . (,0)-∞(1,0)(0,1]-⋃(0,1)(0,1]【答案】D【分析】由一次函数及反比例函数的单调性,结合图像变换即可得到实数的取值范围.a 【详解】函数的图像关于对称,||y x a =--x a =所以当,y 随x 的增大而减小,当,y 随x 的增大而增大.x a >x a <要使函数在区间上都是严格减函数,||y x a =--[1,2]只需; 1a ≤要使在区间上都是严格减函数,只需; 1a y x =+[1,2]0a >故a 的范围为.01a <≤故选:D三、解答题15.求下列不等式的解集:(1) 4351x x +>-(2)2332x x -<-【答案】(1)(1,8)(2)(1,)+∞【分析】(1)根据分式不等式及一元二次不等式的解法求解集.(2)应用公式法求绝对值不等式的解集.【详解】(1),故解集为; ()()4385018011x x x x x x +->⇔<⇔--<--(1,8)(2),|23|32322332x x x x x -<-⇔-+<-<-故解集为.(1,)+∞16.已知函数. ()22(11)1x f x x x =-<<-(1)判断函数的奇偶性,并说明理由;()f x (2)判断函数的单调性并证明.()f x 【答案】(1)是奇函数,理由见解析()f x (2)在上单调递减,证明见解析()f x (1,1)-【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【详解】(1)是奇函数,理由如下:()f x 函数,则定义域关于原点对称, ()22(11)1x f x x x =-<<-因为,所以是奇函数; ()()221x f x f x x --==--()f x (2)任取,1211x x -<<<则 22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- , 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----因为,所以, 1211x x -<<<2212211210,0,10,10x x x x x x +>->-<-<所以,所以在上单调递减.12())0(f x f x ->()f x (1,1)-17.将函数(且)的图像向左平移1个单位,再向上平移2个单位,得到log 2a y x =-0a >1a ≠函数的图像.()y f x =(1)求函数的解析式()f x (2)设函数,若对一切恒成立,求实数m 的取值范围;()()()1f x f x F x a ++=()m F x <()1,x ∈-+∞(3)讨论关于x 的方程,在区间上解的个数. ()log ap f x x=()1,-+∞【答案】(1)()log (1)a f x x =+(2)(,0]-∞(3)答案见解析【分析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所()F x (1)(2)m x x <++(1,)∈-+∞x 求范围;(3)将方程等价转化为且,根据题意只需讨论在区间()log a p f x x =1(1p x x x +=>-0)x ≠(1)p x x =+上的解的个数,利用图象,数形结合即可求得答案.(1,)-+∞【详解】(1)将函数且的图象向左平移1个单位,log 2(0a y x a =->1)a ≠得到的图象,再向上平移2个单位,得函数的图象; log (1)2a y x =+-()log (1)a f x x =+(2)函数,,()()()()()()()1log 1log 212a a f x f x x x F x a a x x +++++===++1x >-若对一切恒成立,()m F x <(1,)∈-+∞x 则对一切恒成立,(1)(2)m x x <++(1,)∈-+∞x 由在严格单调递增,得,(1)(2)y x x =++(1,)-+∞(1)(2)0y x x =++>所以,即的取值范围是;0m ≤m (,0]-∞(3)关于的方程 x ()log log (1)log aa a p p f x x x x=⇔+=且, 1(1p x x x ⇔+=>-0)x ≠所以只需讨论在区间且x ≠0上的解的个数.(1)p x x =+(1,)-+∞由二次函数且的图象得,(1)(1y x x x =+>-0)x ≠当时,原方程的解有0个; 1(,)4p ∈-∞-当时,原方程的解有1个; 1(0,)4p ⎧⎫∈-+∞⎨⎬⎩⎭当时,原方程的解有2个. 1(,0)4p ∈-18.其公司研发新产品,预估获得25万元到2000万元的投资收益,现在准备拟定一个奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(1)用数学语言列出公司对函数模型的基本要求;(2)判断函数是否符合公司奖励方案函数模型的要求,并说明理由; ()1050x f x =+(3)已知函数符合公司奖励方案函数模型要求,求实数a 取值范围. ()1252g x a ⎛⎫=≥ ⎪⎝⎭【答案】(1)答案见解析(2)不符合,理由见解析(3) 1,12⎡⎤⎢⎥⎣⎦【分析】(1)根据函数单调性的定义以及最值的定义,结合题意中的不等关系,可得答案; (2)由(1)所得的三个条件,进行检验,可得答案;(3)利用幂函数的单调性,结合题意中的最值以及不等关系,可得不等式组,利用基本不等式,可得答案.【详解】(1)满足的基本要求是:①是定义域上的严格增函数,()f x ()f x [25,2000]②的最大值不超过75,③在上恒成立; ()f x ()5x f x ≤[25,2000](2),不满足要求③,故不符合; ()1050x f x =+()5050115f =>(3)因为,所以函数满足条件①, 12a ≥()gx 由函数满足条件②得,解得()g x 2575≤a ≤由函数满足条件③得,对恒成立, ()gx 255x ≤[25,2000]x ∈即恒成立,2a ≤[25,2000]x ∈时取等号,所以. 2≥=25x =1a ≤综上所述,实数的取值范围是. a 1,12⎡⎤⎢⎥⎣⎦19.已知函数 ()22,0log ,0x x f x x x ⎧≤=⎨>⎩(1)设k 、m 均为实数,当时,的最大值为1,且满足此条件的任意实数x 及m 的(],x m ∈-∞()f x 值,使得关于x 的不等式恒成立,求k 的取值范围;()()22310f x m k m k ≤--+-(2)设t 为实数,若关于x 的方程恰有两个不相等的实数根且,()()2log 0f f x t x --=⎡⎤⎣⎦12,x x 12x x <试将表示为关于t 的函数,并写出此函数的定义域. 1221212log 211++--+-x x x x 【答案】(1)4k ≥(2), 1221212log 2|1||1|x x x x ++--+-1t t=+(]1,3【分析】(1)分离参数,得,再借助基本不等式求解即可; 4(3)83k m m ≥-++-(2)先得出,再对,进行分类讨论. ()()22,1()log log ,1x x f f x x x ≤⎧=⎨>⎩1x >1x ≤【详解】(1)当时,,故.(,]x m ∈-∞max ()f x =102m ≤≤要使得不等式恒成立,2()(2)310f x m k m k ≤--+-需使,2(2)310m k m k --+-1≥即对于任意的都成立. 2(2)3110m k m k --+-≥[0,2]m ∈因为,所以. 133m ≤-≤4(3)83k m m ≥-++-由,得 30m ->403m <-4(3)84843m m -++≤-+=- (当且仅当时取等号)1m =所以;4k ≥(2)由函数,得, ()f x 22,0log ,0x x x x ⎧≤=⎨>⎩()()22,1()log log ,1x x f f x x x ≤⎧=⎨>⎩①若,则方程变为,1x ≤[]2()log ()0f f x t x --=x =2log ()t x -即,则,2x t x =-2x t x =+为递增函数,,则有;2x y x =+1x ≤3t ≤②若,则方程变为1x >[]2()log ()0f f x t x --=,即,且,故,()222log log log ()x t x =-2log x t x =-0t x ->1t >于是分别是方程、的两个根,则,,12,x x 2x t x =-2log x t x =-11x ≤21x <即,121x x ≤<由于函数与的图像关于直线对称,2log y x =2x y =y x =故,12x x t +=, 122122log 2()x x t x x t +=-+=()()1212112|1||1|211x x x x =--+-+-+-1t=故,且, 1221212log 2|1||1|x x x x ++--+-1t t =+13t <≤故此函数的定义域为.(]1,3【点睛】方法点睛:对于非二次不等式恒成立求参问题,一般先分离参数,转化为最值问题,进而可借助函数或基本不等式进行求解;方程解的个数可等价于两个不同函数交点个数,分段函数则需要考虑每一段解析式是否成立.20.对于定义在D 上的函数,设区间是D 的一个子集,若存在,使得函()y f x =[,]m n 0(,)x m n ∈数在区间上是严格减函数,在区间上是严格增函数,则称函数在区()y f x =[]0,m x []0,x n ()y f x =间上具有性质P .[,]m n (1)若函数在区间上具有性质P ,写出实数a 、b 所满足的条件;2y ax bx =+[0,1](2)设c 是常数,若函数在区间上具有性质P ,求实数c 的取值范围.3y x cx =-[1,2]【答案】(1);(2).20a b -<<()3,12c ∈【分析】(1)根据定义判断出为二次函数,然后根据的单调性和单调区间判断出2y ax bx =+()f x 的开口以及对称轴,由此得到满足的条件;2y ax bx =+,a b (2)先分析函数在区间上为严格增函数和严格减函数时的取值,据此分析出3y x cx =-[1,2]c 在区间上先递减再递增时的取值范围,由此求解出的取值范围.3y x cx =-[1,2]c c 【详解】(1)当函数在区间上具有性质P 时,由其图象在R 上是抛物线, 2y ax bx =+[0,1]故此抛物线的开口向上(即),且对称轴是; 0a >(0,1)2b x a=-∈于是,实数a ,b 所满足的条件为:.20a b -<<(2)记.设,是区间上任意给定的两个实数,3()f x x cx =-1x 2x [1,2]总有. ()()()()2212121122f x f x x x x x x x c -=-++-若,当时,总有且,3c ≤12x x <120x x -<22112211130x x x x c ++->++-=故,因此在区间上是严格增函数,不符合题目要求.()()120f x f x -<3y x cx =-[1,2]若,当时,总有且,12c ≥12x x <120x x -<222211222222120x x x x c ++-<+⨯+-=故,因此在区间上是严格减函数,不符合题目要求.()()120f x f x ->3y x cx =-[1,2]若,当且时,总有且, 312c <<12x x <12,x x ⎡∈⎢⎣120x x -<2211220333c c c x x x x c c ++-<++-=故,因此在区间上是严格减函数; ()()120f x f x ->3y x cx =-⎡⎢⎣当且时,总有且, 12x x <12,2x x ⎤∈⎥⎦120x x -<2211220333c c c x x x x c c ++->=++-=故,因此在区间上是严格增函数.()()120f x f x -<3y x cx =-2⎤⎥⎦因此,当时,函数在区间上具有性质P .()3,12c ∈3y x cx =-[1,2]【点睛】关键点点睛:本题属于函数的新定义问题,求解本题第二问的关键在于对于性质的理P 解,通过分析函数不具备性质的情况:严格单调递增、严格单调递减,借此分析出可能具备性质P的情况,然后再进行验证即可. P。

2020-2021上海市高一数学上期末试卷(及答案)

2020-2021上海市高一数学上期末试卷(及答案)

2020-2021上海市高一数学上期末试卷(及答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>5.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞,6.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.下列函数中,在区间(1,1)-上为减函数的是A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______. 18.若函数()242xx f x aa =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围. 23.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少? 25.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭;(2)6log 332log log 2log 36⋅-- 26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞; 对于D :0x >,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.5.D解析:D试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.6.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A8.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

上海高一上学期期末数学试题(解析版)

上海高一上学期期末数学试题(解析版)

高一数学一、填空题(本题满分40分,每题4分,共10题)1. 函数的定义域是_________ .y =【答案】()1,-+∞【解析】【详解】试题分析:函数满足,即函数定义域为10x +>()1,-+∞考点:求函数定义域2. 已知幂函数的图象过点,则______.()y f x=(()3f =【解析】【分析】先根据待定系数法求得函数的解析式,然后可得的值.()y f x =()3f 【详解】由题意设, ()y f x x α==∵函数的图象过点,()y fx =(∴, 1222α==∴, 12α=∴,()12f x x =∴.()1233f ==【点睛】本题考查幂函数的定义及解析式,解题时注意用待定系数法求解函数的解析式,属于基础题.3. 已知函数的两个零点分别为,则___________. ()21f x x x =+-12,x x 221212x x x x +=【答案】1【解析】【分析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;210x x +-=1x 2x 【详解】解:依题意令,即,()0f x =210x x +-=所以方程有两个不相等实数根、,210x x +-=1x 2x 所以,,121x x +=-121x x ⋅=-所以; ()()2212121212111x x x x x x x x +=+--=⨯=故答案为:14. 已知函数是奇函数,则实数______. ()22f x ax x =+a =【答案】0【解析】【分析】由奇函数定义入手得到关于变量的恒等式后,比较系数可得所求结果.【详解】∵函数为奇函数,()f x ∴,()()f x f x -=-即,2222ax x ax x -=--整理得在R 上恒成立,20ax =∴.0a =故答案为.0也是解决此类问题的良好方法,属于基础题.5. 若二次函数在区间上为严格减函数,则实数的取值范围是________.()()2212f x ax a x =+-+(],4∞-a 【答案】 10,5⎛⎤ ⎥⎝⎦【解析】【分析】由题知,再解不等式组即可得答案. 02(1)42a a a >⎧⎪-⎨-≥⎪⎩【详解】解:因为二次函数在区间上为严格减函数,()()2212f x ax a x =+-+(],4∞-所以,即,解得, 02(1)42a a a >⎧⎪-⎨-≥⎪⎩0105a a >⎧⎪⎨<≤⎪⎩105a <≤所以,实数的取值范围是 a 10,5⎛⎤ ⎥⎝⎦故答案为: 10,5⎛⎤ ⎥⎝⎦6. 古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的部分多为扇环.已知某扇形的扇环如图所示,其中外弧线的长为,内弧线的长为,连接外弧与内弧的两端的线段均为,则该扇形60cm 20cm 18cm 的中心角的弧度数为____________.【答案】209【解析】 【分析】根据扇形弧长与扇形的中心角的弧度数为的关系,可求得,进而可得该扇形的中心α9cm OC =角的弧度数.【详解】解:如图,依题意可得弧的长为,弧的长为,设扇形的中心角的弧度数为AB 60cm CD 20cm α则,则,即. A A ,AB OA CD OC αα=⋅=⋅60320OA OC ==3OA OC =因为,所以,所以该扇形的中心角的弧度数. 18cm AC =9cm OC =A 209CD OC α==故答案为:. 2097. 已知函数,且,那么=_________. 331()5f x ax bx x =+--(2)2f -=(2)f 【答案】-12【解析】【分析】代入,整体代换求值即可.2,2x x =-=【详解】由题意,,即, 33)(21(2)(2(2)52)f a b -=+--⨯--=-3317222a b +⨯-⨯=-故, 331(2)22575122f a b =+⨯--=--=-故答案为:-128. 已知函数,关于的不等式在区间上总有解,则实数的()14f x x x =+-x ()22x m m f ≥-+1,36⎡⎤⎢⎥⎣⎦m 取值范围为________.【答案】 【解析】 【分析】由题知,进而根据对勾函数性质求解最值,解不等式即可. ()2max 2m f x m ≥-+【详解】解:当时,,当且仅当时取得等号, 1,36x ⎡⎤∈⎢⎥⎣⎦12y x x =+≥1x =因为当时,; 16x =1137666y x x =+=+=当时, 3x =1133y x x =+=+=所以,根据对勾函数性质,当时,, 1,36x ⎡⎤∈⎢⎥⎣⎦11342,6y x x ⎡⎤=+-∈-⎢⎥⎣⎦所以,当时,, 1,36x ⎡⎤∈⎢⎥⎣⎦()11340,6f x x x ⎡⎤=+-∈⎢⎥⎣⎦因为关于的不等式在区间上总有解, x ()22x m m f ≥-+1,36⎡⎤⎢⎥⎣⎦所以,, 21326m m -+≤m ≤≤所以,实数的取值范围为 m故答案为:9. 已知函数,函数,如果恰好有两个零点,()22,2()2,2x x f x x x ⎧-≤⎪=⎨->⎪⎩()(2)g x b f x =--()()y f x g x =-则实数的取值范围是________.b 【答案】7(2,)4⎧⎫+∞⎨⎬⎩⎭【解析】 【分析】求出函数的表达式,构造函数,作出函数的图象,利用数形()()y f x g x =-()()(2)h x f x f x =+-()h x 结合进行求解即可.【详解】,()(2)g x b f x =-- ,()()()(2)y f x g x f x b f x ∴=-=-+-由,()(2)0f x b f x -+-=得,()(2)b f x f x =+-设,()()(2)h x f x f x =+-若,则,,0x ≤0x -≥22x -≥则,2()()(2)2h x f x f x x =+-=++若,则,,02x <≤20x -≤-<022x ≤-<则,()()(2)2222222h x f x f x x x x x =+-=-+--=-+-+=若,则,,2x >2x -<-20x -<则, 22()()(2)(2)2258h x f x f x x x x x =+-=-+--=-+即,222,0()2,0258,2x x x h x x x x x ⎧++≤⎪=<≤⎨⎪-+>⎩作出的图象如图,()h x当时,, 0x ≤22177()2()244h x x x x =++=++≥当时,, 2x >22577()58()244h x x x x =-+=-+≥由图象知要使有两个零点,即有四个根,()()y f x g x =-()h x b =则满足或, 74b =2b >故答案为: 7(2,)4⎧⎫+∞⎨⎬⎩⎭【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.10. 设,,若存在,使得()1f x x =-4()g x x =-121,,,[,4]4n x x x ⋅⋅⋅∈12()()f x f x ++⋅⋅⋅+成立,则正整数的最大值为________1121()()()()()()n n n n f x g x g x g x g x f x --+=++⋅⋅⋅++n 【答案】6【解析】【分析】由题设且上有,所以,使得()()3n n f x g x -≥1[,4]4n x ∈65()()[3,4n n f x g x -∈121,,,[,4]4n x x x ∃⋅⋅⋅∈成立,只需即可,进1111()()...()()()()n n n n f x g x f x g x f x g x ---++-=-max [()()]3(1)n n f x g x n -≥-而求得正整数的最大值.n 【详解】由题意知:,使成121,,,[,4]4n x x x ∃⋅⋅⋅∈1111()()...()()()()n n n n f x g x f x g x f x g x ---++-=-立,而当且仅当时等号成立, 4()()113n n n n f x g x x x -=-+≥-=12[,4]4n x =∈∴,而,即, ()()3(1)n n f x g x n -≥-1[,4]4n x ∈65()()[3,4n n f x g x -∈∴仅需成立即可,有,故正整数的最大值为. 653(1)4n -≤7712n ≤n 6故答案为:. 6【点睛】关键点点睛:结合基本不等式有,即1111()()...()()3(1)n n f x g x f x g x n ---++-≥-,应用对勾函数的性质求值域,并将存在性问题转化为函数闭区间内有解,只要()()3(1)n n f x g x n -≥-即可求最值.max [()()]3(1)n n f x g x n -≥-二、选择题(本题满分16分,每题4分,共4题)11. 已知为实数,若,则是的( )a b 、2:0,:0ab a αβ=+=αβA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B【解析】【分析】根据充分性和必要性的判断方法来判断即可.【详解】当时,若,不能推出,不满足充分性;0ab =1,0a b ==20a +=当,则,有,满足必要性;20a =0a b ==0ab =所以是的必要不充分条件.αβ故选:B .12. 已知实数,,则的最小值为( ) ,0,191a b a b >+=119a b +A. 100B. 300C. 800D. 400【答案】D【分析】应用“1”的代换,将目标式转化为,再利用基本不等式求最小值即可,注意等1919362b a a b++号成立的条件.【详解】由, ,0,191a b a b >+=∴,当且仅当时等号成1191191919()(19)362362400b a a b a b a b a b +=++=++≥+=a b =立. ∴的最小值为400. 119a b+故选:D13. 设函数的定义域为,对于下列命题:()f x R ①若存在常数,使得对任意,有,则是函数的最小值;M x ∈R ()f x M ≥M ()f x ②若函数有最小值,则存在唯一的,使得对任意,有;()f x 0R x ∈x ∈R ()()0f x f x ≥③若函数有最小值,则至少存在一个,使得对任意,有; ()f x 0R x ∈x ∈R ()()0f x f x ≥④若是函数的最小值,则存在,使得.()0f x ()f x x ∈R ()()0f x f x ≥则下列为真命题的选项是( )A. ①②都正确B. ①③都错误C. ③正确④错误D. ②错误④正确 【答案】D【解析】【分析】根据函数最小值的定义依次判断各选项即可得答案.【详解】解:对于①,不一定是函数的函数值,所以可能的最小值大于,故错误; M ()f x ()f x M 对于②,函数有最小值,则可能存在若干个,使得对任意,有,故错()f x 0R x ∈x ∈R ()()0f x f x ≥误;对于③,函数有最小值,则由最小值的定义,至少存在一个,使得对任意,有()f x 0R x ∈x ∈R ,故正确;()()0f x f x ≥对于④,若是函数的最小值,则存在,使得,故错误;.()0f x ()f x x ∈R ()()0f x f x ≥故真命题的选项是②错误④正确.14. 设,分别是函数和的零点(其中),则的取值1x 2x ()x f x x a-=-()log 1a g x x x =-1a >129x x +范围是() A.B. C. D. [)6,+∞()6,+∞[)10,+∞()10,+∞【答案】D【解析】【分析】根据零点定义,可得,分别是和的解.结合函数与方程的关系可知,分别是函数1x 2x 1x a x =1log a x x =1x 2x 与函数和函数交点的横坐标,所以可得,.而与互为1y x =x y a =log a y x =101x <<21x >x y a =log a y x =反函数,则由反函数定义可得.再根据基本不等式,即可求得的最小值,将化为121x x ⋅=12x x +129x x +,即可得解.1228x x x ++【详解】因为,分别是函数和的零点 1x 2x ()x f x x a-=-()log 1a g x x x =-则,分别是和的解 1x 2x 1x a x =1log a x x=所以,分别是函数与函数和函数交点的横坐标1x 2x 1y x =x y a =log a y x =所以交点分别为 121211,,,x x x x A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭因为1a >所以,101x <<21x >由于函数与函数和函数都关于对称1y x =x y a =log a y x =y x =所以点与点关于对称A B y x =因为关于对称的点坐标为 111,A x x ⎛⎫ ⎪⎝⎭y x =111,x x ⎛⎫ ⎪⎝⎭所以 121x x =即,且121x x ⋅=12x x ≠所以129x x +1228x x x =++28x ≥+,由于,所以不能取等号228x >+12x x ≠因为21x >所以2282810x +>+=即()12910,x x +∈+∞故选:D【点睛】本题考查了反函数的定义及性质综合应用,函数与方程的关系应用,基本不等式求最值,综合性强,属于难题.三、解答题(本题满分44分,共4题)15. 已知.sin 2cos αα=(1)求的值; πtan 4α⎛⎫+ ⎪⎝⎭(2)求的值. ()2i 2n sin 1s πcos ααα+-【答案】(1)3-(2) 132【解析】【分析】(1)由题知,再根据正切的和角公式求解即可;tan 2α=(2)根据诱导公式,结合齐次式求解即可.【小问1详解】解:由知,sin 2cos αα=tan 2α=所以, πtan 121tan 341tan 12ααα++⎛⎫+===- ⎪--⎝⎭【小问2详解】解:由知;sin 2cos αα=tan 2α=所以. ()22222213sin πcos s s sin 13sin co 3t in cos t 1an an ααααααααα+++===-16. 2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2020年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元满足(k 为常数),如果(0)m ≥41k x m =-+不搞促销活动,则该产品的年销售量只能是2万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按元来计算) 816x x+(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?最大利润是多少?【答案】(1) 1636(0)1y m m m =--≥+(2)该厂家2020年的促销费用投入3万元时,厂家的利润最大为29万元【解析】【分析】(1)根据题意列方程即可.(2)根据基本不等式,可求出的最小值,从而可求出的最大值. 16(1)1m m +++16361m m --+【小问1详解】由题意知,当时,(万件),0m =2x =则,解得,∴. 24k =-2k =241x m =-+所以每件产品的销售价格为(元), 8161.5x x +⨯∴2020年的利润. 816161.581636(0)1x y x x m m m x m +=⨯---=--≥+【小问2详解】∵当时,, 0m ≥10m +>∴, 16(1)81m m ++≥=+当且仅当即时等号成立. 16(1)1m m =++3m =∴,83729y ≤-+=即万元时,(万元).3m =max 29=y 故该厂家2020年的促销费用投入3万元时,厂家的利润最大为29万元.17. 已知函数.()log (23)1(0,1)a f x x a a =-+>≠(1)当时,求不等式的解集;2a =()3f x <(2)当时,设,且,求(用表示);10a =()()1g x f x =-(3),(4)==g m g n 6log 45,m n (3)在(2)的条件下,是否存在正整数,使得不等式在区间上有解,若存k 22(1)lg()+>g x kx []3,5在,求出的最大值,若不存在,请说明理由.k 【答案】(1);(2);(3)存在,3. 37,22⎛⎫⎪⎝⎭21m n m n +-+【解析】【分析】(1)时,不等式即,解不等式可得结果;2a =2log (23)2x -<(2)依题意得,进而由换底公式和对数的运算性质可得结果; lg3,lg5m n ==(3)依题意得在区间上有解; 令,则,因此()2221x k x -<[]3,5()()[]2221,3,5x h x x x -=∈()max k h x <求得的最大值即可求得结果.()h x 【详解】(1)当时,2a =()()2log 2313f x x =-+<故 ,所以不等式的解集为; 0234x <-<()3f x <37,22⎛⎫ ⎪⎝⎭(2)当时,,10a =()()()1lg 23g x f x x =-=-, ()()3lg3,4lg5m g n g ∴====. 6lg45lg9lg52log 45lg6lg3lg21m n m n ++∴===+-+(3)在(2)的条件下,不等式化为, ()()221lg g x kx +>()()22lg 21lg x kx ->即在区间上有解. 令,则,()2221x k x -<[]3,5()()[]2221,3,5x h x x x -=∈()max k h x <,, ()()2222112x h x x x -⎛⎫==- ⎪⎝⎭111,53⎡⎤∈⎢⎥⎣⎦x ,又是正整数,故的最大值为3. ()()max 81525k h x h ∴<==k k18. 若函数对定义域内的任意x 都满足,则称具有性质. ()f x ()1f x f x ⎛⎫=⎪⎝⎭()f x M (1)判断是否具有性质M ,并证明在上是严格减函数; ()1f x x x=+()f x ()0,1(2)已知函数,点,直线与的图象相交于两点(在左()ln g x x =()1,0A ()0y t t =>()g x B C 、B 边),验证函数具有性质并证明;()g x M AB AC <(3)已知函数,是否存在正数,当的定义域为时,其值域为()1h x x x=-m n k ,,()h x [],m n ,若存在,求的范围,若不存在,请说明理由.[],km kn k 【答案】(1)具有,证明见解析;(2)证明见解析;(3)不存在,理由见解析.【解析】【分析】(1)根据具有性质的定义判断即可,结合单调性的定义证明即可;M (2)根据具有性质的定义判断即可,再根据得,进而根据两点间的距离公式M |ln |x t =,e e t t C B x x -==作差法比较即可;(3)根据题意,分或,结合函数单调性讨论求解即可.01m n <<<1m n <<【小问1详解】 解:因为,所以函数具有性质, ()11111f x f x xx x x⎛⎫=+=+= ⎪⎝⎭()f x M 任取,1201x x <<<则, 121212121212121211111()()()()x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,所以,1201x x <<<121210,0x x x x >>-<所以,即,12())0(f x f x ->12()()f x f x >所以,在区间上单调递减.()f x ()0,1【小问2详解】 解:因为,所以具有性质, 11ln ln ln ()g x x g x x x ⎛⎫==-== ⎪⎝⎭()g x M由性质得或,解得或,|ln |x t =ln x t =-ln x t =e t x -=e =t x 因为,,所以,0t >e e t t -<,e e t t C B x x -==所以,||AB ==||AC ==所以,2222||||(1e )(1e )2(e e )(e e )t t t t t t AB AC ---⎡⎤-=---=-+-⎣⎦当,,当且仅当时取等号,且, ()0,x ∈+∞1()2f x x x =+≥1x =10e 1e et t t -<=<<所以,2(e e )0,e e 0t t t t ---+<->所以,即.22||||2(e e )(e e )0t t t t AB AC --⎡⎤-=-+-<⎣⎦AB AC <【小问3详解】解:注意到,由于均为正整数,(1)0h =,,m n k 所以,要使存在正数,当的定义域为时,其值域为,则或m n k ,,()h x [],m n [],km kn 01m n <<<,1m n <<当,01m n <<<因为为单调递减函数, 1101,()||x h x x x x x<<=-=-所以,其值域为,((),())h n h m 所以,(),()h n km h m kn ==所以,即,整理得,即,与定义域为矛盾; ()()h n m h m n =11n m nn mm -=-2211n m -=-m n =[],m n 当时,1m n <<因为为增函数, 111,()||x h x x x x x>=-=-所以,其值域为, ((),())h m h n 所以,即 (),()h m km h n kn ==11,m km n kn m n-=-=所以,即,与定义域为矛盾; 22221(1)1,(1)1,1k m k n m n k -=-===-m n =[],m n 综上,不存在正数满足条件.m n k ,,【点睛】关键点点睛:本题第三问解题的关键在于结合函数,均为正整数得到(1)0h =,,m n k或,进而分类讨论求解即可. 01m n <<<1m n <<。

上海高一第一学期周练-函数的奇偶性、单调性(第十一周)-009

上海高一第一学期周练-函数的奇偶性、单调性(第十一周)-009

函数的奇偶性、单调性【作者编号009】一.填空题(每题5分,每大题共10题,共50分)1. 已知函数)(x f 的定义域为R ,若)(x f 是奇函数,则=)0(f .【点评】(0)0f =是函数(),y f x x =∈R 的必要条件,是双基题型. 2.函数2()f x x bx c =-++在区间(,2)-∞上是增函数,则实数b 的取值范围是 .【解答】二次函数对称轴为2x =,22∴≤ 4b ∴≥ 【点评】基本函数的单调性要熟悉,是双基题型.3. 已知函数2()(3)3f x ax b x =+-+2(2)a x a -≤≤为偶函数,则a =________,b =________.【点评】函数的奇偶性既要考虑定义域,又要考虑()f x 与()f x -之间的关系,是双基题型.4. 已知43()8f x x ax bx =++-,且(2)10f -=,则(2)f =_____________.【解答】由于8y x =-为偶函数,y ax bx =+为奇函数 (2)6f ∴=【点评】解决本题的关键点是能发现函数48y x =-、3y ax bx =+的奇偶性,是比较综合题型.5. 若()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =_________.【点评】考察学生利用等式(2)()f x f x +=-的推理能力,运用代换技能. 6. 函数1()2ax f x x +=+在区间(2,)-+∞上单调递增,则实数a 的取值范围是 .【解答】()222f x a x x x ===++++,(,)2a ∴∈+∞ 【点评】考察了学生变式能力和反比例函数的性质,是综合题型. 7. 函数y =的递增区间是 .【解答】由540x x --≥得,51x -≤≤,所以此函数的递增区间是[5,2]--【点评】考察函数的单调区间的性质时,不要忘掉函数定义域这一条件,是综合题型.8. 若函数2()21x x af x +=-是奇函数,那么实数a =___________________.【点评】此题除了直接从定义求解外,还可以取特殊值求解,是概念型题.9. 设()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(11f x x =+,则()f x 表达式为__________.()()f x f x -=-,()(11f x x ∴=- 又(0)0f =(11,0()0,0(11,0x x f x x x x ⎧+>⎪∴==⎨⎪--<⎩ 【点评】(0)0f =是函数(),y f x x =∈R 的必要条件,是概念型题.10. 已知84)(2--=x kx x f 在[5,20]上递减,则实数k 的取值范围是 . 【解答】当0k =时,符合题意;当0k >时,则20k ≥ 010k ∴<≤;当0k <时,则25k ≤0k ∴< 110k ∴≤ 【点评】函数()y f x =不一定是二次函数,考察了分类讨论思想,是综合题型.11. 已知函数()f x 是R 上的增函数,(0,1)A -、(3,1)B 是其图象上的两点,那么不等式|(1)|1f x +<的解集的补集是 .(0)(1)(3)f f x f ∴<+< 013x ∴<+<即12x -<<所以不等式的解集的补集是(,1][2,)-∞-+∞ 【点评】解决本题的关键点是考查函数的单调性,是综合题型. 12.已知偶函数()f x 在[0,)+∞上是增函数,且满足1()02f =,则1()03||f x >-的解集 是 .【解答】由题意得,()()3||2f f x >-3||2x ⇒>-或3||2x <--,03||2x ∴<-<或03||2x >->-即1||3x << 或3||5x << ∴此不等式的解集为(5,3)(3,1)(1,3)(3,5)----【点评】解决本题的关键点是()f x 的图像特征及性质,是综合题型.13. 已知定义在}0|{≠x x 上的)(x f 对任意非零实数21,x x ,都有),()()(2121x f x f x x f +=判断)(x f 的奇偶性 .【解答】当12时, 当121x x ==-时,(1)(1)(1),f f f =-+-(1)0f ∴-=令12,1x x x ==-得,()()(1),f x f x f -=+-()()f x f x ∴-=,故()f x 为偶函数 【点评】解决本题的关键点是构造出()f x 与()f x -,是综合题型.14. (江苏第11题)已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是_____ .2212(1)10x xx x ⎧->⎪⇒∈-⎨->⎪⎩【点评】解决本题的关键点是考查分段函数的单调性,是综合题型.二.选择题(每题5分,每大题共3题,共15分)1. 已知()f x 在区间(,)-∞+∞上是增函数,,a b ∈R 且0a b +≤,则下列不等式中正确的是( )A .()()()()f a f b f a f b +≤--B.()()()()f a f b f a f b +≤-+-C .()()()()f a f b f a f b +≥--D .()()()()f a f b f a f b +≥-+-()()()()f a f b f a f b ∴+≤-+-,故选B【点评】解决本题的关键点是由增函数定义得出()()f a f b ≤-,是双基题型.2.设奇函数)(x f 的定义域为]5,5[-。

(完整)高中数学必修1函数单调性和奇偶性专项练习(含答案),推荐文档

(完整)高中数学必修1函数单调性和奇偶性专项练习(含答案),推荐文档

24高中数学必修 1第二章 函数单调性和奇偶性专项练习一、函数单调性相关练习题1、(1)函数 f (x )=x -2 , x ∈{0,1,2,4}的最大值为.3(2) 函数 f (x )=2x -1在区间[1,5]上的最大值为 ,最小值为.12、利用单调性的定义证明函数 f (x )= x 2 在(-∞,0)上是增函数.3、判断函数 f (x )=x +1在(-1,+∞)上的单调性,并给予证明. 4、画出函数 y =-x 2+2丨x 丨+3的图像,并指出函数的单调区间.5、已知二次函数 y =f(x)(x ∈R )的图像是一条开口向下且对称轴为 x =3 的抛物线,试比较大小: (1)f(6)与 f(4); (2)f(2)与f( 15)6、已知 y =f (x ) 在定义域(-1,1)上是减函数,且 f (1-a )<f (3a -2) ,求实数 a 的取值范围.7、求下列函数的增区间与减区间(1)y =|x 2+2x -3|x 2 - 2x(2) y=1-|x - 1|(3)y = (4) y =- x 2 - 2x + 31x 2-x -208、函数 f(x)=ax 2-(3a -1)x +a 2 在[1,+∞]上是增函数,求实数 a 的取值范围.ax9、 【例4】 判断函数f(x)=x 2 - 1(a ≠0)在区间(-1,1)上的单调性.10、求函数 f (x )=x + x在[1,3]上的最大值和最小值.二、函数奇偶性相关练习题11、判断下列函数是否具有奇偶性.(1) f (x )=(x -; (2) f (x )=a( x ∈ R ); (3) f (x )=3 (2x +5)2-3 (2x -5)212、若 y =(m -1)x 2+2mx +3 是偶函数,则 m =.13、 已知函数 f (x )=ax 2+bx +c ( a ≠ 0 )是偶函数,那么 g (x )=ax 3+bx 2+cx 是 ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14、已知函数 f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[ a -1, 2a ],则 ()1A . a = ,b =0B .a =-1,b =0C .a =1,b =0D .a =3,b =0315、已知 f (x ) 是定义在 R 上的奇函数,当 x ≥ 0 时, f (x )=x 2-2x ,则 f (x ) 在 R 上的表达式是 ( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)16、函数 f (x ) =)A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数17、若(x ) , g (x ) 都是奇函数, f (x )=a(x )+bg (x )+2 在(0,+∞)上有最大值 5,则 f (x ) 在(-∞,0)上有()A .最小值-5B .最大值-5C .最小值-1D .最大值-318、函数 f (x ) = 的奇偶性为(填奇函数或偶函数) .⎪ x 3-3x 2+1, 19、判断函数 f (x )= ⎨⎩ x 3+3x 2-1, x >0x <0的奇偶性. 20、f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且 f (x )在[5,+∞)上单调递减,试判断 f (x )在(-∞,-5]上的单调性,并用定义给予证明.121、已知 f (x ) 是偶函数, g (x ) 是奇函数,若 f (x ) + g (x ) =g (x ) 的解析式为.x -1,则 f (x ) 的解析式为,22、已知函数 f (x )满足 f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且 f (0)≠0.试证 f (x )是偶函数.23、设函数 y =f (x )(x ∈R 且x≠0)对任意非零实数 x 1、x 2 满足 f (x 1·x 2)=f (x 1)+f (x 2).求证 f (x )是偶函数.1 + x2 + x -11 + x2 + x +1x - 2 - 21 - x 2高中数学必修 1第二章函数单调性和奇偶性专项练习答案11、【答案】(1)2 (2)3,32、略3、【答案】减函数,证明略.4、【答案】分为x ≥ 0 和x<0 两种情况,分段画图.单调增区间是(-∞,-1)和[0,1];单调减区间是[-1,0)和(1,+∞)5、【答案】(1)f(6)<f(4) ;(2)∴f( 15)>f(4),即f( 15)>f(2).1 36、【答案】实数a 的取值范围是(,)3 47、【答案】(1)递增区间是[-3,-1],[1,+∞);递减区间是(-∞,-3],[-1,1](2)增区间是(-∞,0)和(0,1);减区间是[1,2)和(2,+∞)(3)∴函数的增区间是[-3,-1],减区间是[-1,1].1 1(4)函数的增区间是(-∞,-4)和(-4,);减区间是[ ,5)和(5,+∞)2 28、【答案】a 的取值范围是0≤a≤1.9、【答案】当a>0 时,f(x)在(-1,1)上是减函数;当a<0 时,f(x)在(-1,1)上是增函数.10、【答案】先判断函数在[1,2]上是减函数,在(2,3]上是增函数,可得f (2) =4 是最小值,f (1) =5 是最大值.二、函数奇偶性相关练习题11、【答案】(1)定义域不关于原点对称,所以是非奇非偶函数;(2)a=0 ,f (x) 既是奇函数又是偶函数;a ≠ 0 ,f (x) 是偶函数;(3)f (x) 是奇函数.12、【答案】013、【答案】选A14、【答案】选B15、【答案】选D16、【答案】选B17、【答案】选C18【答案】奇函数19、【答案】奇函数【提示】分x>0 和x<0 两种情况,分别证明f (-x)=-f (x) 即可.20、【答案】解析:任取x1<x2≤-5,则-x1>-x2≥-5.因f(x)在[5,+∞]上单调递减,所以f(-x1)<f(-x2)⇒f(x1)<-f(x2)⇒f(x1)>f(x2),即单调减函数.21、【答案】 f (x) =1x 2 -1 ,g(x)=xx 2-122、证明:令x=y=0,有f(0)+f(0)=2f(0)·f(0),又f(0)≠0,∴可证f(0)=1.令x=0,∴f(y)+f(-y)=2f(0)·f(y)⇒f(-y)=f(y),故f(x)为偶函数.23、证明:由x1,x2∈R 且不为 0 的任意性,令x1=x2=1 代入可证,f(1)=2f(1),∴f(1)=0.又令x1=x2=-1,∴f[-1×(-1)]=2f(1)=0,∴f(-1)=0.又令x1=-1,x2=x,∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

上海高一上学期期末数学试题(解析版)

上海高一上学期期末数学试题(解析版)

一、填空题1.函数的定义域是________.2()log (3)f x x =-【答案】(3,)+∞【分析】根据函数成立的条件,即可求函数的定义域.【详解】解:要使函数有意义,则x ﹣3>0,即x >3,故函数的定义域为(3,+∞),故答案为:(3,+∞).【点睛】本题主要考查函数定义域的求法,正确判断函数成立的条件是解决此类问题的关键. 2.不等式的解集为__________. 21x x ≥-【答案】{}12x x <≤【分析】利用分式不等式的解法求解即可.【详解】因为, 21x x ≥-所以,则,即,故, 201x x -≥-()2101x x x --≥-201x x -+≥-201x x -≤-所以,解得,故,()()21010x x x ⎧--≤⎨-≠⎩121x x ≤≤⎧⎨≠⎩12x <≤所以的解集为. 21x x ≥-{}12x x <≤故答案为:.{}12x x <≤3.已知,若幂函数奇函数,且在上为严格减函数,则112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭()f x x α=()0,∞+__________.α=【答案】-1【分析】根据幂函数在上为严格减函数,可得,再由幂函数奇函()f x x α=()0,∞+0α<()f x x α=数即可得答案.【详解】解:因为幂函数在上为严格减函数,()f x x α=()0,∞+所以,0α<所以, 12,1,2α⎧⎫∈---⎨⎬⎩⎭又因为幂函数奇函数,且, ()f x x α=12,1,2α⎧⎫∈---⎨⎬⎩⎭所以,1α=-故答案为:-14.已知角的终边经过点,则___________.α(1,3)P -tan α=【答案】3-【分析】根据正切函数定义计算【详解】由题意. 3tan 31α==--故答案为:.3-5.已知扇形的弧长为,且半径为,则扇形的面积是__________. cm 2π10cm 2cm 【答案】## 52π5π2【分析】由扇形面积公式可直接求得结果. 【详解】扇形面积. 115102222S lr ππ==⨯⨯=故答案为:. 52π6.若,则________. 1sin cos 5αα+=sin 2α=【答案】 2425-【分析】直接将两边平方,结合二倍角公式计算可得; 1sin cos 5αα+=【详解】解:因为,所以,即1sin cos 5αα+=()21sin cos 25αα+=221sin +2sin cos cos 25αααα+=,即,所以 11+sin 225α=24sin 225α=-故答案为: 2425-7.方程的两个实根分别为,则__________.(结果表示成含20(0)x x m m +-=>12,x x 221212x x x x +=m的表达式)【答案】m 【分析】根据韦达定理运算求解.【详解】∵方程的两个实根分别为,则当时恒成立,可20(0)x x m m +-=>12,x x 140m ∆=+>0m >得, 12121x x x x m +=-⎧⎨=-⎩∴.()()22121212121x x x x x x x x m m +=+=-⨯-=故答案为:.m8.方程的解为______.()lg 21lg 1x x ++=【答案】2.【解析】由对数的运算性质可转化条件为,即可得解.()21100210x x x x ⎧+=⎪>⎨⎪+>⎩【详解】方程等价于,()lg 21lg 1x x ++=()lg 2110210x x x x ⎧+=⎪>⎨⎪+>⎩所以,解得.()21100210x x x x ⎧+=⎪>⎨⎪+>⎩2x =故答案为:2.【点睛】本题考查了对数方程的求解,考查了运算求解能力,属于基础题.9.函数的值域是_______. 121xy =+【答案】(0,1)【分析】由函数解析式导出,利用指数式的有界性,,即可求解y 的取值范围,即为值域. 12x y y-=【详解】由函数解析式,, 121,2x x y y y y-+=∴=,解得 120,0x y y->∴> 01y <<则值域为,(0,1)故答案为:(0,1)【点睛】指数函数,值域为,即恒成立.2x y =(0,)+∞20x >10.如果对任意实数x 总成立,那么a 的取值范围是____________.19x x a +++>【答案】(),8∞-【分析】先利用绝对值三角不等式求出的最小值,进而求出a 的取值范围.19x x +++【详解】,当且仅当时等号成立,故,所以a 的取值()19198x x x x +++≥+-+=91x -≤≤-8a <范围是.(),8∞-故答案为:(),8∞-11.已知函数,若,且,则的取值范围是______.()ln f x x =0a b <<()()f a f b =2+a b【答案】()3,+∞【分析】由,可得,,得,所以()()f a f b =0a b <<01,1a b <<>ln ln a b -=1b a =22a b a a+=+,然后构造函数,利用可求出其单调区间,从而可求出其范围 2()(01)g x x x x=+<<【详解】的图象如图,()ln f x x =因为,()()f a f b =所以,ln ln a b =因为,0a b <<所以,,ln 0a <ln 0b >所以,01,1a b <<>所以,ln ln ,ln ln a a b b =-=所以,所以,ln ln a b -=ln ln ln()0a b ab +==所以,则, 1ab =1b a =所以, 22a b a a+=+令,则, 2()(01)g x x x x =+<<22()1x g x x x'-=-=当时,,01x <<()0g x '<所以在上递减,()g x (0,1)所以,()(1)123g x g >=+=所以,23+>a b 所以的取值范围为,2+a b ()3,+∞故答案为:()3,+∞12.设函数在区间上的最大值和最小值分别为M 、m ,()()221202120211-++-=+x xx f x x []2022,2022-则___________.M m +=【答案】2【分析】,令()()221202120211-++-=+x xx f x x 220212021112x x x x -+-=++,易得函数为奇函数,则,从()[]220212021,202222,2021x xg x x x x -+-=∈-+()g x ()()max min g x g x =-而可得出答案.【详解】解:()()221202120211-++-=+x x x f x x 2220212021121x xx x x -+=++-+, 220212021112x xx x -+-=++令, ()[]220212021,202222,2021x xg x x x x -+-=∈-+因为, ()()22021202121x xg x g x x x -+---==-+所以函数为奇函数,()g x 所以,即,()()max min g x g x =-()()max min 0g x g x +=所以,()()()()max min max min 112f x f x g x g x +=+++=即.2M m +=故答案为:2.二、单选题13.已知,,都是实数,则“”是“”的( )a b c a b <22ac bc <A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】利用充分、必要条件的定义,结合不等式的性质判断题设条件间的推出关系,即可知条件间的充分、必要关系.【详解】当时,若时不成立;a b <0c =22ac bc <当时,则必有成立,22ac bc <a b <∴“”是“”的必要不充分条件.a b <22ac bc <故选:B14.下列四组函数中,两个函数相同的是( )A .和y =2y =B .和1y =0y x =C .和y x =y =D .和2log a y x =2log a y x =【答案】C【分析】如果函数的三要素中有一个不同,则两个函数不同;判断两个函数相同,需要判断定义域、对应关系相同.【详解】选项A ,函数的定义域为R ,定义域为,所以两个函数不同; y 2y =[)0+∞,选项A ,函数的定义域为R ,定义域为,所以两个函数不同;1y =0y x ={}|0x x ≠选项C ,因为,定义域都为R ,所以函数和y x ==y x =y =选项D ,函数的定义域为,定义域为,所以两个函数不同. 2log a y x ={}|0x x ≠2log a y x ={}|0x x >故选:C.15.函数的图像的对称性为( ) 412x x y +=A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线对称y x =【答案】B 【分析】将函数进行化简,利用函数的奇偶性的定义进行判断.【详解】解:因为,所以, 4141()22222x x x x x x x f x -+==+=+()222(2)x x x x f x f x ---=+=+=所以函数是偶函数,即函数图象关于轴对称.()f x y 故选:.B 16.若,则函数的两个零点分别位于区间 a b c <<()()()()()()()f x x a x b x b x c x c x a =--+--+--A .和内B .和内 (,)a b (,)b c (,)a -∞(,)a bC .和内D .和内(,)b c (,)c +∞(,)a -∞(,)c +∞【答案】A【详解】试题分析:,所以有零点,排除B ,D()()()()()()0,0f b b c b a f c c a c b =--=--(,)b c选项.当时,恒成立,没有零点,排除C ,故选A.另外,也可x c >()0f x >()()()0f a a b a c =-->知内有零点.(,)a b 【解析】零点与二分法. 【思路点晴】如果函数在区间上的图象是连续不断的一条曲线,且有·,那么,函数在区间内有零点,即存在使得,这个也就是(,)a b (,)c a b ∈方程的根.注意以下几点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.③由函数在闭区间上有零点不一定能推出·,如图所示.所以[],ab·是在闭区间上有零点的充分不必要条件.[],a b三、解答题17.已知集合. {}{}24(0),230A xx a a B x x x =-≥>=--<∣∣(1)若,求;3a =A B ⋂(2)若,求实数的取值范围. B A ⊆a 【答案】(1) {}13xx <<∣(2)01a <≤【分析】(1)由不等式的解法,结合集合的运算求解即可;(2)由集合的包含关系得出实数的取值范围.a 【详解】(1)或,. {}{437A xx x x =-≥=≥∣∣}1x ≤{}{}223013B x x x x x =--<=-<<∣∣因为,所以. {}17A xx =<<∣{}13A B x x ⋂=<<∣(2)或,因为,, {}{4|4A x x a x x a =-≥=≥+∣}4x a ≤-B A ⊆443a +>>所以,即. 430a a -≥⎧⎨>⎩01a <≤18.(1)化简:.()()()()π3πcos πcos cos 2πsin 22sin πcos παααααα⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭++-(2)已知,且在同一象限,求的值. 31sin ,cos 52αβ==-,αβ()cos αβ+【答案】(1)0;(2【分析】(1)根据诱导公式化简整理;(2)先根据三角函数值判断所在象限,进而利用平方,αβ关系可求,代入两角和的余弦公式运算求值.cos ,sin αβ【详解】(1)()()()()()()()π3πcos πcos cos 2πsin cos sin cos cos 22cos cos 0sin πcos πsin cos αααααααααααααα⎛⎫⎛⎫++-+ ⎪ ⎪---⎝⎭⎝⎭+=+=-+=+---.(2)∵,且在同一象限,则为第二象限角, 31sin 0,cos 052αβ=>=-<,αβ,αβ∴,4cos =,sin 5αβ=-==故. ()413cos cos cos sin sin 525αβαβαβ⎛⎫⎛⎫+=-=-⨯--= ⎪ ⎪⎝⎭⎝⎭19.科学家以里氏震级来度量地震的强度,若设为地震时所散发出来的相对能量程度,则里氏震I 级度量可定义为; r 2lg 23r I =+(1)若,求相应的震级;(结果精确到0.1级)61.210I =⨯(2)中国地震台网测定:2021年11月17日13时54分在江苏省盐城市大丰区海域发生5.0地震,地震造成江苏盐城、南通等地震感强烈,上海亦有震感;请问汶川8.0级地震的相对能量是大丰区8.0I 海域5.0级地震相对能量的多少倍?(结果精确到个位)5.0I 【答案】(1)6.1(2)31623【分析】(1)由里氏震级度量公式计算即可;(2)由公式解出,再代入数值计算即可. 2lg 23r I =+I 【详解】(1)当时,61.210I =⨯则有. 6222lg()2(lg125)2(1.085)2 6.11.213330r =+=++≈++=⨯所以相应的震级为级. 6.1(2)由,可得, 2lg 23r I =+36210r I -=所以. 3869928.0235695.022101010316231010I I ⨯-⨯-===≈所以汶川8.0级地震的相对能量是大丰区海域5.0级地震相对能量的倍.8.0I 5.0I 3162320.已知二次函数,.2()1=++f x x ax [1,2]x ∈-(1)如果函数单调递减,求实数的取值范围;()f x a (2)当时,求的最大值和最小值,并指出此时x 的取值;1a =()f x (3)求的最小值,并表示为关于a 的函数.()f x ()H a 【答案】(1);(2)当时,,当时,;(3)(]4--∞,12x =-min 3()4f x =2x =max ()7f x =()H a =. 22,21,42452,4a a a a a a -≥⎧⎪⎪--<<⎨⎪⎪+≤-⎩【分析】(1)根据函数开口向上,对称轴为,进而结合题意得:,解不等式即可得2a x =-22a -≥答案;(2)由题知,进而根据二次函数性质即可得答案; 2213()124f x x x x ⎛⎫=++=++ ⎪⎝⎭(2)根据题意,分,,三种情况讨论函数单调性求解最小值即可.4a ≤-42a -<<2a ≥【详解】解:(1)因为函数开口向上,对称轴为, 2()1=++f x x ax 2a x =-若函数在上单调递减,则,解得:. ()f x [1,2]x ∈-22a -≥4a ≤-故当函数单调递减,实数的取值范围是:. ()f x a (]4--∞,(2)当时,, 1a =2213()124f x x x x ⎛⎫=++=++ ⎪⎝⎭所以当时,函数取得最小值. 12x =-()f x min 3()4f x =当时,函数取得最大值.2x =()f x max ()7f x =(3)因为函数开口向上,对称轴为, 2()1=++f x x ax 2a x =-所以当,即:时,函数在上为单调递减函数,故22a -≥4a ≤-()f x [1,2]-;()()()min 225H a f x f a ===+当,即:时,函数在上为单调递增函数,故12a -≤-2a ≥()f x [1,2]-()()()min 12H a f x f a ==-=-;当,即时,函数在上为单调递减函数,在上为单调递增122a -<-<42a -<<()f x 1,2a ⎡⎤--⎢⎥⎣⎦,22a ⎡⎤-⎢⎥⎣⎦函数,故; ()()2min 124a a H a f x f ⎛⎫==-=- ⎪⎝⎭综上,. ()H a =22,21,42452,4a a a a a a -≥⎧⎪⎪--<<⎨⎪⎪+≤-⎩【点睛】本题考查二次函数在闭区间上的最值和单调性问题,考查运算求解能力,分类讨论思想,是中档题.本题第三问解题的关键在于由二次函数的单调性分,,三种情况讨4a ≤-42a -<<2a ≥论求解.21.设. 21()21x x f x -=+(1)判断函数的奇偶性,并说明理由;()y f x =(2)求证:函数在R 上是严格增函数;()y f x =(3)若,求t 的取值范围.()2(1)10f t f t -+-<【答案】(1)奇函数,证明见解析;(2)证明见解析;(3)或.1t >2t <-【分析】(1)根据奇偶函数的定义进行判断即可;(2)利用单调性的定义,结合指数函数的单调性进行证明即可;(3)利用(1)(2)的结论,结合一元二次不等式的解法进行求解即可.【详解】(1)函数为奇函数,证明如下:()y f x =的定义域为,关于原点对称, 21()21x x f x -=+(,)∞∞-+ ()()2212112()()2112221x x x xx xx x f x f x --------====-+++∴为奇函数;()y f x =(2)证明:任取,且12,x x R ∈12x x < 212122()1212121x x x x x f x +--===-+++ ()()()()()1212212212222222211212121212121x x x x x x x x f x f x -⎛⎫-=---=-= ⎪++++++⎝⎭∵,12x x <∴,,, 21220x x >>12220x x -<2210x +>1210x +>第 11 页 共 11 页∴,即 ()()120f x f x -<()()12f x f x <∴函数在R 上是严格增函数()y f x =(2)∵在R 上是奇函数且严格增函数,()y f x =所以()()()2222(1)10(1)1111f t f t f t f t f t t t -+-<⇔-<--=-⇔-<-220t t ⇔+->,解得或 (2)(1)0t t ⇔+->1t >2t <-所以t 的取值范围是或.1t >2t <-。

上海市高一上学期期末数学试题(解析版)

上海市高一上学期期末数学试题(解析版)

一、填空题1.已知集合,,则______. {}1,A x x x =∈Z {}|04B x x =<<A B = 【答案】{2,3}【分析】根据交集的定义求解判断.【详解】因为,, {}1,A x x x =∈Z {}|04B x x =<<由交集的定义可得. {}{}|14,2,3A B x x x ⋂=<<∈=Z 故答案为:{2,3}2.若,则_____82log 3x =-x =【答案】; 14【解析】根据对数运算与指数运算的关系可直接求得结果.【详解】,.82log 3x =- 23184x -∴===故答案为:. 143.不等式的解集是______. 113x <【答案】()(),03,-∞+∞ 【分析】两边同乘以,变为一元二次不等式解出解集即可. 23x 【详解】解:因为,所以,两边同时乘以可得: 113x <0x ≠23x ,解得或,所以解集为:23x x <0x <3x >()(),03,-∞+∞ 故答案为:()(),03,-∞+∞ 4.用反证法证明命题:“若 , 且 ,则 和 中至少有一个小于2”0x >0y >2x y +>1yx+1x y +时,应假设___. 【答案】两者都大于或等于2 11,x yy x++【分析】由反证法思想:先否定原结论并推出矛盾,故只需写出原结论的否命题即可. 【详解】由于“,中至少有一个小于”的反面是“,都大于或等于”, 1x y +1y x +21x y +1yx+2故用反证法证明命题: “若且,则,中至少有一个小于”时,应假设0,0x y >>2x y +>1x y +1yx+2,都大于或等于. 1x y +1yx+2故答案为:和都大于或等于 . 1x y +1yx+25.已知幂函数在区间是减函数,则实数的值是__________.()223222mm y m m x--=--()0,∞+m 【答案】3【详解】∵幂函数在区间是减函数()223222mm y m m x--=--()0,+∞∴,解得: 22221320m m m m ⎧--=⎨--<⎩3m =故答案为36.函数且的图象必经过一个定点,则这个定点的坐标是_____. 1()1(0x f x a a -=+>1)a ≠【答案】(1,2)【分析】令,得, 10x -=1x =()2f x =【详解】令,则有10x -=1x = 0()12f x a =+=所以过定点 ()f x (1,2)故答案为:(1,2)【点睛】处理与指数函数有关的函数过定点时是利用且. 01a =(0a >1)a ≠7.函数的最大值为________ y =【分析】首先求出函数的定义域,然后判断函数的单调性,利用单调性即可求出最大值.【详解】函数的定义域为,y =1,22⎡⎤-⎢⎥⎣⎦函数在上是增函数,y =1,22x ⎡⎤∈-⎢⎥⎣⎦函数上是减函数,y =1,22x ⎡⎤∈-⎢⎥⎣⎦根据结论:增函数减函数增函数,-=函数在上是增函数,∴y =1,22x ⎡⎤∈-⎢⎥⎣⎦当 2x =【点睛】本题考查了利用函数的单调性求函数的最值,属于基础题.8.已知关于x 的不等式有实数解,则a 的取值范围是______. 112x a x --≤-+【答案】2a ≥【分析】分离参数转化为能成立问题,再利用绝对值不等式求解. 【详解】由题意得,min (|1||2|1)a x x ≥-++-因为,当时等号成立, |1||2||1||2||12|3x x x x x x -++=-++≥-++=21x -≤≤所以. 2a ≥故答案为:.2a ≥9.函数在区间上单调递减,且为奇函数.若,则满足的的()f x (,)∞∞-+(1)1f =-1(2)1f x -≤-≤x 取值范围是 .【答案】[1,3]【分析】根据函数的奇偶性以及函数的单调性即可求出x 的范围即可. 【详解】因为f (x )为奇函数, 所以f (﹣1)=﹣f (1)=1,于是﹣1≤f (x ﹣2)≤1等价于f (1)≤f (x ﹣2)≤f (﹣1), 又f (x )在(﹣∞,+∞)单调递减, ∴﹣1≤x ﹣2≤1, ∴1≤x ≤3. 故答案为[]1,3【点睛】本题考查函数的单调性和奇偶性的综合应用,考查转化思想,属于基础题. 10.当,时,则的取值范围是______. lg lg a b =a b <2+a b 【答案】()3,+∞【分析】先,,得到,,,推出,, lg lg a b =a b <01a <<1b >lg lg a b -=1ab =122+=+a b b b令,,用定义法判断该函数单调性,即可得出结果. 1()2=+f x x x1x >【详解】因为,,所以,,, lg lg a b =a b <01a <<1b >lg lg a b -=即, lg lg lg 0a b ab +==因此,所以, 1ab =122+=+a b b b令,, 1()2=+f x x x1x >任取,则121x x <<,1212121212121211111()()222()()2⎛⎫⎛⎫⎛⎫⎛⎫-=+-+=-+-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭f x f x x x x x x x x x x x x x 因为,所以,, 121x x <<120x x -<12120->x x 因此,即, 1212121()()()20⎛⎫-=--<⎪⎝⎭f x f x x x x x 12()()f x f x <所以函数在上单调递增, 1()2=+f x x x(1,)+∞所以,即的取值范围是.()(1)3>=f x f 2+a b ()3,+∞【点睛】本题主要考查由函数单调性求取值范围,熟记函数单调性的定义,以及对数的运算性质即可,属于常考题型.11.若函数的值域为,则实数的取值范围是________ 231()21x x f x x m x ⎧≤=⎨-+>⎩(,3]-∞m 【答案】(2,5]【分析】分类讨论,先由求出的取值范围,再结合时二次函数的单调性求解值域即可 1x ≤3x 1x >【详解】当时,,;1x ≤1333x ≤=()(]0,3f x ∈当时,是减函数,,要满足,此时应满足1x >()22x m f x -=+()(),2f x m ∈-∞-()(,3]f x ∞∈- ,即(]20,3m -∈(2,5]m ∈故答案为(2,5]【点睛】本题考查根据分段函数值域求解参数问题,解题关键在于确定在临界点处的取值范围,属于中档题12.已知,函数在区间上有两个不同零点,则的取值范,a b R ∈()af x x b x=++()0,1()21a b a ++围是________. 【答案】10,16⎛⎫⎪⎝⎭【分析】设函数的两个不同的零点分别为,且,用表示后利用基()f x 12,x x 12x x <12,x x ()21a b a ++本不等式可求的取值范围.()21a b a ++【详解】设函数在上的两个不同的零点分别为,()f x ()0,112,x x则为的两个不同的解, 12,x x 20x bx a ++=所以,,12x x b +=-12x x a =故()()()222121212*********a b a x x x x x x x x x x x x ++=+--+=--+,()()()()121212121111x x x x x x x x =--=--由基本不等式可得,,()111014x x <-≤()221014x x <-≤故,因,故等号不可取, ()()1212101116x x x x <--≤12x x ≠所以的取值范围为.()21a b a ++10,16⎛⎫ ⎪⎝⎭故答案为:.10,16⎛⎫⎪⎝⎭【点睛】本题考查函数的零点、二次函数的图象和性质和基本不等式,注意用二次方程的根表示目标代数式,本题属于难题.二、单选题13.已知,条件:,条件:,则是的( ) ,a b R ∈p a b >q lg lg 1a b >+p q A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】根据充分性、必要性的定义,结合对数的运算性质和对数函数的性质进行判断即可. 【详解】若,则有,因此有,故; lg lg 1a b >+lg lg10a b >100a b >>a b >反之,若,当其中有负数时,不成立,故是的必要不充分条件. a b >q p q 故选:B14.下列函数中,值域是的是 ()0,+∞A . B . 2y x =211y x =+C . D .2x y =-()lg 1(0)y x x =+>【答案】D【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :的值域为;2y x =[)0,+∞对于B :,,, 20x ≥ 211x ∴+≥21011x ∴<≤+的值域为; 211y x ∴=+(]0,1对于C :的值域为;2x y =-(),0-∞对于D :,,,0x > 11x ∴+>()lg 10x ∴+>的值域为;()lg 1y x ∴=+()0,+∞故选D .【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题. 15.已知定义域为R 的函数满足:对任意,恒成立,则函数()y f x =,x y R ∈()()()f x y f x f y +=-( )()y f x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数【答案】C【解析】利用赋值法,再根据函数的奇偶性定义,即可求解. 【详解】令,则, 0x y ==()()()0000f f f =-=令,则,0x =()()()()0f y f f y f y =-=-令,则,即, y x =-()()(0)f f x f x =--()()=f x f x -所以函数既是奇函数又是偶函数. ()f x 故选:C.【点睛】判定函数的奇偶性的常见方法:(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称,再化简解析式验证货等价形式是否成立;()()f x f x -=±()()0f x f x -±=(2)图象法:若函数的图象关于原点对称,可得函数为奇函数;若函数的图象关于轴对称,可y 得函数为偶函数;(3)性质法:设的定义域分别为,那么它们的公共定义域上,奇+奇=奇,奇奇()(),f x g x 12,D D ⨯=偶,偶+偶=偶,偶偶=偶,奇偶=奇.⨯⨯16.设函数的定义域为D ,若函数满足条件:存在,使在上的值域为()f x ()f x [,]a b D ⊆()f x [,]a b ,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是[,]22a b()f x 2()(2)x f x log t =+t( ) A .B .C .D .1(0,]2(0,1)1(0,)41(,)4+∞【答案】C【详解】函数为“倍增函数”,且满足存在,使在上的值域为2()log (2)xf x t =+[,]a b D ⊆()f x [],a b ,所以在上是增函数 ,则,即, 方程,22a b ⎡⎤⎢⎥⎣⎦()f x [,]a b 22log (2)2log (2)2a b a t b t ⎧+=⎪⎪⎨⎪+=⎪⎩222222a a b b t t ⎧+=⎪⎨⎪+=⎩∴有两个不等实根且两根都大于零,设,有两个不等实根都大2220x xt -+=22(0)xm m =>20m m t -+=于零, , 解得,选C.121214000t x x x x t ∆=->⎧⎪+>⎨⎪=>⎩104t <<【点精】本题为自定义信息题,属于创新题型,解决自定义信息题,首先要把新定义读懂,所谓“倍缩函数”就是要满足它的定义要求的函数,函数的定义域为D ,若函数满足条件:存()f x ()f x 在,使在上的值域为,就是要求自变量取值于[a,b],对应的值域为[],a b D ⊆()f x [],a b ,22a b ⎡⎤⎢⎥⎣⎦[,]22a b ,对于所给函数按照“倍缩函数”的定义,列出需要满足的要求,化简转化后解不等式求出结论.三、解答题17.已知关于x 的不等式的解集为S . 50mx x m-<-(1)当时,求集合S ;3m =(2)若且,求实数m 的取值范围. 5S ∈7S ∉【答案】(1)5,33S ⎛⎫= ⎪⎝⎭(2) 5,1(5,7]7⎡⎫⎪⎢⎣⎭【分析】(1)将代入后,将分式不等式转化为一元二次不等式求解; 3m =(2)根据元素与集合的关系,转化为不等关系,列式求m 的取值范围. 【详解】(1)当时,, 3m =()()35035303x x x x -<⇔--<-解得:,533x <<所以不等式的集合为;533S x x ⎧⎫=<<⎨⎬⎩⎭(2)若且,5S ∈7S ∉则或,解得:或,55057507m m m m-⎧<⎪⎪-⎨-⎪≥⎪-⎩550570m m m -⎧<⎪-⎨⎪-=⎩57m <≤517m ≤<所以的取值范围是.m 5,1(5,7]7⎡⎫⎪⎢⎣⎭ 18.函数的定义域为,关于的不等式的解集为.()f x =A x 22(23)30x a x a a -+++≤B (Ⅰ)求集合;A (Ⅱ)若,试求实数的取值范围. AB A = a 【答案】(Ⅰ)(Ⅱ). (1,2)A =[1,1]-【详解】试题分析:(Ⅰ)函数有意义,则真数大于零,被开方数不小于零,分母不等于零,据此求解不等式组可得()1,2.A =(Ⅱ)求解二次不等式可得 结合可知 据此得到关于实数a 的不等式[],3.B a a =+,A B A ⋂=.A B ⊆组,求解不等式组可得的取值范围是. a []1,1-试题解析: (Ⅰ)函数则集合()f x =10,20,x x ->⎧⎨->⎩()1,2.A =(Ⅱ)解不等式()222330,x a x a a -+++≤可得. 解得 ()()30x a x a ---≤[],3.B a a =+若则,A B A ⋂=.A B ⊆所以解得:1,3 2.a a ≤⎧⎨+≥⎩1 1.a -≤≤则的取值范围是.a []1,1-19.已知函数,其中. ()y f x =()2a f x x x=-(1)讨论函数的奇偶性:()y f x =(2)若函数在区间上是严格增函数,求实数a 的取值范围.[)1,+∞【答案】(1)详见解析 (2) 2a ≥-【分析】(1)分和两种情况讨论函数的奇偶性;0a =0a ≠(2)根据条件转化为当时,,参变分离后,转化为求的范121x x ≤<()()120f x f x -<()1212x x x x +围,即可求参数的取值范围.【详解】(1)当时,, 0a =2()f x x =所以的定义域为,关于原点对称, ()f x R 又,所以是偶函数;2()()f x x f x -==()f x 当时,,所以, 0a ≠(1)1,(1)1f a f a =--=+(1)(1),(1)(1)f f f f -≠-≠-所以是非奇非偶函数;()f x (2)由题意得任取且,则恒成立,12,[1,)x x ∈+∞12x x <()()12f x f x <即,即,, 221212a a x x x x -<-222121a a x x x x -<-()()()12212112a x x x x x x x x -<-+因为,所以,, 121x x ≤<121x x >120x x -<所以恒成立,()1212a x x x x >-+又,所以,则, 122x x +>()12122x x x x +>()12122x x x x -+<-所以.2a ≥-20.某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量250x ()C x 不足件时,(万元).当年产量不小于件时,(万8021()103C x x x =+8010000()511450C x x x=+-元). 每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完. 50(1)写出年利润(万元)关于年产量(件)的函数解析式; ()L x x (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?【答案】(1) 2140250,0803()100001200(80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩(2)当产量为100件时,最大利润为1000万元【分析】(1)分两种情况进行研究,当0<x <80时,投入成本为(万元),根据年21()103C x x x =+利润=销售收入−成本,列出函数关系式,当x ≥80时,投入成本为(万10000()511450C x x x=+-元),根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案; (2)根据年利润的解析式,分段研究函数的最值,当0<x <80时,利用二次函数求最值,当x ≥80时,利用基本不等式求最值,最后比较两个最值,即可得到答案. 【详解】(1)∵①当0<x <80时,根据年利润=销售收入−成本,∴;2211()50102504025033L x x x x x x =---=-+-②当x ≥80时,根据年利润=销售收入−成本, ∴. 1000010000()505114502501200()L x x x x x x=--+-=-+综合①②可得,;2140250,0803()100001200(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩(2)①当0<x <80时,,2211()40250(60)95033L x x x x =-+-=--+∴当x =60时,L (x )取得最大值L (60)=950万元; ②当x ≥80时,,10000()1200()120012002001000L x x x =-+≤-=-=当且仅当,即x =100时,L (x )取得最大值L (100)=1000万元. 10000x x=综合①②,由于950<1000,∴当产量为100件时,该厂在这一商品中所获利润最大,最大利润为1000万元21.已知函数,若存在常数,使得对定义域内的任意,都有()y f x =()0k k >D ()1212,x x x x ≠成立,则称函数是定义域上的“利普希兹条件函数”.()()1212f x f x k x x -≤-()y f x =D k -(1)判断函数是否为定义域上的“利普希兹条件函数”,若是,请证明:若不是,21y x =+11,22⎡⎤-⎢⎥⎣⎦1-请说明理由;(2)若函数是定义域上的“利普希兹条件函数”,求常数的最小值; y =[]1,4k -k (3)是否存在实数,使得是定义域上的“利普希兹条件函数”,若存在,求实数m 1my x =-[)2,+∞1-的取值范围,若不存在,请说明理由.m 【答案】(1)是,证明见解析 (2)12(3)存在,11m -≤≤【分析】(1),由,()()()221212*********f x f x x x x x x x x x x x ---=---=-⋅+-121122x x -≤<≤得,即可解决;(2)由题知均有成立,不妨设12120,1xx x x ->+<1212|()()|||f x f x k x x -≤-12x x >,得,得,即可解决;(3)k ≥=2114x x ≤<≤1142<<由题得,不妨设,得,又,即可解()()()21121211m x x x x x x -≤---12x x <()()()12min ||11m x x ≤--122,2x x ≥>决. 【详解】(1)由题知,函数,定义域为, 21y x =+11,22⎡⎤-⎢⎥⎣⎦所以,()()()221212*********f x f x x x x x x x x x x x ---=---=-⋅+-不妨设,12x x <因为, 121122x x -≤<≤所以,12120,1x x x x ->+<所以,()()1212f x f x x x -<-所以是利普希兹条件函数21y x =+1-(2)若函数是“利普希兹条件函数”,()4)f x x =≤≤k -则对于定义域上任意两个,[1,4]1212,()x x x x ≠均有成立,1212|()()|||f x f x k x x -≤-不妨设,则 12x x>k ≥=因为,2114x x ≤<≤所以, 1142<<所以的最小值为.k 12(3)由题意得在上恒成立, 121211m m x x x x -≤---[)2,+∞即, ()()()21121211m x x x x x x -≤---不妨设, 12x x <所以, ()()()12min ||11m x x ≤--因为, 122,2x x ≥>所以,||1m ≤所以. 11m -≤≤。

上海重点高中高一第一学期期末考试数学(带答案)

上海重点高中高一第一学期期末考试数学(带答案)

上海重点高中高一第一学期期末考试一 :填空题(每小题3分,共42分)1 设函数 x x x f 1)(-=,x xx g 21)(-=,则=+)()(x g x f __________ 2 若函数)(x f 的定义域是[]42,,则函数)(2x f 的定义域是__________ 3 若a x f x +-=121)(是奇函数,则=a __________ 4 函数822+--=x x y 的单调递减区间是__________5 已知函数)(x f y =是开口向上的二次函数,且)1()1(x f x f +=-,3)0(=f ,若)(x f 的最小值为2,则函数的解析式为__________6 幂函数t x y =的图像,当),(10∈x 时,在直线x y =上方,当),(∞+∈1x 时在直线x y =下方,则实数t 的取值范围是__________7 不等式1)1-2(2<x a 的解集为)0(,-∞,则实数a 的取值范围是__________8 函数)(x f 的定义域为R ,对于任意的R x ∈,有)1()3(x f x f --=+,那么函数)(x f 的图像关于点_________对称9 已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g __________10 已知函数m x f x -=--|1|2)( 的图像与x 轴有交点,则实数m 的取值范围是_________ 11 化简6log 18log 3log 2626+=_________ 12 已知函数[]),(2)(2b a x x x x f ∈-= 的值域为[]3,1-,则a b -的取值范围是_________13 已知函数)(x f 是偶函数,并且对于定义域内任意的x ,满足)(1)2(x f x f -=+ ,若当32<<x 时,x x f =)(,则=)5.2015(f _________14 对于函数①1|2-x |)(+=x f , ②2)2()(-=x x f ③21)(-=x x f 命题甲:)2(+x f 是个偶函数; 命题乙:)(x f 在)2(,-∞上是减函数,在),2(+∞上是增函数; 命题丙:)()2(x f x f -+在),(∞+∞-上是增函数,能使命题甲,乙,丙均为真的所有函数的序号是_________二 选择题(每题4分,共16分)15 设)(x f y =和)(x g y =是两个不同的幂函数,集合{})()(|x g x f x M ==,则集合中的元素个数是 ( )A 1 或2或0B 1或2或3C 1或2或3或4D 0或1或2或316 已知函数⎩⎨⎧-+=2244)(xx x x x f 00<≥x x , 若)()2(2a f a f >- ,则实数a 的取值范围是 ( )A ),2(1-+∞∞- ),( B)(2,1- C )1,2(- D ),1()2,(+∞⋃--∞17 在R 上定义的函数)(x f 是奇函数,且)2()(x f x f -= ,若)(x f 在区间)2,1( 是减函数,则函数)(x f ( )A 在)1,2(--上增, 在)4,3(上增B 在)1,2(--上减,在(3,4)上减C 在(-2,-1)上减,在(3,4)上增D 在(-2,-1)上增,在(3,4)上减18 定义在R 的偶函数)(x f 满足:对任意的(])(,,21210x x x x ≠∞-∈ ,有[]0)()()(1212>--x f x f x x ,则当*N n ∈ 时,有( )A )1()1()(+<-<-n f n f n fB )1()()1(+<-<-n f n f n fC )1()()1(-<-<+n f n f n fD )()1()1(n f n f n f -<-<+三 解答题19 (本题8分,每小题4分)已知)()(22Z k x x f k k∈=++- 满足)3()2(f f <(1)求k 的值 (2)是否存在正整数m ,使[]2,1,)12()(1)(-∈-+-=x x m x mf x g 为单调增函数?若存在,求出m 的范围,若不存在,说明理由.20 (本题满分8分,每小题4分) 已知函数xx xx x f --10101010)(+-= (1)求)(x f 的定义域并判断函数的奇偶性; (2)求)(x f 的值域21 (本题满分8分,每小题4分)定义域为R 的函数ab x f x x ++=+122-)(是奇函数. (1)求b a ,的值(2)若对任意的R t ∈, 不等式0)-2()2-(22<+k t f t t f 恒成立,求k 的取值范围22 (本题满分8分,每小题4分)(1)已知二次函数)(x f 满足1)2(-=f ,1)1(-=-f ,且)(x f 的最大值是8, 试确定此二次函数;(2)设函数22-)(2+=x ax x f ,对于满足41<<x 的一切x 值都有0)(>x f ,求实数a 的取值范围23 (本题10分,第(1)小题2分,第(2),(3)题各4分)函数x x f 2)(= 和 3)(x x g = 的图像的示意图如图所示,设两函数的图像交于点)(11y x A , ,)(22y x B ,且21x x <(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数?(2)若[]1,1+∈a a x ,[]12+∈b b x , ,且{}12118107654321,,,,,,,,,,∈b a ,指出b a ,的值,并说明理由 (3) 结合函数图像示意图,请把)6(),6(g f ,)2007(),2007(g f 四个数从小到大的顺序排列答案 1 )0(>-x x , 2[][]2,22,2 --, 321, 4 []2,1-, 52)1()(2+-=x x f ,610<<t ,7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--1,2222,1 , 8 ()0,2, 91-, 10 []1,0, 11 1, 12 []4,2, 13 52-, 14 2, 15 B, 16C, 17D, 18C, 19(1) 1,0==k k (2)不存在20 (1) 定义域为R 奇函数; (2)()11,)(-∈x f21 (1) 1,2==b a ,(2)1-<k 22 (1)744)(2++-=x x x f ;(2)⎥⎦⎤⎢⎣⎡∈210,a 23 (1)1C 对应3)(x x g =,2C 对应xx f 2)(=(2)91==b a ,(3))2007()2007()6()6(f g g f <<<。

上海上海中学必修第一册第三单元《函数概念与性质》检测题(有答案解析)

上海上海中学必修第一册第三单元《函数概念与性质》检测题(有答案解析)

一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( )A .ln 2-B .ln 2C .0D .12.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f << 3.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论: ①()10f =;②()()11f x f x -=-+;③函数()f x 的图象关于原点对称;④函数()f x 的图象关于点()1,0对称;其中,正确结论的个数为( )A .1B .2C .3D .4 4.函数()32241x x x x y -=+的部分图像大致为( ) A .B .C .D .5.函数1x y -=的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[]0,1 C .10,2⎡⎤⎢⎥⎣⎦ D .[)0,+∞ 6.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e -=D .()ln f x x = 7.若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为( )A .(],2-∞B .(],1-∞C .[)1,+∞D .[)2,+∞ 8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( )A .-6B .6C .-8D .8 9.函数()ln x x x f x e e-=-的大致图象是( ) A . B . C . D . 10.定义在R 上的奇函数()f x 满足()10f =,且对任意的正数a 、b (a b ),有()()0f a f b a b -<-,则不等式()202f x x -<-的解集是( )A .()()1,12,-+∞ B .()(),13,-∞-+∞ C .()(),13,-∞+∞ D .()(),12,-∞-+∞11.设函数()()1x f x x R x =-∈+,区间[,]M a b =,集合{(),}N y y f x x M ==∈,则使MN 成立的实数对(,)a b 有( ) A .0个B .1个C .2个D .无数个 12.若01m n <<<且1mn =,则2m n +的取值范围是( ) A .[22,)+∞ B .[3,)+∞ C .(22,)+∞ D .(3,)+∞ 13.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4x f x ⎛⎫= ⎪⎝⎭,则(2020.5)f =( ) A .116- B .116 C .14 D .12 14.函数3e ex x x y -=+(其中e 是自然对数的底数)的图象大致为( ) A . B . C . D . 15.下列函数中,在[)1,+∞上为增函数的是A .()22y x =-B .1y x =-C .11y x =+D .()21y x =-+ 二、填空题16.已知定义在R 上的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,则使不等式(1)0f x x+≤成立的x 的取值范围是_________.17.已知函数()()()2223f x x x x ax b =--++是偶函数,则()f x 的值域是__________. 18.已知函数2()2f x x x =-,()2(0)g x ax a =+>,若对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,则实数a 的取值范围是_____.19.函数()40a y x a x=+>在[]1,2上的最小值为8,则实数a =______. 20.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式()()f x f x x --<0的解集为________.21.函数()ln f x x x x =+的单调递增区间是_______.22.已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)(4)f a f -<,则a 的取值范围为____.23.设函数()222cos 2()x x e f x x e ππ⎛⎫-++ ⎪⎝⎭=+的最大值为M ,最小值为m ,其中e 为自然对数的底数,则2020(1)M m +-的值为________.24.已知函数()f x 是定义在R 上的奇函数,且满足x R ∀∈,都有()()2f x f x +=-,当[]0,1x ∈时,()21xf x =-,则()15f =______. 25.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________ 26.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为__________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解.【详解】函数()f x 是定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A.【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下:(1)根据奇函数的定义,可知(1)(1)=--f f ;(2)根据题中所给的函数解析式,求得函数值;(3)最后得出结果.2.B解析:B【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小.【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=,()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=,()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<,即()()()192119782021f f f <<.故选:B【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x += ,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +.3.C解析:C【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确.【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④,故选:C.【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称;(2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称. 4.A解析:A【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果.【详解】 函数()33222()4122xx x xx x x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x x x x x x x x x x x x f x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x x x x x x x y f x ----===++,故(x ∈时,00,0,202x x x x x ->+>-+>,,即()0y f x =<,故A 正确,B 错误.故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.5.C解析:C【分析】令t =,转化为21t y t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =, 当0t ≠时,2110112t y t t t <==≤=++, 当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题. 6.A解析:A【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可.【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B.故选:A【考点】确定函数单调性的四种方法:(1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.7.B解析:B【分析】由奇函数性质结合已知单调性得出函数在R 上的单调性,再由奇函数把不等式化为(2)()f x f x -≥-,然后由单调性可解得不等式.【详解】∵()f x 是奇函数,在(,0]-∞上递减,则()f x 在[0,)+∞上递减,∴()f x 在R 上是减函数,又由()f x 是奇函数,则不等式()()20f x f x +-≥可化为(2)()f x f x -≥-, ∴2x x -≤-,1x ≤.故选:B .【点睛】方法点睛:本题考查函数的奇偶性与单调性.这类问题常常有两种类型:(1)()f x 为奇函数,确定函数在定义域内单调,不等式为12()()0f x f x +>转化为12()()f x f x >-,然后由单调性去掉函数符号“f ”,再求解;(2)()f x 是偶函数,()f x 在[0,)+∞上单调,不等式为12()()f x f x >,首先转化为12()()f x f x >,然后由单调性化简.8.C解析:C【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-,故选:C【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =; (2)()()2f x f a x =-,则函数的对称轴为x a =.9.C解析:C【分析】结合选项中函数图象的特征,利用函数的性质,采用排除法求解即可.【详解】由题可知,函数()f x 的定义域为()(),00,-∞⋃+∞,()()ln ln x x x x x x f x f x e e e e----==-=---, 所以函数()f x 为奇函数,所以排除选项BD ;又()10f =,所以排除选项A.故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10.C解析:C【分析】易知函数()f x 在()0,∞+上单调递减,令2t x =-,将不等式()0f t t<等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩,进一步求出答案. 【详解】∵对任意的正数a 、b (a b ),有()()0f a f b a b-<-, ∴函数()f x 在()0,∞+上单调递减,∴()f x 在(),0-∞上单调递减.又∵()10f =,∴()()110f f -=-=令2t x =-所以不等式()0f t t <等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩∴1t >或1t <-,∴21x ->或21x -<-,∴3x >或1x <,即不等式的解集为()(),13,-∞⋃+∞.故选:C.【点睛】本题考查抽象函数的单调性和奇偶性以及不等式的知识点,考查逻辑思维能力,属于基础题.11.A解析:A【分析】 由已知中函数()()1||x f x x R x =-∈+,我们可以判断出函数的奇偶性及单调性,再由区间[M a =,]()b a b <,集合{|()N y y f x ==,}x M ∈,我们可以构造满足条件的关于a ,b 的方程组,解方程组,即可得到答案.【详解】x R ∈,()()1x f x f x x -==-+,()f x ∴为奇函数, 0x 时,1()111x f x x x -==-++,0x <时,1()111x f x x x-==--- ()f x ∴在R 上单调递减函数在区间[a ,]b 上的值域也为[a ,]b ,则()(),f a b f b a ==, 即1a b a -=+,1b a b-=+,解得0a =,0b = a b <,使M N 成立的实数对(,)a b 有0对故选:A【点睛】本题考查的知识点是集合相等,函数奇偶性与单调性的综合应用,其中根据函数的性质,构造出满足条件的关于a ,b 的方程组,是解答本题的关键.12.D解析:D【分析】 先利用已知条件构造函数()2(),01f m m m m +<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.13.D解析:D【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数,∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-,∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===, 故选:D【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题. 14.A解析:A【分析】由函数的奇偶性排除B ;由0x >的函数值,排除C ;由当x →+∞时的函数值,确定答案.【详解】由题得函数的定义域为R , 因为3()()x x x f x f x e e---==-+,所以函数是奇函数,所以排除B ; 当0x >时,()0f x >,所以排除C ; 当x →+∞时,()0f x →,所以选A .故选:A【点睛】方法点睛:根据函数的解析式找图象,一般先找图象的差异,再用解析式验证得解. 15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意;对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.【分析】先由定义域为R 的偶函数在区间内单调递减且画出的草图结合图象对进行等价转化解不等式即可【详解】由题意可知在区间内为增函数函数的图象可看作是由的图象向左平移1个单位长度得到的作出和的大致图象如图 解析:[)()2,00,-⋃+∞【分析】先由定义域为R 的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,画出()f x 的草图,结合图象对(1)0f x x+≤进行等价转化,解不等式即可. 【详解】由题意可知()f x 在区间(),0-∞内为增函数,函数()1y f x =+的图象可看作是由()y f x =的图象向左平移1个单位长度得到的,作出()y f x =和()1y f x =+的大致图象,如图所示.不等式(1)0f x x+≤可化为: ()010x f x <⎧⎨+≥⎩,当0x <时()10f x +≥,观察图象,得20x -≤<; ()010x f x >⎧⎨+≤⎩,当0x >时()10f x +≤,观察图象,得0x >; 所以不等式的解集为[)()2,00,-⋃+∞故答案为:[)()2,00,-⋃+∞.【点睛】常见解不等式的类型:(1)解一元二次不等式用图象法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.17.【分析】利用偶函数性质赋值可求出函数解析式再求值域即可【详解】因为是偶函数所以有代入得:解得:所以故答案为:解析:[)16,-+∞【分析】利用偶函数性质,赋值可求出函数解析式,再求值域即可.【详解】因为()()()()()()2222331f x x x x ax b x x x ax b =--++=-+++是偶函数, 所以有()()()()330110f f f f ⎧-==⎪⎨=-=⎪⎩,代入得:93010a b a b -+=⎧⎨++=⎩,解得:2,3a b ==-. 所以()()()()()22222242223233410951616f x x x x x x x x x x =--+-=--=-+=--≥-,故答案为:[)16,-+∞.18.【分析】由题可知在区间上函数的值域为值域的子集从而求出实数的取值范围【详解】函数的图象开口向上对称轴为时的最小值为最大值为的值域为为一次项系数为正的一次函数在上单调递增时的最小值为最大值为的值域为对 解析:[3,)+∞【分析】由题可知,在区间[]1,2-上函数1()f x 的值域为2()g x 值域的子集,从而求出实数a 的取值范围.【详解】函数()22f x x x =-的图象开口向上,对称轴为1x =, ∴[]11,2x ∈-时,()f x 的最小值为(1)1f =-,最大值为(1)3f -=,1()f x 的值域为[1,3]-.()2(0)g x ax a =+>为一次项系数为正的一次函数,在[]1,2-上单调递增,∴[]11,2x ∈-时,()g x 的最小值为(1)2g a -=-+,最大值为(2)22g a =+, 2()g x 的值域为[2,22]a a -++.对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,∴在区间[]1,2-上,函数1()f x 的值域为2()g x 值域的子集,∴212230a a a -+≤-⎧⎪+≥⎨⎪>⎩解得3a ≥故答案为:[3,)+∞.【点睛】本题考查函数的值域,考查分析解决问题的能力,解题的关键是对“任意”、“存在”的正确理解,确定两个函数值域之间的关系.19.3【分析】由已知结合对勾函数的性质讨论已知函数在区间上单调性进而可求出结果【详解】令解得当时即函数在上单调递减则符合题意;当时即函数在上单减在上单增解得(舍);当时即函数在上单调递增解得(舍)综上得 解析:3【分析】由已知结合对勾函数的性质,讨论已知函数在区间[]1,2上单调性,进而可求出结果.【详解】 令4a x x=,解得x =±2时,即1a ≥,函数在[]1,2上单调递减,min 228y a =+=,则3a =,符合题意;当12<<时,即114a <<,函数在⎡⎣上单减,在2⎡⎤⎣⎦上单增,min 8y ==,解得4a =(舍);当1≤时,即14a ≤,函数在[]1,2上单调递增,min 148y a =+=,解得74a =(舍),综上得3a =. 故答案为:3.【点睛】本题主要考查了对勾函数单调性的应用,体现了分类讨论思想的应用,属于中档题. 20.(-10)∪(01)【分析】首先根据奇函数f(x)在(0+∞)上为增函数且f(1)=0得到f(-1)=0且在(-∞0)上也是增函数从而将不等式转化为或进而求得结果【详解】因为f(x)为奇函数且在(0解析:(-1,0)∪(0,1)【分析】首先根据奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,得到f (-1)=0,且在(-∞,0)上也是增函数,从而将不等式转化为0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩,进而求得结果. 【详解】因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数. 因为()()f x f x x --=2·()f x x<0, 即0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩解得x ∈(-1,0)∪(0,1).故答案为:(-1,0)∪(0,1).【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与单调性的应用,属于简单题目.21.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.22.【分析】由偶函数的性质将不等式表示为再由函数在区间上的单调性得出与的大小关系解出不等式即可【详解】函数是上的偶函数所以由得函数在区间上单调递增得解得因此实数的取值范围是故答案为【点睛】本题考查函数不 解析:17a -<<【分析】由偶函数的性质()()f x f x =将不等式表示为()()34f a f -<,再由函数()y f x =在区间[)0,+∞上的单调性得出3a -与4的大小关系,解出不等式即可.【详解】函数()y f x =是R 上的偶函数,所以()()f x fx =, 由()()34f a f -<,得()()34f a f -<,函数()y f x =在区间[)0,+∞上单调递增,34a ∴-<,得434a -<-<, 解得17a -<<,因此,实数a 的取值范围是()1,7-,故答案为()1,7-.【点睛】本题考查函数不等式的求解,对于这类问题,一般要考查函数的奇偶性与单调性,将不等式转化为()()12f x f x <(若函数为偶函数,可化为()()12f x f x <),结合单调性得出1x 与2x 的大小(或1x 与2x 的大小)关系,考查推理能力与分析问题的能力,属于中等题.23.1【分析】函数然后根据奇偶性的性质可求解然后得出的值【详解】函数令则即为奇函数故所以所以故答案为:【点睛】本题考查函数的奇偶性及应用难度一般灵活转化是关键解析:1【分析】函数()()22sin 21x ex f x x eπ+=++,然后根据奇偶性的性质可求解M m +,然后得出2020(1)M m +-的值.【详解】函数()()()2222222cos sin 22x x e x x e ex f x x e x e πππ⎛⎫-++ ⎪+++⎝⎭==++ ()22sin 21x ex x eπ+=++, 令()()22sin 2x ex g x x e π+=+,则()()()()2222sin 2sin 2x ex x ex g x g x x e x eππ+---===-++, 即()g x 为奇函数,故()()max min 0g x g x +=所以()()max min 112M m g x g x +=+++=,所以()202011M m +-=.故答案为:1.【点睛】本题考查函数的奇偶性及应用,难度一般,灵活转化是关键. 24.【分析】根据函数为奇函数有结合可得是以4为周期的周期函数将所求函数值转化成已知解析式区间上的函数值即可求解【详解】由函数是定义在上的奇函数则又所以则所以是以4为周期的周期函数所以故答案为:【点睛】考 解析:1-【分析】根据函数为奇函数有()()f x f x =--,结合()()2f x f x +=-,可得()f x 是以4为周期的周期函数,将所求函数值转化成已知解析式区间上的函数值,即可求解.【详解】由函数()f x 是定义在R 上的奇函数,则()()f x f x =--又()()2f x f x +=-,所以()()2f x f x +=-则()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦所以()f x 是以4为周期的周期函数.所以()()()()()1151611121=1f f f f =-=-=-=--- 故答案为:1-【点睛】考查函数奇偶性和周期性的综合应用,具体数值求解,有一定综合性,属于中档题. 25.【分析】可令得出的值再代入可得答案【详解】解:令得解得故答案为【点睛】本题主要考查已知函数解析式求函数值的问题解析:15【分析】可令1()2g x =,得出x 的值,再代入可得答案. 【详解】 解:令1()2g x =,得1122x -=,解得14x =. 221511()11164()[()]151124()416f fg -∴====. 故答案为15.【点睛】本题主要考查已知函数解析式求函数值的问题.26.【解析】当时由即则即当时由得解得则当时不等式的解为则由为偶函数当时不等式的解为即不等式的解为或则由或解得:或即不等式的解集为点睛:本题是一道关于分段函数的应用的题目考查了不等式的求解以及函数的图象问 解析:4712{|}3443x x x ≤≤≤≤或 【解析】当102x ⎡⎤∈⎢⎥⎣⎦,时,由()1 2f x =,即1 2cos x π=则 3x ππ=,即1 3x = 当12x >时,由()1 2f x =,得121?2x -=,解得3 4x = 则当0x ≥时,不等式()12f x ≤的解为1334x ≤≤ 则由()f x 为偶函数∴当0x <时,不等式()12f x ≤的解为3143x -≤≤- 即不等式()12f x ≤的解为1334x ≤≤或3143x -≤≤- 则由13134x ≤-≤或31143x -≤-≤-解得:4734x ≤≤或1243x ≤≤ 即不等式()112f x -≤的解集为4712{|}3443x x x ≤≤≤≤或 点睛:本题是一道关于分段函数的应用的题目,考查了不等式的求解以及函数的图象问题.先求出当0x ≥时,不等式()12f x ≤的解,然后利用函数的奇偶性求出整个定义域()12f x ≤的解,即可得到结论.。

(完整)高一函数单调性奇偶性经典练习.doc

(完整)高一函数单调性奇偶性经典练习.doc

杰中杰教育函数单调性奇偶性函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主.(一)函数单调性的判断 函数单调性判断常用方法:即 f ( x 2 ) 单调增函数f ( x 1 ) f ( x 2 ) 0 f (x 1)定义法(重点):在其定义域内有任意 x 1, x 2且x 1x 2即f ( x 2 )单调增函数f ( x 1 ) f ( x 2 ) 0 f ( x 1)复合函数快速判断: “同增异减 ”f ( x) g( x)增 基本初等函数加减(设 f ( x)为增函数, g(x)为减函数): f ( x)为减函数g(x)增f ( x)g (x)为增函数f (x)减g ( x) 互为反函数的两个函数具有相同的单调性 .例 1 证明函数 f ( x)2x 3在区间 (4, ) 上为减函数 (定义法)x4解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较) ”进行 .解:设 x 1, x 2(4, ) 且 x 1x 2 , f (x 1)2x 1 3 2x 2 3 11(x 2 x 1 )f (x 2 )4x 24 ( x 1 4)( x 2 4)x 1Q x 2 x 14 x 2 x 1 0 , ( x 1 4) 0 , (x 2 4) 0f ( x 1 )f (x 2 ) 故函数 f (x) 在区间 (4, ) 上为减函数 .练习 1 证明函数 f ( x)2x 1在区间 ( 3, ) 上为减函数 (定义法)x3练习 2证明函数 f ( x) x 22 3x 在区间 (2, ) 上为增函数 (定义法、快速判断法)3练习 3求函数f ( x)x3定义域,并求函数的单调增区间 (定义法 )x 2练习 4求函数f ( x)x 2 2 x 定义域,并求函数的单调减区间(定义法)(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习)(二)函数单调性的应用单独考查单调性:结合单调函数变量与其对应函数值的关系求参数定义域与单调性结合:结合定义域与变量函数值关系求参数值域与单调性结合:利用函数单调性求值域例 1若函数 f ( x)是定义在R上的增函数,且f ( x22x) f (3 a) 恒成立,求实数 a 的范围。

上海市高一上学期期末数学试卷含答案(共3套)

上海市高一上学期期末数学试卷含答案(共3套)

上海市嘉定区高一年级第一学期期末考试数学试卷一、填空题(本大题满分36分)本大题共12题,只要求直接填写结果,每题填对得3分,否则一律得零分.1.已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B = .2.函数y =的定义域是 .3.不等式302x x -<-的解是 . 4.若指数函数(1)x y m =+在R 上是增函数,则实数m 的取值范围是 . 5.函数2()f x x x =-的零点是 .6.设函数()f x =1()f x -,则1(3)f -= .7.已知函数21y x ax =-++在区间[1,2]上是增函数,则实数a 的取值范围是 . 8.若幂函数2()(1)m f x m m x =--在区间(0,)+∞上单调递增,则实数m = .9.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()f x x x =--,则(2)f = .10.若log (2)1a b =-,则4a b +的最小值是 .11.已知函数()(22)x xf x x -=⋅-,存在1[,1]2x ∈,使不等式(1)(2)f ax f x +≤-成立,则实数a 的取值范围是 .12.已知函数()()(3)f x m x m x m =-++和()22xg x =-同时满足以下两个条件:(1)对于任意实数x ,都有()0f x <或()0g x <; (2)总存在0(,3)x ∈-∞-,使00()()0f x g x ⋅<成立. 则实数m 的取值范围是 .二、选择题:(本大题满分12分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,每题选对得3分,否则一律得零分.13.设x R ∈,则“1x >”是“11x<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 14.下列结论成立的是( )A .若,a b c d >>,则a c b d ->-B .若,a b c d >>,则a d b c ->-C .若a b >,则22ac bc >D .若a b >,则22a b >15.下列函数中,既为偶函数,又在区间(0,)+∞上单调递减的是( ) A .1y x=B .3y x =-C .2y x -=D .2y x = 16.已知函数()f x 在R 上是单调函数,且对任意x R ∈,都有(()2)3x f f x -=,则(3)f 的值等于( ) A .3 B .9 C .10 D .11三、解答题 (本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.已知集合2{|23,}A x x x x R =+<∈,集合{||1|,0,}B x x a a x R =-<>∈.若A B ⊆.求实数a 的取值范围.18.设a 是实数,函数2()21x xaf x +=+()x R ∈. (1)若点(1,2)P 在函数()f x 的图像上,求实数a 的值; (2)当1a =-时,求证:函数()f x 是奇函数.19.某公司一年需购买某种原料600吨,设公司每次都购买x 吨,每次运费为3万元,一年的总存储费为2x 万元,一年的总运费与总存储费之和为y (单位:万元). (1)试用解析式得y 表示成x 的函数;(2)当x 为何值时,y 取得最小值?并求出y 的最小值. 20.已知函数()1|1|,[0,2]f x x x =--∈.(1)将函数()f x 写成分段函数的形式,并画出函数()f x 的大致图像;(2)求证:函数2[()]1()()f xg x f x -=在(0,1]上是增函数;(3)若关于x 的方程22[()]()10f x a f x +⋅+=在区间[0,2]上有两个不相等的实数根,求实数a 的取值范围.21.已知x R ∈,定义:()f x 表示不小于x 的最小整数,例如:2f =,(0.6)0f -=. (1)若()2018f x =,求实数x 的取值范围; (2)若0x >,且1(3())(6)31xf x f x f +=++,求实数x 的取值范围; (3)设()()2f x g x x a x =+⋅-,2242022()57x x h x x x -+-=-+,若对于任意的123(2,4]x x x ∈、、,都有123()|()()|g x h x h x >-,求实数a 的取值范围.试卷答案一、填空题1. {3,4}2. [2,)+∞3. (2,3)4. (0,)+∞5.0和16.97. [4,)+∞8.29. 2 10.[5,1]- 12. (4,3)--二、选择题13.A 14.B 15.C 16.B三、解答题17.解:由223x x +<得2230x x +-<,解得31x -<<,即(3,1)A =-.又由|1|,0x a a -<>解得11a x a -<<+,即(1,1)B a a =-+.因为A B ⊆,所以1311a a -≤-⎧⎨+≥⎩,解得4a ≥.因此所求实数a 的取值范围是[4,)+∞. 18.(1)解:由题意知,(1)2f =,即223a+=,解得4a =. (2)证明:当1a =-时,21()21x x f x -=+.11212()12112xxx x f x -----==++12211212x x x x--==-++,所以()()f x f x -=-. 由奇函数的定义知,当1a =-时,函数()f x 是奇函数.19.(1)解:该公司一年需购买某种原料600吨,每次都购买x 吨,则一共需要购买600x次, 因为每次运费为3万元,所以一年的总运费是60018003x x⨯=(万元); 又因为一年的总存储费为2x 万元. 所以一年的总运费与总存储费之和18002y x x=+,0600x <≤. 这就是所求的y 关于x 的函数解析式.(2)解:因为0600x <≤,所以18002120x x +≥=. 当且仅当18002x x=,即30x =时,等号成立. 所以当30x =吨时,y 取得最小值,y 的最小值是120万元.20.(1)解:由题设得,01()2,12x x f x x x ≤≤⎧=⎨-<≤⎩;其图像如下图所示.(2)证明:当(0,1]x ∈时,()f x x =,所以1()g x x x=-,(0,1]x ∈. 任取12,(0,1]x x ∈,且12x x <,则12121211()()()()g x g x x x x x -=--- 121211()()x x x x =---=211212()()x x x x x x ---=12121()(1)x x x x -+=1212121()x x x x x x +-⋅ 又12,(0,1]x x ∈,且12x x <,所以120x x -<,120x x >,1210x x +>可得12()()0g x g x -<,即12()()g x g x <, 因此函数()g x 在(0,1]上是增函数. (3)设()t f x =.由(1)得[0,1]t ∈.且[0,1)t ∈时,方程()t f x =有两个不相等的实根.又关于x 的方程22[()]()10f x a f x +⋅+=在区间[0,2]上有两个不相等的实根, 所以关于t 的方程2210t at ++=在[0,1)上仅有一个实根,且1不可为其根.由于0不是方程2210t at ++=的根,则关于t 的方程2210t at ++=在(0,1)上仅有一个实根,且1不可为其根.令2()21g t t at =++.由其图像与性质可得(0)(1)30g g a ⋅=+<或280014a a⎧∆=-=⎪⎨<-<⎪⎩. 解得3a <-或a =-所以所求实数a 的取值范围是(,3){22}-∞--. 21.(1)解:由()2018f x =及题意得20172018x <≤. 所以所求实数x 的取值范围是(2017,2018]. (2)解:因为3(0,)x∈+∞,则31(1,)x+∈+∞,1(0,1)31x ∈+,16(6,7)31x +∈+, 所以1(6)731x f +=+. 由题意得当0x >,且(3())7f x f x +=,所以63()7x f x <+≤.若()1f x =,即01x <≤时,6317x <+≤,解得523x <≤,所以x ∈∅; 若()2f x =,即12x <≤时,6327x <+≤.解得4533x <≤,所以45(,]33x ∈;若()3f x ≥,即2x >时,36x >,3()9x f x +>,不符合题意.所以x ∈∅. 综上,所求实数x 的取值范围是45(,]33.(3)解:对于任意的123,,(2,4]x x x ∈,都有123()|()()|g x h x h x >-. 只需max min ()[()][()]g x h x h x >-对任意的(2,4]x ∈恒成立.又2242022()57x x h x x x -+-=-+26453()24x =-+-+.因为(2,4]x ∈,所以当52x =时,max [()]4h x =;当4x =时,min [()]2h x =-. 因此()6g x >对任意的(2,4]x ∈恒成立.①当(2,3]x ∈时,3()26ag x x x=+->恒成立. 即238a x x >-恒成立,所以2max 3(8)15a x x >-=,解得5a >;②当(3,4]x ∈时,4()26ag x x x=+->恒成立. 即248a x x >-恒成立,所以2max 4(8)16a x x >-=,解得4a >.综上,所求实数a 的取值范围是(5,)+∞.上海市金山中学高一上学期期末考试数学试卷(考试时间:90分钟 满分:100分 )一、填空题(本大题共12小题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分. 1.已知幂函数()y f x =的图像过点12⎛⎝⎭,则2log (2)f =__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海地区高一上学期测试题(数学)
(函数的奇偶性及单调性)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.下面说法正确的选项()
A.函数的单调区间可以是函数的定义域
B.函数的多个单调增区间的并集也是其单调增区间
C.具有奇偶性的函数的定义域定关于原点对称
D.关于原点对称的图象一定是奇函数的图象
2.在区间上为增函数的是() A. B.
C. D.
3.函数是单调函数时,的取值范围()
A. B. C . D.
4.如果偶函数在具有最大值,那么该函数在有() A.最大值 B.最小值 C .没有最大值 D.没有最小值
5.函数,是() A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关
6.函数在和都是增函数,若,且那么() A. B.
C. D.无法确定
7.函数在区间是增函数,则的递增区间是()
A. B. C. D.
8.函数在实数集上是增函数,则()
A.B. C. D.
9.定义在R上的偶函数,满足,且在区间上为递增,则() A. B.
C. D.
10.已知在实数集上是减函数,若,则下列正确的是()
A. B.
C. D.
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.函数在R上为奇函数,且,则当, . 12.函数,单调递减区间为,最大值和最小值的情况为 . 13.定义在R上的函数(已知)可用的=和来表示,且为奇函数,
为偶函数,则= .
14.构造一个满足下面三个条件的函数实例,
①函数在上递减;②函数具有奇偶性;③函数有最小值为; . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).
15.(12分)已知,求函数得单调递减区间.
16.(12分)判断下列函数的奇偶性
①;②;
③;④。

17.(12分)已知,,求.
18.(12分))函数在区间上都有意义,且在此区间上
①为增函数,;
②为减函数,.
判断在的单调性,并给出证明.
19.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。

生产台的收入函数为(单位
元),其成本函数为(单位元),利润的等于收入与成本之差.
①求出利润函数及其边际利润函数;
②求出的利润函数及其边际利润函数是否具有相同的最大值;
③你认为本题中边际利润函数最大值的实际意义.
14分)已知函数,且,,试问,是否存在实
数,使得在上为减函数,并且在上为增函数.
参考答案
一、CBAAB DBAA D
二、11.;12.和,; 13.; 14.;
三、15.解:函数,,
故函数的单调递减区间为.
16.解①定义域关于原点对称,且,奇函数.
②定义域为不关于原点对称。

该函数不具有奇偶性.
③定义域为R,关于原点对称,且,,故其不具有奇
偶性.
④定义域为R,关于原点对称,
当时,;
当时,;
当时,;故该函数为奇函数.
17.解:已知中为奇函数,即=中,也即
,,得,.
18.解:减函数令,则有,即可得;同理有
,即可得;
从而有
*
显然,从而*式,
故函数为减函数.
19.解:.

,故当62或63时,741)。

因为为减函数,当时有最大值2440。

故不具有相等的最大值. 边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大.
:.
有题设
当时,
,,
则当时,
,,
则故.。

相关文档
最新文档