第三章 第一节 任意角和孤度制及任意角的三角函数

合集下载

第一节 任意角、弧度制及任意角的三角函数

第一节 任意角、弧度制及任意角的三角函数

第一节任意角、弧度制及任意角的三角函数高考概览:1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.[知识梳理]1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.任意角的三角函数[辨识巧记]1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角.(2)不相等的角未必终边不相同,终边相同的角也未必相等.2.两个关注点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)在同一个问题中采用的度量制度必须一致,不能混用.[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,反之亦然.()(3)将表的分针拨快5分钟,则分针转过的角度是30°.()(4)相等的角终边一定相同,终边相同的角也一定相等.()[答案](1)×(2)×(3)×(4)×2.(必修4P10A组T10改编)单位圆中,200°的圆心角所对的弧长为( )A .10πB .9π C.910π D.109π[解析] ∵200°=10π9,∴单位圆中,200°的圆心角所对的弧长为l =10π9×1=10π9.故选D.[答案] D3.(必修4P 15练习T 6改编)若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由正切和正弦的象限符号可知,在第三象限.故选C.[答案] C4.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( ) A .-43 B .-45 C .-35 D .-34[解析] 根据三角函数的定义,tan α=y x =35-45=-34,故选D. [答案] D5.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.[解析] 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎫π4,5π4.[答案] ⎝ ⎛⎭⎪⎫π4,5π4考点一 角的概念及集合表示【例1】 (1)若α是第三象限角,且cos α2>0,则α2是第________象限角. (2)终边在直线y =3x 上的角的集合是________.[解析] (1)解法一:∵α是第三象限角,∴2k π+π<α<2k π+3π2(k∈Z ),则k π+π2<α2<k π+3π4(k ∈Z ).当k =2n (n ∈N )时,2n π+π2<α2<2n π+3π4,不满足cos α2>0,舍去.当k =2n +1(n ∈N )时,2n π+π+π2<α2<2n π+π+3π4,满足cos α2>0,∴α2是第四象限角.解法二:利用等分象限角的方法,可以判断α2是第二或四象限角,又因为cos α2>0,所以α2是第四象限角.(2)在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π3+k π,k ∈Z . [答案] (1)四 (2)⎩⎨⎧⎭⎬⎫α|α=π3+k π,k ∈Z(1)确定kα,αk (k ∈N *)的终边位置3步骤①用终边相同角的形式表示出角α的范围;②再写出kα或αk 的范围;③然后根据k 的可能取值讨论确定kα或αk 的终边所在位置.(2)终边在某直线上角的求法3步骤①数形结合,在平面直角坐标系中画出该直线;②按逆时针方向写出[0,π)内的角β;③{α|α=k π+β,k ∈Z }.[对点训练]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-350°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个[解析] -3π4是第三象限角;4π3是第三象限角;-400°=-40°-360°,所以-400°是第一象限角;-350°=10°-360°,所以350°是第一象限角.故②④正确,故选B.[答案] B2.设集合M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =k 2×180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 4×180°+45°,k ∈Z ,则两集合的关系是( ) A .N ⊆M B .M =N C .M ND .M ∩N =∅ [解析] 因为M ={x |x =(2k +1)·45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)·45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,所以:M N .故选C.[答案] C考点二 扇形的弧长和面积公式【例2】 已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长.(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?[思路引导] (1)化α为弧度制→代入弧长公式求解(2)利用扇形周长为C 确定α和R 的关系→用α表示扇形的面积S →借助函数知识求解[解] (1)设弧长为l ,则α=60°=π3,R =10,l =π3×10=10π3(cm).(2)解法一:扇形周长C =2R +l =2R +αR ,∴R =C2+α, ∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2 =C 22α·14+4α+α2=C 22·14+α+4α≤C 216.当且仅当α2=4,即α=2时,扇形面积有最大值C 216.解法二:扇形周长C =2R +l ,面积S =12lR =12R (C -2R )=-R 2+12CR =-⎝⎛⎭⎪⎫R -C 42+C 216⎝ ⎛⎭⎪⎫0<R <C 2, 当且仅当R =C 4,即C =4R 时,扇形的面积S 最大,此时C =4R =2R +l ,l =2R ,由l =2R 得α=2,即α=2时,扇形面积有最大值C 216.涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l =|α|R ,S =12|α|R 2=12lR .在公式的选择上以简单,计算量小为原则,如本例(2)中解法二比解法一计算量小.[对点训练]已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8[解析] 由S =12×4×R 2=2,得R =1,所以弧长l=4×1=4,故扇形的周长C=2R+l=2+4=6.故选C.[答案] C考点三三角函数的定义任意角的三角函数的定义属于理解内容,单独考查时不多,多结合其他知识一起考查,以选择、填空题形式出现.常见的命题角度有:(1)求三角函数值;(2)判断三角函数值的符号;(3)利用三角函数线解不等式.角度1:求三角函数值【例3-1】已知角α的终边上一点P(-3,m)(m≠0),且sinα=2m4,求cosα,tanα的值.[解]设P(x,y).由题设知x=-3,y=m,所以r2=|OP|2=(-3)2+m2(O为原点),r=3+m2,所以sinα=mr=2m4=m22,所以r=3+m2=22,3+m2=8,解得m=±5. 当m=5时,r=22,x=-3,y=5,所以cosα=-322=-64,tanα=-153;当m =-5时,r =22,x =-3,y =-5,所以cos α=-322=-64,tan α=153. 角度2:判断三角函数值的符号【例3-2】 若sin α·tan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限的角,由cos αtan α<0,可知cos α,tan α异号.从而α为第三或第四象限角.综上,α为第三象限角.故选C.[答案] C角度3:利用三角函数线解不等式【例3-3】 函数y =lg(3-4sin 2x )的定义域为________. [思路引导] 真数大于0→解三角不等式→ 单位圆中正弦线→看图得结果[解析] ∵3-4sin 2x >0,∴sin 2x <34, ∴-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示).∴x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).[答案] ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )(1)定义法求三角函数的3种情况①已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.②已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.③已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.(2)三角函数符号在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.(3)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.[对点训练]1.已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45[解析] 根据题,cos α=-4(-4)2+32=-45.故选D. [答案] D2.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α<0,则a 的取值范围是________.[解析] 因为sin α>0,cos α<0,所以α是第二象限角.所以点(3a -9,a +2)在第二象限,所以⎩⎪⎨⎪⎧3a -9<0,a +2>0,解得-2<a <3.[答案] (-2,3)3.函数y =2cos x -1的定义域为________. [解析] ∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边的范围.∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).[答案] ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z )课后跟踪训练(二十)基础巩固练一、选择题1.下列角中终边与330°相同的角是( ) A .30° B .-30° C .630° D .-630°[解析] 因为330°的角的终边与-30°的角的终边相同,所以选项B 满足题意.故选B.[答案] B2.若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.[答案] D3.若角α=2 rad(rad 为弧度制单位),则下列说法错误的是( ) A .角α为第二象限角B .α=⎝ ⎛⎭⎪⎫360π°C .sin α>0D .sin α<cos α[解析] 对于A ,∵π2<α<π,∴角α为第二象限角,故A 正确;对于B ,α=⎝ ⎛⎭⎪⎫360π°=2 rad ,故B 正确;对于C ,sin α>0,故C 正确;对于D ,sin α>0,cos α<0,故D 错误.故选D.[答案] D4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角α的弧度数是( )A .1B .4C .1或4D .2或4[解析] 设扇形的半径为r cm ,弧长为l cm ,则l +2r =6,S =12lr =2,解得r =2,l =2或r =1,l =4,故α=lr =1或4,故选C.[答案] C5.集合⎭⎬⎫{α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )[解析] 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.[答案] C 二、填空题6.若α=k ·180°+45°,k ∈Z ,则α为________象限角. [解析] α=k ·180°+45°=k 2·360°+45°.当k 为偶数时,α为第一象限角;当k 为奇数时,α为第三象限角.综上,α为第一或第三象限角.[答案] 第一或第三7.若点⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6在角α的终边上,则sin α的值为________. [解析] ∵角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32,∴由任意角的三角函数的定义,可得sin α=-32.[答案] -328.已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α=________.[解析] 圆的半径为2,π2的弧长对应的圆心角为π4,故以ON 为终边的角为⎩⎨⎧⎭⎬⎫α|α=2k π+π4,k ∈Z ,故tan α=1.[答案] 1 三、解答题9.(1)设90°<α<180°,P (x,4)为其终边上的一点,且cos α=15x ,求tan α.(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.[解] (1)∵90°<α<180°,∴cos α<0,∴x <0. 又cos α=15x =x x 2+16,∴x =-3.∴tan α=4x =-43.(2)∵θ的终边过点(x ,-1),∴tan θ=-1x , 又∵tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.10.(1)已知扇形周长为10,面积是4,求扇形的圆心角; (2)一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .[解] (1)设圆心角是θ,半径是r ,则⎩⎨⎧2r +rθ=10,12θ·r 2=4,解得⎩⎨⎧r =4,θ=12,或⎩⎪⎨⎪⎧r =1,θ=8.(舍去). ∴扇形的圆心角为12.(2)设圆的半径为r cm ,弧长为l cm ,则⎩⎨⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr =2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad. ∴AH =1·sin1=sin1(cm), ∴AB =2sin1(cm).能力提升练11.(2019·江西南昌二中测试)已知角α终边上一点P 的坐标是(2sin2,-2cos2),则sin α等于( )A .sin2B .-sin2C .cos2D .-cos2[解析] r =(2sin2)2+(-2cos2)2=2.由任意角的三角函数的定义,得sin α=yr =-cos2,故选D.[答案] D12.(2019·山东济南外国语学校段考)下列结论中错误的是( ) A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限或第三象限角 C .若角α的终边过点P (3k,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 [解析] 选项A ,若0<α<π2,则sin α<tan α=sin αcos α,A 正确;选项B ,若α是第二象限角,即α∈⎝ ⎛⎭⎪⎫2k π+π2,2k π+π,k ∈Z ,则α2∈⎝⎛⎭⎪⎫k π+π4,k π+π2,k ∈Z ,为第一象限或第三象限角,B 正确;选项C ,若角α的终边过点P (3k,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k 5|k |,不一定等于45,C 不正确;选项D ,若扇形的周长为6,半径为2,则弧长=6-2×2=2,其圆心角的大小为22=1弧度,D 正确.故选C.[答案] C13.(2018·北京第三十五中学期中)如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆的交点A 在第二象限.若cos α=-35,则点A 的坐标为________.[解析] ∵cos α=-35,∴sin α=1-cos 2α=45,∴A ⎝⎛⎭⎪⎫-35,45.[答案] ⎝ ⎛⎭⎪⎫-35,4514.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴的正半轴的交点,点A 的坐标为⎝ ⎛⎭⎪⎫513,1213,∠AOB =90°.(1)求cos ∠COA ; (2)求tan ∠COB .[解] (1)因为点A 的坐标为⎝ ⎛⎭⎪⎫513,1213,根据三角函数的定义可得cos ∠COA =513.(2)因为∠AOB =90°,sin ∠COA =1213, 所以cos ∠COB =cos(∠COA +90°)=-sin ∠COA =-1213.又因为点B 在第二象限, 所以sin ∠COB =1-cos 2∠COB =513.故tan ∠COB =sin ∠COB cos ∠COB=-512.拓展延伸练15.(2019·上海长宁、嘉定一模)设角α的顶点为坐标原点,始边为x 轴的正半轴,则“α的终边在第一、二象限”是“sin α>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] α的终边在第一、二象限能推出sin α>0,sin α>0成立能推出α的终边在第一、二象限或y 轴的正半轴上,故“α的终边在第一、二象限”是“sin α>0”的充分不必要条件.故选A.[答案] A16.(2019·河北张家口月考)若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角[解析] ∵角θ满足sin θ>0,tan θ<0,∴θ是第二象限角,即π2+2k π<θ<π+2k π,k ∈Z ,∴π4+k π<θ2<π2+k π,k ∈Z ,∴θ2是第一或第三象限角.故选C.[答案] C。

一轮复习三角函数PPT课件

一轮复习三角函数PPT课件

[自主解答] (1)∵在(0,π)内终边在直线 y= 3x 上的角 是π3,∴终边在直线 y= 3x 上的角的集合为
α|α=π3+kπ,k∈Z. (2)∵θ=67π+2kπ(k∈Z), ∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π⇒-37≤k<178,k∈Z.
[备考方向要明了]
考什么 1.了解任意角的概念. 2.了解弧度制的概念,能进
行弧度与角度的互化. 3.理解任意角三角函数(正
弦、余弦、正切)的定 义.
1.三角函怎数么的定考义与三 角恒等变换等相结 合,考查三角函数
求 值问 题,如2008
年 高考T15等.
[归纳
1.角的有关概念
知识整合]
角的特点
三角函数线
有向线段 ____ 有向线段____ 有向线段____
MP
OM
AT
为正弦线
为余弦线
为正切线
[探究] 3.三角函数线的长度及方向各有什么 意义?
提示:三角函数线的长度表示三角函数值的绝 对值,方向表示三角函数值的正负.
[自测 牛刀小试] 1.(教材习题改编)下列与94π的终边相同的角 α 的集合为___.
解析:∵94π=94×180°=360°+45° ∴与94π 终边相同的角可表示为 k·360°+45°(k∈Z)
答案:{α|α=k·360°+ 45°(k∈Z)}
2.(教材习题改编)若角θ同时满足sin θ<0且tan θ<0, 则角θ的终边一定落在第________象限. 解析:由sin θ<0,可知θ的终边可能位于第三或第 四象限,也可能与y轴的非正半轴重合.由tan θ<0, 可知θ的终边可能位于第二象限或第四象限,可知θ的
2.弧度的概念与公式

3-1第一节 任意角和弧度制及任意角的三角函数(2015年高考总复习)

3-1第一节 任意角和弧度制及任意角的三角函数(2015年高考总复习)

考源教学资源网
第9页
返回导航
第三章
第一节
高考总复习模块新课标
新课标A版数学
5.三角函数线 设角 α 的顶点在坐标原点,始边与 x 轴非负半轴重合,终边 与单位圆相交于点 P,过 P 作 PM 垂直 x 轴于点 M.由三角函数的 定义知,点 P 的坐标为(cosα,sinα),即 P(cosα,sinα),其中 cosα = OM ,sinα= MP ,单位圆与 x 轴的正半轴交于点 A,单位圆 在 A 点的切线与 α 的终边或其反向延长线相交于点 T,则 tanα = AT .我们把有向线段 OM、MP、AT 叫做 α 的 余弦线、正弦线 、 正切线 .
考源教学资源网
第12页
返回导航
第三章
第一节
高考总复习模块新课标
新课标A版数学
(2)终边相同的角不一定相等,相等的角终边一定相同,终边 相同的角的同一三角函数值相等.
考源教学资源网
第13页
返回导航
第三章
第一节
高考总复习模块新课标
新课标A版数学
2.对三角函数的理解要透彻 三角函数也是一种函数, 它可以看成是从一个角(弧度制)的集 合到一个比值的集合的函数.也可以看成是以实数为自变量的函 数,定义域为使比值有意义的角的范围. y 如 tanα=x有意义的条件是角 α 终边上任一点 P(x,y)的横坐 标不等于零,也就是角 α 的终边不能与 y 轴重合,故正切函数的 π 定义域为{α|α≠kπ+ ,k∈Z}. 2
答案 A
考源教学资源网
第18页
返回导航
第三章
第一节
高考总复习模块新课标
新课标A版数学
3.若 sinα<0 且 tanα>0,则 α 是( A.第一象限角 C.第三象限角 B.第二象限角 D.第四象限角

第三章 第一节 任意角的概念与弧度制、任意角的的三角函数

第三章 第一节  任意角的概念与弧度制、任意角的的三角函数
2
对k的奇偶性讨论可得解. (2)由α所在的象限写出角α的范围,从而得2α, 的范围, 最后确定终边所在的位置. 【规范解答】(1)选B.由 2k<<3 2k,k Z, 得 k<1 <3 k,k Z,
2 2 2 4 故 k< 1 < k, k Z. 4 2 2 当k为偶数时π- 1 α在第一象限,当k取奇数时π- 在第三象 2 2
2 2
13
13
13
13
因此 sin 2 2sin cos ( 3 13 ) 2 2 3 13 2 13 3 .
13 13 13 13
(2)由题设知 x 3,y m,
∴r2=|OP|2=( r 3 m2 .
2 2 3 ) +m (O为原点),
第三章 三角函数、三角恒等变形、
解三角形
第一节 任意角的概念与弧度制、任意角的 三角函数
1.角的有关概念
射线 象限角
旋转
正角 负角
零角
α +k·360o,k∈Z
2.弧度的定义和公式
单位长度 (1)定义:在以单位长为半径的圆中,_________的弧所对的圆心 rad 弧度 角为1弧度的角,它的单位符号是____,读作_____.
从而 sin
m r
2m m , 4 2 2
r 3 m2 2 2,
于是3+m2=8,解得 m 5. 当 m 5 时,r 2 2,x 3,
3 6 15 cos ,tan ; 4 3 2 2 当 m 5 时, 2 2,x 3, r cos 3 6 15 ,tan . 4 3 2 2
v u 于点P(u,v),则sin α =__,cos α =__,tan α = v u 0). (

高考数学一轮复习 第3章 三角函数、解三角形 3.1 任意角和弧度制及任意角的三角函数学案 文

高考数学一轮复习 第3章 三角函数、解三角形 3.1 任意角和弧度制及任意角的三角函数学案 文

3.1 任意角和弧度制及任意角的三角函数[知识梳理]1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(4)相关结论①象限角②轴线角2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)公式3.任意角的三角函数[诊断自测] 1.概念思辨(1)锐角是第一象限的角,第一象限的角也都是锐角.( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位.( )(3)α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α.( )(4)α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A4P 9T 5)直径为4的圆中,36°的圆心角所对的弧长是( ) A.4π5 B.2π5 C.π3 D.π2答案 B解析 ∵36°=36×π180 rad =π5 rad ,∴36°的圆心角所对的弧长为l =π5×2=2π5.故选B.(2)(必修A4P 21T 9)设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 B解析 由θ在第三象限,所以2k π+π<θ<2k π+3π2(k ∈Z ),所以k π+π2<θ2<k π+3π4(k ∈Z ).又cos θ2≤0,故选B. 3.小题热身(1)(2017·石家庄模拟)已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________.答案 -1解析 如图,由题意知,角α的终边在第二象限,在其上任取一点P (x ,y ),则y =-x ,由三角函数的定义得tan α=y x =-xx=-1.(2)(2018·黄浦模拟)如图,已知扇形OAB 和OA 1B 1,A 1为OA 的中点,若扇形OA 1B 1的面积为1,则扇形OAB 的面积为________.答案 4解析 设∠AOB =α,则S 扇形OA 1B 1=12OA 21·α=1,S 扇形OAB =12OA 2·α,OA =2OA 1,∴S 扇形OAB =12·(2OA 1)2·α=4.题型1 象限角及终边相同的角典例1设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k 2·180°+45°,k ∈Z ,N = ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,判断两集合的关系( ) A .M =N B .M N C .N MD .M ∩N =∅将描述法表示的集合变为列举法表示.答案 B解析 由于M =⎩⎪⎨⎪⎧x ⎪⎪⎪ x =k2·180°+45°,k ∈Z } ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M N .典例2 已知角α=2k π-π5(k ∈Z ),若角θ与角α终边相同,则y =sin θ|sin θ|+|cos θ|cos θ+tan θ|tan θ|的值为________.找α的终边,利用终边定号法.答案 -1解析 由α=2k π-π5(k ∈Z )及终边相同角的概念知,α的终边在第四象限,又θ与α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.因此,y =-1+1-1=-1.方法技巧象限角的两种判断方法1.图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.2.转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.提醒:注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k ·180°(k ∈Z )表示终边落在角α的终边所在直线上的角.冲关针对训练1.(2017·潍坊模拟)集合{|αk π+π4≤α≤k π+π2,k ∈Z}中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2, 此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.2.若sin θ2=45,且sin θ<0,则θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 C解析 ∵sin θ<0,∴2sin θ2cos θ2<0.又∵sin θ2=45,∴cos θ2<0.故θ2在第二象限,且2k π+π2<θ2<2k π+34π(k ∈Z ). ∴4k π+π<θ<4k π+32π,∴θ在第三象限.故选C.题型2 弧度制及扇形面积公式的应用典例 已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?利用方程组法、二次函数求最值.解 (1)α=60°=π3 rad ,∴l =α ·R =π3×10=10π3 (cm).(2)由题意得⎩⎪⎨⎪⎧ 2R +R α=10,12α·R 2=4,解得⎩⎪⎨⎪⎧R =1,α=8(舍去),⎩⎪⎨⎪⎧R =4,α=12.故扇形圆心角为12.(3)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.[条件探究] 将典例中的第(3)问推广为“若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?”解 扇形周长C =2R +l =2R +αR , ∴R =C2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14α+4+α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216.方法技巧应用弧度制解决问题的方法1.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.见典例(1). 2.求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.见典例(3).3.在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 提醒:弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.冲关针对训练(2018·大连模拟)一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积是( )A.R 22B.12R 2sin1·cos1 C.12R 2(2-sin1·cos1) D .R 2(1-sin1·cos1)答案 D解析 设圆心角为θ,由题知2R +R ·θ=4R ,得θ=2, 所以S 弓=S 扇-S三角形=12×2R ·R -12R 2·sin2=R 2-12R 2·sin2=R 2·⎝ ⎛⎭⎪⎫1-12sin2=R 2(1-sin1·cos1).故选D.题型3 任意角三角函数的定义及应用角度1 利用三角函数定义求值典例 已知角α的顶点在原点,始边为x 轴的非负半轴.若角α终边经过点P (-3,y ),且sin α=34y (y ≠0),则判断角α所在的象限,并求cos α和tan α的值.定义法.解 依题意,P 到原点O 的距离为 |PO |= (-3)2+y 2,∴sin α=y r=y3+y2=34y . ∵y ≠0,∴9+3y 2=16,∴y 2=73,∴y =±213.∴点P 在第二或第三象限. 当P 在第二象限时,y =213,cos α=x r =-34,tan α=-73. 当P 在第三象限时,y =-213,cos α=x r =-34,tan α=73. 角度2 利用三角函数线比较大小,解不等式典例 sin1,cos1,tan1的大小关系是( ) A .sin1>cos1>tan1 B .sin1>tan1>cos1 C .tan1>sin1>cos1D .tan1>cos1>sin1单位圆定义法.答案 C解析 作单位圆,作出锐角1弧度的正弦线BP ,余弦线OB ,正切线AT ,可得tan1>sin1>cos1.故选C.方法技巧三角函数定义问题的常见类型及解题策略1.已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.2.利用单位圆解三角不等式的步骤 (1)确定区域的边界(注意边界的虚实); (2)确定区域; (3)写出解集.3.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.提醒:若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).冲关针对训练1.设π2<x <3π4,a =sin x ,b =cos x ,c =tan x ,则( )A .a <b <cB .c <b <aC .b <c <aD .b <a <c 答案 B解析 ∵π2<x <3π4,∴22<sin x <1,-22<cos x <0,tan x <-1. ∴c <b <a .故选B.2.(2017·兴庆区校级期中)已知角α的终边经过点P (x ,-2)(x >0),且cos α=36x, 求sin α+1tan α的值. 解 角α的终边经过点P (x ,-2)(x >0) ∵r =x 2+2,∵cos α=x r =36x , 可得x =10. 则r =2 3.sin α=y r =-223=-66,tan α=y x =-210=-55.那么sin α+1tan α=-66-5=-6+656.1.(2017·商丘期末)已知点P (-3,y )为角β的终边上的一点,且sin β=1313,则y 的值为( )A .±12 B.12 C .-12 D .±2答案 B解析 由题意可得:|OP |=y 2+3,所以sin β=y y 2+3=1313,所以y =±12,又因为sin β=1313,所以y >0,所以y =12.故选B. 2.(2018·东莞月考)角β的终边上有一点P (-m ,m ),其中m ≠0,则sin β+cos β的值为( )A. 2 B .- 2 C .0 D.2或- 2 答案 C解析 角β的终边上有一点P (-m ,m ),其中m ≠0, ∴r =|OP |=2|m |, 当m >0时,cos β=-m2|m |=-22,sin β=m2|m |=22,∴sin β+cos β=0; 当m <0时,cos β=-m2|m |=22,sin β=m 2|m |=-22,∴sin β+cos β=0.综上,sin β+cos β的值为0.故选C.3.(2017·连云港质检)已知角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π4 D.11π6答案 D解析 ∵⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3=⎝ ⎛⎭⎪⎫32,-12,∴角α为第四象限角,且sin α=-12,cos α=32.∴角α的最小正值为11π6.故选D. 4.(2017·河南八市联考)已知角α的顶点在原点,始边与x 轴非负半轴重合,点P (-4m,3m )(m >0)是角α终边上的一点,则2sin α+cos α=________.答案 25解析 ∵|OP |= (-4m )2+(3m )2=5|m |=5m (m >0), ∴sin α=3m 5m =35,cos α=-4m 5m =-45,∴2sin α+cos α=2×35-45=25.[基础送分 提速狂刷练]一、选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确命题的个数为( )A .1B .2C .3D .4 答案 C解析 ①中-3π4是第三象限角,故①错.②中4π3=π+π3,从而4π3是第三象限角,故②正确.③中-400°=-360°-40°,从而③正确.④中-315°=-360°+45°,从而④正确.故选C.2.sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在答案 A解析 ∵π2<2<3<π<4<3π2,∴sin2>0,cos3<0,tan4>0.∴sin2·cos3·tan4<0.故选A.3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4答案 C解析 设此扇形的半径为r ,弧长是l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.故选C.4.若π4<θ<π2,则下列不等式成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ答案 D解析 ∵π4<θ<π2,∴tan θ>1,sin θ-cos θ=2sin ⎝ ⎛⎭⎪⎫θ-π4.∵π4<θ<π2,∴0<θ-π4<π4,∴sin ⎝⎛⎭⎪⎫θ-π4>0,∴sin θ>cos θ.故选D.5.在△ABC 中,若sin A ·cos B ·tan C <0,则△ABC 的形状是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定答案 B解析 ∵△ABC 中每个角都在(0,π)内,∴sin A >0. ∵sin A ·cos B ·tan C <0,∴cos B ·tan C <0. 若B ,C 同为锐角,则cos B ·tan C >0. ∴B ,C 中必定有一个钝角. ∴△ABC 是钝角三角形.故选B.6.(2018·永昌县期末)已知角α的终边经过点(3a,4a )(a ≠0),则sin α+cos α的值为( )A.75 B .-75 C .±75 D .±34 答案 C解析 ∵角α的终边经过点(3a,4a )(a ≠0),当a >0时,r =5a ,sin α=y r =45,cos α=x r =35,sin α+cos α=75; 当a <0时,r =|5a |=-5a ,sin α=y r =-45,cos α=x r =-35,sin α+cos α=-75.综上可得,sin α+cos α=±75.故选C.7.已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan βC .若α,β是第三象限的角,则cos α>cos βD .若α,β是第四象限的角,则tan α>tan β 答案 D解析 由三角函数线可知,选D.8.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin2 C.2sin1 D .2sin1答案 C解析 如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =ACsin ∠AOC =1sin1,即r =1sin1,从而弧AB 的长为l =|α|·r =2sin1.故选C. 9.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0 D .tan αsin α<0 答案 B解析 ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A ,C ,D.故选B.10.(2018·江西模拟)已知角α的终边经过点(m ,3m ),若α= 7π3,则m 的值为( ) A .27 B.127 C .9 D.19答案 B解析 角α的终边经过点(m ,3m ),若α=7π3,则tan 7π3=tan π3=3=3mm=m- 16,则m =127.故选B.二、填空题11.(2017·广州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且 sin θ=24m ,则cos θ的值为________. 答案 -64解析 点P (-3,m )是角θ终边上一点,由三角函数定义可知sin θ=m3+m2.又sin θ=24m , ∴m3+m2=24m . 又m ≠0,∴m 2=5,∴cos θ=-33+m2=-64. 12.(2018·济南校级期末)已知1|sin α|=-1sin α,且lg cos α有意义,则α所在象限为第________象限.答案 四解析 由1|sin α|=-1sin α可知,sin α<0,∴α是第三或第四象限角或终边在y 轴的非正半轴上的角. 由lg cos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的非负半轴上的角,综上可知角α是第四象限角.13.若角α的终边在直线y =-3x 上,则10sin α+3cos α=________.答案 0解析 设角α终边上任一点为P (k ,-3k )(k ≠0),则r =x 2+y 2=k 2+(-3k 2)=10|k |.当k >0时,r =10k . ∴sin α=-3k 10k =-310,1cos α=10kk =10.∴10sin α+3cos α=-310+310=0.当k <0时,r =-10k .∴sin α=-3k -10k =310,1cos α=-10kk =-10.∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.14.如图所示,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正方向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________.答案 (2-sin2,1-cos2)解析 因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝ ⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝ ⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2), 即OP →的坐标为(2-sin2,1-cos2).三、解答题15.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解 设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr=2时,扇形面积取得最大值4. ∴弦长AB =2sin1×2=4sin1. 16.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故α角在第三象限,其集合为{α⎪⎪⎪⎭⎬⎫2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。

任意角和弧度制及任意角的三角函数教案

任意角和弧度制及任意角的三角函数教案

第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数(对应学生用书(文)、(理)40~41页)页考情分析考点新知①了解任意角的概念;了解终边相同的角的意义.②了解弧度的意义,并能进行弧度与角度的互化.③理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.①能准确进行角度与弧度的互化.②准确理解任意角三角函数的定义,并能准确判断三角函数的符号.1. (必修4P15练习6改编)若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在第________象限.答案:四解析:由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.2. 角α终边过点(-1,2),则cos α=________. 答案:-553. 已知扇形的周长是6cm ,面积是2cm 2,则扇形的圆心角的弧度数是________.答案:1或44. 已知角α终边上一点P(-4a ,3a)(a<0),则sin α=________. 答案:-355. (必修4P 15练习2改编)已知角θ的终边经过点P(-x ,-6),且cos θ=-513,则sin θ=____________,tan θ=____________.答案:-1213 125 解析:cos θ=-xx 2+36=-513,解得x =52.sin θ=-6⎝ ⎛⎭⎪⎫-522+(-6)2=-1213,tan θ=125.1. 任意角(1) 角的概念的推广① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角终边与角α相同的角可写成α+k·360°(k ∈Z ). (3) 弧度制① 1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角.② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③ 弧度与角度的换算:360°=2π弧度;180°=π弧度. ④ 弧长公式:l =|α|r .扇形面积公式:S 扇形=12lr =12|α|r 2. 2. 任意角的三角函数 (1) 任意角的三角函数定义设P(x ,y)是角α终边上任一点,且|PO|=r(r >0),则有sin α=yr ,cos α=x r ,tan α=yx ,它们都是以角为自变量,以比值为函数值的函数.(2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.3. 三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,则点M是点P在x 轴上的正射影.由三角函数的定义知,点P的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tanα=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记]题型1三角函数的定义例1α是第二象限角,P(x,5)为其终边上一点,且cosα=2 4x,求sinα的值.解:∵ OP =x 2+5,∴ cos α=x x 2+5=24x.又α是第二象限角,∴ x<0,得x =-3, ∴ sin α=5x 2+5=104. 变式训练已知角α终边上一点P(-3,y),且sin α=24y ,求cos α和tan α的值.解:r 2=x 2+y 2=y 2+3,由sin α=y r =yy 2+3=24y , ∴ y =±5或y =0.当y =5即α是第二象限角时,cos α=xr =-64,tan α=-153;当y =-5即α是第三象限角时,cos α=x r =-64,tan α=153;当y =0时,P(-3,0), cos α=-1,tan α=0.题型2 三角函数值的符号及判定例2 (1) 如果点P(sin θ·cos θ,2cos θ)位于第三象限,试判断角θ所在的象限;(2) 若θ是第二象限角,试判断sin(cos θ)的符号. 解:(1) 因为点P(sin θ·cos θ,2cos θ)位于第三象限, 所以sin θ·cos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0,所以θ为第二象限角. (2) ∵ 2k π+π2<θ<2k π+π(k ∈Z ),∴ -1<cos θ<0, ∴ sin(cos θ)<0.∴ sin(cos θ)的符号是负号. 备选变式(教师专享)已知点P(tan α,cos α)在第二象限,则角α的终边在第________象限.答案:四解析:由题意,得tan α<0且cos α>0,所以角α的终边在第四象限.题型3 弧长公式与扇形面积公式例3 已知一扇形的中心角是α,所在圆的半径是R.(1) 若α=60°,R =10cm ,求扇形的弧长及该弧所在的弓形面积;(2) 若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?解:(1) 设弧长为l ,弓形面积为S 弓. ∵ α=60°=π3,R =10,∴ l =103π(cm).S 弓=S 扇-S △=12×103π×10-12×102·sin60°=50⎝ ⎛⎭⎪⎪⎫π3-32 cm 2. (2) ∵ 扇形周长C =2R +l =2R +αR ,∴ R =C2+α,∴ S 扇=12α·R 2=12α⎝ ⎛⎭⎪⎪⎫C 2+α2=C 22·α4+4α+α2=C 22·14+α+4α≤C 216,当且仅当α=4α,即α=2(α=-2舍去)时,扇形面积有最大值C 216.备选变式(教师专享)已知2rad 的圆心角所对的弦长为2,求这个圆心角所对的弧长.解:如图,∠AOB =2rad ,过O 点作OC ⊥AB 于C ,并延长OC 交AB ︵于D.∠AOD =∠BOD =1rad ,且AC =12AB =1.在Rt △AOC 中,AO =AC sin ∠AOC =1sin1,从而弧AB 的长为l =|α|·r =2sin1.1. 若α角与8π5角终边相同,则在[0,2π]内终边与α4角终边相同的角是________.答案:2π5,9π10,7π5,19π10解析:由题意,得α=8π5+2k π(k ∈Z ),α4=2π5+k π2(k ∈Z ).又α4∈[0,2π],所以k =0,1,2,3,α4=2π5,9π10,7π5,19π10.2. 已知角α(0≤α≤2π)的终边过点P ⎝ ⎛⎭⎪⎫sin 2π3,cos2π3,则α=__________.答案:11π6解析:将点P 的坐标化简得⎝ ⎛⎭⎪⎫32,-12,它是第四象限的点,r =|OP|=1,cos α=x r =32.又0≤α≤2π,所以α=11π6.3. 已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2.答案:4解析:设扇形半径为r cm ,弧长为l cm ,则2r +l =8,S =12rl =12r ×(8-2r)=-r 2+4r =-(r -2)2+4,所以S max =4(cm 2).4. 若角α的终边与直线y =3x 重合且sin α<0,又P(m ,n)是角α终边上一点,且|OP|=10,则m -n =________.答案:2解析:依题意知⎩⎨⎧n =3m ,m 2+n 2=10.解得m =1,n =3或m =-1,n =-3. 又sin α<0,∴ α的终边在第三象限, ∴ n <0,∴ m =-1,n =-3,∴ m -n =2.1. 设集合M =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=kπ2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-56π,-π3,π6,23π 解析:由-π<kπ2-π3<π,得-43<k <83.∵ k ∈Z ,∴ k =-1,0,1,2,故M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-56π,-π3,π6,23π. 2. 已知α=π3,回答下列问题. (1) 写出所有与α终边相同的角;(2) 写出在(-4π,2π)内与α终边相同的角; (3) 若角β与α终边相同,则β2是第几象限的角? 解: (1) 所有与α终边相同的角可表示为 ⎩⎨⎧⎭⎬⎫θ⎪⎪⎪θ=2kπ+π3,k ∈Z .(2) 由(1) 令-4π<2kπ+π3<2π(k ∈Z ), 则有-2-16<k <1-16. ∵ k ∈Z ,∴ 取k =-2、-1、0.故在(-4π,2π)内与α终边相同的角是-11π3、-5π3、π3. (3) 由(1) 有β=2kπ+π3(k ∈Z ),则β2=kπ+π6(k ∈Z ). ∴ β2是第一、三象限的角.3. 已知角α的终边经过点P(x ,-2),且cos α=x3,求sin α和tan α.解:因为r =|OP|=x 2+(-2)2,所以由cos α=x3,得xx 2+(-2)2=x3,解得x =0或x =±5. 当x =0时,sin α=-1,tan α不存在;当x =5时,sin α=-23,tan α=-255;当x =-5时,sin α=-23,tan α=255.4. 已知在半径为10的圆O 中,弦AB 的长为10. (1) 求弦AB 所对的圆心角α的大小;(2) 求α所在的扇形的弧长l 及弧所在的弓形的面积S.解:(1) 由圆O 的半径r =10=AB ,知△AOB 是等边三角形,∴ α=∠AOB =π3.(2) 由(1)可知α=π3,r =10,∴ 弧长l =α·r =π3×10=10π3,∴ S 扇形=12lr =12×10π3×10=50π3,而S △AOB=12·AB ·1032=12×10×1032=5032,∴ S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎪⎫π3-32.1. (1) 要求适合某种条件且与已知角终边相同,其方法是先求出与已知角终边相同的角的一般形式,再根据条件解方程或不等式.(2) 已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.若直线的倾斜角为特殊角,也可直接写出角.2. 已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解α的三角函数值.3. 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.4. 利用单位圆解三角不等式(组)的一般步骤(1) 用边界值定出角的终边位置.(2) 根据不等式(组)定出角的范围.(3) 求交集,找单位圆中公共的部分.(4) 写出角的表达式.请使用课时训练(B)第1课时(见活页).[备课札记]。

A018=第三章 第一节 任意角和弧度制及任意角的三角函数

A018=第三章  第一节  任意角和弧度制及任意角的三角函数

解析:设圆半径为R,则其内接正三角形的边长为 3R,于是 3R 圆心角的弧度数为 R = 3.
答案:C
作业
课时跟踪检测 (B卷) (十八) p333
(2)设圆心角是θ,半径是r, 则2r+rθ=40. 1 2 1 S=2θ· =2r(40-2r)=r(20-r) r =-(r-10)2+100≤100, 当且仅当r=10时,Smax=100. ∴当r=10,θ=2时,扇形面积最大.
[巧练模拟]——————(课堂突破保分题,分分必保!)
1.若角 β 的终边与 60° 角的终边相同,则在 0° ~360° 范围内,终 β 边与角 的终边相同的角为________. 3
第一节 任意角和弧度制及任意角的三角函数
考 什 么 1.了解任意角的概念.
2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角三角函数(正弦、余弦、正切)的定义.
怎 么 考 1.三角函数的定义及应用是本节考查的重点,注意三角函 数值符号的确定.
2.主要以选择题、填空题的形式考查.
1.角的有关概念 (1)从运动的角度看,角可分为正角、 负角 和 零角 .
1.-870°的终边在第几象限 A.一 B.二
(
)
C.三
D.四
解析:因-870°=-2×360°-150°.
而-150° 答案: C 是第三象限角.
2.已知角α的终边经过点( 3,-1),则角α的最小正值是 ( 2π A. 3 5π C. 6 11π B. 6
)
3π D. 4 -1 1 解析:∵sin α= 2 =-2,且α的终边在第四象限,
(2)从终边位置来看,可分为 象限角 和轴线角.
(3)若α与β是终边相同的角,则β可用α表示为S={β|β 360°,k∈Z }(或{β|β= =α+k· α+2kπ,k∈Z }).

第三章第1讲任意角和弧度制及任意角的三角函数

第三章第1讲任意角和弧度制及任意角的三角函数

三角函数知识点考纲下载任意角的概念与弧度制、任意角的三角函数1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化.3.理解任意角的正弦、余弦、正切的定义.同角三角函数的基本关系式与诱导公式1.理解同角三角函数的基本关系式:sin2x+cos2x=1,sin xcos x=tan x.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.三角函数的图象与性质1.能画出y=sin x,y=cos x,y=tan x的图象.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间)2,2(ππ-内的单调性.函数y=A sin(ωx+φ)的图象及三角函数模型的简单应用1.了解函数y=A sin(ωx+φ)的物理意义;能画出函数y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.两角和与差的正弦、余弦及正切公式1.会用向量知识或三角函数线推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,了解它们的内在联系.简单的三角恒等变换1.能利用两角和的正弦、余弦和正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.解三角形应用举例能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.第1讲任意角和弧度制及任意角的三角函数1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,角可分为象限角与轴线角.(3)若β与α是终边相同的角,则β用α表示为β=2kπ+α,k∈Z.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad ,1°=180π rad ,1 rad =0)180(π. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =2||21r α3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α x 叫做α的余弦,记作cos αyx叫做α的正切,记作tanα三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线1.设角α终边上一点P (-4,3),则sin α的值为________.答案:352.若4π<α<6π且α与-23π终边相同,则α=________.答案:163π1.辨明四个易误点(1)易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.(2)利用180°=πrad 进行互化时,易出现度量单位的混用.(3)三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx.(4)已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况. 2.会用两个方法(1)三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. [做一做]3.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )A .x 轴上B .y 轴上C .直线y =x 上D .直线y =-x 上 解析:选A. |cos α|=1,则角α的终边在x 轴上. 4.已知cos θ·tan θ<0,那么角θ是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角 答案:C考点一__象限角及终边相同的角___(1)写出终边在直线y =3x 上的角的集合; (2)若角θ的终边与76π角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α为第三象限角,试确定2α的终边所在的象限. [解] (1)∵在(0,π)内终边在直线y =3x 上的角是3π, ∴终边在直线y =3x 上的角的集合为},3|{Z k k ∈+=ππαα(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ).依题意0≤2π7+2k π3<2π⇒-37≤k <187,k ∈Z .∴k =0,1,2,即在[0,2π)内终边与θ3相同的角为2π7,20π21,34π21.(3)由α是第三象限角,得π+2k π<α<3π2+2k π(k ∈Z ),∴2π+4k π<2α<3π+4k π(k ∈Z ).∴角2α的终边在第一、二象限及y 轴的非负半轴. [规律方法] 1.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合. 2.确定kα,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出kα或αk的范围,然后根据k 的可能取值讨论确定kα或αk的终边所在位置.1.(1)在-720°~0°范围内找出所有与45°终边相同的角为________.(2)在本例(3)的条件下,判断α2为第几象限角?(1)解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°<45°+k ×360°<0°,得-765°<k ×360°<-45°,解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.答案:-675°或-315°(2)解:∵π+2k π<α<3π2+2k π(k ∈Z ),∴π2+k π<α2<3π4+k π(k ∈Z ). 当k =2n (n ∈Z )时,π2+2n π<α2<3π4+2n π,当k =2n +1(n ∈Z )时,3π2+2n π<α2<7π4+2n π,∴α2为第二或第四象限角.考点二 扇形的弧长、面积公式已知扇形的圆心角是α ,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?[解] (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10(cm),α=2 rad. [规律方法] 弧度制下有关弧长、扇形面积问题的解题策略:(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量. [提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度制.2.已知扇形周长为10,面积是4,求扇形的圆心角.解:设圆心角是θ,半径是r .则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧r =1θ=8(舍去)或⎩⎪⎨⎪⎧r =4,θ=12.故扇形圆心角为12 rad.考点三 三角函数的定义(高频考点)任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中以选择题、填空题的形式出现,高考对三角函数定义的考查主要有以下三种命题角度:(1)已知角α终边上一点P 的坐标求三角函数值; (2)已知角α的终边所在的直线方程求三角函数值; (3)判断三角函数值的符号.(1)(2014·高考课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0(2)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35 D.45(3)如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.[解析] (1)∵tan α>0,∴α∈)2,(πππ+k k (k ∈Z )是第一、三象限角.∴sin α,cos α都可正、可负,排除A ,B.而2α∈(2k π,2k π+π)(k ∈Z ), 结合正、余弦函数图象可知,C 正确.取α=π4,则tan α=1>0,而cos 2α=0,故D 不正确.(2)取终边上一点(a ,2a ),a ≠0,根据任意角的三角函数定义,由tan θ=2,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.(3)因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.[答案] (1)C (2)B (3)-35[规律方法] 用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解; (2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.3.(1)设角α终边上一点P (-4a ,3a )(a <0),则sin α的值为________.(2)已知角α的终边经过点P (-3,m ),且sin α=34m (m ≠0),判断角α是第几象限角,并求tan α的值. (1)解析:设点P 与原点间的距离为r ,∵P (-4a ,3a ),a <0,∴r =(-4a )2+(3a )2=|5a |=-5a .∴sin α=3a r =-35.答案:-35(2)解:依题意,点P 到原点O 的距离为r =(-3)2+m 2=3+m 2,∴sin α=m3+m 2,又∵sin α=34m ,m ≠0,∴m 3+m 2=34m ,∴m 2=73,∴m =±213.∴点P 在第二或第三象限.故角α是第二象限角或第三象限角.当α是第二象限角时,m =213,tan α=213-3=-73,当α是第三象限角时,m =-213,tan α=-213-3=73.交汇创新——三角函数定义下的创新(2014·高考课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )[解析] 如图所示,当x ∈⎝⎛⎭⎫0,π2时,则P (cos x ,sin x ),M (cos x ,0),作MM ′⊥OP ,M ′为垂足,则||MM ′|OM |=sin x ,∴f (x )cos x=sin x ,∴f (x )=sin x cos x =12sin 2x ,则当x =π4时,f (x )max =12;当x ∈),2(ππ时,有f (x )|cos x |=sin (π-x ),f (x )=-sin x cos x =-12sin 2x ,当x =3π4时,f (x )max =12.只有B 选项的图象符合.[答案] B[名师点评](1)本题是三角函数与圆的结合,利用三角函数定义首先写出P、M坐标,结合图形用x表示出f(x),即可判断出结果,此类问题见证了数学中的“以静制动”.(2)近年来高考注重了由“静态数学”向“动态数学”的引导.一般以简单几何图形的平移、滑动、滚动等形式,运用三角知识考查学生分析问题解决问题的能力.(2013·高考江西卷) 如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()解析:选B.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos α2=1-t,即cosx2=1-t,则y=cos x=2cos2x2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.。

第1讲 任意角和弧度制、三角函数的概念

第1讲 任意角和弧度制、三角函数的概念

第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。

数学复习:第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数

数学复习:第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数

第三章三角函数、解三角形错误!错误!错误!1。

了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识点一角的概念的推广角的特点角的分类从运动的角度看角可分为______、______和______从终边位置来看可分为________和轴线角α与β角的终边相同β=______________(或α+k·2π,k∈Z)正角负角零角象限角α+k·360°,k∈Z1.若α是第二象限角,β是第三象限角,则角α,β的大小关系是________.解析:角α可以大于角β,也可以小于角β,但是不能等于角β.答案:不确定2.终边在直线y=x上的角的集合是________.解析:终边在直线y=x上,且在[0°,360°)内的角为45°,225°,写出与其终边相同的的角的集合,整合即得.答案:{α|α=k·180°+45°,k∈Z}知识点二弧度的概念与公式在半径为r的圆中:分类定义(公式)1弧度的角把长度等于______长的弧所对的圆心角叫做1弧度的角,用符号1 rad表示角α的弧度数公式|α|=______(弧长用l表示)角度与弧度的换算①1°=______ rad②1 rad=________弧长公式弧长l=______扇形面积公式S=______=__________答案半径错误!错误!错误!°r|α| 错误!lr错误!r2|α|3.(必修④P10习题1.1A组第10题改编)单位圆中,200°的圆心角所对的弧长为()A.10π B.9πC。

910π D。

错误!π解析:单位圆的半径r=1,200°的弧度数是200×错误!=错误!π,由弧度数的定义得109π=lr,所以l=109π。

答案:D4.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r,弧长为l,则错误!解得错误!或错误!从而α=错误!=错误!=4或α=错误!=错误!=1。

2022数学第三章三角函数解三角形第一节任意角和蝗制及任意角的三角函数教师文档教案文

2022数学第三章三角函数解三角形第一节任意角和蝗制及任意角的三角函数教师文档教案文

第一节任意角和弧度制及任意角的三角函数授课提示:对应学生用书第50页[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按逆时针方向旋转形成的角;②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z}.2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角.(2)角α的弧度数公式:|α|=错误!.(3)角度与弧度的换算:360°=2π rad,1°=错误!rad,1 rad=(错误!)°≈57°18′。

(4)扇形的弧长及面积公式:弧长公式:l=α·r.面积公式:S=错误!l·r=错误!α·r2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=错误!(x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数sin(α+k·2π)=sin__α,cos(α+k·2π)=cos__α,tan(α+k·2π)=tan__α(其中k∈Z),即终边相同的角的同一三角函数的值相等.1.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.2.两个关注点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)在同一个问题中采用的度量制度必须一致,不能混用.3.三角函数定义的推广设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=错误!,cos α=错误!,tan α=错误!.4.四种角的终边关系(1)β,α终边相同⇔β=α+2kπ,k∈Z。

第三章 三角函数、解三角形 复习讲义

第三章 三角函数、解三角形 复习讲义

第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。

负角:按照顺时针方向旋转而成的角。

零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。

第三章 任意角的三角函数第一节 任意角的概念、弧度制

第三章 任意角的三角函数第一节 任意角的概念、弧度制
1020 3360 60
k360 60(kZ)
我们把具有共同的始边和终边的角,称为终边相同的角.若
角 的终边绕着其顶点按逆时针方向旋转 n 圈时,就形成了 n360 的角,按顺时针方向旋转 n 圈,就形成-n360 的角,所 有这些角都具有相同的终边.因此,所有与角 终边相同的角,包
括角 在内,有无穷多个,可用统一的式子表示:k 360 (kZ) ,若
第三章 任意角的三角函数
三角函数是基本初等函数之一.在中学,我们已经学过锐 角的三角函数,并且应用它们来解直角三角形和进行有关的计 算.但在科学技术领域和实际问题中,还经常用到任意大小的 角.因此我们需要将角的概念进行推广,然后进一步研究任意 角的三角函数.
•第一节 任意角的概念、弧度制
•第二节 任意角的三角函数
(2) 一般规定,正角的弧度数为正数,负角的弧度数为负数,零 角的弧度数为零.
用弧度制来度量角,实际上是在角的集合与实数集之间建 立了一种一一对应的关系:每一个角都有惟一确定的一个实数 (即这个角的弧度数)与它相对应,反之,每一实数也都有惟一的 一个角与它相对应.其对应关系如图3-6所示.
正角 零角 负角
由弧度的定义可知:
1周角=360 = 2 rad
1平角=180 = rad
1直角= 90
=
rad
2
由上面三个式子可以推导出角度制与弧度制之间的换算公式:
1 180rad 0.01745rad 1rad 180 57.3 57 18
(?1 弧度的角与1 的角相比较,哪个角大?)
由换算公式,我们可以把任意大小的角进行角度制与弧度 制之间的互化.下面是常用的一些特殊角的角度与弧度数的对 应(表3-1).
(4) 因为1080 3360 0, 所以 1080 的角与 0 的角具有相同的终边.

第三章 第一节 任意角和弧度制及任意角的三角函数

第三章  第一节  任意角和弧度制及任意角的三角函数

[题组自测 题组自测] 题组自测 2π 1.若点 P 在 角的终边上,且 P 的坐标为 -1,y),则 y 角的终边上, 的坐标为(- , , . 3 等于 A. 3 3 C.- .- 3 B.- 3 .- 3 D. 3 ( )
答案: 答案:A
2.设 90°<α<180°,角 α 的终边上一点为 P(x, 5),且 . , , , 2 cosα= x,则 sinα=________. =4 , = x 2 解析: = 解析:∵r= x +5,∴cosα= 2 , = , x +5
解:(1)设扇形的圆心角是 θ rad,因为扇形的弧长是 rθ, 设扇形的圆心角是 , , 依题意, 所以扇形的周长是 2r+rθ.依题意,得 2r+rθ=πr, + 依题意 + = , 180 ∴θ=π-2=(π-2)×( )° = - = - × π ≈1.142×57.30°≈65.44°≈65°26′. × ≈ ≈ ′ 1 1 ∴扇形的面积为 S= r2θ= (π-2)r2. = = - 2 2 (2)设扇形的半径为 r,弧长为 l,则 l+2r=20, 设扇形的半径为 , , + = , 即 l=20-2r(0<r<10). = - . 1 代入, 扇形的面积 S= lr,将①代入,得 = , 2 ①
二、弧度制 1.弧度制 . 长的弧所对的圆心角叫做1弧度的角 弧度的角, 长度等于 半径 长的弧所对的圆心角叫做 弧度的角, 作为单位来度量角的单位制叫做弧度制. 以 弧度 作为单位来度量角的单位制叫做弧度制. 2.角度与弧度之间的换算 . 2π rad,180°=π rad,1°= π rad,1 rad= 360°= ° ° ° = 180 π ( 180 )°. °
1 S= (20-2r)r=- 2+10r =-r =2 - =- =-(r- =- -5)2+25, , 所以当且仅当 r=5 时,S 有最大值 25. = l 此时 l=20-2×5=10,α=r=2. = - × = , = 扇形的面积取最大值. 所以当 α=2 rad 时,扇形的面积取最大值. =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
[悟一法] 1 1.在弧度制下,弧长公式为l=α· r,扇形面积公式为S= l· r 2 1 2 = α· ,α为圆心角,α∈(0,2π),r为半径,l为弧长. r 2 2.应用以上公式应注意将角度化为弧度.
返回
[通一类] 2.(1)已知扇形周长为10,面积是4,求扇形的圆心角. (2)已知扇形周长为40,当它的半径和圆心角取何值时, 才使扇形面积最大?
返回
[一题多解]—————————————(条条大道通罗马) [法一] 在角 θ 终边上任取一点 P(a,2a)(a≠0),则 r2=|OP|2=
a2 1 a2+(2a)2=5a2,∴cos2θ=5a2=5. 2 3 ∴cos2 θ=2cos θ-1=5-1=-5.
2
[法二]
5 x= 5 y=2x 由 2 2 解得 x +y =1 y=2 5 5
返回
(2)∵θ是第二象限角. π π ∴0<sin θ<2,-2<cos θ<0, ∴sin(cos θ)<0,cos(sin θ)>0. sincos θ 即 <0. cossin θ
返回
[做一题] [例2] 已知在半径为10的圆O中,弦AB的长为10, (1)求弦AB所对的圆心角α的大小; (2)求α所在的扇形弧长l及弧所在的弓形的面积S.
定义
x 叫做 α
的 正 的余弦,记
y x 叫做 α 的正切, 记作
tan α
弦,记作 作 cos α sin α
返回
三角函数
各 象 限 符 Ⅰ Ⅱ Ⅲ Ⅳ
正弦
正 正
余弦
正 负 负
正切








口诀
一全正,二正弦,三正切,四余弦
返回
三角函数
正弦
余弦
正切
三角函数线
有向线段
有向线段
有向线段
MP 为正弦线
5 x=- 5 或 y=-2 5 5
.
返回
2 5 5 由三角函数定义知,sin θ= 5 ,cos θ= 5 , 2 5 5 3 2 2 或 sin θ=- 5 ,cos θ=- 5 .∴cos 2θ=cos θ-sin θ=-5. cos2θ-sin2θ 1-tan2θ 2a 3 [法三] tanθ= a =2,cos 2θ= 2 = =-5. cos θ+sin2θ 1+tan2θ 3 [答案] -5
解析:在直线y= 3x上任取一点P(a, 3a)(a≠0), y 3a x a 则r=|OP|=2|a|,∴sin α= r= 2|a| ,cos α= r =2|a|. 3a a 1 ∴sin2α-cos2α=( 2|a| )2-(2|a|)2=2.
1 答案:2
返回
1.角的有关概念
角的特点 角的分类
返回
[自主解答]
(1)如图所示,过 O 作 OC⊥AB 于点 C,
则 AC=5,在 Rt△ACO 中, AC 5 1 sin ∠AOC=AO=10=2, ∴∠AOC=30° ,∴α=2∠AOC=60° .
返回
π (2)∵60° 3, = 10π ∴l=|α|r= 3 . 1 1 10π 50π S 扇=2lr=2× 3 ×10= 3 . 1 又 S△AOB=2×10×10sin π 3=25 3,
返回
解:(1)设圆心角是 θ,半径是 r, 2r+rθ=10 r=4, r=1 则1 2 ⇒ 或 1 θ=8 θ· =4 r θ=2 2 又∵θ∈(0,2π),∴θ=8 舍去, r=4, ∴ 1 θ=2 1 即圆心角为2.
返回
(2)设圆心角是 θ,半径是 r, 则 2r+rθ=40, 1 2 1 S=2θ· =2r(40-2r)=r(20-r) r 20 ≤( 2 )2=100, 当且仅当 r=20-r, 即 r=10 时,Smax=100. ∴当 r=10,θ=2 时,扇形面积最大. 即半径为 10,圆心角为 2 时,扇形面积最大.
OM 为余弦线
AT 为正切线
返回
返回
[做一题] [例1] (1)已知角α是第三象限角,那么2α角的终边落在 何处?
(2)如果点P(sin θcosθ,2cosθ)位于第三象限,试判断角θ
所在的象限.
返回
[自主解答]
(1)由 α 是第三象限角,得
3π π+2kπ<α< 2 +2kπ(k∈Z). ∴2π+4kπ<2α<3π+4kπ(k∈Z). ∴角 2α 的终边在第一、二象限及 y 轴的非负半轴.
返回
[悟一法]
利用定义法求三角函数值的两种情况:
(1)已知角α终边上一点P的坐标,则可先求出点P到原点 的距离r,然后用三角函数的定义求解. (2)已知角α的终边所在的直线方程,则可先设出终边上 一 点的坐标,求出此点到原点的距离,然后用三角函
数的定义来求相关问题.若直线的倾斜角为特殊角,
也可直接写出角α的三角函数值.
第 三 章 三 角 函 数 、 解 三 角 形
第一 节 任意 角和 孤度 制及 任意 角的 三角 函数
高考成功方案第一步
高考成功方案第二步
高考成功方案第三步
高考成功方案第四步
考纲点击 1.了解任意角的概念. 2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角三角函数(正弦、余弦、正切)的定义.
A.第一象限
C.第三象限
B.第二象限
D.第四象限
解析:由sin A>0且tan A<0可知,角A的终边一定落在 第二象限. 答案:B
返回
3.圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度 数为 π A.3 C. 3 2π B. 3 D.2 ( )
解析:设圆半径为 R,则其内接正三角形的边长为 3R, 3R 于是圆心角的弧度数为 R = 3.
返回
当 t>0 时,即 x>0 时,r=5t, y -3t 3 sin α= r= 5t =-5, x 4t 4 cos α= r =5t=5, y -3t 3 tan α=x= 4t =-4; 当 t<0 时,即 x<0 时,r=-5t, y -3t 3 sin α= r= = , -5t 5
返回
返回
[悟一法] α 1.由 α 所在的象限,确定n所在象限的方法: α (1)由角 α 的范围,求出n所在的范围; α (2)通过分类讨论把角写成 θ+k· 的形式,然后判断n 360° 所在象限.
返回
2.对于已知三角函数式的符号判断角所在象限,可先
根据三角函数式的符号确定三角函数值的符号,再 判断角所在象限.
返回
1.已知sin θ-cos θ>1,则角θ在 A.第一象限
( B.第二象限
)
C.第三象限
D.第四象限
解析:∵sin θ-cos θ>1,∴1-2sin θcos θ>1, 从而sin θcos θ<0,又sin θ-cos θ>1>0, ∴sin θ>cos θ.∴sin θ>0>cos θ.∴θ是第二象限角.
50π π 3 ∴S 弓形=S 扇-SAOB= 3 -25 3=50(3- 2 ).
返回
本例中,若将弦 AB 的长改为 10 2,则结果如何?
解:(1)由题意得,∠AOC=45° ,从而 α=90° . π π (2)90° 2,∴l=|α|r=2×10=5π. = 1 2 12 ∴S 弓=S 扇-S△AOB=4πr -2r =25π-50.
x 4t 4 cos α= r = =-5, -5t y -3t 3 tan α=x= 4t =-4. 综上可知,当角 α 的终边在直线 3x+4y=0 的 x>0 部分时, 3 4 3 sin α=-5,cos α=5,tan α=-4; 当角 α 的终边在直线 3x+4y=0 的 x<0 部分时, 3 4 3 sin α=5,cos α=-5,tan α=-4.
返回
返回
[热点分析] 本节内容作为三角函数的起始部分,是高考的常考 内容,而三角函数的定义,作为本节的重点,又是高考
的高频考点之一.2011年新课标全国高考试卷中的第5题,
将三角函数定义与三角恒等变换综合起来考查,很好地 考查了考生对基础知识的掌握情况,是高考的一个重要 考向.
返回
[考题印证] (2011· 新课标全国高考)已知角 θ 的顶点与原点重合, 始边与 x 轴的正半轴重合,终边在直线 y=2x 上,则 cos2θ=________ 4 A.-5 3 C.5 3 B.-5 4 D.5
l |α|= r
(弧长用 l 表示)
返回
分类 角度与弧度的换算
定义(公式)
π 180 ①1° 180 rad ②1 rad= ( π ) ° =
弧长l= |α|r
弧长公式
扇形的面积公式
1 1 lr |α|·2 2 = 2 r S=
返回
3.任意角的三角函数
三角函数 正弦 余弦 正切
设 α 是一个任意角, 它的终边与单位圆交于点 P(x, y),那么 y叫做 α
返回
[通一类] α 1.(1)若 α 是第一象限角,则 3是第几象限角? sincosθ (2)若 θ 是第二象限角,则 的符号是什么? cossin θ
返回
解:(1)由 α 是第一象限角,得 k· <α<90° 360° 360° +k· ,(k∈Z) k α k ∴ · < <30° · . 360° + 360° 3 3 3 α 当 k=3n(n∈Z)时,n· < <30° 360° 360° +n· 是第一象限角; 3 α 当 k=3n+1(n∈Z)时, 360° n· +120° <n· +150° < 360° 是第二 3 象限角; α 当 k=3n+2(n∈Z)时, 360° n· +240° <n· +270° < 360° 是第三 3 象限角.
相关文档
最新文档