初一数学竞赛讲义(8)

合集下载

初一数学竞赛辅导讲义

初一数学竞赛辅导讲义

初一数学竞赛辅导讲义一次方程(组)与二元一次不定方程本讲就解一次方程(组)与二元一次不定方程的基本方法和技巧作些简单介绍。

一、一次方程(组)解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,两边同除以未知数的系数。

任何一个一元一次方程最终都可以化为ax b =的形式。

解方程的根据是方程的同解原理。

如果两个方程的解相同,那么这两个方程叫同解方程。

1. 方程两边都加上(减去)同一个数(或同一个整式),所得的方程与原方程是同解方程。

2. 方程两边都乘以(除以)同一个不等于0的数,所得的方程与原方程是同解方程。

例1.解下列个方程(1)()()()()11323327322337x x x x ---=---(2)()14335190.50.125x x x +++=+ (3)3421424904532x ⎧⎫⎡⎤⎛⎫--+-=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭例2.是否存在这样的a 值,使当1b =时,关于x 的方程()()322387a x b x x -+-=-有无数多个解?例3.关于x 的方程1x ax =+同时有一个正数解和一个负数解,求a 的值。

例4.关于x 、y 的两个方程组2227ax by x y -=⎧⎨-=⎩和359311ax by x y -=⎧⎨-=⎩具有相同的解,求a 、b 的值。

例5.已知()()()()()()22219992000200101999200020012000x y y z x z x y y z z x -+---=⎧⎪⎨-+-+-=⎪⎩求z y -的值。

二、二元一次不定方程如果一个方程(组)中,未知数的个数多于方程的个数,则把这种方程(组)叫做不定方程(组)。

例如,二元一次方程3215x y +=是不定方程;三元一次方程组11426x y z x y z ++=⎧⎨+-=⎩是不定方程。

不定方程(组)的解是不确定的。

一般不定方程总有无数穷多个(组)解,但若加上整数(或正整数)解的限制,则不定方程(组)的解三种都有可能:有无穷组解,或有限组解,或无解。

初中七年级数学竞赛培优讲义

初中七年级数学竞赛培优讲义

初中七年级数学竞赛培优讲义《初中七年级数学竞赛培优讲义》哎呀,一提到数学竞赛培优讲义,我这心里就像揣了只小兔子,怦怦直跳!为啥?因为这可真是个充满挑战又超级有趣的东西啊!你想想,数学就像一座神秘的城堡,里面藏着无数的宝藏和秘密。

而七年级的数学竞赛培优讲义,那就是打开这座城堡大门的一把神奇钥匙!我们先来说说那些有趣的几何图形吧。

三角形、四边形、圆形,它们就像是城堡里不同形状的房间。

三角形稳定得像泰山,不管怎么推怎么挤,它都稳稳当当的,难道这还不够神奇吗?四边形呢,有时候像个调皮的孩子,轻轻一拉就变形了。

圆形就更妙啦,像个超级大皮球,从哪个角度看都那么圆润可爱。

再讲讲代数部分,那些字母和数字的组合,就像是一场精彩的魔术表演。

X、Y 一会儿变大,一会儿变小,一会儿又消失不见,然后又突然冒出来,这难道不像魔术师手中的道具,让人眼花缭乱又惊喜连连?我们在课堂上,老师拿着培优讲义,就像拿着一本武功秘籍,给我们传授着一招一式。

“同学们,这道题可不容易哦,大家好好想想!”老师这么一说,大家都皱起了眉头,开始苦思冥想。

我心里想:“哼,我就不信我解不出来!”然后和同桌小声嘀咕:“你觉得从哪里入手好?”同桌挠挠头:“我也不太清楚呢,咱们再看看。

”小组讨论的时候那才热闹呢!“我觉得应该这样做。

”“不对不对,应该那样。

”大家争得面红耳赤,可谁也不服谁。

最后老师来给我们指点迷津,一下子就恍然大悟,那种感觉,就像在黑暗中突然看到了光明,别提多兴奋啦!做数学竞赛题,有时候就像爬山。

一开始觉得山坡好陡啊,怎么爬都爬不上去。

可是当你咬咬牙,坚持一下,突然就发现找到了一条小路,然后顺着这条路,一下子就爬到了山顶,那种成就感,简直无与伦比!数学竞赛培优讲义里的每一道题,都是一个小怪兽,我们就是勇敢的战士,拿着知识的武器去打败它们。

有时候会被小怪兽打得晕头转向,但是只要不放弃,总有战胜它们的时候。

经过这么长时间的学习和努力,我深深地觉得,数学竞赛培优讲义虽然难,但是它就像一个超级好玩的游戏,只要你用心去玩,就能从中获得无尽的乐趣和收获。

南开中学初中数学竞赛辅导资料

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。

练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756 ②1859 ③1287 ④3276 ⑤10101 ⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

全国通用初中数学竞赛培优辅导讲义(11—20讲)

全国通用初中数学竞赛培优辅导讲义(11—20讲)

全国初中数学竟赛辅导讲义修订(2)二元一次方程组解的讨论甲内容提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。

(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。

(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。

3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。

(见例2、3)乙例题例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。

② 当 5∶a =1∶2≠7∶c 时,方程组无解。

解得a=10, c ≠14。

③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。

例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。

上海七年级数学竞赛讲义:含参不等式(组)

上海七年级数学竞赛讲义:含参不等式(组)

上海数学竞赛讲义—含参不等式知识目标目标一:掌握含参不等式(组)的解法,理解分类讨论的本质原因 目标二:掌握已知不等式(组)的解集,求参数的值(或范围)的解法 目标三:掌握不等式组整数解问题的解法,理解等号的取舍原则 1.不等式的性质性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.如果a >b ,那么a ±c >b ±c ; 如果a <b ,那么a ±c <b ±c .性质2:不等式两边都乘以(或除以)同一个正数,不等号方向不变.如果a >b ,并且c >0,那么ac >bc (或a bc c>); 性质3:不等式两边都乘以(或除以)同一个负数,不等号方向不变. 2.解一元一次不等式去分母→去括号→移项→合并同类项(化成为ax <b 或ax >b 的形式)→系数化为1(化成abx a b x <或>的形式).例如:112x +->13x x --解:去分母,得:3(x +1)﹣6>6x ﹣2(x ﹣1) 去括号,得: 3x +3﹣6>6x ﹣2x +2 移项,得: 3x ﹣6x +2x >2+6﹣3 合并同类项,得 ﹣x >5 系数化为1,得 x <5 3.在数轴上表示不等式的解集不等式的解集在数轴上表示的示意图不等式的解集在数轴上表示的示意图x >ax <ax ≥ax ≤a4.解一元一次不等式组的步骤(1)第一步:求分解.分别解不等式组中的每一个不等式,求出它们的解集;(2)第二步:求公解.将每一个不等式的解集画在同一条数轴上,并确定其公共部分;(3)第三步:写组解.将第二步所确定的公共部分用不等式表示出来,就是原不等式组的解集. 5.解不等式组可以归纳为以下四种情况(表中a >b )不等式图示 解集x ax b⎧⎨⎩>>x >a(同大取大) x ax b ⎧⎨⎩<< x <b(同小取小)x ax b ⎧⎨⎩<>b <x <a(大小交叉中间找) x ax b ⎧⎨⎩><无解(大大小小无解了)解一元一次不等式组步骤示例:231135 212x x x x +≤+⎧⎪⎨+->-⎪⎩①②解:解不等式①,得8x ≤解不等式②,得45x >把不等式和的解集在数轴上表示出来(如下图)所以这个不等式组的解集是485x <≤. 巩固练习:解不等式(组)(1)解不等式,并把它的解集在数轴上表示出来.①12(2)55x x -≤-②5113x x -->(2)解一元一次不等式组,并把它的解集在数轴上表示出来.①3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩②21315x x -≤≤-模块一:解含参不等式(组)——未知参数的取值范围题型一:解含参不等式——未知参数的取值范围例1:(1)解下列关于x的不等式:①2x>a-1 ②ax-1<3③ax≥b ④(a-1)x≤b+2(2)解关于x的不等式253mx--322x+≤1.(3)解关于x的不等式2mx+3<3x+n.练:解关于x的不等式3x+2≥a(x-1).题型二:解含参不等式组——依据数轴分类讨论例2:解关于x的不等式组:2 3262(1)11x a xx x+⎧-⎪⎨⎪+-⎩>>练:求关于x 的不等式组:01223x a x x x -<⎧⎪-+⎨+<⎪⎩的解集.拓:解关于x 的不等式组:(2)39(1)98a x x a x ax ->-⎧⎨+>+⎩模块二:求参数的值或范围——已知不等式(组)的解集题型一:求参数的值——已知不等式的解集例3:关于x 的不等式3m -2x <5的解集是x >2,求m 的平方根.练:关于x 的不等式组2223xa xb ⎧+≥⎪⎨⎪-⎩<的解集为0≤x <1,求a +b 的值.例4:已知关于x 的不等式(4a -3b )x >2b -a 的解集为x <49,求ax >b 的解集.练:(武昌区2015-2016七下期末)已知关于x 的不等式(2a -b )x +a -5b >0的解集为x <107,求关于x 的不等式bx >b -a 的解集为( )A .x >-2B .x <3C .x <-23D .x >-32题型二:求参数的范围——已知不等式组的解集例5:(1)若不等式组⎩⎨⎧x >3x >a的解集是x >3,则a 的取值范围是_________.若不等式组⎩⎨⎧x >3x ≥a的解集是x >3,则a 的取值范围是_________.若不等式组⎩⎨⎧x ≥3x >a的解集是x ≥3,则a 的取值范围是_________.若不等式组⎩⎨⎧x ≥3x ≥a的解集是x ≥3,则a 的取值范围是_________.(2)若不等式组⎩⎨⎧x >3x <a无解,则a 的取值范围是_________.若不等式组⎩⎨⎧x >3x ≤a无解,则a 的取值范围是_________.若不等式组⎩⎨⎧x ≥3x <a无解,则a 的取值范围是_________.若不等式组⎩⎨⎧x ≥3x ≤a无解,则a 的取值范围是_________.练:(1)不等式组9511x x x m 的解集是x >2,求m 的取值范围.(2)若不等式组121x m x m 无解,求m 的取值范围.(3)已知关于x的不等式组21xxx a的解集为-1<x<2,求a取值范围.拓:若不等式2x<4的解集使关于x的一次不等式(a-1)x<a+5恒成立,求a的取值范围.题型三:整数解问题例6:(1)已知关于x的不等式组321x ax的整数解只有四个,求a的取值范围.(2)已知关于x的不等式组2233244xx ax的整数解只有五个,求a 的取值范围.练:已知关于x的不等式组320x ax的整数解只有六个,求a的取值范围.【疯狂训练】 (1)(汉阳区2015-2016七下期末)若不等式组1911123x ax x 有解,则实数a 的取值范围是( ). A .a <-36 B .a ≤-36 C .a >-36 D .a ≥-36(2)(外校2015-2016七下期末)若不等式组841x x x m的解集是x >3,则m 的取值范围是( ).A .m ≥3B .m =3C .m ≤3D .m <3(3)(江汉区2015-2016七下期末)已知a 、b 为常数,若ax +b >0的解集为23x ,则bx -a <0的解集是 .(4)(武昌区2015-2016七下期末)已知关于x 的不等式组30217x a x 的所有整数解的和为-7,则a 的取值范围是 .拓:解关于x 的不等式:①215x ②21x③123x ④143x x第6讲:含参不等式(组)【课后作业】1.若关于x 的不等式2(1)20a x a --+>的解集为2x <,求a 的值.2.不等式组3x x a ≥-⎧⎨>⎩的解集为3x ≥-,求a 的取值范围.3.己知关于x 的不等式组2012x m x +>⎧⎨-<⎩有四个整数解,求m 的取值范围.4.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有五个整数解,求a 的取值范围.5.解关于x 的不等式:(1)235ax x +≥+ (2)(1)2a x x ->-6.(梅苑中学2015-2016七下期中)在平面直角坐标系中, △ABC 的三个顶点A (-1,0),B (-5,0),C (-3,4), 点P (0,m ) 为y 轴上一动点.若△ABC 的面积大于△ABP 的面积, 求m 的取值范围.。

七年级数学竞赛讲座(共23讲)

七年级数学竞赛讲座(共23讲)

目录第一讲有理数的巧算第二讲绝对值第三讲求代数式的值第四讲一元一次方程第五讲方程组的解法第六讲一次不等式(不等式组)的解法第七讲含绝对值的方程及不等式第八讲不等式的应用第九讲“设而不求”的未知数第十讲整式的乘法与除法第十一讲线段与角第十二讲平行线问题第十三讲从三角形内角和谈起第十四讲面积问题第十五讲奇数与偶数第十六讲质数与合数第十七讲二元一次不定方程的解法第十八讲加法原理与乘法原理第十九讲几何图形的计数问题第二十讲应用问题的算术解法与代数解法第二十一讲应用问题解题技巧第二十二讲生活中的数学(一)——储蓄、保险与纳税第二十三讲生活中的数学(二)——地板砖上的数学第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3, (1998)前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算3001×2999的值.解3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为90+(-1)÷20=.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1a,b为实数,下列各式对吗若不对,应附加什么条件(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解(1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a -b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x -c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T 的最小值是多少6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a -c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(-2)2-12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a -b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以a3-b3-3ab(-1)=-1,即a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x 具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少分析x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=,b=-,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即(a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即(2a-3)x=a-2.由已知该方程无解,所以例8k为何正数时,方程k2x-k2=2kx-5k的解是正数来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.。

七年级数学竞赛同步辅导讲义-下学期专用doc

七年级数学竞赛同步辅导讲义-下学期专用doc

七年级数学竞赛同步辅导讲义下册专用教育教材研发中心编第一讲整数的一种分类内容提要1.余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,r为小于m的非负整数,那么我们称r是A 除以m的余数。

即:在整数集合中被除数=除数×商+余数 (0≤余数<除数)例如:13,0,-1,-9除以5的余数分别是3,0,4,1(∵-1=5(-1)+4。

-9=5(-2)+1。

)2.显然,整数除以正整数m ,它的余数只有m种。

例如整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。

3.整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。

例如:m=2时,分为偶数、奇数两类,记作{2k},{2k-1}(k为整数)m=3时,分为三类,记作{3k},{3k+1},{3k+2}.或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。

m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}或{5k},{5k±1},{5k±2},其中5k-2表示除以5余3。

4.余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。

举例如下:①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3 (余数1×3=3)③(5k±2)2=25k2±20k+4=5(5k2±4k)+4 (余数22=4)以上等式可叙述为:①两个整数除以3都余1,则它们的和除以3必余2。

②两个整数除以4,分别余1和3,则它们的积除以4必余3。

③如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是4或9。

余数的乘方,包括一切正整数次幂。

如:∵17除以5余2 ∴176除以5的余数是4 (26=64)5.运用整数分类解题时,它的关鍵是正确选用模m。

初一数学奥赛基础知识讲义

初一数学奥赛基础知识讲义

七年级奥赛数学基础知识讲义第二讲 和绝对值有关问题一、 绝对值意义:(1)几何意义:一般地,数轴上表示数a 点到原点距离叫做数a 绝对值,记作|a|。

(2)代数意义:①正数绝对值是它本身;②负数绝对值是它相反数;③零绝对值是零。

也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

二、 典型例题例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 值等于( ) A .-3a B . 2c -a C .2a -2b D . b 解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值问题时,往往需要脱去绝对值符号,化成一般有理数计算。

脱去绝对值符号时,必须先确定绝对值符号内各个数正负性,再根据绝对值代数意义脱去绝对值符号。

这道例题运用了数形结合数学思想,由a 、b 、c 在数轴上对应位置判断绝对值符号内数符号,从而去掉绝对值符号,完成化简。

例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++值( )A .是正数B .是负数C .是零D .不能确定符号 解:由题意,x 、y 、z 在数轴上位置如图所示:所以分析:数与代数这一领域中数形结合重要载体是数轴。

这道例题中三个看似复杂不等关系借助数轴直观、轻松找到了x 、y 、z 三个数大小关系,为我们顺利化简铺平了道路。

虽然例题中没有给出数轴,但我们应该有数形结合解决问题意识。

例3.(分类讨论思想)已知甲数绝对值是乙数绝对值3倍,且在数轴上表示这两数点位于原点两侧,两点之间距离为8,求这两个数;若数轴上表示这两数点位于原点同侧呢?0)()(=--+-+=--+++y x z y z x yx z y z x201020081861641421⨯++⨯+⨯+⨯ 分析:从题目中寻找关键解题信息,“数轴上表示这两数点位于原点两侧”意味着甲乙两数符号相反,即一正一负。

超级资源:七年级数学竞赛讲义附练习及答案(12套)

超级资源:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套)初一数学竞赛讲座第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n 与n+1之间不再有其他整数。

因此,不等式x <y 与x ≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0;2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。

初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。

0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。

∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

七年级数学培优竞赛讲座第8讲--一元一次方程

七年级数学培优竞赛讲座第8讲--一元一次方程

一元一次方程早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程的重要性.一元一次方程是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论.解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程.当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax =b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当0≠a 时,方程有惟一解ab =; 2.当0,0≠=b a 时,方程无解;3.当0,0==b a 时,方程有无数个解.例题【例1】 (1)已知关于x 的方程x a x x 4)3(23=⎥⎦⎤⎢⎣⎡--和1851123=--+x a x 有相同的解,那么这个解是 . (北京市“迎春杯”竞赛题)(2)如果20042003)1(11216121=+++++n n ,那么n = . (江苏省竞赛题)【例2】 当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 等于( ).A .2B .一2C .32- D .不存在 (“希望杯”邀请赛试题)【例3】 是否存在整数k ,使关于k 的方程(k 一5)x+6=1—5x ;在整数范围内有解?并求出各个解.【例4】 解下列关于x 的方程.(1)4x+b=ax-8; (a ≠4)(2)mx-1=nx ;(3))2(41)(31m x n x m +=-.【例5】已知q p 、都是质数,并且以x 为未知数的一元一次方程px+5q=97的解是1,求代数式40p 十101q+4的值. (“希望杯”邀请赛试题)解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行;(2)当括号内含有分数时,常由外向内先去括号,再去分母;(3)当分母中含有小数,可用分数的基本性质化成整数;(4)用整体思想,即把含有求未知数的代数式看作一个整体进行变形.学力训练1.已知x=一1是关于x 的方程7x 3一3x 2+kx+5=0的解,则k 3+2k 2-11k-85= . (“信利杯”竞赛题)2.方程0)104(21)25(32)5020(61=+-+++x x x 的解为 ; 解方程0333)321(212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--x ,得x= . 3.已知关于x 的方程2a(x 一1)=(5一a)x+3b 有无数多个解,那么a = . (“希望杯”邀请赛试题)4.和方程x 一3=3x+4不同解的方程是( ).A .79—4=59—11B .0231=++x C .(a 2+1)(x 一3)=(3x+4)(a 2+1) D .(7x 一4)(x —1)=(5x 一11)(x 一1)5.已知a 是任意有理数,在下面各题中(1)方程ax=0的解是x=1; (2)方程ax =a 的解是x =1(3)方程ax=1的解是x =a1; (4)方程a x a =的解是x =±1, 结论正确的个数是( ). A .0 B .1 C . 2 D .3 (江苏省竞赛题)6.方程231)153(123661-=⎥⎦⎤⎢⎣⎡+--x x x 的解是( ) A .1415 B .1415- C .1445 D .1445- 7.已知关于x 的一次方程(3a+8b )x+7=0无解,则ab=( ) .A .正数B .非正数C .负数D .非负数8.解关于x 的方程:(1)ax-1=bx (2)4x+b=ax-8 (3)k(kx-1)=3(kx-1)9.A 为何值时,方程)12(6123--=+x x a x 有无数个解?无解?10.已知方程2(x+1)=3(x-1)的解 为a+2,那么方程2[2(x+3)-3(x-a)]=3a 的解为 .11.已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k = .12.已知431)119991(441=++x ,那么代数式)19991999(481872xx +⋅+的值为 . 13.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有唯一解,则x = .14.有4个关于x 方程(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1)(3)x=0 (4)111112-+-=-+-x x x 其中同解的两个方程是( )A .(1)与(2)B .(1)与(3)C .(1)与(4)D .(2)与(4)15.方程1995199619953221=⨯++⨯+⨯x x x 的解是( ) A .1995 B .(1996 C .1997 D . 199816.已知2001222==-=+c b a ,且k c b a 2001=++,那么k 的值为( ). A .41 B .4 C .41- D .-4 17.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有( ).A .4个B .8个C .12个D .16个 (“希望杯”邀请赛试题)18.若干本书分给小朋友,每人m 本,则余14本,每人9本,则最后一人只得6本,问小朋友共几个?有多少本书?19.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值. (上海市竞赛题) 5A B C D E F X G H E 1020.如果a 、b 为定值,关于x 的方程6232bk x a kx -+=+,无论k 为何值,它的根总是1,求a 、b 的值.(山东省竞赛题)21.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数.(河北省竞赛题)22.(第12届“希望杯”竞赛试题)若k 为整数,则使得方程(k —1999)x=2001—2000x 的解也是整数的k 值为( )A .4个B .8个C . 12个D .16个。

初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初一数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4.2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数|,则必有|或|.4.算术基本定理:任意一个大于1的整数N能唯一地分解成个质因数的乘积(不考虑质因数之间的顺序关系):N=,其中,为质数,为非负数(=1,2,3,…,).正整数N的正约数的个数为(1+)(1+)…(1+),所有正约数的和为(1++…+)(1++…+)…(1++…+).例题与求解【例1】已知三个质数,,满足+++=99,那么的值等于_________________.(江苏省竞赛试题) 解题思想:运用质数性质,结合奇偶性分析,推出,,的值.【例2】若为质数,+5仍为质数,则+7为( )A.质数B.可为质数,也可为合数C.合数D.既不是质数,也不是合数(湖北省黄冈市竞赛试题) 解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题) 解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数,求证:一定是合数.⑵若是大于2的正整数,求证:-1与+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明-1与+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设和是正整数,≠,是奇质数,并且,求+的值.解题思想:由题意变形得出整除或,不妨设.由质数的定义得到2-1=1或2-1=.由≠及2-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题) 4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( )A.4B.8C.12D.06.在2 005,2 007,2 009这三个数中,质数有( )A.0个B.1个C.2个D.3个(“希望杯”邀请赛试题) 7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A.1个B.3 个C.5个D.6 个(“希望杯”邀请赛试题) 8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为cm规格的地砖,恰用块,若选用边长为cm规格的地砖,则要比前一种刚好多用124块,已知,,都是正整数,且(,)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数,满足5+7=129,则+的值为__________.2.已知,均为质数,并且存在两个正整数,,使得=+,=×,则的值为__________.3.自然数,,,,都大于1,其乘积=2 000,则其和++++的最大值为__________,最小值为____________.(“五羊杯”竞赛试题) 4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第1 992个数是_______________.(北京市“迎春杯”竞赛试题) 5.若,均为质数,且满足+=2 089,则49-=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题) 6.设为质数,并且7+8和8+7也都为质数,记=77+8,=88+7,则在以下情形中,必定成立的是()A.,都是质数B.,都是合数C.,一个是质数,一个是合数 D.对不同的,以上皆可能出现(江西省竞赛试题) 7.设,,,是自然数,并且,求证:+++一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴6个数中任意两个都互质;⑵6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34例2 C例3 3符合要求提示:当p=3k+1时,p+10=3k+11,p+14=3(k+5),显然p+14是合数,当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意.例4 (1)因1+2+…+2004=×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n是大于2的正整数,则-1≥7,-1、、+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除,故-1与+1中至多有一个数是质数.(3)设正整数a的所有正约数之和为b,,,,…,为a的正约数从小到大的排列,于是=1,=a.由于中各分数分母的最小公倍数=a,故S===,而a=360=,故b=(1+2++)×(1+3+)×(1+5)=1170.==.例5 由=,得x+y==k.(k为正整数),可得2xy=kp,所以p整除2xy且p为奇质数,故p整除x或y,不放设x=tp,则tp+y=2ty,得y=为整数.又t与2t-1互质,故2t-1整除p,p为质数,所以2t-1=1或2t-1=p.若2t-1=,得t=1,x=y=p,与x≠y矛盾;若2t-1=p,则=,2xy=p(x+y).∵p是奇质数,则x +y为偶数,x、y同奇偶性,只能同为xy=必有某数含因数p.令x=ap,ay=,2ay=ap+y.∴y=,故a,2a-1互质,2a-1整除p,又p是质数,则2a-1=p,a=,故x==,∴x+y=+=。

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、 分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

初一数学竞赛系列讲座全套

初一数学竞赛系列讲座全套

初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,那么m n 的末位数字就是a n 的末位数字。

(2) (2) 设p 、q 都是正整数,m 是任意正整数,那么m 4p+q 的末位数字与m q 的末位数字相同。

3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。

这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑〞、“猜〞的方法求解,是一种有趣的数学游戏。

二、二、例题精讲例1、有一个四位数,其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。

解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比拟等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将条件转化为等式,从而解决问题。

例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,假设最大数与最小数的差正好等于原来的数N ,那么称N 为“新生数〞,试求所有的三位“新生数〞。

初中数学竞赛辅导资料全

初中数学竞赛辅导资料全

第一篇一元一次方程的讨论第一部分基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2*+6=0, *(*-1)=0, |*|=6, 0*=0, 0*=2的解分别是: *=-3, *=0或*=1, *=±6, 所有的数,无解。

2. 关于*的一元一次方程的解(根)的情况:化为最简方程a*=b 后,讨论它的解:当a ≠0时,有唯一的解 *=ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论*取什么值,0*=0都成立)3. 求方程a*=b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程a*=b第二部分典例精析例1 a 取什么值时,方程a (a -2)*=4(a -2)①有唯一的解?②无解?③有无数多解?④是正数解?例2 k 取什么整数值时,方程①k (*+1)=k -2(*-2)的解是整数?②(1-*)k =6的解是负整数?例3 己知方程a (*-2)=b (*+1)-2a 无解。

问a 和b 应满足什么关系?例4a 、b 取什么值时,方程(3*-2)a +(2*-3)b =8*-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:① (*+1)=0, ②*2=9,③|*|=9, ④|*|=-3, ⑤3*+1=3*-1,⑥*+2=2+*2. 关于*的方程a*=*+2无解,则a __________3. 在方程a (a -3)*=a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

4. k 取什么整数值时,下列等式中的*是整数?① *=k4②*=16-k ③*=k k 32+④*=123+-k k 5. k 取什么值时,方程*-k =6*的解是①正数?②是非负数?6. m 取什么值时,方程3(m +*)=2m -1的解①是零?②是正数?7. 己知方程221463+=+-a x 的根是正数,则a 、b 应满足什么关系? 8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数" 9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。

初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套)

第一讲 有 理 数一、有理数的概念及分类。

二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。

三、例题示范例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?例2、 将9998,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。

提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。

例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。

试确定三个数ca b ab 1,1,1-的大小关系。

分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较ca b ab 1,1,1-的大小关系,只要比较分母的大小关系。

例4、 在有理数a 与b(b >a)之间找出无数个有理数。

提示:P=na b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。

2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。

例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。

3、算对与算巧例6、 计算 -1-2-3-…-2000-2001-2002提示:1、逆序相加法。

2、求和公式:S=(首项+末项)⨯项数÷2。

例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002例8、 计算9999991999999个个个n n n +⨯ 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中七年级培优竞赛辅导讲义全册(207页)

初中七年级培优竞赛辅导讲义全册(207页)

初中七年级培优竞赛辅导讲义目录(共207页,按住ctrl键点击目录直接跳转到对应章节)第01讲与有理数有关的概念第02讲有理数的加减法第03讲有理数的乘除、乘方第04讲整式第05讲整式的加减第06讲一元一次方程概念和等式性质第07讲一元一次方程解法第08讲实际问题与一元一次方程第09讲多姿多彩的图形第10讲直线、射线、线段第11讲角第12讲与相交有关概念及平行线的判定第13讲平行线的性质及其应用第14讲平面直角坐标系(一)第15讲平面直角坐标系(二)第16讲认识三角形第17讲认识多边形第18讲二元一次方程组及其解法第19讲实际问题与二元一次方程组第20讲三元一次方程组和一元一次不等式组第21讲一元一次不等式(组)的应用第22讲一元一次不等式(组)与方程(组)的结合第23讲数据的收集与整理第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b< b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( ) A . 4个 B . 3个 C . 2个 D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是 |x+1|,如果|AB|=2,那么x= 1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( ) A . -1 B . 1 C . 2m -3 D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-=1111111 12233420082009 -+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111 248163264128256+++++++=__________.【例4】如果a<0,b>0,a+b<0,那么下列关系中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于()A.14B.14-C.12D.12-02.自然数a、b、c、d满足21a+21b+21c+21d=1,则31a+41b+51c+61d等于()A.18B.316C.732D.1564534333231303.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号 D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B.0 C.负数 D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ A .31003 B .31004 C .1334 D .11000 02.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A.1 B.3 C.7 D.503.已知23450ab c d e<,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<004.若有理数x、y使得,,,xx y x y xyy+-这四个数中的三个数相等,则|y|-|x|的值是()A.12-B.0 C.12 D.3205.若A=248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A-1996的末位数字是()A.0 B.1 C.7 D.906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】 n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴ (2)02.指出下列多项式的二次项、二次项系数和常数项⑴ (2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z =5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当 x =4时,y=1,2,z=2,1.当 x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式 B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A. B. C. D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档