B磁性物理基础-2ppt课件

合集下载

磁学基础知识PPT课件

磁学基础知识PPT课件

1.1 磁学基础-基本磁性参量
电磁学的单位由于历史的原因曾有过多种,有静电制
(CGSE),静磁制(CGSM) ,高斯制,以及目前规定通用的
国际单位制(MKSA),加之历史上对磁性起源有过不同的
认识,至目前为止,磁学量单位的使用上仍存在着一些混乱,
较早的文献多使用高斯制,目前虽多数文献采用了国际单位
χ
χ 反映物质磁化的难易程度。
H
第9页/共73页
1.1 磁学基础-基本磁性参量
磁导率μ
磁感应强度: B (特斯拉) 磁场强度: H (安/米)
B
磁化强度: M (安/米)
M
物质磁化后的总磁场为B:
B=μ0(H+M)
B = μ0 (1+ χ )H
μ
B=μH
= B/H
B M
Hs H
ቤተ መጻሕፍቲ ባይዱ
H
第10页/共73页
这时磁性体内部的有效磁场为:
H eff H ex H d
第16页/共73页
均匀磁化的磁性体中外磁场、退磁场、有效 磁场三者关系示意图
H eff H ex N M
--
Hd
-
-
Heff
M
Hex
+ + + +
第17页/共73页
旋转椭球形状样品的磁化 是均匀的,我们选取坐标 系与椭球的主轴重合,则
H
k k
k k
抗磁性具有普遍性
:磁矩 :附加磁矩 k:向心力 k :附加向心力
物质是否表现出抗磁性要看物质的抗 磁场是否大于其顺磁场
第28页/共73页
1.3 磁学基础-物质磁性的分类
由于原子间的交换作用使原子磁矩发生有序的 排列,产生自发磁化,铁磁质中原子磁矩都平 行排列 (在绝对零度时)

《大学物理磁学》ppt课件

《大学物理磁学》ppt课件
《大学物理磁学》 ppt课件
目录
• 磁学基本概念与原理 • 静电场中的磁现象 • 恒定电流产生磁场及应用 • 电磁波与光波在磁学中的应用 • 铁磁物质及其性质研究 • 现代磁学发展前沿与挑战
01
磁学基本概念与原理
磁场与磁力线
01 磁场
由运动电荷或电流产生的特殊物理场,具有方向 和大小,可用磁感线描述。
通过分析带电粒子在静电场中的运动规律,可以 03 了解电场分布和粒子性质等信息。
静电场和恒定电流产生磁场比较
静电场和恒定电流都可以产生磁场,但它们产 生的磁场具有不同的特点。
静电场产生的磁场是瞬时的,随着静电场的消 失而消失;而恒定电流产生的磁场是持续的, 只要电流存在就会一直产生磁场。
此外,静电场和恒定电流产生的磁场在分布、 强度和方向等方面也存在差异。
02 磁力线
形象描述磁场分布的曲线,其切线方向表示磁场 方向,疏密程度表示磁场强度。
03 磁场的基本性质
对放入其中的磁体或电流产生力的作用。
磁感应强度与磁通量
磁感应强度
描述磁场强弱和方向的物理量,用B表示, 单位为特斯拉(T)。
磁通量
描述穿过某一面积的磁感线条数的物理量,用Φ表 示,单位为韦伯(Wb)。
电磁铁
利用恒定电流产生的磁场来制作电磁 铁,用于吸附铁磁性物质或作为电磁
开关等。
电磁炉
利用恒定电流产生的交变磁场来加热 铁质锅具,从而实现对食物的加热和
烹饪。
电机与发电机
电机是将电能转换为机械能的装置, 而发电机则是将机械能转换为电能的 装置。它们的工作原理都涉及到恒定 电流产生的磁场。
磁悬浮列车
利用恒定电流产生的强磁场来实现列 车的悬浮和导向,具有高速、安全、 舒适等优点。

磁性物理学第一章物质磁性概述-磁性物理

磁性物理学第一章物质磁性概述-磁性物理
顺磁性物质举例
如氧、铝、铂等金属,以及某些非金属如氮、氧等。
顺磁性特点
顺磁性物质的磁化率比抗磁性物质大,但仍然是微弱的。它们同样 不会自发磁化,且在外磁场撤去后无剩磁。
铁磁性物质
01
铁磁性定义
铁磁性是指物质在外磁场作用下,能产生很强磁化现象,且可以自发磁
化形成磁畴。
02
铁磁性物质举例
如铁、钴、镍及其合金等。
物质磁性影响因素分
04

温度对物质磁性影响
居里温度
物质磁性随温度变化的重要参数,当温度高于居里温度时,铁磁性物质转变为顺 磁性。
磁化率与温度关系
对于顺磁性物质,磁化率随温度升高而降低;对于铁磁性物质,在居里温度以下 磁化率随温度升高而降低,在居里温度以上转变为顺磁性。
压力对物质磁性影响
压力效应
磁性分类
根据物质在磁场中的表现,可分为铁 磁性、亚铁磁性、反铁磁性、顺磁性 和抗磁性等。
物质磁性来源
电子自旋磁矩
电子自旋产生的磁矩是物质磁性的主要来源。
电子轨道磁矩
电子绕原子核运动时产生的磁矩,对物质磁性有 贡献但通常较小。
原子核自旋磁矩
原子核自旋产生的磁矩,对物质磁性的贡献极小, 通常可忽略不计。
尔元件等,实现非接触式测量和自动控制。
磁记录材料应用领域
硬盘驱动器
磁记录材料用于制造硬盘驱动器的存储介质,实现数据的长期可 靠存储。
磁带
利用磁记录材料的磁化特性,制造磁带等线性存储设备,用于数 据的备份和归档。
磁卡
磁记录材料用于制造各种磁卡,如信用卡、门禁卡等,实现身份 识别和交易安全。
总结与展望
物质在压力作用下,原子间距减小,电子云重叠增加,导致 交换作用增强,从而影响物质的磁性。

九年级物理电与磁2(PPT)3-3

九年级物理电与磁2(PPT)3-3

地磁场
地理北极=地磁南极
应用指南针:南极指南方,北极指北方
宜在~℃条件下生长,幼苗可耐℃以上的高温;直根膨大期的适宜温度是~8℃。胡萝卜对光照有较高的要求,特别在肉质根肥大期间,一定要保证其充足的 光照,否则就会降低产量、影响质量。种植期间要保证土壤湿润,特别是发芽期更是不能缺水,植株形成期若土壤过干,会造成肉质根细小、粗糙,外形不 正,质地粗硬。胡萝卜适宜生长;十四五规划 产业园区规划 / 十四五规划 产业园区规划 ; 在土层深厚肥沃、排水良好的壤土或沙 壤土中。为让根部有充裕的生长空间,栽培容器至少要cm宽,高度至少要~cm。 [] 分布范围 胡萝卜是全球性十大蔬菜作物之一,适应性强,易栽培,种植 十分普遍。胡萝卜在亚洲、欧洲和美洲地区分布最多。根据联合国粮食与农业组织(FAO)统计,年全世界胡萝卜的栽培总面积为.万公顷,其中亚洲为.万公 顷,欧洲为8.万公顷,北美洲为.万公顷,南美洲为.万公顷,非洲为.万公顷,大洋洲为.万公顷。近几年,除了亚洲栽培面积増幅较快之外,其他洲变化较小。 年中国胡萝卜栽培面积达到.万公顷,约占全世界栽培面积的.%,已成为世界第一胡萝卜生产国。 [] 主要品种 根据肉质根的形状特征,一般可分为以下三种 类型: ⑴短圆锥类型。一般根长~cm,最短的根近圆形,长仅~cm。早熟、耐热、产量低,春季栽培抽薹迟。如烟台三寸胡萝卜,外皮及内部均为橘红色, 单根重~g,肉厚、心柱细、质嫩、味甜,宜生食。 [] ⑵长圆柱类型。晚熟,根细长,肩部粗大,根前端钝圆,一般根长8~cm。如南京、的长红胡萝卜, 湖北麻城棒槌胡萝卜,安徽肥东黄胡萝卜,西安齐头红,岐山透心红,凤翔透心红,广东麦村胡萝卜,日本五寸参等。 [] ⑶长圆锥类型。一般根长~cm, 多为中、晚熟品种,味甜,耐贮藏。如宝鸡新透心红,鞭杆红,济南蜡烛台,内蒙古黄萝卜,烟台五寸胡萝卜,汕头红胡萝卜,红芯~号等。 [] 红森 属杂 交品种,芯细,根色、芯色不仅着色好,而且有甜味,口感好;根形呈长圆筒形。中熟品种,吸肥性强,耐寒性优,青肩的发生极少;即使在~月晚收品质 也很好。须根少,表面非常光滑。 [] 日本杂交胡萝卜 根形好,直筒形,收尾好,春季不易抽薹,耐裂根,田间保 红森和日本杂交胡萝卜 红森和日本杂交胡 萝卜(张) 持力好;根色浓,红心,表皮光滑,品质非常优秀;播种后天可采收,根长8~cm,肩宽cm,单果重g左右;株型直立,长势强,耐寒性强,高抗 黑枯病;适应性强,可春夏秋播种。 [] 植株长势强,生育前期适度控制水肥,密植易造成徒长,根部肥大期应注意生长管理;生育期中等,待根部稳

B磁性物理基础-2ppt课件

B磁性物理基础-2ppt课件
例如血红蛋白中的Fe2+无氧配位(静脉血)是高自旋态, 显现顺磁性;有氧配位(动脉血)是低自旋态,显現抗磁性。
15
二、顺磁性
顺磁性物质的原子或离子具有一定的磁矩,这些原子磁
矩耒源于未满的电子壳层(例如过渡族元素的3d壳层)。在顺磁 性物质中,磁性原子或离子分开的很远,以致它们之间没有
明显的相互作用,因而在没有外磁场时,由于热运动的作用,
l=r+1
0
l=r
2m0H
2 1 l=0
在外磁带H 作用下电子能带汇 聚成能级的情况。
把z的求和改成在动量空间中的积
分,通过计算,最后得到的相和为:
z
eVH h2c
2p mkT sinh mB H
kT
11
由于热力学势 d MdH SdT
NkT ln z
所以可得到
M NkT d ln z
垂直于磁场的平面内,产生园周运动。把园周运动分解成
两个相互垂直的线偏振周期运动(设分别沿x轴和y轴的周期
线性振动,动量p2=p2x+p2y)。这样的线性振子所具有的分
立能谱为
En
(n
1 2
)hH
其中,nv为整数,H为回旋共振频率,可以求出 ħH=2mBH,正是拉莫尔进动频率的两倍(|H|=2|L|).
6
假定电子轨道半径为r(m)的园,磁场H(Am-1)垂直于轨 道平面,根据电磁感应定律,将产生电场E(Vm-1)
因而
电子被电场加速,在时间间隔Δt内速度的变化Δυ
由下式给出 轨道绕磁场进动但不改变轨道形状,进动的角速度为
运动产生的磁矩为
7
对闭合壳层的情况下,电子分布在半径为a(m)的球表面, r2=x2+y2,而z轴平行于磁场。考虑到球对称, x 2 y 2 z 2 a2 / 3

磁学与磁性材料基础知识PPT课件

磁学与磁性材料基础知识PPT课件

l
F=mH H
低能量态
F=mH -m
+m F=mH
H
12
▼磁化曲线
1.2 材料的磁化
磁化曲线是表示磁感应强度B和磁化强度M与磁场强度H之间的非线性关系
图为铝镍钴合金的磁化曲线
13
▼磁滞回线
M=0时的矫顽力, 称为内禀矫顽力
Br,Mr表示剩磁
B=0时的矫顽力, 称为磁通矫顽力
矫顽力是表征材料在磁化以后保持磁化状态的能力
通常将BHC<80~800Am-1的材料为软磁材料;将BHC>8103~8105 的材料称为硬磁材料;介于1~20kA m-1之间的为半硬磁材料
14
退磁曲线
退磁曲线上每一点的B和H的乘积(BH)为磁能积, 表征永磁材料中能量大小的物理量。 (BH)的最大值为最大磁能积(BH) max
15
1.3 磁性和磁性材料分类
2
磁极和电流周围都存在磁场,磁场可以用磁力线表示:
磁力线特点:
从N极出发,进入与其最邻近的S极,并形成闭合回路; 通常呈直线或曲线,不存在呈直角拐弯的磁力线; 任意二条同向磁力线之间相互排斥,因此不存在相交的磁力线;
3
▼磁偶极子和磁矩
如果一个小磁体能够用无限小的电流回路
+m
来表示,我们就称为磁偶极子。用磁偶极
第Hale Waihona Puke 章 磁学基础知识★ 静磁现象
磁矩 磁化强度M 磁场强度H和磁感应强度B 磁化率和磁导率 退磁场 静磁能
★ 材料的磁化 磁化曲线
磁滞回线
物质的磁性分类
★ 磁性与磁性材料的分类
磁性材料分类
1
▼磁场
1.1 静磁现象
电荷周围存在电场,可以用电力线来表示

《大学物理磁学》课件

《大学物理磁学》课件
核磁共振谱(NMR)
利用核自旋磁矩进行研究物质结构和化学键的谱学技术。NMR可应用于有机化学、药物化学、石油化 工等领域,用于分析分子结构和化学反应机理。
磁性材料在电子器件中的应用
磁性材料
具有铁磁、亚铁磁等性质的金属和非金属材 料,如铁、钴、镍及其合金。磁性材料具有 高磁导率、低矫顽力等特点,广泛应用于电 子器件中。
洛伦兹力,用于描述磁场对运动电荷的作用。
磁场对电流的作用
安培力,用于描述磁场对电流的作用。
磁场对磁体的作用
磁体之间的相互作用力,与磁体的磁感应强度和距离 有关。
02
磁场与电流
奥斯特实验与安培环路定律
奥斯特实验
揭示了电流的磁效应,即电流能在其 周围产生磁场。
安培环路定律
描述了电流与磁场之间的关系,即磁 场线总是围绕电流闭合。
铁磁性
铁、钴、镍等金属具有显著的铁磁性,其内部原子、分子的自旋磁矩在一定条件 下自发排列形成磁畴。
磁畴结构
铁磁体内部存在许多自发磁化的小区域,称为磁畴。不同磁畴的磁化方向不同, 导致宏观上铁磁体的磁化强度呈现出复杂的空间分布。
磁记录与磁头技术
磁记录
利用磁介质记录信息的技术,通过改变 磁介质表面的磁场方向实现信息的存储 。
详细描述
磁场对光的干涉和衍射具有重要影响。在磁场作用下,光的干涉和衍射现象会发生变化,表现为干涉条纹的移动 和衍射角的改变。这些现象在物理学中具有重要的应用价值,如光学仪器设计、光谱分析和量子力学等领域。
05
磁学的应用
磁力机械与磁力悬浮
磁力机械
利用磁场力实现机械运动的装置,如磁力泵、磁力传动器等。磁力机械具有无接触、无摩擦、低能耗等优点,广 泛应用于化工、制药、石油等领域。

初中物理 磁现象2 人教版优秀课件

初中物理  磁现象2 人教版优秀课件

4、磁疗治病和保健。
核磁共振机
ห้องสมุดไป่ตู้
作业:书上练习
有人说,想要看一个人是否优秀,那就看他闲下来做什么。 这世上有人忙里偷闲,利用坐车和排队的间隙,读书,思考,写作,也有人终日无所事事,虚度光阴。
闲,并不是一个人的福气。相反,废掉一个人最快的方式就是让他闲下来。 正如罗曼·罗兰所说:“生活中最沉重的负担不是工作,而是无聊。” 01 闲着闲着,一个人就废了。
3、磁极间的相互作用规律是什么? 4、磁化是什么?什么是永磁体?磁性材料是什么? 磁性材料可分为哪两大类?
5、磁性材料有哪些用途?除课本上的例子外,你 还能举一些应用吗?
动手动脑
通过做实验解决下面的问题: • 1、磁体能够吸引哪些东西? • 2、磁体上的吸引能力的强弱处处一样吗? • 3、“指南针”是如何得名的? • 4、磁体间一定相互吸引吗? • 5、铁钉可以变成磁铁吗?
谢谢观赏 有的人就像那个石阶,有的人就像那个石佛。前者以为自己经历了无情的社会生活压力给予他们的困难,而觉得自己应该理所应当的得到他所应当得到的,因为他们“经历过了”,而事实却是他们在等待着这个回报,他们与目标的距离始终还是很遥远,丝毫没有一丝的拉近,他们便对社会、对上苍充满了抱怨,充满了厌恶,他们自认为觉得自己已经吃过苦,为什么还不能成功,为什么还不能得到他们想得到的呢?他们便在厌恶的同时去羡慕那些像石佛一样的人。而后者像石佛一样的人,他们经历了多少,谁能知道,他们花了多少个日日夜夜、春夏秋冬才能成为如此气势宏伟、受人尊敬的石佛,大家看到的只是他的结果而没有在乎他的过去和成功的过程。与石佛的成长经历相比,石阶算的上什么呢? 彼时才发现,面临初出茅庐的年轻人,自己的体力和脑力都已经拼不过,几年来累积下来的阅历和经验没有转化成核心竞争力。 毕业八年的她被迫重返人才市场,但彼时的她与毕业时相比毫无长进,面试屡屡碰壁。 像我这样优秀的人 本该灿烂过一生 怎么二十多年到头来 还在人海里浮沉”徐志摩曾说过:“一生中至少该有一次,为了某个人而忘记了自己,不求结果,不求同行,不求曾经拥有,甚至不求你爱我,只求在我最美的年华里,遇见你。”我不知道自己是何等的幸运能在茫茫人海中与你相遇?我也不知道你的出现是恩赐还是劫?但总归要说声“谢谢你,谢谢你曾来过……” 还记得初相识时你那拘谨的样子,话不是很多只是坐在那里听我不停地说着各种不着边际的话。可能因为紧张我也不知道自己想要表达什么?只知道乱七八糟的在说,而你只是静静地听着,偶尔插一两句。想想自己也不知道一个慢热甚至在不熟的人面前不苟言笑的我那天怎么会那么多话?后来才知道那就是你给的莫名的熟悉感和包容吧! 有一句话说:“人的一生会遇到两个人,一个惊艳了时光,一个温柔了岁月。” 惊艳了时光的那个人,是青春回忆里最绚烂、最耀眼的存在,不后悔跟他经历过的快乐与感动,哪怕后来的大风大浪都是他给的,但还是想对他说,有生之年,欣喜相逢。 你给过我太多的快乐和感动,太多的收获和意外,也有太多的心酸和坎坷。可总归你来过我的生命,也带给我许多的美好和小幸福。我不知道是怎样的缘分让我们相遇,可我都不想去追究了,因为我相信每一种遇见,都有意义,每一个爱过的人,都有记忆。无论怎样,都是幸运的,因为你带给了我一些特殊的感受,以至于每次回味起来,都觉得人生是精彩的。 我始终还记得那年夏天你为了在我路过的城市见我冒着大雨开车几百公里,只为在车站短短的停留……我也记得在街头只因我看了一眼那各式的冰糖葫芦,你穿越熙攘的人群排队为我拿回最后一个糖葫芦欣喜的样子,不是爱吃甜食的我那晚一口气吃掉了那个糖葫芦,而你看着我憋得满嘴和通红的脸只是宠溺的笑笑……我还记得因为我随口一说自己都没在意的东西而你却把它买回来了,就在有次离别的车站,当我不告而别你知道后发疯的电话、视频和在机场着急的身影,手里还提着我自己也不知道什么时候说过的东西时我就知道你就是那个惊艳了时光也温柔了我曾经岁月的人。 “路漫漫其修远兮,吾将上下而求索”人生的路坎坎坷坷,舍与得在一念之间,我也曾满怀期待所有的相遇与分别是事出有因或者可以久别重逢。可怎奈,当再次面临抉择时才知道有的相遇只是漫漫人生路上的一个劫,一份缘的未尽而已…… 谢谢你来过,谢谢你给过我那么多,也谢谢你给我那些惊艳的时光!很知足过去有你陪伴的时光,很怀念那些和你一起走过的日子。未来我不知道该怎么取舍,我也不知道以后又会怎样?可无论是什么我都不会后悔认识你了,无论你带给我的是恩赐还是劫难我都不后悔了,至少我感受过你的温柔,拥有过你的怀抱,也和你十指相扣的走过了一段路。所以,以后无论怎样你都是我不经意间想起和思念的人。 谢谢你来过!不管你是否真的快乐?不管岁月是否善待你我,也不管能否一直有你带给我的小确幸,还是谢谢你!谢谢你带给我的幸运,谢谢你曾为了我付出了全部的时间与爱,也谢谢你给我的岁月平淡和温情有于…… 没有太多的修饰,只是很庆幸曾经你也是我的“那个他”。谢谢你来过,谢谢你让我觉得我不会孤单,谢谢你用漫漫柔情,温暖了我的生命。你给的美好,我会悉数珍藏,用力保护的。 以后也许三里清风,三里路,步步清风再无你。可也无悔你来过!人生的路你陪我一程,我念你一生……… 谢谢你来过!往后余生愿安好!感恩相遇,感恩来过…… 学生时代成绩名列前茅,总有那么一门成绩骄傲到炉火纯青,无论怎样的方程式,或者怎样的考点总会被一眼看穿。我们被其他同学艳羡着,同时,自己又在一边窃喜着。在别人眼里,就是优秀。 说点不自谦的话,高中的时候写作文,运气好,将自己的情绪挥洒在字里行间,总能被语文老师选中当做范文,然后我站在讲台上跟同学分享,课后之余,还被同学借走传阅。也就是那个时候,我特别羡慕饮酒作诗的李白,所有的情仇爱恨都可以在诗歌里表达的隐晦而自由,洒脱而豪迈。于是,在我的文字里,也有另一种故事,只是他人看不穿,也看不懂,所以会觉得那是一幅画,抽象的画。我想,那时候,或许也是优秀吧。 曾经也会有许多种想法,想要学习李白,想要成为张小娴,想着也许会阳光明媚的过这一生,可惜,那时候年轻到连想法都天马行空,这一辈子太久了,久到80集的电视连续剧都播放不完,又怎么做到像李白一样满腹经纶,又怎么成为张小娴一样看透所有的爱情。所以,这20多年以来,还是依然在车水马龙人潮拥挤的城市里浮沉。 过年回家的时候,跟几个初中同学聚会,大家在谈论起现在的职业时,其中一位男生满脸的自豪和看透一切的表情让我对他印象深刻。无论侃侃而谈的背后是怎样的一种辛酸和付出,但至少在谈天说地的时候他带给我们的是正能量,

第1章磁学与磁性材料基础知识PPT课件精选全文完整版

第1章磁学与磁性材料基础知识PPT课件精选全文完整版

( )
H
d
=
NxM xi
+ NyMy
j
+ NzMzk
( )
Fd
=
1 2
m0
N
x
M
2 x
+
N
yM
2 y
+
NzM
2 z
N x + N y + N z = 1
球体:Fd = (1/ 6)m0M 2
( ) 细长圆柱体:Fd = (1/ 4)m0 M x2 + M y2
薄圆板片:Fd = (1/ 2)m0M z2
适用条件:磁体内部均匀一致,磁化均匀。
16
1.2. 材料的磁化
▼磁化曲线
表示磁场强度H与所感生的B或M之间的关系 O点:H=0、B=0、M=0,磁中性或原始退磁状态 OA段:近似线性,起始磁化阶段 AB段:较陡峭,表明急剧磁化 H<Hm时,二曲线基本重合。 H>Hm后,M逐渐趋于一定值 MS(饱和磁化强度),而B 则仍不断增大(原因?) 由B-H(M-H)曲线可求 出μ或 χ
FeO, MnO, NiO, CoO, Cr2O3, FeCl2, FeF2, MnF2, FeS, MnS
右图是1938 年测到的MnO 磁化率温度曲线,它是被 发现的第一个反铁磁物质, 转变温度 122K。
38
T
p
该表取自Kittel 书2005中文版p236,从中看出反铁磁物质的 转变温度一般较低,只能在低温下才观察到反铁磁性。
2
磁极和电流周围都存在磁场,磁场可以用磁力线表示:
磁力线特点:
从N极出发,进入与其最邻近的S极,并形成闭合回路; 通常呈直线或曲线,不存在呈直角拐弯的磁力线; 任意二条同向磁力线之间相互排斥,因此不存在相交的磁力线;

磁的基本概念ppt课件

磁的基本概念ppt课件
学习方法
掌握单位的物理意义,由于电磁学的单位经常用 科学家的名字命名的因此不容易记忆与换算, 如韦伯、奥斯特、特斯拉、高斯、亨利和安培等;
学会联想学习,与电路的概念,力学的概念, 能量等进行联想学习,因为我们已经有很好 的物理基础(力学,电学两大门类);
始终以变化的概念对待磁的问题,不变就没有 工程应用价值,即始终不忘记频率这个参数。
3 磁与电之间的关系服从两个基本定律: 全电流定律(安培环路定律)——沿闭合
回路磁场强度的线积分等于闭合回路包围 的电流的代数和。
• 电磁感应定律(法拉第定律和楞次定律)——
一个线圈包围的磁通发生变化时,在线圈端产 生感应电势,感应电势如果产生感应电流,此 电流产生的磁场阻止线圈包围的磁通变化。
径的积分的值,等于 乘 以0 该闭合路径所包围的各电流
的代数和.
n
Bdl l
0
Ii
i1
注意
电流I 正负的规定: I 与l 成右螺旋时,I 为正;
反之为负.
1.3.5 电磁感应定律
研究方法:实验方法,抓住磁通变 化这个核心问题讨论.
公式表明:单匝线圈匝链的磁通在1 秒内变化1Wb时,线圈端电压 为1V。
m 4π Oe 1Gs 104T
1Oe 100 A / m 0.4
1Gs10 T 0
1 Gs Oe
10 4 04.4
100
4 10 7 H
/ cm
1Oe 100A/m
0.4
0
Gs 104 0.4
1 Oe 100
4 107 H / m
空气的相对导磁率: 0 1
真空中的安培环路定理
在真空的稳恒磁场中,磁感应强度 B沿任一闭合路
.

磁性材料基础知识 ppt课件

磁性材料基础知识 ppt课件

磁路的欧姆定律:
FNiHlB l lS R m m
磁路的欧姆定律:
Bl l
FNiHl S R m m
自感 L Ψ i N iΦ N (F i m ) N (N i m )i N 2 m
N ——线圈匝数
Λm——自感磁通所经磁路的磁导
自感的大小与匝数的平方和磁路的 磁导成正比;
铁心线圈的自感要比空心线圈的大 得多;
类 硬(永)磁材料 Hc>1000A/m(12.5Oe)
按化学组成分类: 金属(合金);无机(氧化物);有机化合物
按维度分类: 纳米(零维;一维;二维);微晶;非晶;块体
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
3.2 磁场高斯定律
1、内容
通过任意闭合曲面的磁通量必等于零。
2、解释
BdS0
S
磁感应线是闭合的,因此 有多少条磁感应线进入闭 合曲面,就一定有多少条
磁感应线穿出该曲面。 B
S
B
3、说明
•磁场是无源场; 电场是有源场 •磁极相对出现,不存在磁单极; 单独存在正负电荷
3.3 安培环路定理
1、内 容 B
V
A A·mm -1 1
J m和M亦有如下关系:
Jm=µ0M
2.1 磁性来源
(a)无外磁场情况
铁磁材料内部的 磁畴排列杂乱无章, 磁性相互抵消,因此
对外不显示磁性。
磁畴是怎 么形成的

铁磁材料之所以具有高导磁 性,是因为在它们的内部具有 一种特殊的物质结构—磁畴。
(b)有外磁场情况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂直于磁场的平面内,产生园周运动。把园周运动分解成
两个相互垂直的线偏振周期运动(设分别沿x轴和y轴的周期
线性振动,动量p2=p2x+p2y)。这样的线性振子所具有的分
立能谱为
En (n 12)hH
其中,nv为整数,H为回旋共振频率,可以求出
ħH=2mBH,正是拉莫尔进动频率的两倍(|H|=2|L|).
B.磁性物理的基础
三、物质的各种磁性
.
物质磁性分类的原则
A.是否有固有原子磁矩?B.是否有相互作用? C.是什么相互作用?
1. 抗磁性:没有固有原子磁矩 2. 顺磁性:有固有磁矩,没有相互作用 3. 铁磁性:有固有磁矩,直接交换相互作用 4. 反铁磁性:有固有磁矩,间(直)接交换相互作用 5. 亜铁磁性:有固有磁矩,间接交换相互作用 6. 自旋玻璃和混磁性:有固有磁矩,RKKY相互作用 7. 超顺磁性:磁性颗粒的磁晶各向异性与热激发的
因而 r2x2y22/3a2
单位体积里含有N个原子,每个原子有Z个轨道电子时,
磁化率为:
a2是对所有轨道电子运
动半径a2的平均。
a
.
1.2 金属的抗磁性
许多金属具有抗磁性,而且一般其抗磁磁化率 不随温度变化。
金属抗磁性来源于导电电子。根据经典理论, 外加磁场不会改变电子系统的自由能及其分布函数, 因此磁化率为零。
竞争
.
物质磁性分类的方法:
物质在磁场下的行为—磁化曲线可以作为物质磁性分类的方法
抗磁性: <0
M H
--------物质的磁化率
在与外磁场相反的方向诱导出磁化强度的现象称为抗磁性。它出现在没有
原子磁矩的材料中,其抗磁磁化率是负的,而且很小。-10-5。 顺磁性: >0
物质的原子或离子具有一定的磁矩,这些原子磁矩 耒源于未满的电子壳层,但由于热骚动处于混乱状态, M 在磁场作用下在磁场方向产生磁化强度,但磁化强度 很小。10-5-10-2
M 混磁性
零场冷却
0
N
T
0
M
铁磁性
Tc居里点
P顺磁居里点
1/
T
H=0 自旋玻璃
H≠0 Tf冻结温度
0
Tc P T
.
0
Tf
T
一、抗磁性
在与外磁场相反的方向诱导出磁化强度的现象称 为抗磁性。
它出现在没有原子磁矩的材料中,其抗磁磁化 率是负的,而且很小,~ -10-5。
产生的机理:
外磁场穿过电子轨道时,引起的 电磁感应使轨道电子加速。根据楞 次定律,由轨道电子的这种加速运 动所引起的磁通,总是与外磁场变 化相反,因而磁化率是负的。
.
金属的抗磁磁化率和电子磁化率(单位:emu/mol)
金属
铜Cu 银Ag 金Au
D (原子态)
-5.4x10-4 -21.56x10-4
-18.0x10-4 -31.0x10-4 -45.8x10-4
(价电子)
+12.4x10-6 +4-9x10-6 +14x10-6
MNmBcothmkBTHmkBTH
( Z为系统相和 )
由于kT ≫mBH,展开上式,取二项,可得抗磁磁化率
DM H1 3V Nk mB 2T1 3nkmB 2 T
n为单位体积电子数。
.
上式给出的抗与T有关,这与事实不符,原因是电子气不遵从 玻耳兹曼统计,而是服从费密(Fermi)统计。不是所有电子都参与
.
由于电子沿z轴的运动不受磁场影响,所以总动能
E2pm z2 2mBH(nv
1) 2
这种部分量子化,相当于把H=0的连续谱变成
带宽为2mBH的窄带称为朗道能级。
根据统计物理,能量为En的态的数目为gn
个,因而系统相和为
z
geEn/kT n
n
其中En为总能量,考虑动量空间计算gn可表示为
2eV gn h2c Hdpz
经典的图象:
在外磁场作用下形成的环形电流在金 属的边界上反射, 因而使金属体内的 抗 磁性磁矩为表面“破折轨道”的反向磁矩 抵消。
.
朗道指出:
在量子力学理论内,这个结论是不正确的。他首先证
明,外磁场使电子的能量量子化,从连续的能级变为不连 续的能级,而表现出抗磁性。
导电电子在外磁场作用下,运动轨道变为螺旋形状,在
铁磁性: >>0
铁磁性 顺磁性
物质中原子有磁矩;原子磁矩之间有相互作 用。原
子磁矩方向平行排列,导致自发磁化。外磁场作用下,
快速趋向磁场方向,在磁场方向有很大的磁化强度。
.
H
抗磁性
各种磁性的典型M-T , -T 关系
顺磁性
亜铁磁性
M
c补偿点
Tc居里点
1/
0
T
反铁磁性
N耐耳点
0
c Tc T
磁场冷却
.
假定电子轨道半径为r(m)的园,磁场H(Am-1)垂直于轨 道平面,根据电磁感应定律,将产生电场E(Vm-1)
因而
电子被电场加速,在时间间隔Δt内速度的变化Δυ
由下式给出 轨道绕磁场进动但不改变轨道形状,进动的角速度为
运动产生的磁矩为
.
对闭合壳层的情况下,电子分布在半径为a(m)的球表面, r2=x2+y2,而z轴平行于磁场。考虑到球对称, x2y2z2a2/3
.
M∘
i
°e
1.1 半经典理论:
每个原子内有z个电子,每个电子有自己的运动轨 道,在外磁场作用下,电子轨道绕H进动,进动频率为 , 称为拉莫尔进动频率。由于轨道面绕磁场H进动, 使电子运动速度有一个变化dυ。使电子轨道磁矩增加 dm,但方向与磁场H相反,使总的电子轨道磁矩减小。 如果>p/2(电子旋转方向相反),则进动使电子运动速度 减小,使在磁场H方向的磁矩减小,所得磁化率仍是负 的。总之,由于磁场作用引起电子轨道磁矩减小,表 现出抗磁性。
抗磁性作用,只有费密面附近的电子对抗磁性有贡献,因而用n'
替换n,得到
n 3 nT 2 F
2
F
2 3n 3
2mk 8p
其中F为费密面能级EF决定的费密温度。用n'代替n后,得到
2
D
4mhm2 B2
p
3n13
3
此时抗与温度无关,称为朗道抗磁性。金属中的导电电子除具 有抗磁性,同时不可分开的还具有顺磁性,而且顺磁磁化率比抗磁 磁化率大三倍。
l=r+1
0
l=r
2m0H
2 1 l=0
在外磁带H 作用下电子能带汇 聚成能级的情况。
把z的求和改成在动量空间中的积 分,通过计算,最后得到的相和为:
.
z
eVH h2c
2p mkT sinh mB H
kT
由于热力学势 dM dHSdT
NkTlnz
所以可得到
MNkT d lnz
T
dH
lnzlnH lnsinhmk B T Hln2p h2 m ckT
相关文档
最新文档