2015-2016学年五校联考九年级(下)第一次月考数学试卷(解析版)

合集下载

【月考试卷】安徽省池州市2015-2016学年九年级下第一次月考数学试卷含答案解析

【月考试卷】安徽省池州市2015-2016学年九年级下第一次月考数学试卷含答案解析

2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

2015-2016学年九年级数学月考试卷

2015-2016学年九年级数学月考试卷

2015~2016学年度第一学期初三年级月考数 学 科 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1. 如图,下列条件之一能使平行四边形ABCD 是菱形的为( )①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD =A .①③B .②③C .③④D .①②③ 2. 已知m 是方程x 2-x-1=0的一个根,则代数式m 2-m 的值等于( )A 、 -1B 、0C 、1D 、23下列命题中错误..的是 ( ) A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形 C.矩形的对角线相等 D.对角线相等的四边形是矩形4.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )5. 如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )A .313-B .33C .314-D .126. 如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=( )A .110°B .115°C .120°D .130° 7. 某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x ,则有( )A 500(1+x 2)=720B 500(1+x)2=720C 500(1+2x)=720D 720(1+x)2=5008. 已知一个直角三角形的两条直角边恰好是方程2x 2-8x+7=0的两根,则此三角形的斜 边长为( )A 3B 6C 9D 129. 同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线y=﹣x+7上的概率为( )A .B .C .D .10. 如图,在菱形ABCD 中,E 是AB 边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF ;②△DEF 是等边三角形;③△BEF 是等腰三角形;④∠ADE=∠BEF ,其中结论正确的是( )A. ①②③B. ①②④ C .② ③④ D. ①②③④二、填空题(本大题共6小题,每小题4分,共24分)11. 把一元二次方程化为一般形式是________________,其A BC D中二次项为: ______,一次项系数为:______,常数项为:______.12. 如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 . 13. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽.快减少库存.....,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价_____元.14. 已知一元二次方程kx 2+(2k-1)x+k+2=0有两个不相等的实数根,则k 的取值范围为_____________.15.如图,在矩形ABCD 中,点E ,F 分别在BC ,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B`处,又将△CEF 沿EF 折叠,使点C 落在直线EB`与AD 的交点C`BC ∶AB 的值为 .16. 如图,矩形 的面积为5,它的两条对角线交于点 ,以AB 、1AO 为两邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积为三、解答题(本大题有3小题,每小题6分,共18分)17. 计算(1)解方程:x 2+3x+1=0.(公式法)(2)解方程:(x ﹣3)2+4x (3﹣x )=0.(分解因式法)18. 如图4,AB 、AC 分别是菱形ABCD 的一条边和一条对角线,请用尺规把这个菱形补充完整.(保留作图痕迹,不要求写作法和证明)19. 在△ABC 中,AB=AC,D 是BC 的中点,DE ⊥AB,DF ⊥AC,垂足分别是E,F.(1)试说明:DE=DF(出两种不同的添加方法.(不另外添加辅助线,任选一种方法证明)四、解答题(本大题有3小题,每小题7分,共21分)20. 某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回垃圾、厨余垃圾、其他垃圾三类,分别记为A ,B ,C :并且设置了相应的垃圾箱,依次记为a ,b ,c .ABCD 1O B C D A P(1)若将三类垃圾随机投入三个垃圾箱,请你用树形图的方法求垃圾投放正确的概率:(2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg 生活垃圾,数据如下(单位:)a b cA 40 15 10B 60 250 40C 15 15 55 试估计“厨余垃圾”投放正确的概率.21. 已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2。

九年级下学期第一次月考数学试卷含答案

九年级下学期第一次月考数学试卷含答案

九年级下学期第一次月考数学试卷一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c 长()A.18cm B.5cm C.6cm D.±6cm3.下列四个命题中,假命题是()A.有一个锐角相等的两个等腰三角形相似B.有一个锐角相等的两个直角三角形相似C.底边和腰对应成比例的两个等腰三角形相似D.斜边和直角边对应成比例的两个直角三角形相似4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:26.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)8.cos60°的值等于()A.B.C.D.9.Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于()A.8cm B.cm C.cm D.cm10.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.120二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是千米.12.如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为.15.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=.16.在△ABC中,若BC=,AB=,AC=3,则cosA=.17.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A′P′B,且BP=2,那么PP′的长为.(不取近似值.以下数据供解题使用:sin15°=,cos15°=)18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西度.三、解答题19.先化简,再求值:,其中x=3tan30°+1.20.在△ABC中,∠C=90°AB=2,AC=1.求∠A,∠B正弦,余弦,正切.21.(1)计算:2sin30°+•﹣(2﹣π)0﹣()﹣1(2)解方程: +=.22.如图,在平行四边形ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.求证:∠D=∠F.23.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sin∠C=,BC=12,求AD的长.24.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.25.如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=20m,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c 长()A.18cm B.5cm C.6cm D.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.下列四个命题中,假命题是()A.有一个锐角相等的两个等腰三角形相似B.有一个锐角相等的两个直角三角形相似C.底边和腰对应成比例的两个等腰三角形相似D.斜边和直角边对应成比例的两个直角三角形相似【考点】相似三角形的判定;命题与定理.【分析】根据相似三角形的各种判定方法逐项分析即可.【解答】解:A、有一个锐角相等的两个等腰三角形不一定相似,故该选项错误,是假命题;B、有一个锐角相等的两个直角三角形是相似的,故该选项正确,是真命题;C、有底边和腰对应成比例的两个等腰三角形是相似的,故该选项正确,是真命题;D、斜边和直角边对应成比例的两个直角三角形是相似的,故该选项正确,是真命题;故选A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.6.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt △OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选:A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.9.Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于()A.8cm B.cm C.cm D.cm【考点】锐角三角函数的定义;勾股定理.【分析】首先利用锐角三角函数的定义求出斜边的长度,再运用勾股定理即可求解.【解答】解:∵在Rt△ABC中,∠C=90°,cosA==,AC=6cm,∴AB=10cm,∴BC==8cm.故选A.【点评】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边,同时考查了勾股定理.10.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.120【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【解答】解:如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是34千米.【考点】比例线段.【专题】计算题.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,3.4÷=3400000厘米=34千米.即实际距离是34千米.故答案为:34.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.12.如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=15.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,代入求出BC的值,即可得出答案.【解答】解:∵:l1∥l2∥l3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.【点评】本题考查了平行线分线段成比例定理的应用,能根据定理得出正确饿比例式是解此题的关键.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】位似变换.【专题】网格型.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).【点评】本题考查位似中心的找法,各对应点所在直线的交点即为位似中心.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为9.【考点】平行线分线段成比例;三角形的重心.【专题】数形结合.【分析】根据题意作图,利用重心的性质AD:GD=3:1,同时还可以求出△ADE ∽△GDH,从而得出AD:GD=AE:GH=3:1,根据GH=3即可得出答案.【解答】解:设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.【点评】本题主要考查了作辅助线,重心的特点,全等三角形的性质,难度适中.15.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=.【考点】锐角三角函数的定义.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,∴sinB==.故答案为:.【点评】本题考查了锐角三角函数的定义,解题时牢记定义是关键.16.在△ABC中,若BC=,AB=,AC=3,则cosA=.【考点】解直角三角形.【分析】根据勾股定理的逆定理得出△ABC为直角三角形,再根据余弦函数的定义得出答案即可.【解答】解:∵BC=,AB=,AC=3,∴()2+()2=32,∴BC2+AB2=AC2,∴△ABC为直角三角形,∴cosA==,故答案为.【点评】本题考查了解直角三角形以及勾股定理的逆定理,熟记三角函数的求法是解题的关键.17.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A′P′B,且BP=2,那么PP′的长为.(不取近似值.以下数据供解题使用:sin15°=,cos15°=)【考点】解直角三角形.【专题】压轴题.【分析】如图,连接PP′,过B作BC⊥PP′于点C,由题意知BP=BP′,再根据等腰三角形中底边上高也是底边上的中线和顶角的平分线得到∠CBP=15°,最后利用PC=BPsin15°和已知条件即可求出PP′.【解答】解:如图,连接PP′,过B作BC⊥PP′于点C.由题意知,BP=BP′.∴∠CBP=15°,∴PC=BP•sin15°=2×,∴PP′=2CP=.【点评】本题考查了等腰三角形的性质和三角函数定义的应用.18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西48度.【考点】方向角;平行线的性质.【专题】应用题.【分析】先根据题意画出图形,利用平行线的性质解答即可.【解答】解:如图,∵AC∥BD,∠1=48°,∴∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.故答案为:48.【点评】解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.三、解答题19.先化简,再求值:,其中x=3tan30°+1.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题;压轴题.【分析】将原式除式的第一项分子分母同时乘以x+3,然后利用同分母分式的减法法则计算,将被除式分母利用平方差公式分解因式,除式分母利用平方差公式分解因式,分子利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,然后利用特殊角的三角函数值求出x的值,将x的值代入化简后的式子中计算,即可求出原式的值.【解答】解:÷(﹣)=÷[﹣]=÷=•=,当x=3tan30°+1=3×+1=+1时,原式===.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分式的分子分母出现多项式,应将多项式分解因式后再约分.20.在△ABC中,∠C=90°AB=2,AC=1.求∠A,∠B正弦,余弦,正切.【考点】勾股定理;锐角三角函数的定义.【分析】由勾股定理首先求得BC的长度,然后根据锐角三角函数的定义计算即可.【解答】解:如图所示:∵在△ABC中,∠C=90°,AB=2,AC=1,∴BC==,∴sinA==,cosA==,tanA=,sinB=,cosB=,tanB=.【点评】本题主要考查的是锐角三角函数的定义和勾股定理的应用,掌握锐角三角函数的定义是解题的关键.21.(1)计算:2sin30°+•﹣(2﹣π)0﹣()﹣1(2)解方程: +=.【考点】实数的运算;解分式方程;特殊角的三角函数值.【分析】(1)分别利用零指数幂的性质和特殊角的三角函数值、二次根式的性质分别化简求出答案;(2)首先找出最简公分母,进而去分母得出答案.【解答】解:(1)2sin30°+•﹣(2﹣π)0﹣()﹣1=2×+4﹣1﹣2=2;(2)去分母得:x﹣2+3x=﹣2,解得:x=0,检验:当x=0时,x(x﹣2)=0,故此方程无实数根.【点评】此题主要考查了零指数幂的性质和特殊角的三角函数值、二次根式的性质、分式方程的解法等知识,正确把握相关性质是解题关键.22.如图,在平行四边形ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.求证:∠D=∠F.【考点】平行四边形的性质.【分析】BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;【解答】证明:设BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,∵∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴由三角形内角和定理得:∠D=∠F.【点评】本题考查了平行四边形的性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质是解决问题的关键.23.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sin∠C=,BC=12,求AD的长.【考点】解直角三角形.【专题】几何综合题.【分析】(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.【解答】(1)证明:∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB=,cos∠DAC=,又∵tanB=cos∠DAC,∴=,∴AC=BD.(2)解:在Rt△ADC中,,故可设AD=12k,AC=13k,∴CD==5k,∵BC=BD+CD,又AC=BD,∴BC=13k+5k=18k由已知BC=12,∴18k=12,∴k=,∴AD=12k=12×=8.【点评】此题考查解直角三角形、直角三角形的性质等知识,也考查逻辑推理能力和运算能力.24.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)先根据矩形的性质,得到AD∥BC,则∠DAE=∠AMB,又由∠DEA=∠B,根据有两角对应相等的两三角形相似,即可证明出△DAE∽△AMB;(2)由△DAE∽△AMB,根据相似三角形的对应边成比例,即可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB;(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.【点评】此题主要考查了相似三角形的判定与性质,矩形的性质.(1)中根据矩形的对边平行进而得出∠DAE=∠AMB是解题的关键.25.如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=20m,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】几何图形问题.【分析】通过解直角△ABC可以求得AB的长度.【解答】解:如图,在直角△ABC中,∠B=90°,∠C=37°,BC=20m,∴tanC=,则AB=BC•tanC=20×tan37°≈20×0.75=15(m).答:树的高度AB为15m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.26.(14分)(2013•菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C 作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.【考点】切线的判定与性质;解直角三角形.【分析】(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.【解答】(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴AC==2,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===4.【点评】本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.。

2015届九年级下学期数学第一次月考试卷及答案

2015届九年级下学期数学第一次月考试卷及答案

(考试时间:120分钟 满分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.下列四个实数中,是无理数的为( )A .0 B.2- D .272.下列运算正确的是( ) A . a 3+a 4=a 7B .2a 3•a 4=2a 7C .(2a 4)3=8a 7D . a 8÷a 2=a 43.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .4.下列各式:22251,,,22x p a b m p mπ-++,其中分式共有 ( )A .1个B .2个C .3个D .4个 5.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的 平行关系没有发生变化,若175∠=º,则2∠的大小是A .75ºB .115ºC .65ºD .105º6.已知一组数据:-1,x ,0,1,-2的平均数是0,那么这组数据的方差是 ( ) AB .10C .4D .27.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为 ( ) A .3 B .-1 C .4 D .4或-18. “如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( )二、填空题(本大题共有10小题,每小题3分,共30分.)9,则x 的取值范围是 ▲ . 10.分解因式:224a b -= ▲ .11.据统计,截至2014年底,全国的共产党员人数已超过80 300 000,这个数据用科学计数第5题图12法可表示为 ▲ .12.三角形的三边长分别为3、m 、5=___▲____.13.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 ▲ . 14.若分式132x x +-的值为负数,则x 的取值范围是 ▲ . 15.如图,有一圆弧形门拱的拱高AB 为1m ,跨度CD 为4m ,则这个圆弧形门拱的半径为 ▲m .16.如图,在ABC ∆中,D 、E 分别是边AB 、AC 的中点,50B ∠=º.现将ADE ∆沿DE折叠,点A 落在三角形所在平面内的点为1A ,则1BDA ∠的度数为 ▲ °. 17.已知α是锐角且tan α=34,则sin α+cos α= ▲ . 18.已知实数x 、y 满足12x 2+2x +y -1=0,则x +2y 的最大值为 ▲ . 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答) 19.(本题满分8分) (1)计算:)()()2015132π---+(2)化简:2()(2)a b b a b -++20.(本题满分8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的a 值代入计算. 21.(本题满分8分)已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。

2015-2016学年下期一诊考试初三数学试题(含答案) (1)

2015-2016学年下期一诊考试初三数学试题(含答案) (1)

2015-2016学年下期第一次考试初三数学试题(总分:150分,时间:120分钟完卷)一.选择题:(本大题共l2个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑.1. 31-的相反数是( )A.-3B.3C.31D. 31-2. 如右图,若m ∥n ,∠1=105 o,则∠2=( )A.75°B.85°C. 95°D. 105°3. 下列图案中,不是中心对称图形的是( )4. 下列计算正确的是( ) A .2323a a a += B .326a a a = C .329()a a = D .341(0)a a a a -÷=≠5. 某小组7位同学的中考体育测试成绩(满分50分)依次为47,50,49,47,50,48,50,则这组数据的众数与中位数分别是( )A.50,47B. 50,49C. 49,50D. 50,486. 一元二次方程x 2+x+14=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧上一点,则∠ACB=( )A. 80°B. 90°C. 100°D. 无法确定8. 已知P (x,y )在第三象限,且︱x ︱=1,︱y ︱=7,则点P 关于x 轴对称的点的坐标是( ) A.(-1.7) B.(1,-7) C.(-1,-7) D.(1,7)9. 一家商店将某型号空调先按原价提高40%,然后在广告中写上“大酬宾、八折优惠”,结果被工商部门发现有欺诈行为,为此按每台所得利润的10倍处以2700元的罚款,则每台空调原价为( )A. 1350元B. 2250元C. 2000元D. 3150元10.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中)11. 在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A B C D12.如图,直角三角形ABC位于第一象限,AB=3,AC=2,直角顶点A在直线y=x上,点A的横坐标为1,且两直角边AB、AC分别平行于x轴、y轴。

2016届九年级下第一次月考数学试题含答案

2016届九年级下第一次月考数学试题含答案

2016年年春学期九年级数学第一次单元检测试题(考试时间:120分钟满分:150分)命题人:孙晓祥一、选择题(本大题共6小题,每小题3分,共18分)1.计算4-2的结果为(▲)A.-8 B .16 C.-16 D.2.下列运算正确的是(▲)A.a2+a3=a5B.(-2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b23.一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,摸一次,摸到黑球的概率为(▲)A.B.C.D.14.已知点G为△ABC的重心,若△ABC的面积为12,则△BCG的面积为(▲)A.6 B .4 C .3 D.25.半径为2的⊙O中,弦AB=2,弦AB所对的圆周角的度数为(▲)A.60°B.60°或120°C.45°或135°D.30°或150°6.一元二次方程x2+bx+c=0有一个根为x=2,则二次函数y=2x2-bx-c的图像必过点(▲)A.(2,12)B.(2,0)C.(-2,12)D.(-2,0)二、填空题(本大题共10小题,每小题3分,共30分)7.函数y=的自变量x的取值范围为▲.8.因式分解64-4x2= ▲.9.“中国好人”张凤芝开办培训学校,据统计她共为近2000人免去学费,省去近120万元费用,120万用科学计数法表示为▲.10.在Rt△ABC中,∠C=90°,AC=5,BC=12,sinA= ▲.11.圆锥的底面半径为2,母线长为6,圆锥的侧面积为▲.12.一组数-1、x、2、2、3、3的众数为3,这组数的方差为▲.13.圆内接四边形ABCD中,∠A∶∠B∶∠C=1∶2∶3,则∠D=▲°.14.关于x的方程-2x2+bx+c=0的解为x1、x2(x1<x2), -2x2+bx+c=1的解为x3、x4,(x3<x4),用“<”连接x1、x2、x3、x4为▲.家长学生无所谓反对赞成30803040140类别人数2802101407015.如图,在半圆中AB 为直径,弦AC=CD=6,DE=EB=2,弧CDE 的长度为 ▲16.如图,矩形ABCD 的顶点AB 在x 轴上,点D 的坐标为(6,8),点E 在边BC 上,△CDE 沿D E 翻折后点C 恰好落在x 轴上点F 处,若△ODF 为等腰三角形,点E 的坐标为 ▲102分) 17.(本题满分12分)(1)计算:.(2)化简(a+b )2-(a+2b)(a-2b)-2a(a-3b). 18.(本题满分8分)化简(x2+4x -4)÷ x2-4 x2+2x并求值,其中x 满足x 2-2x-8=0. 19.(本题满分8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?学生及家长对中学生带手机的态度统计图 家长对中学生带手机的态度统计图图① 图②20.(本题满分8分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张. (1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A 方案:若两次抽得相同花色则甲胜,否则乙胜;B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?21.(本题满分10分)已知不等臂跷跷板AB 长为4米,如图1,当AB 的一端A 碰到地面时,15题图16题图AB与地面的夹角为α,如图2,当AB的另一端B碰到地面时,AB与地面的夹角为β,已知α=30°,β=37°求跷跷板AB的支撑点O到地面的高度OH(sin37°=0.6,cos37°=0.8,tan37°=0.75).22.(本题满分10分)已知等边△ABC内接于⊙O,AD为O的直径交线段BC于点M,DE ∥BC,交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若等边△ABC的边长为6,求BE的长.23.(本题满分10分)已知△ABC中,∠ACB=90°,AC=3,tanA=,CD⊥AB于点D,DE⊥AC,点F在线段BC上,EF交CD于点M.(1)求CD的长;(2)若△EFC与△ABC相似,试求线段EM的长.24.(本题满分10分)在平面直角坐标系中,直线y1=x+m与双曲线y2=交于点A、B,已知点A、B的横坐标为2和-1.(1).求k的值及直线与x轴的交点坐标;(2). 直线y=2x交双曲线y=于点C、D(点C在第一象限)求点C、D的坐标;(3).设直线y=ax+b与双曲线y=(ak≠0)的两个交点的横坐标为x 1、x2,直线与 x轴交点的横坐标为x0,结合(1)、 (2)中的结果,猜想x1、x2、x0之间的等量关系并证明你的猜想.25. (本题满分12分)已知直线y=-x+2分别交x 、y 轴于点A 、B ,点C 为线段OA 的中点,动点P 从坐标原点出发,以2个单位长度/秒的速度向终点A 运动,动点Q 从点C 出发,以个单位长度/秒的速度向终点B 运动。

九年级下第一次月考数学试卷含答案解析

九年级下第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题:(本大题满分42,每小题3分)1.﹣2016的相反数是()A.B.C.6102 D.20162.下列计算正确的是()A.2a5+a5=3a10B.a10÷a2=a8C.(a2)3=a5 D.a2•a3=a63.如图所示几何体的俯视图是()A.B.C.D.4.方程x2+2x=0的解是()A.x1=0,x2=2 B.x1=0,x2=﹣2 C.x=2 D.x=﹣25.如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB 交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°6.不等式组的解集是()A.x>3 B.x<2 C.2<x<3 D.x>2或x<﹣37.数据:2,﹣1,3,5,6,5的众数是()A.﹣1 B.4 C.5 D.68.分式方程的解为()A.1 B.2 C.3 D.49.如图,△A′B′O′是由△ABO平移得到的,点A的坐标为(﹣1,2),它的对应点A′的坐标为(3,4),△ABO内仼意点P(a,b)平移后的对应点P′的坐标为()A.(a,b)B.(﹣a,﹣b)C.(a+2,b+4)D.(a+4,b+2)10.据报道,投资270亿元的西环高铁预计今年底建成通车,通车后能使西环高铁经过的市县约4360000人受益,数据4360000用科学记数法表示为()A.436×104B.4.36×105C.4.36×106D.4.36×10711.如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为()A.B.C.D.12.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个白球、两个红球.如果一次从袋中摸出两个球,那么摸出的两个球都是红球的概率是()A.B.C.D.13.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对14.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1二、填空题:(本大题满分16分,每小题4分)15.因式分解:m2﹣25=.16.函数y=﹣1中,自变量x的取值范围是.17.如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AC+BD=12,则△OAB的周长为.18.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于C,连结BC、AC,若∠PAC=30°,AC=4,则BC=.三、解答题:(本大题满分62分)19.(1)计算:(﹣2)3÷(﹣4)+()﹣2+(3.14﹣π)0(2)化简:(a+b)2﹣a(2b﹣a)20.2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?21.如图,为了把海口建成全国文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老牛某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),请你根据图中所给的信息解答下列问题:(1)问这一天上午7:00~12:00这一时间段闯红灯人数共有;(2)请你把条形统计图补充完整;(3)在扇形统计图中,a=,b=;(4)7~8点所对应的圆心角是°.22.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).23.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).24.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣1,0)、B(2,3)两点,与y轴交于点C,其顶点为D.(1)求抛物线的函数关系式;(2)设点M(3,m),求使MC+MD的值最小时m的值;(3)若P是该抛物线上位于直线AB上方的一动点,求△APB面积的最大值.2015-2016学年海南省昌江县九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题满分42,每小题3分)1.﹣2016的相反数是()A.B.C.6102 D.2016【考点】相反数.【分析】根据相反数的定义回答即可.【解答】解:﹣2016的相反数是2016.故选;D.2.下列计算正确的是()A.2a5+a5=3a10B.a10÷a2=a8C.(a2)3=a5 D.a2•a3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【解答】解:A、2a5+a5=3a5,故此选项错误;B、a10÷a2=a8,故此选项正确;C、(a2)3=a6,故此选项错误;D、a2•a3=a5,故此选项错误;故选:B.3.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看的俯视图的左边是两个小正方形,右边一个小正方形,故选:A.4.方程x2+2x=0的解是()A.x1=0,x2=2 B.x1=0,x2=﹣2 C.x=2 D.x=﹣2【考点】解一元二次方程-因式分解法.【分析】利用因式分解法把方程转化为x=0或x+2=0,然后解两个一次方程即可.【解答】解:x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2.故选B.5.如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB 交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°【考点】平行线的判定与性质.【分析】根据邻补角的性质与∠1=50°,求得∠BGH=180°﹣50°=130°,由GM平分∠HGB 交直线CD于点M,得出∠BGM的度数,根据同位角相等,两直线平行,得到AB∥CD,从而利用平行线的性质求得∠3的度数.【解答】解:∵∠1=50°,∴∠BGH=180°﹣50°=130°,∵GM平分∠HGB,∴∠BGM=65°,∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠3=∠BGM=65°(两直线平行,内错角相等).故选B.6.不等式组的解集是()A.x>3 B.x<2 C.2<x<3 D.x>2或x<﹣3【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<3,解②得:x>2.则不等式组的解集是:2<x<3.故选C.7.数据:2,﹣1,3,5,6,5的众数是()A.﹣1 B.4 C.5 D.6【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选C.8.分式方程的解为()A.1 B.2 C.3 D.4【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x+6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.故选:C.9.如图,△A′B′O′是由△ABO平移得到的,点A的坐标为(﹣1,2),它的对应点A′的坐标为(3,4),△ABO内仼意点P(a,b)平移后的对应点P′的坐标为()A.(a,b)B.(﹣a,﹣b)C.(a+2,b+4)D.(a+4,b+2)【考点】坐标与图形变化-平移.【分析】根据点A(﹣1,2)平移后的对应点A′的坐标为(3,4),得出△ABO平移的规律,根据此规律即可求出点P(a,b)平移后的对应点P′的坐标.【解答】解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(﹣1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右平移4个单位,再向上平移2个单位,∴△ABO内仼意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).故选D.10.据报道,投资270亿元的西环高铁预计今年底建成通车,通车后能使西环高铁经过的市县约4360000人受益,数据4360000用科学记数法表示为()A.436×104B.4.36×105C.4.36×106D.4.36×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4360 000=4.36×106,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先设CD交AB于点E,根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,再由直角三角形斜边中线的性质可得出∠MCD=∠D,从而求得∠A的度数,也就能得出tanA的值.【解答】解:设CD交AB于点E,∵CM是直角△ABC的中线,∴CM=AM=MB=AB,∴∠A=∠ACM,由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,∴MC=MD,∠A=∠ACM=∠MCD,∵AB⊥CD,∴∠CMB=∠DMB,∠CEB=∠MED=90°,∵∠B+∠A=90°,∠B+∠ECB=90°,∴∠A=∠ECB,∴∠A=∠ACM=∠MCE=∠ECB,∴∠A=∠ACB=30°,∴tanA=tan30°=.故选A.12.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个白球、两个红球.如果一次从袋中摸出两个球,那么摸出的两个球都是红球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两次都摸到红球的情况数占总情况数的多少即可.共有种等可能结果.其中两次取出的小球都是红色的有4种,所以摸出的两个球都是红球的概率==,故选A.13.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.14.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1【考点】反比例函数图象上点的坐标特征.【分析】把点A(﹣1,1)代入函数解析式,即可求得m的值.【解答】解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选B.二、填空题:(本大题满分16分,每小题4分)15.因式分解:m2﹣25=(m+5)(m﹣5).【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(m+5)(m﹣5),故答案为:(m+5)(m﹣5)16.函数y=﹣1中,自变量x的取值范围是x≥0.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方数不能为负数,据此求解.【解答】解:根据题意,得x≥0.故答案为:x≥0.17.如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AC+BD=12,则△OAB的周长为10.【考点】平行四边形的性质;三角形中位线定理.【分析】由平行四边形的性质求出OA+OB=6,证明OE是△ABC的中位线,由三角形中位线定理得出AB=2OE=4,即可得出△OAB的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∴OA+OB=(AC+BD)=6,∵E是BC边上的中点,∴OE是△ABC的中位线,∴AB=2OE=4,∴△OAB的周长=OA+OB+AB=6+4=10,故答案为:10.18.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于C,连结BC、AC,若∠PAC=30°,AC=4,则BC=4.【考点】切线的性质.【分析】由切线的性质易求∠CAO=60°,由圆周角定理可得△ACB是直角三角形,又因为AC的长已知,所以BC的长可求.【解答】解:∵PA切⊙O于点A,∴OA ⊥AB ,∵∠PAC=30°,∴∠CAO=60°,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AC=4,∴BC=AC=4,故答案为:4.三、解答题:(本大题满分62分)19.(1)计算:(﹣2)3÷(﹣4)+()﹣2+(3.14﹣π)0(2)化简:(a+b )2﹣a (2b ﹣a )【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣8÷(﹣4)+9+1=2+9+1=12;(2)原式=a 2+2ab+b 2﹣2ab+a 2=2a 2+b 2.20.2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【考点】二元一次方程组的应用.【分析】设小李预定了小组赛和淘汰赛的球票各x 张,y 张,根据10张球票共5800元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x 张,y 张,由题意得,,解得:. 答:小李预定的小组赛和淘汰赛的球票各8张,2张.21.如图,为了把海口建成全国文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老牛某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),请你根据图中所给的信息解答下列问题:(1)问这一天上午7:00~12:00这一时间段闯红灯人数共有 100 ;(2)请你把条形统计图补充完整;(3)在扇形统计图中,a= 20 ,b= 10 ;(4)7~8点所对应的圆心角是 54 °.【考点】条形统计图;扇形统计图.【分析】(1)根据8~9点闯红灯的人数为25人,占25%,可以求出总人数.(2)分别求出10~11,11~12之间的闯红灯的人数即可画出条形图.(3)根据百分比的定义即可解决问题.(4)利用圆心角=360×百分比计算即可.【解答】解:(1)设闯红灯的人数的总人数为x,∵8~9点闯红灯的人数为25人,占25%,∴=25%,∴x=100,故答案为100.(2)条形图如图所示:(3)∵9~10点闯红灯的人数为20人,∴a%==20%,∴a=20,∵7~8闯红灯的人数为15人,占15%,∴b=100﹣15﹣25﹣20﹣30=10,故答案分别为20,10.(4)7~8点所对应的圆心角:360×15%=54°.故答案为54.22.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.【解答】解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.23.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).【考点】四边形综合题.【分析】(1)通过全等三角形的判定定理ASA证得:△OAE≌△OBG;(2)四边形BFGE是菱形.欲证明四边形BFGE是菱形,只需证得EG=EB=FB=FG,即四条边都相等的四边形是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.由该菱形的性质CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b);然后在Rt△GOE中,由勾股定理可得a=b,通过相似三角形△CGP∽△AGB的对应边成比例得到:==﹣1;最后由(1)△OAE≌△OBG得到:AE=GB,故==﹣1.【解答】(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°.∵BH⊥AF,∴∠AHG=90°,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠GAH=∠OBG,即∠OAE=∠OBG.∴在△OAE与△OBG中,,∴△OAE≌△OBG(ASA);(2)四边形BFGE是菱形,理由如下:∵在△AHG与△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB.∵∠BEF=∠BAE+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE∴EB=FB,∴EG=EB=FB=FG,∴四边形BFGE是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.∵四边形BFGE是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b)∴OG=OE=a﹣b,在Rt△GOE中,由勾股定理可得:2(a﹣b)2=b2,求得a= b∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b∵PC∥AB,∴△CGP∽△AGB,∴===﹣1,由(1)△OAE≌△OBG得AE=GB,∴==﹣1,即=﹣1.24.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣1,0)、B(2,3)两点,与y轴交于点C,其顶点为D.(1)求抛物线的函数关系式;(2)设点M(3,m),求使MC+MD的值最小时m的值;(3)若P是该抛物线上位于直线AB上方的一动点,求△APB面积的最大值.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据轴对称的性质,可得C′点,根据两点之间线段最短,可得M点,根据待定系数法,可得DC′的解析式,根据自变量与函数值的对应关系,可得答案;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+2x+3;(2)如图1,,作C关于x=3的对称点C′,C′点的坐标(6,3).连接C′D,C′D交x=3于M点,设C′D的解析式为y=kx+b,将C′,D的坐标代入函数解析式,得,C′D的解析式为y=﹣x+,当x=3时,y=﹣×3+=,即M点坐标(﹣,);(3)如图2,,AB的解析式为y=kx+b,将A、B点的坐标代入函数解析式,得,解得,AB的解析式为y=x+1,设E点坐标为E(m,m+1),P(m,﹣m2+2m+3),PE═﹣m2+2m+3﹣(m+1)=﹣(m﹣)2+,S△APB=PE(x B﹣x A)=×[﹣(m﹣)2+]×[3﹣(﹣1)]=2×[﹣(m﹣)2+]=2×=.当m=时,S最大2016年4月28日。

九年级数学下学期第一次月考试卷(含解析)

九年级数学下学期第一次月考试卷(含解析)

2015-2016学年云南省曲靖市宣威市热水一中九年级(下)第一次月考数学试卷一、单项选择题(每小题3分,共24分)1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列各式正确的是()A.2a2﹣a2=2 B. += C.()2=25 D. =13.在实数:﹣0.3,,2.010010001…(0的个数依次递增),4.,2π,中,无理数有()A.1 B.2个C.3个D.4个4.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B. C. D.5.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100° B.先左转80°,再右转80°C.先左转80°,再左转100° D.先右转80°,再右转80°6.下列命题是假命题的是()A.同位角相等B.点P(﹣2,x2+1)一定在第二象限C.﹣的相反数是D.数轴上的点与全体实数一一对应7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60° B.50° C.40° D.30°8.2015年“五.四青年节”我校举行八年级文艺表演,表演的舞台是面积约为73平方米的一个正方形.试估计该舞台的边长的大小在()米.A.与之间B.6与7之间C.7与8之间D.8与9之间二、填空题(每小题3分,共24分)9.比较:5 (填“>”或“<”或“=”)10.把命题“对顶角相等”改写成“如果…那么…”的形式:.11.81的算术平方根是.12.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.13.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.14.用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=.15.如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2= °.16.观察思考下列计算过程:∵112=121,∴=11;∵1112=12321,∴=111.猜想:≈(精确到1万).三、解答题17.计算:.18.求下列未知数x的值(1)2x2=6(2)(x﹣1)3﹣8=0.19.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().20.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC 变化位置,并写出A′、B′、C′的坐标.(3)求出S△ABC.21.已知:如图AB∥CD,BE∥CF.试说明:∠1=∠4.22.实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式x2+(a+b+cd)x++的值.23.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.24.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.2015-2016学年云南省曲靖市宣威市热水一中九年级(下)第一次月考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共24分)1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.2.下列各式正确的是()A.2a2﹣a2=2 B. += C.()2=25 D. =1【考点】实数的运算;合并同类项.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用平方根定义计算得到结果,即可做出判断;D、原式利用二次根式性质计算得到结果,即可做出判断.【解答】解:A、原式=a2,错误;B、原式不能合并,错误;C、原式=5,错误;D、原式=1,正确.故选D.3.在实数:﹣0.3,,2.010010001…(0的个数依次递增),4.,2π,中,无理数有()A.1 B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在实数:﹣0.3,,2.010010001…(0的个数依次递增),4.,2π,中,无理数有2.010010001…(0的个数依次递增),2π,故选B4.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B. C. D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.5.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100° B.先左转80°,再右转80°C.先左转80°,再左转100° D.先右转80°,再右转80°【考点】平行线的性质.【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【解答】解:如图所示:A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选B.6.下列命题是假命题的是()A.同位角相等B.点P(﹣2,x2+1)一定在第二象限C.﹣的相反数是D.数轴上的点与全体实数一一对应【考点】命题与定理.【分析】利用同位角的定义,坐标内点的特点,相反数的定义及实数的知识分别判断后即可确定正确的选项.【解答】解:A、两直线平行,同位角才相等,故错误,是假命题;B、点P(﹣2,x2+1)一定在第二象限,正确,是真命题;C、﹣的相反数是,正确,是真命题;D、数轴上的点与全体实数一一对应,正确,是真命题;故选A.7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60° B.50° C.40° D.30°【考点】平行线的性质.【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选D8.2015年“五.四青年节”我校举行八年级文艺表演,表演的舞台是面积约为73平方米的一个正方形.试估计该舞台的边长的大小在()米.A.与之间B.6与7之间C.7与8之间D.8与9之间【考点】估算无理数的大小.【分析】正方形的面积=边长×边长,面积已知,可确定边长.【解答】解:设正方形的边长为a,∴a2=73,∵a>0,∴a=,∵64<73<81,∴,∴边长大小在8和9之间,故选D.二、填空题(每小题3分,共24分)9.比较:5 >(填“>”或“<”或“=”)【考点】实数大小比较.【分析】先把5化为,再比较被开方数的大小即可.【解答】解:∵5=,25>20,∴>,即5>.故答案为:>.10.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.11.81的算术平方根是9 .【考点】算术平方根.【分析】直接利用算术平方根的定义得出答案.【解答】解:81的算术平方根是: =9.故答案为:9.12.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25 .【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.13.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于(3,3).【考点】坐标确定位置.【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:结合图形以“将”(0,0)作为基准点,则“马”位于(0+3,0+3),即(3,3).故答案为:(3,3).14.用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=8 .【考点】实数的运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:※2=2×3+2=6+2=8.故答案为:815.如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2= 50 °.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠可得∠3=∠4,再根据平行线的性质可得∠4=∠3=∠1=65°,再由平角定义可得∠2的度数.【解答】解:根据折叠可得∠3=∠4,∵AB∥CD,∠1=65°,∴∠4=65°,∴∠3=65°,∴∠2=180°﹣65°×2=50°.故答案为:50;16.观察思考下列计算过程:∵112=121,∴=11;∵1112=12321,∴=111.猜想:≈1110000 (精确到1万).【考点】算术平方根.【分析】首先可观察已知等式,发现规律结果中,1的个数与其中间的数字相同,由此即可写出最后结果.【解答】解:∵112=121,∴=11;∵1112=12321,∴=111;由此猜想≈=1111111≈1110000.故答案为:1110000.三、解答题17.计算:.【考点】实数的运算.【分析】此题涉及有理数的乘方、绝对值、算术平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:=2﹣3﹣1﹣(﹣2)=﹣1﹣1+2=018.求下列未知数x的值(1)2x2=6(2)(x﹣1)3﹣8=0.【考点】立方根;平方根.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)方程整理得:x2=3,开方得:x=±;(2)方程整理得:(x﹣1)3=8,开立方得:x﹣1=2,解得:x=3.19.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD =∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD =∠B(等量代换).∴AB∥CD(内错角相等,两直线平行).【考点】平行线的判定与性质.【分析】先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD.【解答】解:答案为:对顶角相等;同位角相等,两直线平行;BFD两直线平行,同位角相等;BFD;内错角相等,两直线平行.20.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC 变化位置,并写出A′、B′、C′的坐标.(3)求出S△ABC.【考点】作图-平移变换.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)△A′B′C′如图所示,A′(1,1),B′(6,4),C′(3,5);(3)S△ABC=5×4﹣×5×3﹣×1×3﹣×2×4,=20﹣7.5﹣1.5﹣4,=20﹣13,=7.21.已知:如图AB∥CD,BE∥CF.试说明:∠1=∠4.【考点】平行线的性质.【分析】根据两直线平行,内错角相等解答即可.【解答】解:∵AB∥CD,∴∠ABC=∠BCD,∵BE∥CF,∴∠2=∠3,∴∠ABC﹣∠2=∠BCD﹣∠3,∴∠1=∠4.22.实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式x2+(a+b+cd)x++的值.【考点】实数的运算.【分析】先根据a、b互为相反数,c、d互为倒数,x的绝对值为得出a+b=0,cd=1,x=±,再代入代数式进行计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值为,∴a+b=0,cd=1,x=±,当x=时,原式=6+(0+1)×+0+1=7+;当x=﹣时,原式=6+(0+1)×(﹣)+0+1=7﹣.23.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.【考点】平行线的性质.【分析】此题要注意由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【解答】解:∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.24.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【考点】平行线的性质.【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.。

九年级数学下学期第一次月考试题(无解答)新人教版

九年级数学下学期第一次月考试题(无解答)新人教版

2015——2016学年度第二学期第一次月考试卷九年级数学(满分120分,考试时间120分钟)一、选择题(本大题共10小题,每题3分,共30分)-=()1.327A.3 B.﹣3 C.﹣2 D.22. 2016年武威市初中毕业生约为47230人,将这个数用科学记数法表示为( )A.4.723×103B.4.723×104C.4.723×105D.0.472×1053.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )4.下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5 D.a3•a4=a125.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15° B.20° C.25° D.30°6.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线互相垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形7.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6C.x(10﹣x)=6 D.x(10﹣2x)=68. 如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF∶S四边形BCED的值为( ) A.1∶3 B.2∶3 C.1∶4 D.2∶59.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2a+b=0;⑤b2<4ac其中正确结论的有( )A. ①②③B. ①③④C. ③④⑤D. ②③⑤10.如图,边长为4的正方形A BCD边上的动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当点P到B点时,P,Q两点同时停止运动.设P点的运动时间为x,△APQ的面积为y,则y与x的函数关系式的图象是( )二、填空题(本大题共10小题,每题3分,共24分)11.分解因式:2a 2﹣4a+2= .12.不等式()2392+≥+x x 的正整数解是 .13.若x 2+4x-4=0,则3x 2+12x-5= . 14.若x x x 211--+有意义,则x 的取值范围为 . 15.已知反比例函数()0≠=k x k y ,当x <0时,y 随x 的增大而减小,那么一次函数y=kx ﹣k 的图象不经过第 象限.16.若041=-+-a b ,且一元二次方程kx 2+ax+b=0有实数根,则k 的取值范围是 .17.如图,已知⊙O 是以坐标原点O 为圆心,1为半径的圆,∠AOB=45°,点P在x 轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设P (x ,0),则x 的取值范围是 .18.为了求1+2+22+23+…+2100的值.可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32016的值是 .三、解答题(一)(本大题共5小题,共26分,解答应写出文字说明,证明过程或演算步骤) 19.(4分)计算:()2-0212016-60sin 22-3⎪⎭⎫ ⎝⎛++︒+π.20.(4分)已知x 是一元二次方程0122=+-x x 的根,求代数式⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.21.(6分)如图,在△ABC 中,∠C=60°,∠A=40°.(1)用尺规作图作AB 的垂直平分线,交AC 于点D ,交AB 于点E (保留作图痕迹,不要求写作法和证明);(2)求证:BD 平分∠CBA.22.(6分)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.23.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,求恰好摸到红球的概率.(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.四、解答题(二)(本大题共5小题,共40分,解答时,应写出必要的文字说明、证明过程或演算步骤)24.(7分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?25.(7分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在坐标轴上,点B 的坐标为(4,2),直线321+-=x y 交AB ,BC 于点M ,N ,反比例函数xk y =的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.26.(8分)如图,将 ABCD 的AD 边延长至点E ,使DE=21AD ,连接CE ,F 是BC 边的中点,连接FD .(1)求证:四边形CEDF 是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE 的长.27.(8分)如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC=BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E 。

九年级下学期第一次月考考试数学试卷+参考答案

九年级下学期第一次月考考试数学试卷+参考答案

九年级下学期第一次月考考试数学试卷一、填空题(本大题共12小题,每小题2分,共24分)1.的相反数是.2.计算:(﹣2)×=.3.若式子在实数范围内有意义,则x的取值范围是.4.化简:(x+1)2﹣2x=.5.若x3=8,则x=.6.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=°.7.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是.8.写一个你喜欢的实数m的值,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.9.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.10.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=°.11.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且AC=6,连结BC,点D为BC的中点.已知点E在直线AC上,△CDE与△ACB相似,则线段AE的长为.12.在△ABC中,AB=AC=5,BC=6,BD平分∠ABC.将△ABD沿BD折叠,点A落在A′处,则△DA′C的面积是.二、选择题(本题共5小题,每小题3分)13.下列运算正确的是()A.x﹣2x=x B.(xy2)0=xy2C.D.14.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1 C.3 D.515.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3 B.C.2 D.16.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>417.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条三、解答题(本题共11小题,共81分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)计算:()﹣1+cos45°﹣(2)化简:(﹣)÷.19.(1)解方程:(2)解不等式组:.20.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.21.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)22.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.23.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C 的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)24.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了米3的天然气;(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;(3)正在排队等候的20辆车加完气后,储气罐内还有天然气米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.25.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存…y x x(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.27.通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③直接写出不等式的解集.28.我们知道平行四边形那有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.结论1:B′D∥AC;结论2:△AB′C与▱ABCD重叠部分的图形是等腰三角形.…请利用图1证明结论1或结论2.【应用与探究】在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,连接B′D.(1)如图1,若AB=,∠AB′D=75°,则∠ACB=,BC=;(2)如图2,AB=2,BC=1,AB′与CD相交于点E,求△AEC的面积;(3)已知AB=2,当BC的长为多少时,△AB′D是直角三角形?九年级(下)第一次月考数学试卷参考答案与试题解析一、填空题(本大题共12小题,每小题2分,共24分)1.的相反数是﹣.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:+(﹣)=0,故的相反数是﹣,故答案为﹣.2.计算:(﹣2)×=﹣1.【考点】有理数的乘法.【分析】根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,即可得出答案.【解答】解:(﹣2)×=﹣1;故答案为:﹣1.3.若式子在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.4.化简:(x+1)2﹣2x=x2+1.【考点】整式的混合运算.【分析】原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=x2+2x+1﹣2x=x2+1.故答案为:x2+15.若x3=8,则x=2.【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2.故答案:2.6.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=50°.【考点】平行线的性质.【分析】由∠BAC=80°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.7.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是5.【考点】众数;算术平均数.【分析】根据平均数为10求出x的值,再由众数的定义可得出答案.【解答】解:由题意得,(2+3+5+5+x)=10,解得:x=35,这组数据中5出现的次数最多,则这组数据的众数为5.故答案为:5.8.写一个你喜欢的实数m的值0,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.【考点】根的判别式.【分析】由一元二次方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集得到m的范围,即可求出m的值.【解答】解:根据题意得:△=1﹣4m>0,解得:m<,则m可以为0,答案不唯一.故答案为:09.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于﹣5.【考点】一次函数图象上点的坐标特征.【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求代数式4a﹣b﹣2的值.【解答】解:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3,∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5.故答案是:﹣5.10.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=35°.【考点】切线的性质;圆周角定理.【分析】连接OC,由PC为圆O的切线,利用切线的性质得到OC与CP垂直,在直角三角形OPC中,利用两锐角互余根据∠CPA的度数求出∠COP的度数,再由OA=OC,利用等边对等角得到∠A=∠OCA,利用外角的性质即可求出∠A的度数.【解答】解:连接OC,∵PC切半圆O于点C,∴PC⊥OC,即∠PCO=90°,∵∠CPA=20°,∴∠POC=70°,∵OA=OC,∴∠A=∠OCA=35°.故答案为:3511.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且AC=6,连结BC,点D为BC的中点.已知点E在直线AC上,△CDE与△ACB相似,则线段AE的长为3或或9或.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】根据E点在直线AC上,得出对应点不同求出的EC长度不同,分别得出即可.【解答】解:∵AB 是半圆O 的直径,∴∠ACB=90°,∵AB=10,AC=6,∴BC==8,∵点D 为BC 的中点,∴CD=4,当DE ∥AB 时,△CED ∽△CAB ,∴=,∴=,解得:EC=3,∴AE=6﹣EC=3,当=,且∠ACB=∠DCE ′时,△CE ′D ∽△CBA ,则=,解得:CE ′=,∴AE ′=6﹣=;当=,且∠ACB=∠DCE 1时,△CE 1D ∽△CBA ,则=,解得:CE 1=,∴AE 1=6+=;当=,且∠ACB=∠DCE ″时,△CE ″D ∽△CBA ,则=,解得:CE ″=3,∴AE ″=6+3=9;综上所述:点E 在直线AC 上,△CDE 与△ACB 相似,则线段AE 的长为3或或9或.故答案为:3或或9或.12.在△ABC中,AB=AC=5,BC=6,BD平分∠ABC.将△ABD沿BD折叠,点A落在A′处,则△DA′C的面积是.【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先运用勾股定理求出AE的长度,进而求出△ABC的面积;求出△DBA′、△CDA′的面积之比;证明△ABD、△A′BD的面积相等,即可解决问题.【解答】解:如图,过点A作AE⊥BC于点E;∵AB=AC,∴BE=CE=3;由勾股定理得:AB2=AE2+BE2,而AB=5,∴AE=4,S△ABC=×6×4=12;由题意得:S△ABD=S,A′B=AB=5,∴CA′=6﹣5=1,∴==,∴若设S=x,则S△ABD=S=5x,故x+5x+5x=12,∴x=,故答案为.二、选择题(本题共5小题,每小题3分)13.下列运算正确的是()A.x﹣2x=x B.(xy2)0=xy2C.D.【考点】二次根式的乘除法;合并同类项;零指数幂.【分析】根据零指数幂,合并同类项,二次根式的乘法,二次根式的性质求出每个式子的值,再判断即可.【解答】解:A、x﹣2x=﹣x,故本选项错误;B、(xy2)0在xy2≠0的情况下等于1,不等于xy2,故本选项错误;C、(﹣)2=2,故本选项错误;D、×=,故本选项正确;故选:D.14.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1 C.3 D.5【考点】二次函数的最值.【分析】先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.【解答】解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.15.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3 B.C.2 D.【考点】圆锥的计算.【分析】用到的等量关系为:圆锥的弧长=底面周长.【解答】解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×6=2πR,∴R=3.故选A.16.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.17.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条【考点】反比例函数的性质.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选A.三、解答题(本题共11小题,共81分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)计算:()﹣1+cos45°﹣(2)化简:(﹣)÷.【考点】实数的运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用立方根定义计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+×﹣3=2+1﹣3=0;(2)原式=•=.19.(1)解方程:(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出解集.【解答】解:(1)去分母得:2x﹣1+x+2=0,解得:x=﹣,经检验,x=﹣是分式方程的解;(2),由①得:x≥1,由②得:x>3,则不等式组的解集为x>3.20.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.【考点】菱形的判定;线段垂直平分线的性质.【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论;(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【解答】(1)证明:∵在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵∠1=∠2,CD=BC,∴AC垂直平分BD,∵OE=OC,∴四边形DEBC是平行四边形,∵AC⊥BD,∴四边形DEBC是菱形.21.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.22.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=55,b=5;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据甲的圆心角度数是108°,求出所占的百分比,再根据总袋数求出甲种大米的袋数,即可求出a、b的值;(2)根据题意得先求出该超市乙种大米中B级大米所占的百分比,再乘以乙种大米的总袋数即可;(3)分别求出超市的甲种大米A等级大米所占的百分比和丙种大米A等级大米所占的百分比,即可得出答案.【解答】解:(1)∵甲的圆心角度数是108°,所占的百分比是×100=30%,∴甲种大米的袋数是:200×30%=60(袋),∴a=60﹣5=55(袋),∴b=200﹣60﹣65﹣10﹣60=5(袋);故答案为:55,5;(2)根据题意得:750×=100(袋),答:该超市乙种大米中有100袋B级大米;(3)∵超市的甲种大米A等级大米所占的百分比是×100%=91.7%,丙种大米A等级大米所占的百分比是×100%=92.3%,∴应选择购买丙种大米.23.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C 的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.24.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了8000米3的天然气;(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;(3)正在排队等候的20辆车加完气后,储气罐内还有天然气9600米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.【考点】一次函数的应用.【分析】(1)根据函数图象可知,8点时储气罐中有2000米3的天然气,8:30时储气罐中有10000米3的天然气,即可得出燃气公司向储气罐注入了8000米3的天然气;(2)根据图象上点的坐标得出函数解析式即可;(3)根据每车20米3的加气量,则可求出20辆车加完气后的储气量,进而得出所用时间.【解答】解:(1)根据图象可得出:燃气公司向储气罐注入了10000﹣2000=8000(米3)的天然气;故答案为:8000;(2)当x≥8.5时由图象可设y与x的函数关系式为y=kx+b,由已知得:,解得,故当x≥8.5时,储气罐中的储气量y(米3)与时间x(小时)的函数关系式为:y=﹣1000x+18500,(3)根据每车20米3的加气量,则20辆车加完气后,储气罐内还有天然气:10000﹣20×20=9600(米3),故答案为:9600,根据题意得出:9600=﹣1000x+18500,x=8.9<9,答:这第20辆车在当天9:00之前能加完气.25.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接CD,由AC是⊙O的直径,可得出∠ADC=90°,由角的关系可得出∠EAC=90°,即得出EA是⊙O的切线,(2)连接BC,由AC是⊙O的直径,可得出∠ABC=90°,由在RT△EAF中,B是EF的中点,可得出∠BAC=∠AFE,即可得出△EAF∽△CBA,(3))由△EAF∽△CBA,可得出=,由比例式可求出AB,由勾股定理得出AE的长.【解答】(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴EA是⊙O的切线.(2)证明:如图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBA=∠ABC=90°∵B是EF的中点,∴在RT△EAF中,AB=BF,∴∠BAC=∠AFE,∴△EAF∽△CBA.(3)解:∵△EAF∽△CBA,∴=,∵AF=4,CF=2.∴AC=6,EF=2AB,∴=,解得AB=2.∴EF=4,∴AE===4,26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存…y x x(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【分析】(1)根据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.【解答】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.27.通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③直接写出不等式的解集.【考点】反比例函数综合题.【分析】(1)直接把A点坐标代入y=ax即可求出a的值;利用反比例函数的图象与正比例函数的图象的交点关于原点对称确定B点坐标;(2)①根据题意得到函数的图象向右平移n(n>0)个单位长度,得到的图象C′的解析式为y=,然后把M点坐标代入即可得到n的值;②根据题意易得图象C′的解析式为y=;图象l′的解析式为y=x﹣1;③不等式可理解为比较y=和y=x﹣1的函数值,由于y=和y=x﹣1为函数的图象和直线AB同时向右平移1个单位长度,得到的图象;而反比例函数的图象与正比例函数y=ax(a≠0)的图象的交点为A(2,2)和B(﹣2,﹣2),所以平移后交点分别为(3,2)和B(﹣1,﹣2),则当﹣1≤x<1或x≥3时,函数y=的图象都在y=x﹣1的函数图象下方.【解答】解:(1)把A(2,2)代入y=ax得2a=2,解得a=1;∵反比例函数的图象与正比例函数y=x的图象的交点关于原点对称,∴B点坐标为(﹣2,﹣2);(2)①函数的图象向右平移n(n>0)个单位长度,得到的图象C′的解析式为y=,把M(2,4)代入得4=,解得n=1;②图象C′的解析式为y=;图象l′的解析式为y=x﹣1;③不等式的解集是:﹣1≤x<1或x≥3.28.我们知道平行四边形那有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.结论1:B′D∥AC;结论2:△AB′C与▱ABCD重叠部分的图形是等腰三角形.…请利用图1证明结论1或结论2.【应用与探究】在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,连接B′D.(1)如图1,若AB=,∠AB′D=75°,则∠ACB=45°,BC=;(2)如图2,AB=2,BC=1,AB′与CD相交于点E,求△AEC的面积;(3)已知AB=2,当BC的长为多少时,△AB′D是直角三角形?【考点】几何变换综合题.【分析】【发现与证明】通过三角形全等即可求得∠ACB′=∠CAD,即可得到结论2;进而根据等腰三角形的性质证得∠ADB′=∠DAC,根据平行线的判定即可证得结论1;【应用与探究】(1)根据对折的性质求得∠AB′C=30°,从而求得∠CB′D=45°,由于B′D∥AC,得出∠ACB′=∠CB′D=45°,进而即可求得∠ACB=45°;作AG⊥BC于G,根据解直角三角形即可求得BC;(2)作CG⊥AB′于G,通过解直角三角形求得CG=,B′G=,进而求得AG=2﹣=,设AE=CE=x,则EG=﹣x,根据勾股定理即可求得x值,即AE的值,然后根据三角形的面积公式即可求得△AEC的面积;(3)先证得四边形ACB′D是等腰梯形,根据等腰梯形的性质得出∠AB′C=∠CDA=30°,∠B′AD=∠DCB′=90°,设∠ADB′=∠CB′D=y,则∠AB′D=y﹣30°,根据∠AB′D+∠ADB′=90°,得出y﹣30°+y=90°,解得y=60°,进而求得∠AB′D=30°,通过解直角三角形即可求得BC.【解答】解:【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.如图1,∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∠B=∠ADC,∵将△ABC沿AC翻折至△AB′C,∴AB′=AB,B′C=BC,∠AB′C=∠B,∴AB′=CD,B′C=AD,∠AB′C=∠ADC,在△AB′C和△CAD中,,∴△AB′C≌△CAD(SAS),∴∠ACB′=∠CAD,设AD、B′C相交于E,∴AE=CE,∴△ACE是等腰三角形,即△AB′C与▱ABCD重叠部分的图形是等腰三角形;∵B′C=AD,AE=CE,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD,∴∠ADB′=∠DAC,∴B′D∥AC;【应用与探究】(1)如图1,∵在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,∴∠AB′C=30°,∵∠AB′D=75°,∴∠CB′D=45°,∵B′D∥AC,∴∠ACB′=∠CB′D=45°,∵∠ACB=∠ACB′,∴∠ACB=45°;作AG⊥BC于G,∴AG=CG,∵∠B=30°,∴AG=AB==,∴CG=,BG==,∴BC=BG+CG=,故答案为:45°,;(2)如图2,作CG⊥AB′于G,∵∠B=30°,∴∠AB′C=30°,∴CG=B′C=BC=,B′G=B′C=BC=,∵AB′=AB=2,设AE=CE=x,则EG=﹣x,∵CG2+EG2=CE2,∴()2+(﹣x)2=x2,解得x=,∴AE=,∴△AEC的面积=AE•CG=××=;(3)如图2,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=2,∴AD=×=2,∴BC=2,当∠ADB′=90°,AB>BC时,如图3,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=2,当∠B′AD=90°AB<BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=2,∴∠AB′C=30°,∴GC=B′C=BC,∴G是BC的中点,在RT△ABG中,BG=AB=×2=3,∴BC=6;当∠AB′D=90°时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=2,∴BC=AB÷=2×=4;∴已知当BC的长为2或3或4或6时,△AB′D是直角三角形.。

2015年九年级数学下学期第一次月考试题及答案

2015年九年级数学下学期第一次月考试题及答案

BCA第7题图考试时间:120 分钟 总分: 120分 班级:___________ 姓名:___________一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.下列四个点中,在反比例函数xy 6=的图像上的是( )A .(1,-6)B .(2,4)C .(3,-2)D .(-6,-1)2.如图,已知:AB 是⊙O 的直径,弦CD ⊥AB ,连结OC 、AD ,∠OCD=32°,则∠A=( ) A .32 B .29 C .58 D .45 3.如果反比例函数xky =的图象如图所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )4.若关于x 的一元二次方程的两个根为11=x ,22=x ,则这个方程是( )A .0232=-+x x B .0232=+-x x C .0322=+-x x D .0232=++x x5.西安火车站的显示屏每隔4分钟显示一次火车车次的信息,显示时间持续1分钟,某人到达火车站时,显示屏正好显示火车车次信息的概率是( )A .61 B .51 C .41 D .316.下列四个命题中,假命题是( )A .两条对角线互相垂直且相等的四边形是正方形B .菱形的一条对角线平分一组对角C .顺次连结四边形的各边中点所得的四边形是平行四边形D .对角线互相平分且相等的四边形是矩形 7.如图, ABC ∆中,A C ﹦5, 22cos =B ,53sin =C ,则ABC ∆的面积为( )A .221B . 12C . 14D . 21第8题图ADB .8.如图,正△ABC 内接于⊙O ,P 是劣弧BC 上任意一点,P A 与BC 交于点E ,有如下结论:① P A =PB +PC , ②111PA PB PC=+;③ P A ·PE =PB ·PC .其中,正确结论的个数为( )。

A .3个 B .2个 C .1个 D .0个9.在ABC Rt ∆中,∠C =90°,5=c ,两直角边b a ,是关于x 的一元二次方程0222=-+-m mx x 的两个根,则ABC Rt ∆中较小锐角的正弦值为( ). A .51B .52C .53D . 54 10.如图,在半圆O 中,AB 为直径,半径OC ⊥OB ,弦AD 平分∠CAB ,连结CD 、OD ,以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;③AB CE CD ⋅=22.其中正确结论有( )A .1个B .2个C .3个D .4个第II 卷(非选择题 共90分)二、填空题(共8小题,每小题3分,计24分) 11.抛物线2241y x x =--+的顶点坐标为_________。

2015-2016武汉九年级元月调考数学试卷及答案分析

2015-2016武汉九年级元月调考数学试卷及答案分析

2015~2016学年度武汉市中心城区和部分城郊区学校九年级元月调研测试数学试卷武昌区、江岸区、江汉区、硚口区、汉阳区、青山区、洪山区、江夏区,高新开发区、经开区、新州区、黄陂区、东西湖区等考试时间:2016年1月21日 考试时间 120分钟,分值120分一、选择题(共10小题,每小题3分,共30分,请把正确答案填在答题卡)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( ) A .-8、-10B .-8、10C .8、-10D .8、10分析考点:一元二次方程的概念难易成度:☆2.如图汽车标志中不是中心对称图形的是( )A .B .C .D .分析考点:中心对称图形的概念 难易成度:☆3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( )A .这个球一定是黑球B .摸到黑球、白球的可能性的大小一样C .这个球可能是白球D .事先能确定摸到什么颜色的球分析考点:概率的概念 难易成度:☆4.抛物线y =-3(x -1)2-2的对称轴是( )A .x =1B .x =-1C .x =2D .x =-2分析考点:抛物线(二次函数的基础)的概念难易成度:☆5.某十字路口的交通信号灯每分钟绿灯亮30秒,红灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率为( ) A .121 B .61 C .125 D .21 分析考点:概率的基础 难易成度:☆6. (2015²常德)如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( )A .50°B .80°C .100°D .130°分析考点:四边形及四点共圆的基础和概念 难易成度:☆7.圆的直径为10 cm ,如果点P 到圆心O 的距离是d ,则( )A .当d =8 cm 时,点P 在⊙O 内B .当d =10 cm 时,点P 在⊙O 上C .当d =5 cm 时,点P 在⊙O 上D .当d =6 cm 时,点P 在⊙O 内分析考点:四点共圆的基础和概念 难易成度:☆8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( ) A .2根小分支 B .3根小分支C .4根小分支D .5根小分支分析考点:概率的基础难易成度:☆9.关于x 的方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m ≤3B .m ≥3C .m ≤3且m ≠2D .m <3分析考点:一元二次方程的概念,根的判别式。

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(第26章反比例函数)总分:120分 时间:90分钟选择题〔共30分〕1,反比例函数xky =,经过〔-3,-5〕则以下各点在这个反比例函数图象上的有〔 〕〔1,15〕 〔-3,5〕 〔3,-5〕 〔1,-15〕 〔-1,-15〕 A. 5个 B. 4个 C. 3个 D. 2个。

2,反比例函数的图象经过点(21)P -,,则这个函数的图象位于〔 〕 A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限3,甲、乙两地相距s 〔km 〕,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t 〔h 〕与行驶速度v 〔km/h 〕的函数关系图象大致是〔 〕C. 它的图象是中心对称图形D. y 随x 的增大而增大5,反比例函数y =xa(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...〔 〕 A.第一象限 B.第二象限 C.第三象限 D.第四象限6,反比例函数y=2x,以下结论中,不正确的选项是.......〔 〕 A .图象必经过点(1,2) B .y 随x 的增大而减少C .图象在第一、三象限内D .假设x >1,则y <27,一次函数y1=x-1与反比例函数y2=x 2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是〔 〕A. x>2B. x>2 或-1<x<0C. -1<x<2D. x>2 或x<-18,函数xk1y -=的图象与直线x y =没有交点,那么k 的取值范围是〔 〕A 、1k >B 、1k <C 、1k ->D 、1k -<9,假设()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为〔 〕 A .b c > B .b c < C .b c = D .无法推断10,假设点(x 0,y 0)在函数y=xk( x <0)的图象上,且x 0y 0=-2,则它的图象大致是 ( )v /(km/h) v /(km/h) v /(km/h)A .B .C .D ..二,填空题〔共24分〕11.反比例函数的图象经过点〔m ,2〕和〔-2,3〕则m 的值为 . 12,如图是反比例函数x m y 2-=的图象,那么实数m 的取值范围是13,如图,在反比例函数2y x=〔0x >〕的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影局部的面积从左到右依次为123S S S ,,,则123S S S ++= .14,如图,在平面直角坐标系中,函数ky x=〔0x >,常数0k >〕的图象经过点(12)A ,,()B m n ,,〔1m >〕,过点B 作y 轴的垂线,垂足为C .假设ABC △的面积为2,则点B 的坐标为 .15,如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为_________________________.16,如下图的是函数y kx b =+与y mx n =+的图象,求方程组y kx by mx n=+⎧⎨=+⎩的解关于原点对称2y x=xyOP 1P 2P 3P 4 1234yOC A (1,2)B (m ,)y xOy OxyOx yOxy OA PC Q B(第15题图)的点的坐标是 ;在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.三,解答题〔共66分〕17〔6分〕假设一次函数y =2x -1和反比例函数y =2kx的图象都经过点〔1,1〕. 〔1〕求反比例函数的解析式;〔2〕点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;18,〔6分〕为预防“手足口病〞,某校对教室进行“药熏消毒〞.药物燃烧阶段,室内每立方米空气中的含药量y 〔mg 〕与燃烧时间x 〔分钟〕成正比例;燃烧后,y 与x 成反比例〔如下图〕.现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答以下问题:〔1〕求药物燃烧时y 与x 的函数关系式.〔2〕求药物燃烧后y 与x 的函数关系式. 〔3〕当每立方米空气中含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?19,〔6分〕如图,点A 〔m ,m +1〕,B 〔m +3,m -1〕都在反比例函数xky =的图象上. 〔1〕求m ,k 的值; 〔2〕如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 试求直线MN 的函数表达式.20〔8分〕:如图,反比例函数的图象经过点A B 的纵坐标为1,点C 的坐标为〔2,0〕. 〔1〕求该反比例函数的解析式; 〔2〕求直线BC 的解析式.21,〔8分〕一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,OB =B 横坐标是点B 纵坐标的2倍. 〔1〕求反比例函数的解析式;〔2〕设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量的取值范围.22〔10分〕一次函数与反比例函数的图象交于点(3)(23)P m Q --,,,.〔1〕求这两个函数的函数关系式;〔2〕在给定的直角坐标系〔如图〕中,画出这两个函数的大致图象; 〔3〕当x 为何值时,一次函数的值大于反比例函数的值?当x 为何值时, 一次函数的值小于反比例函数的值?23〔10分〕一次函数y kx b =+的图象与反比例函数my x =的图象相交于A 、B 两点〔1〕根据图象,分别写出A 、B 的坐标; 〔2〕求出两函数解析式;〔3〕根据图象答复:当x 为何值时, 一次函数的函数值大于反比例函数的函数值 24,〔12分〕:等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为〔33,3-〕,点B 的坐标为〔-6,0〕.〔1〕假设三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标;〔2〕假设将三角形OAB 沿x 轴向右平移a 个单位,此时点A恰好落在反比例函数63y x=的图像上,求a 的值;参考答案一,选择题:1,D 2,C 3,C 4,D 5,C 6,B 7,B 8,A 9,A 10,B 二,填空题11,-3 12,m >2 13,23 14,(3,32)15,k=3,Q(2,23) 16,(-3,-4) ,二、四三,解答题17,〔1〕y=x 1 (2) A(-21,-2)18,(1)y=x 54 (2)y=x 80(3) 50(mim)19,(1)由m(m+1)=(m+3)(m-1) 得m=3, k=12;(2)直线AB 的解析式为:632+-=x y , AB=13,MN ∥AB 且MN=AB ,NM所以,MN :b x y +-=32,所以N 〔0,b 〕 M(b 23,0)所以,13)23(22=+b b ,得b=±2,所以满足条件的MN 的解析式为:232+-=x y 或232--=x y 。

2016年宝丰县五校联考九年级下第一次月考数学试卷含答案解析

2016年宝丰县五校联考九年级下第一次月考数学试卷含答案解析

2016年宝丰县五校联考九年级下第一次月考数学试卷含答案解析一、选择题 比-2小的数是( )看 C . 0 D . 1 示,该几何体是(3.地球上水的总储量1.39X 1018m3,但目前能被人们生产、生活利用 的水只占0.77%,即约为1.07X 1018m3,因此我们要节约用水.请写出 0. 0107X 1018的用科学记数法表示为( ).107X 1017 C . 10.7X 1015 D . 1.07X 1017的解集在数轴上表示正确的是丄B . - - ■. .. 'C ..5.将函数y=- 3x 的图象沿y 轴向下平移2个单位长度后,所得图象对应的函数关系式为()A.y=3x+2 B .y= - 3x - 2 C . y=- 3 (x+2)D . y= - 3 (x - 2)顺次连接正六边形的三个不相邻的顶点.得到如图所示的图形,该A .既是轴对称图形也是中心对称图形 B. 是轴对称图形但并不是中心对称图形 C .是中心对称图形但并不是轴对称图形 D .既不是轴对称图形也不是中心对称图形 7.某中学篮球队12名队员的年龄如下表所示:年龄(岁)15 16 17 181 主 -A图 2亠列各数中 . 3 .某几何体的三视图如图所图形)龄的众数和平均数分不是( )C. 16, 16 D . 16, 16.5内接于O O ,点P 在劣弧AB 上,连接DP ,P=QO ,则厂的值为( )二、填空题..9. 函数一'中,自变量x 的取值范畴是 10. (-「)- 2-( 3.14-n ) 0= 11. 分解因式:2b2 - 8b+8=12. 如 图,直线 AB // CD ,/ E=90°,Z A=25。

,则/ C=B 两个端点的坐标分不为 A (4, 4),B (6, 2),以 [第一象限内将线段AB 缩小为原先的二后得到线段C「 .:14 .如图,在矩形ABCD 中,AD=4 , DC=3,将△ ADC 绕点A 按逆时 针方向旋转 扫过的X I 33=-51- 9-31- T5+ …+「 I =则讣屮心+5“B . 15,16 阳正方形ABCD A .「- B 「 C .V3W2 D. V3+213.如图,线段A 原点O 为位似中心,在 D ,贝卩端点C 的坐标为AEF A 、B 、E 在同一直线上),则AC 在运动过程中所人数4 5 2A Q .若8交A三、解答题(本题共8个小题,共75 分) 16. 先化简,再求值: -17.—(址—1),其中x=2 —伍.已知关于血的一元二次方程(猖压鎗/蕊諧,p 为实数.(1) 求证:方 (2) p20%个不相等的实数根; 一直截了当写出三个,方程有整数解”. 2101402014 年类.按照调 140不需讲明理由)18. 按照某网站教育、环保、反腐及其他 图表如下: T按照所给信息解答下列咨询题: (1) 请补全条形统计图并在图中标明相应数据;(2) 若荷泽市约有880万人口,请你估量最关注环保咨询题的人数约 为多少万人? (3) 在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育咨询 题,现预备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法 求抽取的两人恰好是甲和乙的概率. 19. 如图,已知函数y 二一 (x >0)的图象通过点A 、B ,点A 的坐标为 (1, 2)过点A 作AC // y 轴函数的图象交于点 D ,过点B 作BE 丄CD ,垂足E 在线段C 、OD .CD 的面积;BE= AC 时,,求-------------------------------------------------------------------------------------------------------- ”CD // xD 上,连接~o轴, 1) 求 2题分不有:消费、调查^部分有^^据^绘制^统计 ,AC=1 (点C 位于点A 的下方),过点C 作CE 的长.20.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD 的A 、C 两点处测得该塔顶端F 的仰角分不为/a =48°,Zp =65°,矩形建筑 物宽度AD=20m ,高度DC=33m .运算该信号发射塔顶端到地面的高度 FG (结果精确到1m ).〜0.7, tan48°~ 1.1, sin65°21 .某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发觉一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资二底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2) —段时刻后,公司规定:“每名工人每月必须加工A , B两种型号的服装,且加工A型服装数量许多于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判定该公司在执行规定后是否违抗了广告承诺?22. [咨询题探究】(1)如图1,锐角△ ABC中分不以AB、AC为边向外作等腰厶ABE 禾口等腰厶ACD,使AE=AB , AD=AC,/ BAE= / CAD,连接BD , CE,试猜想BD与CE的大小关系,并讲明理由.[深入探究】(2)如图2,四边形ABCD 中,AB=7cm , BC=3cm,/ ABC= / ACD =/ADC=45 ° /求如图^D的长.ffil23. 如图,抛物线y=ax2+bx-忑通过点A (1, 0)和点B(5, 0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的O A,求。

山东省枣庄届九级下第一次月考数学试卷含答案解析

山东省枣庄届九级下第一次月考数学试卷含答案解析

2015-2016学年山东省枣庄五中九年级(下)第一次月考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列运算正确的是()A.3x2﹣2x2=x2B.(﹣2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a﹣1 2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°3.如图是每个面上都有一个汉字的正方体的一种侧面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A.我B.爱C.枣D.庄4.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x(1+30%)×80%=2080 B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%5.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.36.抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()A.﹣2 B.2 C.15 D.﹣157.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为()A.16 B.12 C.8 D.48.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()A.B.C.D.9.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2 B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm210.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1 B.y=2x﹣2 C.y=2x+1 D.y=2x+211.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cm B.(6﹣2)cm C.3cm D.(4﹣6)cm12.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()A.(2,0)B.(4,0)C.(﹣,0) D.(3,0)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.化简的结果是.14.已知a、b为两个连续的整数,且,则a+b=.15.已知关于x的方程x2+mx﹣6=0的一个根为2,则这个方程的另一个根是.16.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是.17.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.18.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组.并把解集在数轴上表示出来..20.(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)先化简,再求值:÷,其中x=﹣5.21.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)22.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD∥BC且使AD=BC,连接CD;(2)线段AC的长为,CD的长为,AD的长为;(3)△ACD为三角形,四边形ABCD的面积为;(4)若E为BC中点,则tan∠CAE的值是.23.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.24.如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.25.如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x﹣h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)求h、k的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由.2015-2016学年山东省枣庄五中九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列运算正确的是()A.3x2﹣2x2=x2B.(﹣2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a﹣1【考点】完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据完全平方公式、去括号、合并同类项及幂的乘方,对已知的算式和各选项分别整理,然后选取答案即可.【解答】解:A、3x2、2x2带有相同系数的代数项;字母和字母指数;故A选项正确;B、根据平方的性质可判断;故B选项错误;C、根据完全平方公式:(a±b)2=a2±2ab+b2;故C选项错误;D、根据去括号及运算法则可判断;故D选项错误.故选:A.2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等作答.【解答】解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.3.如图是每个面上都有一个汉字的正方体的一种侧面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A.我B.爱C.枣D.庄【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“丽”是相对面,“我”与“庄”是相对面,“美”与“枣”是相对面.故选C.4.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x(1+30%)×80%=2080 B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%【考点】由实际问题抽象出一元一次方程.【分析】设该电器的成本价为x元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,x(1+30%)×80%=2080.故选A.5.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【分析】根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.【解答】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;故选:A.6.抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()A.﹣2 B.2 C.15 D.﹣15【考点】二次函数图象上点的坐标特征;代数式求值.【分析】根据图象上点的性质,将(2,4)代入得出4a+2b=7,即可得出答案.【解答】解:∵y=ax2+bx﹣3过点(2,4),∴4=4a+2b﹣3,∴4a+2b=7,∴8a+4b+1=2×7+1=15,故选:C.7.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为()A.16 B.12 C.8 D.4【考点】概率公式.【分析】首先设黄球的个数为x个,根据题意,利用概率公式即可得方程:=,解此方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得:=,解得:x=4.故选:D.8.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()A.B.C.D.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】连接CD,由∠COD为直角,根据90°的圆周角所对的弦为直径,可得出CD为圆A的直径,再利用同弧所对的圆周角相等得到∠CBO=∠CDO,在直角三角形OCD中,由CD及OC的长,利用勾股定理求出OD的长,然后利用余弦函数定义求出cos∠CDO的值,即为cos∠CBO的值.【解答】解:连接CD,如图所示:∵∠COD=90°,∴CD为圆A的直径,即CD过圆心A,又∵∠CBO与∠CDO为所对的圆周角,∴∠CBO=∠CDO,又∵C(0,5),∴OC=5,在Rt△CDO中,CD=10,CO=5,根据勾股定理得:OD==5,∴cos∠CBO=cos∠CDO===.故选B9.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2 B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【考点】平方差公式的几何背景.【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选B.10.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1 B.y=2x﹣2 C.y=2x+1 D.y=2x+2【考点】一次函数图象与几何变换.【分析】根据函数图象平移的法则进行解答即可.【解答】解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x﹣1),即y=2x﹣2.故选B.11.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cm B.(6﹣2)cm C.3cm D.(4﹣6)cm【考点】平移的性质.【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D 即可.【解答】解:∵AB=12cm,∠A=30°,∴BC=AB=×12=6cm,由勾股定理得,AC===6cm,∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,∴B′C′=BC=6cm,∴AB′=AC﹣B′C′=6﹣6,过点B′作B′D⊥AC交AB于D,则B′D=AB′=×(6﹣6)=(6﹣2)cm.故选B.12.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()A.(2,0)B.(4,0)C.(﹣,0) D.(3,0)【考点】等腰三角形的判定;坐标与图形性质.【分析】先根据勾股定理求出OA的长,再根据①AP=PO;②AO=AP;③AO=OP分别算出P点坐标即可.【解答】解:点A的坐标是(2,2),根据勾股定理可得:OA=2,①若AP=PO,可得:P(2,0),②若AO=AP可得:P(4,0),③若AO=OP,可得:P(2,0)或(﹣2,0),∴P(2,0),(4,0),(﹣2,0),故点P的坐标不可能是:(3,0).故选D.二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.化简的结果是m.【考点】分式的混合运算.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.14.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.15.已知关于x的方程x2+mx﹣6=0的一个根为2,则这个方程的另一个根是﹣3.【考点】根与系数的关系.【分析】设方程的另一根为a,由一个根为2,利用根与系数的关系求出两根之积,列出关于a的方程,求出方程的解得到a的值,即为方程的另一根.【解答】解:∵方程x2+mx﹣6=0的一个根为2,设另一个为a,∴2a=﹣6,解得:a=﹣3,则方程的另一根是﹣3.故答案为:﹣316.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是﹣1<x <3.【考点】二次函数与不等式(组).【分析】根据二次函数的性质得出,y<0,即是图象在x轴下方部分,进而得出x的取值范围.【解答】解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.17.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为16πcm2.【考点】垂径定理的应用;切线的性质.【分析】设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),以及勾股定理即可求解.【解答】解:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16πcm2.故答案是:16π.18.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组.并把解集在数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解每一个不等式,再求解集的公共部分即可.【解答】解:不等式①去分母,得x﹣3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1﹣3x+3<8﹣x,移项,合并得x>﹣2,∴不等式组的解集为:﹣2<x≤1.数轴表示为:20.(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)先化简,再求值:÷,其中x=﹣5.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂和零指数幂的意义进行计算,即可得出结果;(2)首先根据分式的混合运算进行计算化简,再代入求值即可,注意因式分解.【解答】解:(1)(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0=﹣8+3﹣5+1=﹣9;(2)÷,=×=当x=﹣5时,原式==21.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)【考点】解直角三角形的应用.【分析】(1)在RT△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在RT△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.【解答】解:(1)∵在RT△ACD中,AC=45cm,DC=60cm,∴AD==75,∴车架档AD的长为75cm,(2)过点E作EF⊥AB,垂足为点F,∵AE=AC+CE=45+20(cm)∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63cm,∴车座点E到车架档AB的距离是63cm.22.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD∥BC且使AD=BC,连接CD;(2)线段AC的长为2,CD的长为,AD的长为5;(3)△ACD为直角三角形,四边形ABCD的面积为10;(4)若E为BC中点,则tan∠CAE的值是.【考点】勾股定理;勾股定理的逆定理;作图—基本作图;锐角三角函数的定义.【分析】(1)根据题意,画出AD∥BC且使AD=BC,连接CD;(2)在网格中利用直角三角形,先求AC2,CD2,AD2的值,再求出AC的长,CD的长,AD的长;(3)利用勾股定理的逆定理判断直角三角形,再求出四边形ABCD的面积;(4)把问题转化到Rt△ACF中,利用三角函数的定义解题.【解答】解:(1)如图;(2)由图象可知AC2=22+42=20,CD2=12+22=5,AD2=32+42=25,∴AC=2,CD=,AD=5;故答案为:2,,5;(3)∵AD2=CD2+AC2,∴△ACD是直角三角形.四边形ABCD的面积为2×(2×÷2)=10;故答案为:直角,10;(4)由图象可知CF=2,AF=4,∴tan∠CAE==.故答案为:.23.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【考点】扇形面积的计算;等腰三角形的性质;切线的判定;特殊角的三角函数值.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.=.∴S扇形BOC在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为:.24.如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和,可得答案.【解答】解:(1)如图:,tan∠AOE=,得OE=6,∴A(6,2),y=的图象过A(6,2),∴,即k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,解得n==﹣3,∴B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y=﹣1;(2)当x=0时,y=﹣1,∴C(0,﹣1),当y=﹣1时,﹣1=,x=﹣12,∴D(﹣12,﹣1),s OCBD=S△ODC+S△BDC=+|﹣12|×|﹣2|=6+12=18.25.如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x﹣h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)求h、k的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据“左加右减,上加下减”的平移规律即可得到h、k的值;(2)根据(1)题所得的抛物线的解析式,即可得到A、C、D的坐标,进而可求出AC、AD、CD的长,然后再判断△ACD的形状;(3)易求得B点的坐标,即可得到AB、AC、OA的长;△AOM和△ABC中,已知的相等角是∠OAM=∠BAC,若两三角形相似,可考虑两种情况:①∠AOM=∠ABC,此时OM∥BC,△AOM∽△ABC;②∠AOM=∠ACB,此时△AOM∽△ACB;根据上述两种情况所得到的不同比例线段即可求出AM的长,进而可根据∠BAC的度数求出M点的横、纵坐标,即可得到M点的坐标.【解答】解:(1)∵y=x2的顶点坐标为(0,0),∴y=(x﹣h)2+k的顶点坐标D(﹣1,﹣4),∴h=﹣1,k=﹣4(2)由(1)得y=(x+1)2﹣4当y=0时,(x+1)2﹣4=0x1=﹣3,x2=1∴A(﹣3,0),B(1,0)当x=0时,y=(x+1)2﹣4=(0+1)2﹣4=﹣3∴C点坐标为(0,﹣3)又∵顶点坐标D(﹣1,﹣4)作出抛物线的对称轴x=﹣1交x轴于点E作DF⊥y轴于点F在Rt△AED中,AD2=22+42=20在Rt△AOC中,AC2=32+32=18在Rt△CFD中,CD2=12+12=2∵AC2+CD2=AD2∴△ACD是直角三角形;(3)存在.由(2)知,OA=3,OC=3,则△AOC为等腰直角三角形,∠BAC=45°;连接OM,过M点作MG⊥AB于点G,AC=①若△AOM∽△ABC,则,即,AM=∵MG⊥AB∴AG2+MG2=AM2∴OG=AO﹣AG=3﹣∵M点在第三象限∴M();②若△AOM∽△ACB,则,即,∴AG=MG=OG=AO﹣AG=3﹣2=1∵M点在第三象限∴M(﹣1,﹣2).综上①、②所述,存在点M使△AOM与△ABC相似,且这样的点有两个,其坐标分别为(),(﹣1,﹣2).2016年4月20日。

2015-2016学年九年级(下)第一次月考数学试卷(解析版)

2015-2016学年九年级(下)第一次月考数学试卷(解析版)

原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。

柳宗元师院附中李忠海2015-2016学九年级(下)第一次月考数学试卷一、选择题。

1.﹣3的倒数为()A.﹣3 B.﹣ C.3 D.2.关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值是()A.2 B.﹣2 C.4 D.﹣4[来源:学。

科。

网Z。

X。

X。

K]3.计算(﹣2a)2﹣3a2的结果是()A.﹣a2 B.a2 C.﹣5a2 D.5a24.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C 的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm5.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°7.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()[来源:学科网ZXXK]A.13 B.11 C.11 或13 D.12或158.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大9.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A.B.C.D.10.在平面直角坐标系中,正方形的顶点坐标分别为 A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点 P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称轴P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2016的坐标为()A.(0,)B.(2,0)C.(0,﹣2)D.(﹣2,0)二、填空题。

人教版九年级数学下册2015-2016学年九年级下学期5月月考数学试卷及答案

人教版九年级数学下册2015-2016学年九年级下学期5月月考数学试卷及答案

人教版九下5月月考数学试卷一、选择题:1、在实数-3,2,0,-1中,最大的实数是()A、-3B、2C、0D、-12、式子在实数范围内有意义,则x的取值范围是()A、x≥-2B、x≤-2C、x<-2D、x>-23、把3x-x分解因式正确的是()A、x (1-x2)B、x()21-x C、x(x+1)(x-1)D、(x2+1)(x-1)4、学校为了丰富学生课余活动开展了一次朗读比赛,共有18名同学入围,他们的决赛成绩如下表:那么这18明同学绝赛成绩的中位数和众位数分别是()A、9.70,9.60B、9.60,9.60C、9.60,9.70D、9.65,9.605、下列计算正确的是()A、3a2-2a=aB、()532a8-a2-=C、126a2a2÷=63a D、a-(1+a)= -16、如图,正方形BODC的顶点C的坐标是(3,3),以原点O为位似中心,将正方形BODC缩小后得到正方形CODB'',点C的对应点C'的坐标为(-1,-1),那么点D的对应点D'的坐标为()A、(-1,0)B、(0,-1)C、(1,0)D、(0,1)yxOC′D′B′CDB7、由六个大小相同的正方体组成的几何体如图所示,它的俯视图是()DCBA把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y 关于x的函数关系如图所示,则甲车的速度是____________米/秒.15. 如图,直线y=21x+4交x轴于点B,交y轴于点A,双曲线y=xk交直线于C、D,若CD=2AC,则k =____________AODCB xy16、如图,△ABC中,∠A=60º,C∠=20º,D是BC的中点,E是AC上一点,CD=CE,若ABCS∆+2CDES∆=23,则AC=___________EDBAC三、解答题17. 已知一次函数y=kx-2的图像经过点(-3,4)(1)求这个一次函数的解析式(2)求关于x的不等式kx-k≤6的解集18. 已知△ACE中,AC=CE,F、D是AE上的点,CF=CD,AB∥CE交CD的延长线于B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年五校联考九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确选项)1.2015的相反数是()A.B.﹣C.2015 D.﹣2015 2.2015年初,一列CRH5型高速车组进行了“300000公里正线运动考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×105B.3×104C.0.3×105D.30×1043.下列计算正确的是()A.a2a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=14.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落5.若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对6.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2﹣3 B.y=(x+2)2+3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣38.若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣69.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.10.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)二、填空题(本大题共6小题,每小题4分,共24分)11.在函数中,自变量x的取值范围是.12.分解因式:a2﹣4b2=.13.一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是.14.设x1、x2是一元二次方程x2﹣5x﹣1=0的两实数根,则x12+x22的值为.15.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.16.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB 于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.三、解答题(本大题共10小题,共86分)17.计算:|﹣3|﹣(5﹣π)0+.18.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.19.解不等式组,并将解集在数轴上表示出来.20.解分式方程:+=1.21.为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有人.22.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.23.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.24.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?25.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.26.如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.2015-2016学年五校联考九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确选项)1.2015的相反数是()A.B.﹣C.2015 D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.2015年初,一列CRH5型高速车组进行了“300000公里正线运动考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×105B.3×104C.0.3×105D.30×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300000=3×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.a2a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=1【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法运算法则和幂的乘方运算以及同底数幂的除法运算法则分别计算得出即可.【解答】解:A、a2a3=a5,正确;B、a2+a3无法计算,故此选项错误;C、(a3)2=a6,故此选项错误;D、a3÷a2=a,故此选项错误.故选:A.【点评】此题主要考查了同底数幂的乘法运算和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法则是解题关键.4.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落【考点】随机事件.【分析】必然事件是指一定会发生的事件.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.故选:D.【点评】本题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.5.若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对【考点】绝对值.【分析】根据题意取a=2,b=﹣3,求出a+b=﹣1,再比较即可.【解答】解:∵|b|>|a|,且a>0,b<0,∴取a=2,b=﹣3,∴a+b=﹣1,故选A.【点评】本题有理数的大小比较的应用,采取了取特殊值法.6.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.7.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2﹣3 B.y=(x+2)2+3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3 【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(x+2)2﹣3.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣6【考点】反比例函数图象上点的坐标特征.【分析】先把点(a,b)代入反比例函数y=求出ab的值,再代入代数式进行计算即可.【解答】解:∵点(a,b)反比例函数y=上,∴b=,即ab=2,∴原式=2﹣4=﹣2.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.9.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】压轴题.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题;规律型.【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B2015的坐标.【解答】解:∵OA1=1,∴点A1的坐标为(1,0),∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1),∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2=,∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得,B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B2015的坐标是(22014,22014).故选:A.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题4分,共24分)11.在函数中,自变量x的取值范围是x≥4.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x﹣4≥0,解得x≥4,则自变量x的取值范围是x≥4.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【考点】因式分解-运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).【点评】本题考查运用平方差公式进行因式分解,熟记公式结构是解题的关键.13.一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是120.【考点】中位数.【分析】根据中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,进行求解即可.【解答】解:按大小顺序排列为:100,100,120,125,135,中间一个数为120,这组数据的中位数为120,故答案为120.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.14.设x1、x2是一元二次方程x2﹣5x﹣1=0的两实数根,则x12+x22的值为27.【考点】根与系数的关系.【分析】首先根据根与系数的关系求出x1+x2=5,x1x2=﹣1,然后把x12+x22转化为x12+x22=(x1+x2)2﹣2x1x2,最后整体代值计算.【解答】解:∵x1、x2是一元二次方程x2﹣5x﹣1=0的两实数根,∴x1+x2=5,x1x2=﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=25+2=27,故答案为:27.【点评】本题主要考查了根与系数的关系的知识,解答本题的关键是掌握一元二次方程两根之和与两根之积与系数的关系,此题难度不大.15.已知二次函数y=(x﹣2)2+3,当x≤2时,y随x的增大而减小.【考点】二次函数的性质.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x≤2时,y的值随着x的值增大而减小;当x≥2时,y的值随着x的值增大而增大.故答案为:≤2.【点评】本题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.16.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB 于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=3.【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.【点评】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象与解析式的求法;熟练掌握矩形的性质和反比例函数解析式的求法是解决问题的关键.三、解答题(本大题共10小题,共86分)17.计算:|﹣3|﹣(5﹣π)0+.【考点】实数的运算;零指数幂.【分析】先根据绝对值,零指数幂,二次根式的性质求出每一部分的值,再代入求出即可.【解答】解:原式=3﹣1+5=7.【点评】本题考查了绝对值,零指数幂,二次根式的性质的应用,能求出每一部分的值是解此题的关键,难度适中.18.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:【点评】本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.20.解分式方程:+=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共40人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为72度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有300人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图可知喜欢“社科类”的有5人,根据在扇形图中占12.5%可得出调查学生数;(2)根据条形图可知喜欢“文学类”的有12人,即可补全条形统计图;(3)计算出喜欢“艺术类”的人数,根据总人数可求出它在扇形图中所占比例;(4)用该年级的总人数乘以“文史类”的学生所占比例,即可求出喜欢的学生人数.【解答】解:(1)5÷12.5%=40(人)答:此次被调查的学生共40人;(2)40﹣5﹣10﹣8﹣5=12(人)(3)8÷40=20%360°×20%=72°答:扇形统计图中,艺术类部分所对应的圆心角为72度;(4)1200×=300(人)答:若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】列表得出所有等可能的情况数,找出数字之和大于5的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为:=,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】(1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;(2)根据顶点纵坐标得出b=1,再利用最小值得出c=﹣1,进而得出抛物线的解析式.【解答】解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x2﹣2x+2;(2)∵定点抛物线的顶点坐标为(b,c+b2+1),且﹣1+2b+c+1=1,∴c=1﹣2b,∵顶点纵坐标c+b2+1=2﹣2b+b2=(b﹣1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=﹣1,∴抛物线的解析式为y=﹣x2+2x.【点评】本题考查抛物线的形状与抛物线表达式系数的关系,首先利用顶点坐标式写出来,再化为一般形式.24.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.25.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数y=,即可得出k,两个函数解析式联立求得点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=,得k=3,∴反比例函数的表达式y=,两个函数解析式联立列方程组得,解得x1=1,x2=3,∴点B坐标(3,1);(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0),S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=.【点评】本题考查了一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x轴或y轴分割为2个三角形的面积和.26.如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由折叠和矩形的性质可知∠EDB=∠BCE=90°,可证得∠EDO=∠DBA,可证明△ABD∽△ODE;(2)由条件可求得OD、OE的长,可求得抛物线解析式,结合(1)由相似三角形的性质可求得DA、AB,可求得F点坐标,可得到BF=DF,又由直角三角形的性质可得MD=MB,可证得MF为线段BD的垂直平分线,可证得结论;(3)过D作x轴的垂线交BC于点P,设抛物线与x轴的两个交点分别为M、N,可求得DM=DN=DG,可知点M、N为满足条件的点Q,可求得Q点坐标.【解答】方法一:(1)证明:∵四边形ABCO为矩形,且由折叠的性质可知△BCE≌△BDE,∴∠BDE=∠BCE=90°,∵∠BAD=90°,∴∠EDO+∠BDA=∠BDA+∠DAB=90°,∴∠EDO=∠DBA,且∠EOD=∠BAD=90°,∴△ABD∽△ODE;(2)证明:∵=,∴设OD=4x,OE=3x,则DE=5x,∴CE=DE=5x,∴AB=OC=CE+OE=8x,又∵△ABD∽△ODE,∴==,∴DA=6x,∴BC=OA=10x,在Rt△BCE中,由勾股定理可得BE2=BC2+CE2,即(5)2=(10x)2+(5x)2,解得x=1,∴OE=3,OD=4,DA=6,AB=8,OA=10,∴抛物线解析式为y=﹣x2+x+3,当x=10时,代入可得y=,∴AF=,BF=AB﹣AF=8﹣=,在Rt△AFD中,由勾股定理可得DF===,∴BF=DF,又M为Rt△BDE斜边上的中点,∴MD=MB,∴MF为线段BD的垂直平分线,∴MF⊥BD;(3)解:由(2)可知抛物线解析式为y=﹣x2+x+3,设抛物线与x轴的两个交点为H、G,令y=0,可得0=﹣x2+x+3,解得x=﹣4或x=12,∴H(﹣4,0),G(12,0),①当PD⊥x轴时,由于PD=8,DH=DG=8,故点Q的坐标为(﹣4,0)或(12,0)时,△PDQ是以P为直角顶点的等腰直角三角形;②当PD不垂直于x轴时,分别过P,Q作x轴的垂线,垂足分别为N,I,则Q不与G重合,从而I不与G重合,即DI≠8.∵PD⊥DQ,∴∠QDI=90°﹣∠PDN=∠DPN,∴Rt△PDN∽Rt△DQI,∵PN=8,∴PN≠DI,∴Rt△PDN与Rt△DQI不全等,∴PD≠DQ,另一侧同理PD≠DQ.综合①,②所有满足题设条件的点Q的坐标为(﹣4,0)或(12,0).方法二:(1)略.(2),设OE=3a,OD=4a,∴DE=CE=5a,∴OE=AB=8a,由(1)知:,∴AD=6a,∴OA=BC=10a,∵BE=5,∴(5a)2+(10a)2=(5)2,∴a=1,∴E(0,3),∴y=﹣,∴D(4,0),∵B(10,8),∴F(10,),∵M为BE的中点,∴M(5,),∴KBD×KMF==﹣1,∴MF⊥BD.(3)设P(t,8)(0<t<10),∵D(4,0),∵PD⊥DQ,PD=PQ,∴△PDQ是以点D为直角顶点的等腰直角三角形,①点Q可视为点P绕点D顺时针旋转90°而成,将D点平移至原点,D′(0,0),则P′(t﹣4,8),将P′点绕原点顺时针旋转90°,则Q′(8,4﹣t),将D′点平移至D点,则Q′平移后即为Q(12,4﹣t),把Q(12,4﹣t)代入抛物线,∴﹣=4﹣t,∴t=4,∴Q(12,0);②点Q可视为点P绕点D逆时针旋转90°而成,同理可得:Q(﹣4,0),综合①,②所有满足题设条件的点Q的坐标为(﹣4,0)或(12,0).【点评】本题主要考查二次函数的综合应用,涉及矩形的性质、折叠的性质、相似三角形的判定和性质、垂直平分线的判定和抛物线与坐标轴的交点等知识.在(1)中利用折叠的性质得到∠EDB=90°是解题的关键,在(2)中,求得E、F的坐标,求得相应线段的长是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性很强,难度适中.。

相关文档
最新文档