匀速圆周运动的实例分析例题
圆周运动的实例及临界问题
圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
圆周运动的实例分析
物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动的实例分析
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
6.4圆周运动的实例分析1(火车转弯)
N
向心 F力
G
火车弯道内低外高,这样的设计有什么道理?
1.铁路弯道的特点:弯道处外轨 略高于 内轨
2.火车转弯时铁轨对火车的支持力不是竖直向 上的,而是斜向弯道的 内侧 .支持力与重力的 合力指向 圆心 .
火车质量为m在倾角为θ、半径为r的轨道上转 弯时,若铁轨不受侧向压力,求此时火车的 这个速度多大?
mgtan m v2
第4节 生活中的圆周运动
实例一:旋转秋千
1、“旋转秋千”中揽绳跟中心 轴的夹角与哪些因素有关? 2、体重不同的人做在秋千上旋 转时,揽绳与中心轴的夹角相 同吗?
Tα
F合
mg
实例二:火车转弯
在铁道弯道处,稍微留意一下, 就能发现内、外轨道的高度略 有不同。你能解释其中的原因 吗?
一、火车转弯
如果轨道高度相同,火车转弯向心力谁来提供? 如果铁道弯道的内外轨一样高,火车转弯时, 由外轨对轮缘的弹力提供向心力,由于质量太 大,因此需要很大的向心力,靠这种方法得到 向心力,不仅铁轨和车轮极易受损,还可能使 火车侧翻.
r
v gr tan
高速公路转弯处和场地自行车比赛的赛道,路 面往往有一定的倾斜度。说说这样设计的原因。
拓展:改变速度
讨论:
a. 当火车转弯所需的向心力完全由重力 与轨道对它的支持力的合力提供时,轮 缘与内外轨均无测向压力,此时火车行 使的速度称为理想行驶速度V0.
F = mV20/R.
b. 当火车行驶速度V> V0 时,重力与支持 的合力不足以提供火车转弯所需的向心 力,火车轮缘与外轨相互挤压,外轨对轮缘 有测向压力.
山东省实验高中2020人教版物理第二章匀速圆周运动3圆周运动的实例分析55
得F1=16 N
(2)v=4 m/s>v0,杆对小球有拉力 由牛顿第二定律:mg+F2=vm2
L
得:F2=44 N
答案:(1)16 N,支持力 (2)44 N,拉力
【定向训练】 1.(多选)(2019·江苏高考)如图所示,摩天 轮悬挂的座舱在竖直平面内做匀速圆周运 动。座舱的质量为m,运动半径为R,角速度 大小为ω,重力加速度为g,则座舱 ( )
为零,则此时重物对电动机向上的作用力大小等于电动
机的重力,即F1=Mg。 根据牛顿第三定律,此时电动机对重物的作用力向下,大
小为:F′1=F1=Mg
①
对重物:F′1+mg=mω2R ②
由①②得ω= m M③g
mR
(2)当重物转到最低点时,电动机对地面的压力最大,对 重物有:F2-mg=mω2R ④ 对电动机,设它所受支持力为FN,FN=F′2+Mg,F′2=F2
(1)当v=1 m/s时。 (2)当v=4 m/s时。
【审题关键】
序号 ①
②
信息提取 杆的弹力可以向上也可以向下
小球的重力和杆的弹力的合力指向圆 心的分量提供向心力
【解析】杆对小球没有作用力时
v0= gL m5/s≈2.24 m/s (1)v=1 m/s<v0,杆对小球有支持力, 由牛顿第二定律:mg-F1=mv2
二 竖直面内的圆周运动 任务1 轻绳模型中物体在最高点时受力的特点
【思考·讨论】 水流星是一项中国传统民间杂技艺术,杂技演员用一根 绳子兜着两个碗,里面倒上水,迅速地旋转着做各种精 彩表演,即使碗底朝上,碗里的水也不会洒出来。这是 为什么? (模型建构)
提示:当碗底朝上时,水的重力全部用来提供做圆周运 动所需要的向心力。
匀速圆周运动实例分析
18
第19页/共31页
【例题1】如图所示,一质量为m=2kg的小球,在半径大小
为R=1.6m的轻绳子作用下在竖直平面内做圆周运动。
(1)小球恰好经过最高点的速度V2=?此时最低点要给 多大的初速度V1=?(2)若在最低点的速度V1=10m/s, 则在最高点绳的拉力为多大?
T
解:(1)依题意得,物体恰好经过最高点,mg提供做
3、汽车过凹形桥时,车对桥的压力大于 自身重力。此时汽车处于超重状态。
3
第4页/共31页
例一 、当汽车通过桥面粗糙的拱形桥顶时拱形桥顶的速度为10m/s
时,车对桥顶的压力为车重的3/4,如果汽车行驶至该桥顶时刚好不
受摩擦力作用,则汽车通过桥顶时速度应为 ( B )
A、25m/s
B、20m/s
C、15m/s
离心运动本质: (1)离心现象的本质是物体惯性的表现。 (2)离心运动是物体逐渐远离圆心的一 种物理现象。
15
第16页/共31页
离心运动的应用:
1、洗衣机脱水桶
原理:利用离心运动把附 着在衣物上的水分甩掉。
解释当:脱水桶快速转动时,
衣物对水的附着力F不足以
ν
提供水随衣服转动所需的向 心力 F,于是水滴做离心运 动,穿过网孔,飞到脱水桶
一、汽车过拱形桥
在各种公路上拱形桥是常 见的,质量为m的汽车在 拱桥上以速度v前进,桥 面的圆弧半径为R,分析 汽车通过桥的最高点时对 桥面的压力。
问题:汽车通过桥顶时重力G和支持 力N相等吗,为什么?
1
第2页/共31页
分析:
1、当汽车在桥面上运动到最高点时,重力G和桥的支持 力N在一条直线上,它们的合力是使汽车做圆周运动的向 心力F向。
高三物理圆周运动实例分析试题答案及解析
高三物理圆周运动实例分析试题答案及解析1.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()=A.小球通过最高点时的最小速度vmin=B.小球通过最低点时的最小速度vminC.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力【答案】C【解析】此问题中类似于“轻杆”模型,故小球通过最高点时的最小速度为零,选项A 错误;如果小球在最高点的速度为零,则在最低点时满足:,解得,选项B错误;小球在水平线ab以下的管道中运动时,由于向心力的方向要指向圆心,则管壁必然是提供指向圆心的支持力,故只有外侧管壁才能提供此力,所以内侧管壁对小球一定无作用力,选项C正确,D错误。
【考点】圆周运动的规律;机械能守恒定律。
2.如图所示,是从一辆在水平公路上行驶着的汽车后方拍摄的汽车后轮照片。
从照片来看,汽车此时正在( )A.直线前进B.向右转弯C.向左转弯D.不能判断【答案】 C【解析】从汽车后方拍摄的后轮照片从图上可以看到汽车的后轮发生变形,汽车不是正在直线前进,而是正在转弯,根据惯性、圆周运动和摩擦力知识,可判断出地面给车轮的静摩擦力水平向左,所以汽车此时正在向左转弯,应选择答案C。
本题是考查学生知识和能力的一道好题,体现新课改大背景下,物理高考的命题方向,是高考的热点。
3.如图所示,一根长为L的细杆的一端固定一质量为m的小球,整个系统绕杆的另一端在竖直面内做圆周运动,且小球恰能过最高点。
已知重力加速度为g,细杆的质量不计。
下列说法正确的是A.小球过最低点时的速度大小为B.小球过最高点时的速度大小为C.小球过最低点时受到杆的拉力大小为5mgD.小球过最高点时受到杆的支持力为零【答案】C【解析】因杆能支撑小球,轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,所以小球恰能过最高点时,在最高点的速度为零,所以B错误;设小球过最低点的速度为,小球从最高点到达最低点的过程中,只有重力做功,机械能守恒,则有,解得:,故A错误;在最高点和最低点时球的重力与杆对球的作用力的合力提供向心力.以小球为研究对象,设在最低点时杆对小球的作用力大小为,方向竖直向上,根据牛顿第二定律得,,解得:,故C正确;以小球为研究对象,设在最高点时杆对小球的作用力大小为F,方向竖直向上,小球刚好能通过最高点P,速度为零,根据牛顿第二定律得,,即有F=mg,所以小球过最高点时受到杆的支持力大小为,方向竖直向上,故D错误.所以选C.【考点】本题考查了对向心力来源的分析、机械能守恒定律以及牛顿第二定律的简单应用.4.一水平放置的木板上放有砝码,砝码与木板间的摩擦因数为,如果让木板在竖直平面内做半径为R的匀速圆周运动,假如运动中木板始终保持水平,砝码始终没有离开木板,那么下列说法正确的是( )A.在通过轨道最高点时砝码处于超重状态B.在经过轨道最低点时砝码所需静摩擦力最大C.匀速圆周运动的速度小于D.在通过轨道最低点和最高点时,砝码对木板的压力之差为砝码重力的6倍【答案】C【解析】在通过轨道最高点时,向心加速度竖直向下,是失重,A项错误;木板和砝码在竖直平面内做匀速圆周运动,则所受合外力提供向心力,砝码受到重力G.木板支持力和静摩擦力,由于重力G和支持力在竖直方向上,因此只有当砝所需向心力在水平方向上时静摩擦力有最大值,此位置是当木板和砝码运动到与圆心在同一水平面上时的位置,最大静摩擦力必须大于或等于砝码所需的向心力,即,此时在竖直方向上,故,B项错误,C项正确.在最低点,,在最高,,则,D项错误。
高一物理圆周运动实例分析试题答案及解析
高一物理圆周运动实例分析试题答案及解析1.当气车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应()A.以尽可能小的速度通过桥顶B.增大速度通过桥顶C.使通过桥顶的向心加速度尽可能小D.和通过桥顶的速度无关【答案】B【解析】当汽车驶在凸形桥时,重力和前面对汽车的支持力提供向心力,则,解得:,根据牛顿第三定律可知:汽车对桥的压力等于桥顶对汽车的支持力,为使通过桥顶时减小汽车对桥的压力,可以增大速度通过桥顶,故B正确,A、C错误;向心加速度小,桥顶对汽车的支持力就大,故C错误。
【考点】考查了圆周运动实例分析2.如图所示,拱桥的外半径为40m。
问:(1)当重1t的汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力多少牛?(2)当汽车通过拱桥顶点的速度为多少时,车对桥顶刚好没有压力(g=10m/s2)【答案】(1)7500N(2)20m/s【解析】(1)小车受到的mg 和N的合力提供向心力-----------------------------------------------4分带入数据得: N=7500N-----------------------------------1分由牛顿第三定律得: 小车对桥的压力N’=N=7500N------1分(2)当重力完全充当向心力时,车对桥顶没哟偶作用力,即,解得20m/s-4分【考点】考查了圆周运动实例分析3.图示小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况()A.重力、支持力、摩擦力B.重力、支持力、向心力C.重力、支持力D.重力、支持力、向心力、摩擦力【答案】A【解析】因为小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则在竖直方向,A受到重力和圆盘的支持力;水平方向受静摩擦力作用,用来提供做圆周运动的向心力,故答案A 正确.【考点】受力分析;向心力。
4.铁路转弯处的圆弧半径为R,内侧和外侧的高度差为h.L为两轨间的距离,且L>h.如果列车转弯速率大于,则( )A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内、外铁轨与轮缘间均有挤压【答案】A【解析】设轨道平面与水平面的夹角为θ,如果列车所受的重力和支持力恰好提供转弯的向心力,=mgtanθ,θ很小的情况下,sinθ≈tanθ,即则F向,如果列车转弯速率大于v,列车所受重力和支持力的合力将不足以提供所需的向心力,会挤压外轨,A正确,BCD错误。
2.3圆周运动实例分析(竖直面)
F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力
匀速圆周运动实例分析
v2 正确理解公式 F向 = m 中 , 提 供 的 F提 r
与需要的向心力F需之间的关系。对于匀速 圆周运动的试题, 一定要分析需要的向心 力与提供的向心力,这样才不能弄错。
(2)汽车在水平路面上转弯:由摩擦力
提供向心力。类似:单车、摩托车在水平 面上转弯。
(3)旋转的磨盘上的物体:由静摩 擦力提供向心力。
五、离心运动 物体做圆周运动所的向心力
F需 = m r
2
= mw 2 r
=m
2p T
2
r
= mw v
当外界所提供的向心力恰好等于它做圆周运动 所需要的向心力时,则物体做圆周运动、、、、
个提供呢?ຫໍສະໝຸດ 做匀速圆周运动的物体由合外力提供
所需要的向心力。 看下面具体的实例分析。
一、火车转弯问题
水平轨道上匀速行驶的火车所受合 外力为零,在水平弯道上匀速行驶的火 车,做匀速圆周运动,需要向心力,是 什么力提供这个向心力呢?
N F合
G
火车做圆周运动,先找圆心和半径。其 圆心就是弯道的圆心,半径是弯道的半径。
——对桥面有压力作用。
三、汽车过凹桥的情况
如图所示,若汽车经过如图所示的
凹桥的最低点时呢?
提示:汽车对凹桥的压力大小为:
v F =Gm R
2
讨论:汽车经过凸桥最高点容易爆胎
还是在凹桥最低点容易爆胎?
四、航天器中的失重现象 航天器作近地圆周运动时: 1、轨道半径近似等于地球半径 2、航天器所受引力近似等于它 在地球表时所测得的重力
匀速圆周运动实例分析
回顾:匀速圆周运动的有关公式
向心加速度:
v2 an = r = w 2r 2p = r T
【原创】第3节 圆周运动实例分析(分类精析)
旋转秋千(1)
问题:“旋转秋千”中的缆绳跟中心轴的夹 角与哪些因素有关?
旋转秋千(2)
分析见后页
分析:小球做圆锥摆时细绳长l,与竖直方向成α角,求 小球做匀速圆周运动的角速度ω。 解:小球受力: 竖直向下的重力G 沿绳方向的拉力T
αl
T O
小球的向心力:由 T 和 G 的合力提供
F合 mg tan
思维拓展
v
思考与讨论 地球可以看做一个巨大的拱形桥。汽车 沿南北行驶,不断加速。请思考: (1)会不会出现这样的情况:速度大到一 定程度时,地面对车的支持力是0? (2)此时汽车处于什么状态? (3)驾驶员与座椅间的压力是多少? (4)驾驶员躯体各部分间的压力是多少? (5)驾驶员此时可能有什么感觉?
汽车通过不同曲面的问题分析
一辆质量m=2.0 t的小轿车,驶过半径R=90 m 的一段圆弧形桥面,g取10m/s2 ,求: (1)若桥面为凹形,汽车以20m/s的速度 通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度 通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时, 对桥面刚好没有压力?
火车拐弯问题分析(1)
火车拐弯问题分析(2)
(1)内外轨道一样高
N
(2)外轨高于内轨
N
F
G G
两种情况下向心力分别由谁提供?
火车拐弯问题分析 (3) 当外轨略高于内轨时
F合=F向
v mg tan m r
2
h
G
பைடு நூலகம்
N
F
v gr tan
火车拐弯的理想速度值是多少?
火车拐弯问题分析(4)
高三物理圆周运动实例分析试题答案及解析
高三物理圆周运动实例分析试题答案及解析1.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F一v2图象如图乙所示。
不计空气阻力,则A.小球的质量为B.当地的重力加速度大小为C.v2=c时,杆对小球的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小不相等【答案】AC【解析】A、在最高点,若v=0,则N=mg=a;若N=0,则,解得,,故A正确,B错误;C、由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,所以小球对杆的弹力方向向上,故C正确;D、若c=2b.则,解得N=a=mg,故D错误.【考点】圆周运动及牛顿定律的应用。
2.如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于="4" m/s,g取10m/s2。
水平状态,现给小球一个竖直向上的初速度v(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
【答案】(1)2N(2)2m/s(3)【解析】(1)设小球能通过最高点,且此时的速度为,在上升过程中,因只有重力做功,小球的机械能守恒。
则①②设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则③由②③式,得④由牛顿第三定律可知,小球对轻杆的作用力大小为,方向竖直向上。
(2)解除锁定后,设小球通过最高点时的速度为,此时滑块的速度为V。
在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。
以水平向右的方向为正方向,有⑤在上升过程中,因只有重力做功,系统的机械能守恒,则⑥由⑤⑥式,得⑦(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为,滑块向左移动的距离为,任意时刻小球的水平速度大小为,滑块的速度大小为。
高考物理 专题集锦(一)圆周运动实例分析与临界问题
圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。
一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。
设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmg B.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足gr μω≤D.转台的角速度一定满足23grμω≤【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,g rμω=,所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是g rμω≤;对于本题,物体C 需要满足的条件23grμω≤,物体A 和B 需要满足的条件均是g rμω≤所以, 要使三个物体都能够随转台转动,转台的角速度一定满足23grμω≤, C 项错误,D 项正确。
【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。
常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度cos g lθω>,b 绳将出现弹力 D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得cot g lθω=,可知当角速度cot g lθω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。
匀速圆周运动实例分析-火车转弯分析
在平直轨道上匀速行驶的火车,火车受到 几个力的作用?这几个力的关系如何? 火车转弯时,情况会有何不同? 需要提供向心力
1、火车在平直的轨道上匀速行驶时,所 受的合力等于零。
2、火车转弯时,火车做曲线运动,所受的 合外力不等于零,合外力又叫向心力,方 向指向圆心。 外轨对轮缘的弹 力就是使火车转 弯的向心力
2、当火车行驶速率 轨道对轮缘有侧压力
3、当火车行驶速率 轨道对轮缘有侧压力
sin tan
h
L
h F 综合有 , L Mg 2 又因为F M R
ghR L
实际中,铁轨修好以后h、R、L确定,g又 为定值,所以火车转弯时的车速为一定值。 1、当火车行驶速率 外轨道对轮缘都没有压力
ghR 时,F=F向,内 L ghR 时,F〈F向,外 L ghR L 时,F〉F向,内
圆心0
为了使铁轨不容易损坏,在转弯处使外轨略高于 内轨,受力图如下,重力和支持力的合力提供了 向心力;这样,外轨就不受轮缘的挤压了。
同理:汽车转弯做圆周运动时,也需要 向心力,是由地面给的摩擦力提供向心 力的,所以汽车在转弯的地方,路面也 是外高内低,靠合力提供向心力。
那么什么情况下可以完全使铁轨和轨缘间的 挤压消失呢? F h
圆周运动实例
mg O 杆
N
mg O 管道 mg O
mg
O 轨道
绳
可见,物体在最高点的最小速度决定于物 体况下的最小速度.
结论:物体分离的临界条件是:N=0
生活中的圆周运动:
解圆周运动问题的基本步骤
1.确定作圆周运动的物体作为研究对象。 2.确定作圆周运动的轨道平面、圆心位置 和半径。 3.对研究对象进行受力分析画出受力示意 图。 4.运用平行四边形定则或正交分解法(取向 心加速度方向为正方向)求出向心力F。 5.根据向心力公式,选择一种形式列方程 求解
A、找圆心,定半径(找轨道面),即确定F向心力 的方向 B、分析物体的受力情况 C、列方程和解方程。
【课堂练习】 请分析以下圆周运动的向心力的来源。
实例分析:
汽车在水平路面上转弯 汽车在倾斜路面上转弯
mgtanθ= F向=mv2/R
弯道规定的速度取决于弯道半径和倾角 V=
火车转弯
火车在平 直轨道上匀速 行驶时,所受 的合力等于0, 那么当火车转 弯时,我们说 它做圆周运动, 那么是什么力 提供火车的向 心力呢?
实例1、火车转弯:
火车在平 直轨道上匀 速行驶时, 所受的合力 等于0,那么 当火车转弯 时,我们说 它做圆周运 动,那么是 什么力提供 火车的向心 力呢?
例、讨论火车转弯时所需向心力。 1、内外轨道一样高时:
向心力 F 由外侧轨道对铁轨 的压力提供
2、当外轨略高于内轨时:
火车受力:
F
竖直向下的重力 G 垂直轨道面的支持力 N
gr 时,N>0
② 当v
③
当
v gr 时,N<0,此时水将会流出杯子。
实例6:轻杆与球:如图所示,一 质量为m的小球,用长为L轻杆固 定住,使其在竖直面内作圆周运 动。 (1)小球做的是什么运动?
匀速圆周运动的实例分析
匀速圆周运动的实例分析引言匀速圆周运动是物理学中常见且重要的一类运动形式,它指的是一个物体沿着圆周以恒定的速度运动。
在实际生活中,我们可以观察到许多匀速圆周运动的例子,比如地球围绕太阳的公转、月球围绕地球的运动等。
本文将通过分析一个常见的匀速圆周运动的实例,深入探讨匀速圆周运动的特点和相关的物理概念。
实例分析假设有一个质点A在水平桌面上以匀速做圆周运动。
质点A的半径为R,运动的周期为T,角速度为ω。
运动的特点匀速圆周运动具有以下几个特点:1.质点在圆周上的位移大小保持恒定,即每经过一个周期T,质点的位移为2πR。
2.质点在圆周上的速度大小保持恒定,即质点A每单位时间所走过的弧长相等。
3.质点所受的向心力大小为常数,向心力的方向指向圆心。
运动的物理概念在分析匀速圆周运动时,我们需要了解以下几个重要的物理概念:1.角速度(ω):角速度指的是物体在单位时间内绕定点旋转的角度,单位为弧度/秒。
2.周期(T):周期指的是物体完成一个完整循环所需要的时间,单位为秒。
3.向心力(F):向心力指的是物体在匀速圆周运动中所受的向心方向的力,其大小由以下公式给出:向心力公式向心力公式其中,m为质点的质量,v为质点在圆周上的速度大小,R为圆周的半径。
运动的实例分析在本实例中,质点A以匀速做圆周运动,角速度为ω。
根据角速度和周期的关系,我们可以得到以下公式:周期与角速度的关系周期与角速度的关系根据质点A运动的周期和半径,我们可以计算出质点A在圆周上的速度大小v:速度公式速度公式根据向心力的公式,可以计算出质点A所受的向心力F:向心力公式向心力公式实例分析的结论通过对这个匀速圆周运动实例的分析,我们可以得出以下结论:1.在匀速圆周运动中,质点的位移大小和速度大小保持恒定。
2.匀速圆周运动的周期与角速度成反比关系,周期越大,角速度越小。
3.匀速圆周运动中,质点所受的向心力大小与速度的平方成正比,与半径的倒数成反比。
结论匀速圆周运动是一个重要的物理概念,我们可以通过实际例子和物理公式来深入理解和分析匀速圆周运动的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速圆周运动的实例分析
典型例题1——关于汽车通过不同曲面的问题分析
1.一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?
解:
典型例题2——细绳牵引物体做圆周运动的系列问题
1.一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:
(1)小球通过最高点时的最小速度?
(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.
典型例题3——转动系统中的惯性力
1.一辆质量为的汽车以速度在半径为的水平弯道上做匀速圆周运动.汽车左、右轮相距为,重心离
地高度为,车轮与路面之间的静摩擦因数为.求:
(1)汽车内外轮各承受多少支持力;
(2)汽车能安全行驶的最大速度是多少?
2、关于地球的圆周运动
例1:把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A与B两点角速度之比为多大?线速度之比为多大?
3、关于皮带传送装置的圆周运动特点
例2:如图所示,皮带传送装置A、B为边缘上两点,O1A=2O2B,C为O1A中点,皮带不打滑.
求:(1)νA:νB:νC=
(2)ωA:ωB:ωC=
4、如图5-26所示,O1皮带传动装置的主动轮的轴心,轮的半径为r1;O2为从动轮的轴心,轮的半径为r2;r3为与从动轮固定在一起的大轮的半径.已知r2=1.5r1,r3=2r1.A、B、C分别是三个轮边缘上的点,那么质点A、B、C的线速度之比是_________ ,角速度之比是_________ ,向心加速度之比是__________ ,
周期之比是_________.
关于汽车通过不同曲面的问题分析
例1:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,求:(重力加速度g=10m/s2)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?
2、当小汽车以10m/s的速度通过一座拱桥的最高点,拱桥半径50m,求此车里的一名质量为60kg的乘客对座椅的压力
4、关于光滑水平面上物体的圆周运动
如图所示,长0.40m的细绳,一端拴一质量为0.2kg的小球,在光滑水平面上绕绳的另一端做匀速圆周运动,若运动的角速度为5.0rad/s,求绳对小球需施多大拉力?
5、关于静摩擦力提供向心力的问题
如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况是()
A、受重力、支持力
B、受重力、支持力和指向圆心的摩擦力
C、重力、支持力、向心力、摩擦力
D、以上均不正确
6、明确向心力的来源
如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为,
当碗绕竖直轴匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.
一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()
A.物体的重力B.筒壁对物体的静摩擦力
C.筒壁对物体的弹力D.物体所受重力与弹力的合力
7、关于绕同轴转动物体的圆周运动
如图所示,两个质量分别为m1=50g和m2=100g的光滑小球套在水平光滑杆上.两球相距21cm,并用细线连接,欲使两球绕轴以600r/min的转速在水平面内转动而光滑动,两球离转动中心各为多少厘米?绳上拉力是多少?
8、细绳牵引物体做圆周运动的系列问题
一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运
动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.。