2017初一数学下期填空题专题训练3
初一数学填空题练习试题集
初一数学填空题练习试题答案及解析1.有10张卡片,分别写有11-20的连续整数,先将它们的背面朝上洗匀后,任意抽出一张,则P(抽到的数大于16)=【答案】.【解析】由有10张卡片,分别写有11-20的连续整数,且抽到的数大于16的有4种情况,直接利用概率公式求解即可求得答案.试题解析:∵有10张卡片,分别写有11-20的连续整数,且抽到的数大于16的有4种情况,∴P(抽到的数大于16)=.【考点】概率公式.2.若,则的值为。
【答案】7【解析】已知,则x+y-1=0且y+3=0.解得y=-3,代入x+y=1得x=4.所以x-y=4-(-3)=7【考点】一元一次方程及实数点评:本题难度较低,主要考查学生对一元一次方程及实数性质知识点的掌握。
为中考常考题型,要求学生牢固掌握解题技巧。
3.若实数m、n满足,则= .【答案】—27【解析】先根据非负数的性质求得m、n的值,再根据有理数的乘方法则求解即可.由题意得,,则.【考点】非负数的性质,有理数的乘方点评:解题的关键是熟练掌握非负数的性质:若几个非负数的和为0,这几个数均为0.4.如图,把△ABC沿直线BC翻折180°到△DBC,那么△ABC≌△______;若△ABC的面积为2,那么△BDC的面积为______ ____.【答案】DBC,2【解析】依题意知,△DBC为△ABC翻转所得,所以△ABC≌△DBC。
两三角形全等则面积也相等。
【考点】全等三角形性质点评:本题难度较低,主要考查学生对全等三角形性质和折叠性质的掌握。
注意数形结合思想的培养,灵活运用到解题中去。
5.若,则的立方根是.【答案】-2【解析】依题意知1-x=9.解得x=-8.所以-8的立方根为-2【考点】立方根点评:本题难度较低,主要考查学生对实数求立方根知识点的掌握。
6.如图,BA∥DE,∠B=150°,∠D=130°,则∠C的度数是__________。
【答案】80°【解析】过C作CF∥AB,把∠C分成两个角,根据平行线的性质即可求出两个角,相加就可以得到所求值.如图:过C作CF∥AB,则AB∥DE∥CF,∠1=180°-∠B=180°-150°=30°,∠2=180°-∠D=180°-130°=50°∴∠BCD=∠1+∠2=30°+50°=80°.【考点】本题考查的是平行线的性质点评:通过作辅助线,找出∠B、∠D与∠C的关系是解答本题的关键.7.如图,∠AOC=______+______=______-______;∠BOC="______-______=" _____-________.【答案】∠AOB,∠BOC,∠AOD,∠COD;∠BOD,∠COD,∠AOC,∠AOB【解析】根据图形的特征即可得到结果.∠AOC=∠AOB+∠BOC=∠AOD-∠COD;∠BOC=∠BOD-∠COD=∠AOC-∠AOB.【考点】本题考查的是角的大小比较点评:解答本题的关键是熟练掌握根据图形的特征比较角的大小的方法.8.不改变分式的值,使下列各式的分子,分母的最高次项的系数为正:(1)【答案】(1)-【解析】首先将分子、分母均按同一字母的降幂排列,若第一项的系数为负,则添带负号的括号,再是按分式变号法则把分子与分母的负号提到分式本身的前边.(1);(2)【考点】本题考查了分式的基本性质点评:解答本题的关键是熟练掌握分式的基本性质:分式的分子分母都乘以(或除以)一个不为0数(或式),分式的值不变.9.方程x3+4x=0的解是________.【答案】x="0"【解析】等式左边先提取公因式x,再根据两个数的积为0,那么这两个数至少有一个为0解方程即可。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
湘教版 2017年七年级下册初一数学期末考试试题及答案
湘教版 2017年七年级下册初一数学期末考试试题及答案2016-2017学年七年级下学期期末数学模拟试卷一、填空题(本大题共8个小题,每小题3分,共24分)1.如果|x-y+2|+(x+y-6)=0,那么XXX。
2.若2x+5y=8,2y+8x=2,则x=1/3.3.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S甲=3.6,S乙=15.8,则种小麦的长势比较不整齐。
4.如图,直线AB,CD相交于点E,DF∥AB。
若∠AEC=100°,则∠D=80°。
5.如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=130°。
6.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于40°。
7.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.8.一组数据为:x,-2x,4x,-8x,…观察其规律,推断第n个数据应为(-2)^{n-1}x。
二、选择题(本大题共8个小题,每小题3分,共24分)9.下面有4个汽车标志图案,其中是轴对称图形的有(B)。
10.方程组2x+5y=8,2y+8x=2的解是(A)x=1/3.11.下列计算中,错误的有(D)④(-x+y)(x+y)=-(x-y)(x+y)=-x-y。
12.下列多项式相乘,不能用平方差公式计算的是(D)(2y-x)(-x-2y)。
13.下列图形中,由AB∥CD,能得到∠1=∠2的是(A)。
14.若a-b=1,ab=2,则(D)(a+b)的值为3.15.XXX和XXX两人玩“打弹珠”游戏,XXX对XXX说:“把你珠子的一半给我,我就有10颗珠子”.XXX却说:“只要把你的给我,我就有10颗”.如果设XXX的弹珠数为x颗,XXX的弹珠数为y颗,则列出的方程组是(B)y+5=x,y=10-x。
人教版七年级数学下册专题训练(含答案与解析)
人教版七年级数学下册专题训练(含参考答案与解析)说明:本套训练题包含以下7个专题解题技巧专题:一元一次不等式(组)中含字母系数的问题 考点综合专题:一元一次不等式(组)与学科内知识的综合 难点探究专题:平面直角坐标系中的变化规律 解题技巧专题:平面直角坐标系中的图形面积 解题技巧专题:平行线中作辅助线的方法 思想方法专题:相交线与平行线中的思想方法 解题技巧专题:解二元一次方程组解题技巧专题:一元一次不等式(组)中含字母系数的问题——类比不同条件,体会异同◆类型一 已知解集求字母系数的值或取值范围1.(2017·毕节中考)关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( )A.14B.7C.-2D.22.(2017·金华中考)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解集是x <5,则m 的取值范围是【易错11】( )A.m ≥5B.m >5C.m ≤5D.m <53.已知关于x 的不等式组⎩⎪⎨⎪⎧x ≥-a -1①,-x ≥-b ②的解集在数轴上表示如图所示,则a b 的值为 .4.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求代数式(b -1)a +1的值.◆类型二 已知整数解的情况求字母系数的取值范围5.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( ) A.-3<b <-2 B.-3<b ≤-2 C.-3≤b ≤-2 D.-3≤b <-26.对于任意实数m ,n ,定义一种新运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 W.7.(2017·黄石中考)已知关于x 的不等式组⎩⎪⎨⎪⎧5x +1>3(x -1)①,12x ≤8-32x +2a ②恰好有两个整数解,求实数a 的取值范围.◆类型三 已知不等式组有、无解求字母系数的取值范围8.若关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥0,x -m ≥0有实数解,则实数m 的取值范围是( )A.m ≤53B.m <53C.m >53D.m ≥539.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,5-2x >1无解,则实数a 的取值范围是 .10.若关于x 的不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②有解,求实数a 的取值范围.【易错11】参考答案与解析1.D 2.A3.1 解析:由不等式②得x ≤b ,由数轴可得,原不等式组的解集是-2≤x ≤3,∴⎩⎪⎨⎪⎧-a -1=-2,b =3,解得⎩⎪⎨⎪⎧a =1,b =3,∴a b =13=1. 4.解:⎩⎪⎨⎪⎧2x -a <1①,x -2b >3②,解不等式①得x <a +12 .解不等式②得x >2b +3.根据题意得⎩⎪⎨⎪⎧a +12=1,2b +3=-1,解得⎩⎪⎨⎪⎧a =1,b =-2,则(b -1)a +1=(-3)2=9. 5.D6.4≤a <5 解析:根据题意得2※x =2x -2-x +3=x +1.∴a <x +1<7,即a -1<x <6.又∵解集中有两个整数解,∴3≤a -1<4,∴a 的取值范围为4≤a <5.7.解:解不等式①得x >-2,解不等式②得x ≤4+a .∴不等式组的解集是-2<x ≤4+a .∵不等式组恰好有两个整数解,∴0≤4+a <1,解得-4≤a <-3.8.A 9.a ≥210.解:解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<a -1,∴a >-5.考点综合专题:一元一次不等式(组)与学科内知识的综合——综合运用,全面提升◆类型一 不等式(组)与平面直角坐标系1.(2017·江岸区模拟)已知点P (2a +1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )2.(2017·贵港中考)在平面直角坐标系中,点P (m -3,4-2m )不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点M (3a -9,1-a )在第三象限,且它的横、纵坐标都是整数,则a 的值是 W.4.在平面直角坐标系中,点A (1,2a +3)在第一象限.(1)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值; (2)若点A 到x 轴的距离小于到y 轴的距离,求a 的取值范围.◆类型二 不等式(组)与方程(组)的综合5.(2017·宜宾中考)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m -1,x +3y =3的解满足x +y >0,则m 的取值范围是 W.6.(2017·南城县模拟)已知不等式组⎩⎪⎨⎪⎧x +1<2a ,x -b >1的解集是2<x <3,则关于x 的方程ax+b =0的解为 W.7.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =2m +1①,x -2y =4m -3②的解是一对正数.(1)试确定m 的取值范围;(2)化简|3m -1|+|m -2|.◆类型三 不等式(组)与新定义型问题的综合8.(2017·东胜区二模)我们定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=10-12=-2,则不等式组1<⎪⎪⎪⎪⎪⎪1x 34<3的解集是 W. 9.(2017·龙岩模拟)定义新运算“⊕”如下:当a >b 时,a ⊕b =ab +b ;当a <b 时,a ⊕b =ab -b .若3⊕(x +2)>0,则x 的取值范围是( )A.-1<x <1或x <-2B.x <-2或1<x <2C.-2<x <1或x >1D.x <-2或x >210.(2017·杭州模拟)阅读以下材料:对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min{a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}=-1+2+33=43;min{-1,2,3}=-1;min{-1,2,a }=⎩⎪⎨⎪⎧a (a ≤-1),-1(a >-1).(1)填空:若min{2,2x +2,4-2x }=2,则x 的取值范围是 ; (2)如果M {2,x +1,2x }=min{2,x +1,2x },求x 的值.参考答案与解析1.C 2.A3.2 解析:由题意得⎩⎪⎨⎪⎧3a -9<0,1-a <0,解得1<a <3.∵横、纵坐标都是整数,∴a 必为整数,∴a =2.4.解:(1)∵点A 到x 轴的距离与到y 轴的距离相等,且点A 在第一象限,∴2a +3=1,解得a =-1.(2)∵点A 到x 轴的距离小于到y 轴的距离,点A 在第一象限,∴⎩⎪⎨⎪⎧2a +3>0,2a +3<1,解得-32<a <-1.5.m >-1 6.x =-127.解:(1)①+②,得2x =6m -2,x =3m -1.①-②得4y =-2m +4,则y =-12m +1.依题意有⎩⎪⎨⎪⎧3m -1>0,-12m +1>0,解得13<m <2.(2)由(1)知13<m <2,∴3m -1>0,m -2<0,∴|3m -1|+|m -2|=3m -1+[-(m -2)]=3m -1-m +2=2m +1.8.13<x <1 9.C 解析:当3>x +2,即x <1时,由题意得3(x +2)+x +2>0,解得x >-2,∴-2<x <1;当3<x +2,即x >1时,由题意得3(x +2)-(x +2)>0,解得x >-2,∴x >1.综上所述,x 的取值范围是-2<x <1或x >1,故选C.10.解:(1)0≤x ≤1 解析:由题意得⎩⎪⎨⎪⎧2x +2≥2,4-2x ≥2,解得0≤x ≤1.(2)方法一:M {2,x +1,2x }=2+x +1+2x3=x +1.当x ≥1时,则min{2,x +1,2x }=2,则x +1=2,∴x =1.当x <1时,则min{2,x +1,2x }=2x ,则x +1=2x ,∴x =1(舍去).∴x =1.方法二:∵M {2,x +1,2x }=2+x +1+2x3=x +1=min{2,x +1,2x },∴⎩⎪⎨⎪⎧2≥x +1,2x ≥x +1,∴⎩⎪⎨⎪⎧x ≤1,x ≥1,∴x =1.难点探究专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一 沿坐标轴方向运动的点的坐标规律探究1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P 的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 2017的坐标是________.◆类型二 绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有( )A .10个B .20个C .40个D .80个第3题图 第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵,…得到斐波那契螺旋线,然后顺次连接P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上的点P 9的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25)◆类型三 图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是()A.(16+4π,0) B.(14+4π,2)C.(14+3π,2) D.(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0)解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1)解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶点外的整点个数如下表所示:可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).解题技巧专题:平面直角坐标系中的图形面积——代几结合,突破面积及点的存在性问题◆类型一直接利用面积公式求图形的面积1.如图,在平面直角坐标系中,三角形ABC的面积是()A.2 B.4 C.8 D.6第1题图第2题图2.如图,在平面直角坐标系xOy中,已知A(-1,5),B(-1,0),C(-4,3),则三角形ABC的面积为________.◆类型二利用分割法求图形的面积3.如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积为________.4.观察下图,图中每个小正方形的边长均为1,回答以下问题:【方法14】(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC,CE的位置各有什么特点?(3)求多边形ABCDEF的面积.◆类型三利用补形法求图形的面积5.在如图所示的正方形网格中,每个小正方形的边长均为1,三角形ABC的三个顶点恰好是正方形网格的格点.【方法14】(1)写出三角形ABC各顶点的坐标;(2)求出此三角形的面积.◆类型四与图形面积相关的点的存在性问题6.(2017·定州市期中)如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与解析1.B 2.1523.11 解析:过点B 作BD ⊥x 轴于D .∵A (4,0),B (3,4),C (0,2),∴OC =2,BD =4,OD =3,OA =4,∴AD =OA -OD =1,则S 四边形ABCO =S 梯形OCBD +S 三角形ABD =12×(4+2)×3+12×1×4=9+2=11. 4.解:(1)A (-2,0),B (0,-3),C (3,-3),D (4,0),E (3,3),F (0,3).(2)线段BC 平行于x 轴(或线段BC 垂直于y 轴),线段CE 垂直于x 轴(或线段CE 平行于y 轴).(3)S多边形ABCDEF =S三角形ABF +S长方形BCEF +S三角形CDE =12×(3+3)×2+3×(3+3)+12×(3+3)×1=6+18+3=27.5.解:(1)A (3,3),B (-2,-2),C (4,-3).(2)如图,分别过点A ,B ,C 作坐标轴的平行线,交点分别为D ,E ,F .S 三角形ABC =S 正方形DECF-S 三角形BEC -S 三角形ADB -S 三角形AFC =6×6-12×6×1-12×5×5-12×6×1=352.6.解:(1)点B 在点A 的右边时,-1+3=2,点B 在点A 的左边时,-1-3=-4,所以点B 的坐标为(2,0)或(-4,0).(2)S 三角形ABC =12×3×4=6.(3)存在这样的点P .设点P 到x 轴的距离为h ,则12×3h =10,解得h =203.点P 在y 轴正半轴时,P ⎝⎛⎭⎫0,203,点P 在y 轴负半轴时,P ⎝⎛⎭⎫0,-203,综上所述,点P 的坐标为⎝⎛⎭⎫0,203或⎝⎛⎭⎫0,-203.解题技巧专题:平行线中作辅助线的方法——形成思维定式,快速解题。
人教版七年级数学下册填空题专项训练40题
人教版七年级数学下册填空题专项训练40题【考点1】解不等式1.若a<0,则关于x的不等式ax﹣b≤0的解集为.2.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为3.不等式6x+8>3x+17的解集.4.如果关于x的不等式与关于x的不等式5(1﹣x)<a﹣20的解集完全相同,则它们的解集为x.5.不等式2x﹣5<7﹣(x﹣5)的解集是.【考点2】折线统计图6.在一次数学测验中,随机抽取了8份试卷,对其得分进行了统计,绘制了如图所示的折线统计图,则这8个同学的得分的中位数是分.7.3月初,南开(融侨)中学为初三学生准备了仿真体考,小郭根据本班50名学生跳绳成绩,绘制出如下不完全折线统计图,若这50名学生跳绳成绩中15分和18分人数相同,则所有人的跳绳成绩的平均数为分.8.如图是某国产品牌手机专卖店去年8至12月高清大屏手机销售额折线统计图,根据图中信息,可以判断相邻两个月销售额变化最大的差的绝对值为万元.9.将我校初2020级各班人数绘制成如下折线统计图,则我校初2020级各班人数的中位数为.10.某兴趣小组在一次训练中,对小组成员还原“三阶异型魔方”的时间(单位:秒)进行了统计,绘制了如图所示的折线统计图,则该小组成员还原时间的中位数是秒.【考点3】实数大小比较11.比较大小:4(填“>”、“<”或“=”)12.比较数的大小:+1.13.比较大小:﹣4(填“>”、“<”或“=”).14.将实数,﹣π,0,1由大到小用“>”连起来,可表示为.15.下面四个实数中,0、、、,最小的数是.【考点4】多边形内角与外角16.一个四边形的四个内角中最多有个钝角,最多有个锐角.17.n边形每增加一条边内角和增加度,外角和度.18.多边形所有外角中,最多有个钝角,个直角.19.一个多边形的内角和与外角和的比是4:1,则它的边数是.20.如图,在五边形ABCDE中,若∠D=110°,则∠1+∠2+∠3+∠4=.【考点5】二元一次方程21.已知是二元一次方程ax+by=﹣1的一组解,则b﹣2a+2018=.22.若是二元一次方程3x+by=5的一个解,则b=.23.已知关于x,y的二元一次方程3x﹣4y+mx+2m+8=0,当时,m=;若无论m任何实数,该二元一次方程都有一个固定的解,则这个固定的解为.24.已知关于x、y的二元一次方程3x﹣ay=16的一个解是,则a=.25.二元一次方程x+y=5的正整数解个数有个.【考点6】三角形的外角性质26.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=°.27.如图,在△ABC中,∠1是它的外角,E为边AC上一点,延长BC到D,连接DE,则∠1∠2(填“>”,“<”,“=”)28.如图,在△ABC中,∠B=60°,外角∠ACD=100°,则∠A=.29.如图中,∠B=45°,∠C=72°,则∠1的度数为.30.如图,x=.【考点7】坐标与位置的对应31.如果用(6,3)表示六排五座,那么十排二十座可表示为.32.如图所示的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是.33.在如图的方格纸上,若用(﹣1,1)表示点A的位置,(0,3)表示点B的位置,那么点C的位置可表示为.34.某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为.35.如图,把“QQ”笑脸放在平面直角坐标系中,已知眼睛A、B的坐标分别为(﹣2,3),(0,3),则嘴C的坐标是.【考点8】坐标的变化——平移36.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.37.通过平移把点A(2,﹣3)移到点A′(4,﹣2),按同样的平移方式可将点B(﹣3,1)移到点B′,则点B′的坐标是.38.在平面直角坐标系中,点A (0,﹣2)向上平移2个单位后的坐标为.39.在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是.40.将点A(﹣1,3)先沿x轴向左平移5个单位,再沿y轴向下平移2个单位,则平移后,所得点的坐标是.人教版七年级数学下册填空题专项训练40题参考答案一.填空题(共40小题)1.x≥;2.x>﹣1;3.x>3;4.>4;5.x<;6.86;7.18.74;8.10;9.53;10.50;11.>;12.<;13.<;14.1>0>﹣>﹣π;15.;16.3;3;17.180;360;18.3;4;19.10;20.290°;21.2019;22.﹣1;23.3;;24.5;25.4;26.21;27.>;28.40°;29.117°;30.60;31.(10,18);32.(﹣3,0);33.(1,2);34.(5,120°);35.(﹣1,1);36.(3,2);37.(﹣1,2);38.(0,0);39.(4,2);40.(﹣6,1);。
2017年数学三真题答案解析
所以Z的概率密度为
O<z <L
几(z)�r-- 2, 2<z<3,
(23)解
0'
其他.
CI) Z1 的分布函数为
厂王) -], F(z)�P{Z,,s;;z}�P{IX,-pl,s;;z}�
z�o.
o,
z < 0,
所以Z1 的概率密度为 f(z)�{f•';';,'
z歹o,
z<O.
=厂叮 z 厂 C II) EZ1
已AB与C相互独立,故应选C. (8) B
解 因为X, �NCµ ,1),
所以X,
— µ
�N(O,l),
�ex, 则
—µ尸~贮(n), 故A正确;
,-1
一` (n — 1)S 2
�(X,
,-1
因为 z =
�X气n — 1)'
C,
1
故C正确;
因为
X
�N(
µ
,—1 ), n
X—µ
所以
�N(O,l),
1
石
(z)dz =
ze 三 dz
芦a o
z a.
v冗
z z a
=
卢
�1 n
EZ1, 令Z=亡让,得
6
的矩估计最为aA
石
dx
。 =
1 +=
1
4J (1+x2
—
1 1+2x 2)dx
。) 勹1 (arctanx
/
产
0
—
过 了arctan,/2x
+=
(17)解
2 —迈 = 16 兀
n (--;;) --;; 杻心: -杻心: n k
人教版七年级数学下册填空题专项练习题(含答案)
人教版七年级数学下册填空题专项练习题(含答案)1.如图,已知Rt△ABC中∠A=90°,AB=3,AC=4.将其沿边AB向右平移2个单位得到△FGE,则四边形ACEG的面积为_________.2.命题“锐角与钝角互为补角”的逆命题是_ _.3.已知:a∥b∥c,a与b之间的距离为3cm,b与c之间的距离为4cm,则a与c之间的距离为___ ___.4.命题“互补的两个角是邻补角”是_____命题,(填真或假),把它改写成“如果…,那么…”的形式为_____.5.如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).6.如图,AB∥CD,∠A=73°,∠DFB=58°,则∠AFB的度数为________.7.如图,用吸管吸易拉罐内的饮料时,∠1 = 70°,则∠2 =____________.8.如图,B的同旁内角是__________.9.如图,若AB∥CD,则∠α=150°,∠β=80°,则∠γ= .10.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于______,∠3的内错角等于______,∠3的同旁内角等于______.11.将实数3,π,0,-4用“<”连接起来,可表示为____. 12.若23x y ++-=0,则xy =________.13.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.14.若2(3)20x y -++=,则x y +=____. 15.若│x 2-25│+3y -=0,则x+y=_______ 16.计算:13182-⎛⎫---= ⎪⎝⎭_____. 17.计算:(2+1)(2﹣1)=_____.18.123-的倒数是_____,8116的平方根是_____. 19.把无理数17,11 ,5 ,-3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.20.2020151(3π)(1)3-⎛⎫-----= ⎪⎝⎭__________.21.已知点()P a b ,在坐标轴上,则ab = _________.22.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2013的坐标是______________.23.在平面直角坐标系中,将点P (﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P 1,则点P 1的坐标为_____.24.在平面直角坐标系中,将点A (﹣2,3)向右平移2个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是_____.25.如图所示,在Rt△OAB 中.斜边OB 在x 轴的正半轴上,直角顶点A 在第四象限内,S △OAB =20,OA :AB =1:2,则点B 的坐标为_____26.如图,小华用手盖住的点向上平移3个单位得到的点的坐标为(2,1),则小明用手盖住的那个点的坐标为________.27.在平面直角坐标系内,横坐标与纵坐标都相等的点的轨迹是________.28.若点(﹣1,﹣3a+1)在第二象限,则a 的取值范围是______.29.如图,将直角三角形 ABC 沿 BC 方向平移一定距离得到三角形 DEF ,若 AB = 8 ,BE = 3 ,DG = 2 则图中阴影部分面积为_____.30.已知点M(a +3,4-a)在y 轴上,则a 的值为____________.31.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__. 32.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案.33.买2只签字笔,3只圆珠笔,1个笔记本,共需32元;买3只签字笔,5只圆珠笔,1个笔记本,共需45元.那么签字笔、圆珠笔、笔记本各买一件共需_____元.34.若2421350a b a b x y +--++=是关于字母x ,y 的二元一次方程,则a=_____,b=____.35.已知35x y =⎧⎨=⎩是关于x ,y 的二元一次方程22mx y +=-的一个解,则m 的值为__________. 36.对于任意有理数a ,b ,c ,d ,我们规定a b ad bc c d =-.已知x ,y 同时满足514x y =-,513y x=-,则xy =________. 37.某商场分别组装了甲、乙两种坚果营养袋,它们都由a 、b 、c 三种坚果组成,只是甲种坚果营养袋每袋装有100克a 坚果,300克b 坚果,100克c 坚果;乙种坚果营养袋每袋装有200克a 坚果,100克b 坚果,200克c 坚果,甲、乙两种坚果营养袋每袋成本价均为袋中a 、b 、c 三种坚果的成本价之和.已知b 种坚果每100克的成本价为1元,乙种坚果营养袋每袋售价为5元,成本利润率为25%,甲种坚果营养袋每袋的成本利润率为13,则这两种坚果营养袋的销售利润率为523时,该商场销售甲、乙两种坚果营养袋的数量之比是______.(已知:成本利润率=利润÷成本;销售利润率=利润÷售价)38.某校八年级举行演讲比赛,共准备了36本笔记本作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发5本,二等奖每人发3本,三等奖每人发2本,实际一等奖每人发8本,二等奖每人发4本,三等奖每人发1本,获得三等奖的学生人数为_____人. 39.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.40.某同学设计了一个程序:对输入的正整数x,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x,则首次输出大于100的y的值是__________.41.某种商品的进价为每件100元,商场按进价提高60%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.42.已知不等式3x-0a≤的正整数解恰是1,2,3,4,那么a的取值范围是_________________.43.今年六一节期间,蓓蕾幼儿园的康老师准备用250元钱购买甲乙两种盒装牛奶共48盒分发给本班的48为小朋友,已知甲种牛奶每盒6元,乙种牛奶每盒4.5元,请你帮老师算一算,在不增加经费的情况下,最多能购买甲种牛奶_____________盒.44.x 的 4 倍与 3 的差不小于 7,用不等式表示为_____.45.解不等式组35{431xx+≤+-①②请结合题意填空,完成本题的解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:.(4)原不等式组的解集为.46.不等式3x-2>0的解集是__.47.已知4a+b=2,且b≤6,则a的取值范围是_______.48.不等式2x-1≥5的最小整数解为__________.49.如图是测量一物体体积的过程:步骤一:将180 cm3的水装进一个容量为300 cm3的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再加入一个同样的玻璃球,结果水满溢出.根据以上过程,请你推测一颗玻璃球的体积x(cm3)所在的范围是__________________.50.某县教育局为了检查初三学生的身体素质情况,全县抽取了2000名初三学生进行检查,发现身高在1.75~1.78(单位:m)这一小组的频率为0.12,则这小组的人数为_______.51.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图所示),那么仰卧的次数在40~45的频率是_______.52.如图所示是某班学生体重的频数分布直方图,则该班学生体重不足45千克的有_____人.(注:35~40千克包括35千克,不包括40千克,其他同).53.班主任对本班40名学生所穿校服的尺码的数据统计如下:尺码S M L ML XXL XXXL频率0.05 0.1 0.2 0.325 0.3 0.025则该班学生所穿校服尺码为“XXL ”的人数为_________.54.某班级有50名学生在期末学情分析考试中,分数段在135-150分的频率为0.2,则该班级在这个分数段内的学生有_____人.55.为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是_____.56.一个样本容量为80的样本,最大值是139,最小值是67,取组距为10,则可分________组.57.为了了解某市近40000名八年级学生的体重情况,随机抽取其中1000名学生的体重进行调查,则此次调查的样本容量是_______.58.某班男、女生人数之比是3:2,制作扇形统计图是女生对应的扇形的圆心角是____________(度).59.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________.60.如图,直线a∥b,Rt△ABC 的直角顶点C 在直线b 上,∠1=20°,则∠2=_____°.61.已知()22432x y x -++=-,则x y +=_______.62.对于每个正整数 n ,关于 x 的一元二次方程22110(1)(1)n x x n n n n +-+=++= 0 的两个根分别为 a n 、b n ,设平面直角坐标系中,A n 、B n 两点的坐标分别为 A n (a n ,0),B n (b n ,0),A n B n 表示这两点间的距离,则 A n B n =____________(用含 n 的代数式表示);A 1B 1+ A 2B 2+ …+ A 2011B 2012 的值为______.63.计算:+-||=_____.64.不等式组1020x x +≥⎧⎨-<⎩的整数解为___________________. 65.“x 的3倍与2的差不大于7”列出不等式是是__________.66.某校为了解该校1300名毕业生的数学考试成绩,从中抽查了200名考生的数学成绩.在这次调查中,样本容量是______.67.如图,已知△ABC 的面积为16,BC 的长为8,现将△ABC 沿BC 向右平移m 个单位到△A′B′C′的位置。
初中数学填空题答案及参考解答(三)
初中数学填空题答案及参考解答(三)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学填空题答案及参考解答(三)1001.(-6,2),(-2,2),(-43,2),(4,2),(2,2) 解:由题意,OB =2OA 分三种情况进行讨论:①当A 是直角顶点时,如图1 作PH ⊥x 轴于H 易证Rt △OAB ≌Rt △HPA ,得AO =PH =2,∴P 1(-6,2),P 2(-2,2) ②当B 是直角顶点时同理可得P 3(-43,2),P 4(4,2) ③当P 是直角顶点时同理可得P 5(-2,2)(与情形①的P 2重合),P 6(2,2)综上可得满足条件的P 点有5个,坐标分别为:(-6,2),(-2,2),(-43,2),(4,21002.4、-4、43、83、8 解法参见上题1003.(3+433,1)或(3-433,1) 3+3或3- 3图1-1 图2-1 图1-2图3-2图3-1解:设OA =a ,点P 的坐标为(x ,1),则OB =3a ∴AB 2=a 2+(3a )2=10a 2 AP 2=(x +a )2+12 BP 2=x 2+(3a -1)2∵△PAB 是等边三角形,∴AB 2=AP 2=BP 2可得(x +a )2+12=x2+(3a -1)2于是x =4a -3∴(4a -3+a )2+12=10a 2,解得a =3±33∴x 1=4×3+33-3=3+433,x 2=4×3-33-3b=OB =3± 3∴点P 的坐标为(3+433,1)或(3-433,1b 的值为3+3或3- 31004.33-3延长BA 至F ,使AF =AD ,连接DF 、DC 、BD 则AB +AF =BF∵AB +AD =BC ,∴BF =BC 又∠DBF =∠DBC ,BD =BD∴△BDF ≌△BDC ,∴∠BFD =∠BCD∵AF =AD ,∴∠BAD =2∠BFD =2∠BCD ∴∠BAC =2∠ACB∵∠BAC +∠ACB =90°,∴∠ACB =30°,∠BAC =60° ∴∠BAE =30° ∵BE =3,∴AB =3过D 作DH ⊥AB 于H设BH =DH =x ,则AH =3x ,AD =2x ∴3x +x =3,∴x =32(3-1) ∴AD =33-31005.(1)(4514,1514) (2)(1513,3013) 解:(1)过D 作DH ⊥OA 于H ∵OB =5,OC =3,∴BC =4∵∠ODF =90°,∴∠ODH =∠DFH =90°-∠HDF ∵EF ∥AB ,∴∠DFH =∠BAO ,∴∠ODH =∠∴OH DH =tan ∠ODH =tan ∠BAO =35-4=3,∴OH =3设DH =x ,则OH =3x ,AH =5-3x 在Rt △DHA 中,DH AH =tan ∠CAO =35∴x 5-3x =35,解得x =1514∴D 点的坐标为(4514,1514)(2)设O ′是△ODF 的外心,连接O ′O 、O ′D 、O ′F ∵∠ODF =45°,∴∠OO ′F =90° 设OF =2x ,则AF =5-2x ,O ′(x ,x ) 作CG ∥AB 交OA 于G ,DH ⊥OA 于H ∴△ADF ∽△ACG ,∴DH AF =CO AG ∴DH 5-2x =34,∴DH =154-32x∴HF =54-12x ,OH =2x -(54-12x )=52x -54∴D (52x -54,154-32x )∵O ′D =O ′O ,∴(52x -54-x )2+(154-32x -x )2=2x 2解得x 1=2526,x 2=52(舍去) ∴52x -54=1513,154-32x =3013 D 点的坐标为(1513,3013)1006.498解:∵△ACD 是等边三角形,∴∠ACD =60° ∵∠AED =60°,∴∠ACD =∠AED 又AGE =∠DGC ,∴△AGE ∽△DGC ∴AG DG =EGCG,又∠AGD =∠EGC ∴△ADG ∽△ECG ,∴∠1=∠2∵AB =AC ,∴∠B =∠2,∴∠1=∠B∵△AGE ∽△DGC ,∴∠3=∠4∴∠AEB =∠2+∠3=∠1+∠4=∠ADC =60°=∠AED ∴∠BAE =∠DAE∵△ACD 是等边三角形,∴AC =AD ,∴AB =AD在△ABE 和△ADE 中AB =AD ,∠BAE =∠DAE ,AE =AE ∴△ABE ≌△ADE ,∴DE =BE =8 ∵∠AEB =∠AED =60°,∴∠DEF =60° 又∠BFD =60°,∴△DEF 是等边三角形 ∴EF =DE =8∵CE :CF =3 :5,∴CE =3,CF =5 过D 作DH ⊥EF 于H 则EH =4,CH =1,DH =4 3 在Rt △DCH ,由勾股定理得DC =7 ∴AB =AD =7∵∠1=∠B ,∠DAG =∠AEB =60°ABC DFE G341 2H∴△DAG ≌△BEA ,∴DG BA =DABE 即DG 7=78,∴DG =498解:(1)设⊙O 与BC 边相切于点H ,连接OA 、OH ,则OA =OH =12EF(2)由△AEF ∽△ABC ,得AF AE =AC AB =34 ∵AF MN =34,∴MN =AE作OG ⊥AB 于G ,OH ⊥BC 于H ,则OH =OG 由△GEO ∽△AEF ,得OG =34EG =38x ∴OH =38x ,∴BE =53OH =58x 1008.855∵△ADE 是等腰直角三角形,四边形ACDE 是平行四边形 ∴CD =AE =AD =4,AC =DE =2AE =42,AE ∥CD ∴∠ADC =∠DAE =90°,∴△ADC 是等腰直角三角形 ∴∠CAD =45°,∴∠CAE =135°过E 作EH ⊥AC 于H ,则△AHE 是等腰直角三角形 ∴AH =EH =22AE =22,∴CH =6 2图2ACBG F EH在Rt△CHE中,由勾股定理得CE=45,∴CF=2 5 ∵AB=AC,AD=AE,∠BAD=∠CAE=90°+∠CAD ∴△ABD≌△ACE,∴∠ADB=∠AEC又∠AFE=∠GFD,∴∠DGF=∠EAF=90°∴△CGD∽△CDF,∴CGCD=CDCF∴CG4=425=8551009.7解:∵∠BAC=120°,AB=AC,∴∠ABC=120°∵BD⊥BC,∴∠ABD=120°=∠BAC又BD=12AB,F为AB的中点,∴BD=AF∴△BDA≌AF C,∴∠BAD=∠ACF=∠FCH 易证△AFG∽△CHG∽△CFA∴FGAG=AFAC=12,HGCG=AFAC=12过C作CN⊥AB于N设AF=x,则AC=2x,AN=x,CN=3x,FN=2x,在Rt△FNC中,CF=CN2+FN2=7x由△AFG∽△CFA得:FGAF=AFCF∴FGx=x7x,∴FG=77x∴AG=277x,CG=677x,HG=377x∵AG+HG=AH,∴277x+377x=5∴x=7,即AF的长为7 1010.9AB C DEF GHN解:在Rt △BCD 中,BC =25,BD =15 ∴CD =BC 2-BD 2=252-152=20 在Rt △BCE 中,BC =25,CE =7 ∴BE =BC 2-CE 2=252-72=24设AD =a ,AE =b ,在Rt △ABE 和Rt △ACD 中分别根据勾股定理得⎩⎨⎧b 2+242=(a +15)2a 2+202=(b +7)2 解得⎩⎨⎧a =15b =18 ∴AD =BD 连接DF∵以DE 为直径的圆与AC 交于另一点F ∴∠DFE =90°,∴DF ∥BE ∴AF =CF =91011.2034解:设AF =x ,AF =y ,△EFG 的面积为S 则S =S 四边形ABGF -S △AEF -S △BEG=12(x +y )×4-12×2·x -12×2·y =x +y 由△AEF ∽△BEG ,得x y =4∴当x 、y 相差越大时,x +y 的值越大,即S 越大 当x =6或23时,S 最大,最大值为6+23=203又S =x +y =x +4x =(x -2x)2+4当x -2x=0,即x =2时,S 最小,最小值为41012.5 75°,240°,255°解:过D 作DE ⊥AB 于E ,DF ⊥AC 于F则四边形AEDF 是矩形,DE =AF =12AC =12AB =12BDBA DCE F A DCB E GFxy 22AB CDEF∴∠ABD =30°,∴∠BAD =∠BDA =75° ∵∠BAC =90°,AD =DC ∴∠DAC =∠DCA =15° ∵∠BAC =90°,AB =AC ∴∠ABC =∠ACB =45°∴∠DBC =15°,∠DCB =30°满足条件的点A ′ 有5个(如图1-图5) 当A ′B ∥CD 时(如图1) 则∠CBA ′=∠DCB =30° ∴θ=∠ABA ′=75° 当A ′D ∥BC 时(如图4) 则∠A ′=∠A ′DB =∠DBC =15° ∴∠A ′BD =150°,∴∠ABA ′=120° ∴θ=360°-120°=240° 当A ′B ∥CD 时(如图5) 则∠A ′BC =180°-∠DCB =150° ∴∠ABA ′=150°-45°=105° ∴θ=360°-105°=255°1013.1+72a解:作点B 关于AC 的对称点E ,连接PE 、BE 、DE 、CE 则PB +PD =PE +PD ,∴DE 的长就是PB +PD 的最小值ACDBA ′图4A CD B ′图2A CDA ′图5A C DBA ′图1ACDBA ′图3A PEG F即当点P运动到DE与AC的交点G时,△PBD的周长最小过D作DF⊥BE于F∵BC=a,∴BD=12a,BE=2a2+(12a)2=3a∵∠DBF=30°,∴DF=12BD=14a,BF=3DF=34a∴EF=BE-BF=3a-34a=334a∴DE=DF2+EF2=7 2a∴△PBD的周长的最小值是1+7 2a1014.1 4解:设BD交AC于O∵△ABC和△BPD是等腰直角三角形∴∠1=∠2=45°,又∠AOB=∠DOP∴△AOB∽△DOP,∴OAOD=OBOP∵∠AOD=∠BOP,∴△AOD∽△BOP ∴∠DAC=∠OBP=45°,∴∠DAC=∠C∴AD∥BC,∴△AOD∽△BOC,∴ADBC=ODOB∵AP将△BPD的面积分为1:2的两部分∴ODOB=12,∴ADBC=12,∴ADAB=12过D作DE⊥AC于E∵△AOB∽△DOP,∴∠3=∠4又∠BAD=∠PED=90°,∴△ABD∽△EPD∴DEPE=ADAB=12,∴PE=2DE=2AD=22AB=22×22AC=12AC∴AE=DE=14AC,∴PC=AC-AE-PE=14ACA DB CPOE34211015.12解:连接DE 、CF∵梯形ABCD 中,AD ∥BC ,AB =DC∴梯形ABCD 是等腰梯形,∴OA =OD ,OB =OC ∵∠ADB =60°,∴△AOD 和△BOC 均为等边三角形 ∵E 是OA 的中点,∴DE ⊥OA在Rt △DEC 中,G 是CD 中点,EG 是斜边CD 的中线 ∴EG =12CD同理,CF ⊥BD ,在Rt △DFC 中,FG =12CD又EF 是△AOB 的中位线,∴EF =12AB =12CD ∴EF =FG =EG ,∴△EFG 是等边三角形 设AD =a ,BC =b (a <b )则CD 2=CE 2+DE 2=(12a +b )2+(32a )2=a 2+b 2+ab∴EG 2=14(a 2+b 2+ab )∴S △EFG =34×14(a 2+b 2+ab )=316(a 2+b 2+ab )又△AOB 和△AOD 是高相等的三角形,∴S △AOB S △AOD =OB OD =ba∴S △AOB =34a 2×b a =34ab∵S △EFG S △AOB =78,∴8×316(a 2+b 2+ab )=7×34ab 即2a 2-5ab +2b 2=0,∴(2a -b )(a -2b )=0 ∵a <b ,∴2a =b ,∴a b =12A BDGCE F O1016.1≤m ≤4解:∵y =12x 2-mx +2m =12(x -m )2+4m -m22∴抛物线的顶点坐标为(m ,4m -m 22)过B 作BD ⊥x 轴于D由A (0,2),C (4,0),△BCD ∽△ABC 得B 点坐标为(5,2)易得直线AC 的解析式为y =-12x +2,把x =m 代入得y =-12m +2 直线BC 的解析式为y =2x -8,把x =m 代入得y =2m -8 ∵抛物线的顶点在△ABC 的内部(含边界) ∴0≤m ≤50≤4m -m 22≤2,解得0≤m ≤4 -12m +2≤4m -m 22,解得1≤m ≤42m -8≤4m -m 22,解得-4≤m ≤4 综合得m 的取值范围是1≤m ≤41017.6≤m ≤6+610解:∵A (1,23b ),B (-23a ,3)两点在一次函数y =ax +b 的图象上 ∴⎩⎪⎨⎪⎧a +b =23b -23a2+b =3 解得⎩⎨⎧a 1=-3b 1=9 ⎩⎪⎨⎪⎧a 2=-32b 2=92当a =-3,b =9时,A (1,6),B (2,3)当a =-32,b =92 时,A (1,3),B (1,3),A 、B∴A (1,6),B (2,3),AB =10∵AB=BC,∴将△ABC沿直线AC翻折后得到菱形ABCB′∴AB′=AB=10,AB′∥BC∥x轴,∴B′(1+10,6)当反比例函数y=mx的图象经过A、B两点时,m=1×6=6当反比例函数y=mx的图象经过B′点时,m=(1+10)×6=6+610∵反比例函数y=mx的图象与△AB′C有公共点∴m的取值范围是6≤m≤6+6101018.573 4解:∵△ABC和△ADE均为等边三角形∴AB=AC,AE=AD,∠BAC=∠EAD=60°∴∠EAB=∠DAC=60°-∠CAE∴△ABE≌△ACD,∴BE=CD,∠ABE=∠ACD∵M、N分别是BE、CD的中点,即BM=12BE,CN=12CD∴BM=CN,又AB=AC∴△ABM≌△ACN,∴AM=AN,∠MAB=∠NAC∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=60°∴△AMN是等边三角形作EF⊥AB于F,MH⊥AB于H在Rt△AEF中,∵∠EAB=30°,AE=AD=2 3∴EF= 3∵M是BE中点,∴MH∥EF,MH=12EF=32取AB中点G,连接MG,则MG∥AE,MG=12AE= 3∴∠MGH=30°,∴GH=3 2∴AH=AG+GH=15 2在Rt△AMH中,AM2=AH2+MH2=57CDEMN∴S△AMN=34AM2=57341019.31 4解:∵△ABC和△ADE均为等腰直角三角形∴AB=2AC,AE=2AD,∠BAC=∠EAD=45°∴∠EAB=∠DAC=45°-∠CAE∴ABAC=AEAD=2,△ABE∽△ACD∴BECD=ABAC=2,∠ABE=∠ACD∵M、N分别是BE、CD的中点,即BM=12BE,CN=12CD∴BMCN=BECD=ABAC,∴△ABM∽△ACN∴AMAN=ABAC=2,∠MAB=∠NAC∴AM=2AN,∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=45°过N作NP⊥AM于P,则NP=AP=PM=22AN∴△AMN是等边三角形作EF⊥AB于F,MH⊥AB于H在Rt△ABC中,∵AC=BC=42,∴AB=8在Rt△ADE中,∵AD=DE=6,∴AE=2 3 在Rt△AEF中,∵∠EAB=30°,∴EF= 3∵M是BE中点,∴MH∥EF,MH=12EF=32取AB中点G,连接MG,则MG∥AE,MG=12AE= 3∴∠MGH=30°,∴GH=3 2∴AH=AG+GH=4+32=112在Rt△AMH中,AM2=AH2+MH2=31CDEMNF G HP∴S △AMN =14AM 2=3141020.1237解:延长AF 和BC 交于点G易证△ADF ≌△GCF ,∴AD =BC =CG ,AF =FG =4 ∵E 是BC 的中点,∴EG =3EC =32BC ∴BC =23EG过E 作EH ⊥AF 于H ,在Rt △AEH 中 ∵AE =3,∠EAF =60°,∴AH =32,EH =332 又AG =2AF =8,HG =8-32=132 在Rt △HEG 中,由勾股定理得EG =7 ∴BC =23EG =143,BE =12BC =73 过A 作AK ⊥BC 于K ,设KE =x 则AK 2=9-x 2,KG 2=(x +7)2 在Rt △AKG 中,(9-x 2)+(x +7)2=82 解得x =37,∴AK =9-x 2=1237即BC 边上的高是 12371021.320解:∵AH ∥GC ,∴∠1=∠2 ∵AB ∥CD ,∴∠AEH =∠CDG ∴△AEH ∽△CDG ,∴GC AH =CD AE =ABAE =2 ∴AH =12GC连接AC ,过E 作EI ∥BF 交AF 于I 则BF =2EI ,∴AD =2BF =4EIB C AD E FGHK A BDG CHF EI 1 2由△AGD ∽△IGE ,得AG =4GI ,∴AG =45AI =25AF ∴S △AGC =25S △AFC =15S △ABC =110S □ABCD 设△AGC 中GC 边上的高为h则S △AGC =12GC ·h ,S 梯形AGCH =12(AH +GC )·h =12(12GC +GC )·h =34GC ·h ∴S 梯形AGCH =32S △AGC =320S □ABCD ∴S 梯形AGCH S □ABCD =3201022.307解:∵△C ′EF ≌△DPF ,∠C ′=∠D =90°,∠C ′FE =∠DFP ∴C ′E =DP ,C ′F =DF ,EF =PF 设C ′E =DP =a ,C ′F =DF =b则C ′P =PC =6-a ,EF =PF =6-a -b ,BE =10-a AE =10-(6-a -b )-b =4+a 在Rt △ABE 中,AB 2+AE 2=BE 2 ∴62+(4+a )2=(10-a )2,解得a =127 ∴PC =6-127=3071023.4 :3设等边△ABC 的边长为3a ,则BD =2a ,CD =a 过D 作DG ⊥AB 于G ,则BG =a ,DG =3a ,AG =2a 在Rt △ADG 中,由勾股定理得AD =7a ∵∠APE =60°=∠B ,∠PAE =∠BAD∴△APF ∽△ABD ,∴AE AD =AP AB =PEBD 即AE 7a =AP 3a =PE 2a设AP =3k ,则AE =7k ,PE =2k ∵∠APE =60°=∠FAE ,∠AEP =∠FEA∴△APE ∽△FAE ,∴AE EF =PEAEABDC C ′EF PABCE F G P即7k EF =2k 7k,∴EF =72k ,∴PF =32k∴PE :PF =4 :31024.172解:连接EN ,过E 分别作AB 、BC 的垂线,垂直为G 、H ∵ME 平分∠BMN ,∴EF =EG ,MF =MG 四边形BHEG 是正方形,∴EG =EH ∴EF =EH ,又EN =EN∴Rt △EFN ≌Rt △EHN ,∴FN =HN ∵AB =BC ,MA =NC ,BG =BH∴MF -NF =MG -HN =(MA +AB -BG )-(BC -BH -NC )=2MA ∴MA =NC =12(MF -NF )=12 设AB =x ,在Rt △MBN 中(x +12)2+(x -12)2=(2+1)2,解得x =172即AB =1721025.116解:∵∠BFG +∠BCG =180°,∠BCG =90° ∴∠BFG =90°,∴△DFG 是等腰直角三角形 设CG =x ,则DG =1-x∴△CFG 中CG 边上的高为 12DG =12(1-x )∴S △CFG =12x ·12(1-x )=-14(x -12)2+116 ∴当x =12 时,y 有最大值 1161026.π4ABDCM E F G HN解:∵S 1=S ,∴S △ABC =S 半圆∴12AC ·BC =12π(12AC )2∴BC AC =π41027.(133,259)或(13+5103,25+5109)解:连接AC 交y 轴于D ,过D 作DG ⊥AB 于G 由题意得:A (-4,0),B (0,3) ∴OA =4,OB =3,∴AB =5 易知AC 平分∠BAO ,∴DG =DO ∵S △BAO =12OA ·OB =12OA ·OD +12AB ·DG ∴OD =OA ·OB OA +AB =4×34+5=43,∴OD OA =13易得直线AC 的解析式为y =13x +43 过F 作FH ⊥OE 于H∵AE =AF ,AC 平分∠BAO ,∴AC ⊥EF 可证△FHE ∽△AOD ,得HE =13FH 设F (m ,34m +3),则OH =m ,FH =34m +3HE =14m +1,∴OE =54m +1 CE =13(54m +1)+43=512m +53∴C (54m +1,512m +53)∴BE 2=(54m +1)2+32,BF 2=m 2+(34m )2,EF 2=(14m +1)2+(34m +3)2 ∵AE =AF ,∴∠BFE =∠AEF >∠BEF ,∴BE >BF①若BE =FE ,则(54m +1)2+32=(14m +1)2+(34m +3)2解得m =0(舍去)或m =83∴C (133,259)②若BF =EF ,则m 2+(34m )2=(14m +1)2+(34m +3)2解得m =8-4103(舍去)或m =8+4103 C (13+5103,25+5109)1028.(-4,0),(27,0),(4,0),(14,0) 解:由题意,点A (-2,m )在双曲线y =-8x上∴A (-2,4),代入y =-74x +b ,得b =12令-74x +12=-6x ,解得x 1=-127(舍去),x 2=2 ∴B (2,-3) 设P (m ,0)当△APC ∽△PBD 时,有PC AC =BDPD ∴m +24=3m -2,解得m 1=-4,m 2=4 ∴P 1(-4,0),P 2(4,0) 当△PAC ∽△PBD 时,有PC AC =PDBD ∴m +24=m -23,解得m 3=14 ∴P 3(14,0)此外,直线AB 与x 轴的交点P 4也满足条件 令y =-74x +12=0,解得x =27 ∴P 4(27,0)1029.π-32解:由题意,AB ︵=AC ︵=BC ︵=π3 所以可设AB =AC =BC =rA则60×π×r 180=π3,解得r =1 即等边三角形ABC 的边长为1∴曲边三角形的面积=△ABC 的面积+三个弓形的面积 =34×12+3(60×π×12360-34)=π-321030.D (7925,7225)解:连接BD 交AC 于M ,过M 作MH ⊥BC 于则AC 垂直平分BD∵B (1,0),C (4,0),∴BC =3 由△BMC ∽△AOC ,得BM =35BC =95由△BMH ∽△BCM ,得BH =35BM =2725,MH =45BM =3625∴D 点横坐标为:1+2×2725=7925,D 点纵坐标为:2×3625=7225∴D (7925,7225)1031.4.5解:由题意,BF =BC ,EF =EC∵△ABF 的周长为15,△DEF 的周长为6 ∴AB +AF +BF =15,DE +DF +EF =6 ∴AB +AF +BC =15,DE +DF +EC =6 ∴(AB +AF +BC )-(DE +DF +EC )=(AB +AF +BC )-(DC +DF ) =AF +BC -DF=AF +BC -(BC -AF ) =2AF =9 ∴AF =4.51032.92425解:设AB =DC =x ,BE =y 在Rt △ABE 中,x 2+y 2=225 ① 在Rt △DEC 中,x 2+(14-y )2=169 ② 由①②解得:x =12,y =9易证△DFA ∽△ABE ,∴S △DFA S △ABE =AD 2AE 2=196225∴S △DFA =196225S △ABEA =196225×12×9×12=117625∴S △BFC =12S 矩形ABCD -S △DFA =12×14×12-117625=924251033.23<k <2解:画出函数y =⎩⎨⎧2x +4(x <-3)-2(-3≤x ≤3)2x -8(x >3)的图象,即图中的粗黑折线当直线y =kx 过点A (-3,-2)时,k =23此时直线与函数图象有2个不同的交点当k =2时,直线y =kx 与直线y =2x +4和y =2x -8此时直线与函数图象只有1个交点 ∵y =kx 与函数图象有3个不同的交点∴k 的取值范围是23<k <21034.25解:∵∠ABC =65°,∠EBC =55°,∴∠DBE =10° 在BC 边上取点F ,使∠FBC =45°,连接DF ∵∠ABC =65°,∠EBC =55° ∴∠DBF =20°,∠FBE =∠DBE =10°∵∠ACB =100°,∠DCB =80°,∴∠DCF =20°ABDCFEA D F E O∴∠DBF=∠DCF,又∠A=∠A∴△ABF∽△ACD,∴AFAD=ABAC又∠A=∠A,∴∠AFD=∠ABC∴∠ADF=∠ACB=100°,∴∠BDF=80°∴∠BFD=80°,∴∠BDF=∠BFD∴BD=BF又∠DBE=∠FBE,BE=BE∴△BDE≌△BFE,∴∠BDE=∠BFE∵∠FBC=45°,∠ACB=100°,∴∠BFC=35°∴∠BDE=∠BFE=145°∴∠DEB=180°-145°-10°=25°1035.30解:在AC边上取点F,使∠FBC=20°,连接DF、BF 则BD=BC=BF,∴△BFC是等腰三角形∵△ABC中,AB=AC,∠BAC=20°∴∠ABC=∠ACB=80°,∴∠DBF=60°∴△BDF是等边三角形∴∠BFC=80°,∠DFE=40°,∠BEF=40°∴△BEF是等腰三角形,BF=EF∴DF=EF,△DEF是等腰三角形∴∠DEF=70°,∴∠DEB=30°1036.754FAB CDE解:延长MO 交AD 于N由题意,FG 垂直平分AE ,OA =OE ∴OA 是△ADE 的中位线设DE =x ,则ON =12x ,OM =9-12x ∵OM =OA ,∴AE =2OA =2OM =18-x 在Rt △ADE 中,AD 2+DE 2=AE 2 ∴62+x 2=(18-x )2,∴x =8 ∴OE =9-12x =5由△FOE ∽△ADE ,得OF =34OE =154 易知△FOE ≌△GOA ,∴FG =2OF =152 ∴S △EFG =12FG ·OE =12×152×5=7541037.y =-3x 2+6x +9或y =x 2-2x -3解:∵抛物线与x 轴的交点坐标为(-1,0),(3,0) 所以抛物线的对称轴为x =1若a <0,在-2≤x ≤5上,当x =1时,y 有最大值12 ∴抛物线的顶点坐标为(1,12)设抛物线为y =a (x +1)(x -3),把(1,12)代入得: 12=a (1+1)(1-3),解得a =-3 ∴抛物线的解析式为y =-3(x +1)(x -3) 即y =-3x2+6x +9若a >0,在-2≤x ≤5上,当x =5时,y 有最大值12 把(5,12)代入y =a (x +1)(x -3)得: 12=a (5+1)(5-3),解得a =1ABC D GF E HOMN∴抛物线的解析式为y =(x +1)(x -3) 即y =x 2-2x -31038.(1)a 2+b 2 (2)如图①在BA 上截取BG =b ; ②画出两条裁剪线CG ,FG ;③把△BGC 绕点C 顺时针旋转90°到△DHC 的位置; ④把△AFG 绕点F 顺时针旋转90°到△EFH 的位置. 此时得到的四边形FGCH 即为所拼的正方形1039.π3 π4解:固定的线段绕一点转动扫过的面积与计算雨刮器相同,可以采用割补的方法 ∵∠ABC =90°,AB =1,BC =2,∴AC 2=12+22=5 ∵M 是BC 的中点,∴AC 2=12+12=2BC 边扫过的面积S 1如图1中的阴影部分 将曲边三角形BFC 割补到曲边三角形DGE 则S 1=S 扇形ACE -S 扇形AFG =30×π(5-1)360=π3线段MC 扫过的面积为S 2如图2中的阴影部分 将曲边三角形MPC 割补到曲边三角形NQE 则S 2=S 扇形ACE -S 扇形APQ =30×π(5-2)360=π41040.38解:连接B ′E ,过F 作FG ⊥AB 于G ,则FG =BC =ABFA E ② ①② ①GBC DH 图1图2∵EF 为折痕,∴EF ⊥B ′B ∴∠EFG =∠B ′BA =90°-∠BEF又∵∠EGF =∠A =90°,∴△EGF ≌△B ′AB 设AB ′=x ,则EG =x∴在Rt △AB ′E 中,(1-BE )2+x 2=BE 2 ∴BE =12(x 2+1),∴CF =BE -EG =12(x 2+1)-x ∵四边形B ′EFC ′与四边形BEFC 全等∴S =12(BE +CF )·BC =12(x 2+1-x )×1=12(x -12)2+38 ∴当x =12时,S 有最小值381041.3n -2解:第1个图形有1枚棋子;第2个图形有5枚棋子:5=1+4=1+3×2-2; 第3个图形有12枚棋子:12=1+4+7=1+4+3×3-2; ……第n 个图形比第(n -1)个图形多(3n -2)枚棋子1042.-4解:作PE ⊥OA 于E ,BF ⊥OA 于F ,PG ⊥BF则四边形EFGP 是矩形,∴∠EPG =90° ∵半径PB ⊥PA ,∴∠APE =∠BPG =90°-∠又∠AEP =∠BGP =90°,PA =PB ∴△APE ≌△BPG ,∴BG =AE =12OA =3 PG =PE =12OC =1,∴P (1,3)A BCG F DE C ′ B ′∴BF=3-1=2,∴B(-2,2)∴k=-2×2=-41043.60解:连接OB、OD∵四边形OABC为平行四边形,OA=OC∴四边形OABC为菱形,∴OA=AB=BC=OC∵OA=OB=OC,∴△OAB和△OBC是等边三角形∴∠AOB=∠BOC=60°,∴∠AOC=120°∴∠ADC=12∠AOC/2=60°∵OA=OD=OC,∴∠OAD=∠ODA,∠OCD=∠ODC ∴∠OAD+∠OCD=∠ODA+∠ODC=∠ADC=60°1044.70°解:延长BA至D,使BD=BC,连接DP、DC∵BP平分∠ABC,∴∠ABP=∠CBP又BP=BP,∴△BPD≌△BPC,∴PD=PC∵△BDC中,∠DBC=20°,∴∠D=∠BCD=80°∴∠ACD=20°,∠PCD=60°∴△PCD是等边三角形,∴PC=DC∵△ACD中,∠D=80°,∠ACD=20°∴∠CAD=80°=∠D,∴AC=DC∴PC=AC∵∠ACB=60°,∠PCB=20°,∴∠ACP=40°∴∠PAC=∠APC=70°1045.3 715解:过A作AH⊥AB于HAB CPD∵AB =AC ,∴BH =12BC =1 ∴AH =AB 2-BH 2=42-12=15∴S △ABC =12BC ·AH =12×2×15=15 ∵AB =AC ,∴∠B =∠ACB ∵BC =EC ,∴∠B =∠BEC ∴∠B =∠ACB =∠BEC∴△CBE ∽△ABC ,∴S △CBE S △ABC =BC 2AB 2=2 24 2=14∴S △CBE =14S △ABC ,∴S △AEC =34S △ABC ∵△CBE ∽△ABC ,∴BE BC =BCAB得BE =1,AE =3∵∠DEC =∠B =∠BEC ,∴∠AEF =180°-2∠B ∵∠A =180°-2∠B ,∴∠AEF =∠A ,∴AF =EF ∵∠A =∠D ,∠AFE =∠DFC∴△AEF ∽△DCF ,∴DF =CF ,AF DF =AE DC =34 ∴CF =43AF =47AC∴S △CEF =47S △AEC =37S △ABC =3715 1046.4解:由题意,S 梯形ABOC =2S △ADC =2×43S △ADE =83S △ADE =83×94=6 ∴k =23S 梯形ABOC =23×6=41047.(-54,0)或(-1,0);x <-54;-54<x <-1或-1<x <1 解:由题意得:A (-1,0),C (0,3),抛物线的对称轴为x =1当P 点在线段EF 上运动时,在射线FA 上总存在一点Q ,使得∠QPF =∠CPE从而△QPF ∽△CPE当以CQ 为直径的⊙M 与EF 相切于P 点时,则△PQF连接MP ,设QF =x ,则CE +QF =2MP =CQ∴1+x =(x -1)2+32,解得x =94∴QO =94-1=54,∴Q (-54,0)当Q 点的横坐标x <-54时,以CQ 为直径的⊙M 与EF 相离 此时满足条件的P 点有且只有一个当Q 点的横坐标x >-54时,以CQ 为直径的⊙M 与EF 相交 当Q 点坐标为(-1,0)时,设P 点坐标为(1,m ) 由△QPF ∽△CPE 得:QF CE =PFPE即21=m3-m ,解得m =2,∴PF =2,PE =1 ∴PQ 2+PC 2=2×22+2×12=10 又CQ 2=12+32=10,∴PQ2+PC2=CQ 2∴△PQC 是直角三角形,且∠CPQ =90°∴P 点与以CQ 为直径的⊙M 与EF 的其中一个交点重合 ∴此时满足条件的P 点有且只有两个综上所述,当满足条件的P 点有且只有两个时,Q 点的坐标为(-54,0)或(-1,0);当满足条件的P 点有且只有一个时,Q 点的横坐标x 的取值范围是x <-54;当满足条件的P 点有三个时,Q 点的横坐标x 的取值范围是-54<x <-1或-1<x <11048.34 9316解:在Rt △AOB 中,tan ∠ABO =OA OB =33 ∴∠ABO =30°易得直线l 的解析式为y =-33x + 3令-33x +3=k x ,得-33x 2+3x -k =0设C 、D 两点的横坐标分别为x 1、x 2,则x 1x 2∵AC =x 1cos30°=233x 1,AD =x 2cos30°=233x 2 若AC ·AD =3,则233x 1·233x 2= 3∴x 1x 2=334,∴3k =334∴k =34若AC AD =13,则x 1x 2=13,∴x 2=3x 1∴D 点的纵坐标为-33·3x 1+3=3-3x 1∴k =x 1(-33x 1+3)=3x 1(3-3x 1)∵x 1≠0,∴-33x 1+3=33-33x 1解得x 1=34∴k =34(-33×34+3)=9316 解:∵B (1,0),C (3,0),∴OB =1,BC =2 过F 作FD ∥BC 交AB 于D ,则∠DFE =∠BOE 又∠DEF =∠BEO ,OE =EF ,∴△DEF ≌△BEO ∴DF =OB =12BC ,∴点F 是AC 的中点当点A 在第一象限时,易得A (2,3) ∴F (52,32),∴E (54,34)由对称性可知,当点A 在第四象限时,E (54,-34)1050.16295解:由题意得:AC =CE =8,BC =4 ∵AF =5,∴CF =3,∴BF =5 ∴S △ABF =12AF ·BC =12×5×4=10易证△CGF ∽△ABF ,∴S △CGF S △ABF =CF 2BF 2=3 25 2=925∴S △CGF =925S △ABF =925×10=185 过M 作MN ⊥CE 于N则△MCN ∽△ABC ,△MNE ∽△FCE 得MN =2CN ,NE =83MN =163CN ∵CN +NE =CE ,∴CN +163CN =8 ∴CN =2419,∴MN =4819∴S △FCM =S △FCE -S △MCE =12×8×3-12×8×4819=3619 S △FMG =S △FCG -S △FCM =185-3619=16295 1051.1解:过D 作DH ⊥BC 于H由题意,BD =(26)2+(6)2=30CH =DH =22DC =22×6= 3 BH =BC -CH =2×26-3=3 3 由△DEH ∽△BDH ,得DH EH =BHDH 即3EH =333,∴EH =33∴EC =CH -EH =3-33=233∴S △CDE =12EC ·DH =12×233×3=11052.360A DBC EG F HM NAD解:过D 作DF ∥AE 交BC 的延长线于F 则四边形AEFD 是平行四边形 ∴DF =AE =15,EF =AD =26∵E 是BC 的中点,BC =AD =26,∴BE =13 ∴BF =BE +EF =39∵BD =36,∴BD 2+DF 2=36 2+15 2=39 2=BF 2 ∴△DBF 是直角三角形∴S □ABCD =2S △BDC =43S △BDF =43×12×36×15=3601053.1 6-33或 3 当△CDF 是直角三角形时由于∠FDC 和∠FCD 均为锐角,所以只能∠CFD =90° 取CD 的中点M ,连接BM 、FM 则FM =CM ,又BF =BC ,BM =BM∴△BFM ≌△BCM ,∴∠BFM =∠BCM =90° 又∠BFE =90°,∴E 、F 、M 三点共线 设AE =x ,则DE =3-x ,EM =32+x ,DM =32在Rt △DEM 中,(3-x )2+(32)2=(32+x )2解得x =1当△CDF 是等腰三角形时由题意可知点F 的运动路线是以点B 为圆心,以BA 的长为半径的四分之一圆 所以DF <DC①若CF =CD ,则CF =BA =BF =BC ∴△BFC 是等边三角形A B DC E FABDCE FGH A B DCE FM过F作BC的垂线,分别交AD、BC于G、H则∠BFH=30°,FH=32BC=332,∴FG=3-332∵∠BFE=90°,∴∠EFG=60°,∠FEG=30°∴AE=EF=2FG=6-3 3②若CF=DF过F作AB的垂线,分别交AB、CD于G、H则BG=CH=12CD=12AB=12BF∴∠BFG=30°,∠GBF=60°∴∠ABE=∠FBE=30°∴AE=33AB= 31054.(n-1)2n2+1m2n2-2n+1m2n2+1如图1,连接BE则MN垂直平分BE,∴BN=EN∵CECD=1n,设CE=1,BN=x,则BC=CD=n,EN=x,CN=n-x在Rt△ENC中,EN2=CN2+CE2∴x2=(n-x)2+12,解得x=n2+12n,即BN=n2+12n过N作NG∥CD交AD于G则NG=CD=BC,AG=BN=n2+1 2n易证△NGM≌△BCE,∴MG=EC=1∴AM=AG-MG=n2+12n-1=(n-1)22n∴AMBN=(n-1)2n2+1如图2,连接BEABDCEFG HA DMC图1EGF则MN 垂直平分BE ,∴BN =EN∵AB BC =1m ,CE CD =1n ,设CE =1,BN =x ,则CD =n ,BC =mn ,EN =x ,CN =mn -x 在Rt △ENC 中,EN 2=CN 2+CE 2∴x 2=(mn -x )2+12,解得x =m 2n 2+12mn ,即BN =m 2n 2+12mn 过N 作NG ∥CD 交AD 于G则NG =CD =n ,AG =BN =m 2n 2+12mn易证△NGM ∽△BCE ,∴MG =1m EC =1m∴AM =AG -MG =m 2n 2+12mn -1m =m 2n 2-2n +12mn∴AM BN =m 2n 2-2n +1m 2n 2+11055.-233解:由题意,设B (x ,1),则A (12x ,1-32x )∴k =x ·1=12x (1+32x ),∴x =-233∴k =-233×1=-2331056.2 2解:过P 分别作x 轴、y 轴的垂线,垂足为C 、D 则四边形PCOD 是矩形 由已知可证△PAC ≌△PBD ∴AC =BD ,PC =PD∴四边形PCOD 是正方形,∴OC =OD∴OA +OB =(OC +AC )+(OD -BD )=OC +OD =2设P (x ,-2x ),则OC =|x |,OD =|-2x |AB D GCENFM图2∵OC =OD ,∴|x |=|-2x |,解得x =±2 ∴OC =OD = 2 ∴OA +OB =2OC =2 21057.(5-136,5+132) 解:设B (x 1,1x 1),C (x 2,1x 2)过A 作y 轴的平行线,过B 、C 分别作这条平行线的垂线,垂足为则△ABE ≌△CAF ,∴AE =CF,BE =AF∴⎩⎪⎨⎪⎧1x 1-2=x 2+1x 1+1=2-1x2解得x 1=5+136(舍去)或x 1=5-136∴B (5-136,5+132)1058.112 解:连接DE∵CD 是半圆直径,∴∠CED =90° ∵BD 是切线,∴∠CDB =90° 又∠DCE =∠BCD ,∴△CDE ∽△CBD ∴CE DE =CD BD =32∵AC 是切线,∴∠ACE +∠ECD =90° ∵∠CED =90°,∴∠FDE +∠ECD =90° ∴∠ACE =∠FDE∵EF ⊥AE ,∴∠AEC =∠FED =90°-∠CEF ∴△ACE ∽FDE ,∴AC FD =CE DE =32 ∴FD =23AC =83∴CF=CD-FD=3-83=13∴tan∠CAF=CFAC=1121060.875 6解:过E作EF⊥BD于F∵AD∥BC,AB⊥BC,∴∠A=90°∵AB=10,AD=15,∴BD=102+152=513 由题意,∠1=∠2∵AD∥BC,∴∠1=∠3∴∠2=∠3,∴BE=DE∴BF=DF=5 213由△FED∽△ABD,得EF=23DF=5313∴S凹五边形BDCEA1=S△A1BD+S△CDE=S△ABD+S△CDE ABDCEA1F123=S梯形ABCD-S△BDE=12(15+25)×10-12×513×5313=87561061.2363-2π27解:连接EF∵△AB C中,∠A=90°,∠B=60°,AB=BD=2 ∴∠C=30°,BC=4,DC=2设DE=x,则EF=x,EC=2x∵DE+EC=DC,∴x+2x=2,∴x=2 3S曲边△FGC=S△FEC-S扇形FEG=12×23×233-60×π×(23)2360=63-2π271062.1 0.1或0.7解:作半径OC⊥AB,垂足为点D,连接OA,则CD即为弓形高∵OC⊥AB,∴AD=12AB=0.3设管道的直径为2r,则OA=OC=r,OD=r-0.1在Rt△OAD中,0.32+(r-0.1)2=r2解得r=0.5(米)∴管道的直径为1米当水位上升到水面宽MN为0.8米时,设直线OC与MN相交于点E则ME=12MN=0.4∴OE=0.52-0.42=0.3而OD=0.5-0.1=0.4当MN与AB在圆心同侧时,水面上升的高度为:0.4-0.3=0.1当MN与AB在圆心异侧时,水面上升的高度为:0.4+0.3=0.7(米)1063.(1,6)解:由题意,B (-2,0),C (0,-1) ∴OB =2∵BA =25,∴OA =BA 2-OB 2=4 ∴A (0,4),∴D (2,3)∵双曲线y =kx (x >0)过点D ,∴k =2×3=6 ∴y =6x易得直线BA 的解析式为y =2x +4 令2x +4=6x ,解得x 1=-3(舍去),x 2=1 ∴E (1,6) 1064.(21-233,0),(-33,0),(-3,0解:设直线BC 交x 轴于点D ,作BE ⊥y 轴于E ,BF ⊥x CH ⊥x 轴于H ,设P (x ,0)则BF =EO =12AO =2,BC =OP =|x |,AB ⊥BC ∵∠ABO =60°,∴∠OBD =30° 又∠BOD =30°,∴∠BDF =60°∴CH =2+32x 或CH =-2-32x∴S △OPC =12x (2+32x )=34解得x =-21-233(舍去)或x =21-233∴P 1(21-233,0)或S △OPC =12(-x )(2+32x )=34解得x =-33(舍去)或x =- 3∴P 2(-33,0),P 3(-3,0)或S △OPC =12(-x )(-2-32x )=34图1图2解得x =-21-233或x =21-233(舍去) ∴P 4(-21-233,0)1065.6解:设一次函数y =-x +b 的图象与x 轴、y 轴交于D 、C 两点 则C (0,b ),D (b ,0),∴OC =OD =b 过O 作OE ⊥AB 于E ,则OE =22b 令-x +b =1x ,解得x =b ±b 2-42∴A (b -b 2-42,b +b 2-42),B (b +b 2-42,b -b 2-42)∴AB =2b 2-8∵△AOB 是等边三角形,∴OE =32AB∴22b =32·2b 2-8,解得b =-6(舍去)或b = 6 ∴b 的值为 61066.3-12 3-14 解:过E 作EF ⊥AB 于F设AB =2,AF =EF =x ,则AD =2,BC =3,AE =2x ,BE =2x ,BF =3x 由AF +BF =AB ,得x +3x =2,∴x =3-1 ∴AE =6-2,DE =2-(6-2)=22- 6 BE =23-2,CE =3-(23-2)=2- 3 ∴DE AE =22-66-2=3-12CE BE =2-323-2=3-14AECD1067.172解:当两个矩形的对角线重叠时菱形的面积最大设菱形的边长为x ,则有22+(8-x )2=x 2 解得x =174∴菱形面积的最大值为:174×2=1721068.2413 19225解:∵ab a +b=2,∴a +b ab=12 即1a +1b=12 ① 同理可得:1b +1c=13 ②1c +1a =14③ ①+②+③得:1a +1b +1c =1324∴abc ab +bc +ca=11a +1b +1c=2413①-②得:1a -1c =16 ④ ③+④得:1a=524,∴1a =255761b=12-524=724,∴1b =49576 1c =13-724=124,∴1c =1576∴abc ab +bc +ca =11a +1b +1c =125576+49576+1576=192251069.512 解:延长DE 至F ,使EF =DE ,连接CF则CE垂直平分DF,∴CD=CF∴∠CDF=∠F∵AB=AD,∴∠B=∠ADB=∠CDF ∴∠B=∠F∵AD平分∠BAC,∴∠BAD=∠CAF ∴∠ADB=∠ACF,∴∠F=∠ACF ∴AF=AC=5,∴DF=5-2=3∴DE=12DF=32易证△CDF∽△ACF,∴CDAC=DFCD∴CD5=3CD,∴CD=15∴CE=CD2-DE2=51 21070.3解:过C作CG⊥AB于G∵AF为⊙O的切线,∴AF⊥AB ∴AF∥CG∵D为EF的中点,∴DE=DF∵DE=34CE,∴CEDE=43,∴CEEF=23易证△CEG∽△FEA,∴CGAF=CEEF=23连接AD、BC∵AF⊥AB,∴∠DAF+∠DAB=90°∵D为EF的中点,∴AD=DE=DF∴∠F=∠DAF∵AB是⊙O的直径,∴∠ACD+∠DCB=90°∵∠DAB=∠DCB,∴∠DAF=∠ACD∴∠F=∠ACD,∴AF=AC= 5∴CG AC=23设CG=2k,则AC=3k,AG=AC2-CG2=5k ∵AC=5,∴3k= 5∴k=53,∴AG=5k=53BABECD易证△ABC∽△ACG,∴ABAC=ACAG∴AB5=553,∴AB=31071.2 2解:过P作PQ∥BC交AB于Q,连接AC∵P为CD中点,∴PQ为梯形ABCD的中位线∵AB⊥BC,∴PQ垂直平分AB∴AP=BP,又AP=AB∴△ABP是等边三角形∴∠BAP=∠ABP=60°,∴∠DAP=30°∵AE平分∠DAP,∴∠DAE=∠PAE=15°∵AB⊥BC,AB=BC,∴∠BAC=∠ACB=45°∴∠DAC=45°,∴∠CAE=30°,∠BAE=75°∴∠AEB=180°-60°-75°=45°∴∠AEB=∠ACB设AC、BE相交于点O,则△AOE∽△BOC∴OAOB=OEOC,又∠AOB=∠EOC∴△AOB∽△EOC,∴∠BEC=∠BAC=45°∴∠AEC=45°+45°=90°∴CE=12AC=22AB=2 21072. 3 3解:连接BD、BE∵AB是直径,∴∠ADB=90°AB CDEPQOE∵EF⊥AF,∴∠AFE=90°∴∠ADB=∠AFE,又∠A=∠A∴△ADB∽△AFE,∴ADAF=ABAE∴△ADF∽△ABE,∴∠DFB=∠DEB∴∠EBF=∠EDF=∠ADC=12∠AOC=30°∴BFEF= 3∵∠AFC<∠ABC=30°,∴∠DFE>60°∵BD与OC不平行,∴∠ABD>60°∵∠DEF=∠ABD,∴∠DEF>60°又∠EDF=30°,∴DE>EF,DF>EF∴当△DEF是等腰三角形时,只能DE=DF 此时∠DEF=∠DFE=75°∴∠EAB=15°,∴∠AEB=15°∴∠EAB=∠AEB,∴BE=AB=6∴EF=3由旋转的性质和菱形的对称性可知阴影部分为正八边形 故阴影部分的周长为83-8,面积为6-231074.2534-6解:将△ABD 绕点B 顺时针旋转60°,得△CBE ,连接AC 、DE 则CE =AD =4,∠BCE =∠BAD 易知△BDE 是等边三角形,DE =BD =5在四边形ABCD 中,∵∠ABC =60°,∠ADC =30° ∴∠BAD +∠BCD =360°-(60°+30°)=270°∴∠BCE +∠BCD =270° ∴∠ECD =360°-270°=90° ∴CD =52-42=3∴S 四边形ABCD =S △BAD +S △BCD =S △BCE +S △BCD =S △BDE -S △CDE =34×52-12×3×4=2534-61075.32或65解:第一次操作后剩下的矩形长为a ,宽为2-a第二次操作后剩下的矩形的边长分别为a -(2-a ),2-a ,即2a -2,2-a 当2a -2>2-a ,即a >43 时,矩形长为2a -2,宽为2-a 因为第三次操作后剩下的图形恰好是正方形 所以2a -2=2(2-a ),解得a =32当2-a >2a -2,即a <43 时,矩形长为2-a ,宽为2a -2 因为第三次操作后剩下的图形恰好是正方形A BCDE。
(完整版)人教版七年级数学下册期末试卷填空题汇编精选试题(带答案) (一)解析
一、填空题1.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.答案:【分析】将,转化为2ax=x 来解答. 【详解】解:∵可转化为:2ax=x , 即,∵不论x 取何值,都成立, ∴, 解得:, 故答案为:. 【点睛】本题考查实数的运算,正确理解题目中的新运算是 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答. 【详解】解:∵a x x ⊗=可转化为:2ax=x , 即()210a x -=,∵不论x 取何值,()210a x -=都成立, ∴210a -=, 解得:12a =, 故答案为:12.【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.2.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.答案:90° 【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90° 902n︒【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠. 【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD , ∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q , ∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°; 同理可得:∠P 2=14(∠AEF +∠CFE )=45°,∠P 3=18(∠AEF +∠CFE )=22.5°,..., ∴902n nP ︒∠=, 故答案为:90°,902n︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.3.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.答案:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有4⨯1=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有4⨯2=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有4⨯3=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有4⨯4=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有4⨯5=20个整点,...以此类推,第15个正方形,四条边上的整点共有4⨯15=60个. 故答案为:60. 【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.4.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.答案:(45,5) 【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5) 【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可. 【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=, 右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=, ⋯右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5). 【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键. 5.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2020次相遇地点的坐标是____.答案:(2,0) 【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0) 【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标. 【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----, ∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒) ∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2), ∴M 、N 第一次相遇的坐标为(0, 2), 又∵M 、N 的速度比为1:3,时间相同, ∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标, 第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标, 第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标, 第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标, ……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0). 故答案为:(2, 0). 【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.6.如图,在平面直角坐标系中,一动点从原点О出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点()()()()12340,1,1,1,1,0,2,0A A A A …那么点2017A 的坐标为________________________.答案:【分析】先求出前几个点的坐标,然后根据点的坐标找到规律,由此即可求得点的坐标. 【详解】根据题意和图的坐标可知:每次都移动一个单位长度 ,图中按向上、向右、向下、向右的方向依次不断地移动、、、 解析:()1008,1【分析】先求出前几个点的坐标,然后根据点的坐标找到规律,由此即可求得点2017A 的坐标. 【详解】根据题意和图的坐标可知:每次都移动一个单位长度 ,图中按向上、向右、向下、向右的方向依次不断地移动1(0,1)A 、2(1,1)A 、3(1,0)A 、4(2,0)A 、5(2,1)A 、6(3,1)A 、7(3,0)A ... ∴坐标变化的规律:每移动4次,它的纵坐标都为1,而横坐标向右移动了2个单位长度,也就是移动次数的一半; ∴2017÷4=504 (1)∴2017A 纵坐标是1A 的纵坐标1; ∴2017A 横坐标是0+2×504=1008, ∴点2017A 的坐标为(1008,1) . 故答案为:()1008,1. 【点睛】本题考查点坐标规律探索、学生的数形结合和归纳能力,仔细观察图象,找到点的坐标的变化规律是解答的关键.7.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 答案:5 【分析】由已知可求,则可求. 【详解】 解:, , , ,故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5 【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=.【详解】解:1()1f x x=+, 111()1111x f x x x x x ∴===+++,11()()111xf x f x x x∴+=+=++,∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键.8.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 答案:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】故答案为: 【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解 解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x 【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.9.请先在草稿纸上计算下列四个式子的值:326++=__________.答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3++=1+2+3+nn∴3+=351++=1+2+32626故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.10.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.答案:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 11.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________.答案:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.12.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.答案:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321- 1234= 3087,8730-378= 8352 ,8532一2358= 617解析:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321- 1234= 3087,8730-378= 8352 ,8532一2358= 6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467= 6174) 这个在数学上被称之为卡普耶卡(Kaprekar)猜想.【详解】任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234,4321-1234 =3087,8730 -378 = 8352,8532-2358= 6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想,故答案为:6174.【点睛】此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键.13.对于实数x,y,定义一种运算“×”如下,x×y=ax-by2,已知2×3=10,4×(-3)=6,那么(-2=________;答案:130【解析】【分析】已知等式利用题中的新定义化简,求出a与b的值,即可确定出原式的值.【详解】根据题中的新定义得:解得 ,所以,==130故答案为:130【点睛】本解析:130【解析】【分析】已知等式利用题中的新定义化简,求出a与b的值,即可确定出原式的值.【详解】根据题中的新定义得:2910496a b a b -=⎧⎨-=⎩解得2149a b =-⎧⎪⎨=-⎪⎩, 所以,()()222332(27)2(27)a b ⎡⎤-⨯=--⎣⎦ =()223142(2)()(27)9⎡⎤-⨯---⨯⎣⎦ =130故答案为:130 【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b 的值,再次应用规则,求出式子的值.14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(2,2)……根据这个规律,第25个点的坐标为____________,第2018个点的坐标为____________.答案:(5,0) (45,7)【解析】分析:观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵解析:(5,0) (45,7)【解析】分析:观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.详解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,①∵52=25,5是奇数,∴第25个点是(5,0),②∵452=2025,45是奇数,∴第2025个点是(45,0),即第2018个点是(45,7).故答案为:(5,0),(45,7).点睛:本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.15.将1,2,3,6按如图方式排列.若规定m,n表示第m排从左向右第n个数,7,3所表示的数是___________.则()答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,36,6.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.16.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A 2(0,4),再将A 2做上述变换得到A 3___________,这样依次得到A 1,A 2,A 3,…A n ;…,则A 2018的坐标为___________.答案:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A 3坐标为(﹣3,1),A 4坐标(0,﹣2),A 5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A 2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.17.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.答案:①④⑤【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.18.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________. 答案:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P (x ,y )的关联点Q 坐标为(-2,3),∴y′=y -x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P 的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.19.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).答案:或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据 解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=,解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=, 1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 20.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC ,∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.答案:10或28【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然解析:10或28【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.【点睛】本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.22.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)答案:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.23.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.答案:【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,解析:17︒【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.24.如图,将直角三角形ABC 沿AB 方向平移得到三角形4,1,4,3DEF AD EF CH ===,三角形ABC 周长为12.下列结论:①//BH EF ;②AD BE =;③ACB DFE ∠=∠;④四边形ACFE 的周长为14;⑤阴影部分的面积为203.其中正确的是_________.答案:①②③④【分析】①由平移变换可知,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知,可得到,,即可得出结论;③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边解析:①②③④【分析】①由平移变换可知//BC EF ,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知DE AB =,可得到AB AD DB =+,DE BE DB =+,即可得出结论;③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边形ADFC 是平行四边形,四边形ACFE 的周长为:AD CF DE EF AC ++++,求解即可;⑤S 阴影=ADFC HCF SS -,根据条件求解即可. 【详解】①DEF 是由ABC 平移得来的,//,BC EF ∴ 又点B 、H 、C 三点在同一条直线上,∴//BH EF ,∴①正确;②DEF 是由ABC 平移得来的,,,,,DE AB AB AD DB DE BE DB AD BE ∴==+=+∴=∴②正确;③DEF 是由ABC 平移得来的,∴平移前后角的度数是不变的,∴ACB DFE ∠=∠,∴③正确; ④三角形ABC 周长为12,12AB BC AC ∴++=, DEF 是由ABC 平移得来的,∴边的长度不变且//AC DF ,12,12,DE EF DF DE EF AC ∴++=∴++=∴四边形ADFC 是平行四边形,1,AD CF ∴==四边形ACFE 的周长为:AD CF DE EF AC ++++,∴四边形ACFE 的周长为:2+12=14,∴④正确;⑤由④得四边形ADFC 是平行四边形,1CF AD ∴==, S 阴影=ADFC HCF S S -,,,,BC AE BC AD BC CF ⊥∴⊥∴⊥S ∴阴影=12AD EF HC CF -141412324310,3=⨯-⨯⨯=-= ∴⑤错误.故答案为:①②③④.【点睛】本题主要考查了图形的平移变换,平行线的公理,平行四边形的性质,有一定综合性,熟练掌握和运用这些性质是解题的关键.25.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.答案:①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE =∠BOE =12∠BOF ,∴∠FOC =∠AOC =12∠AOF ,∴∠EOC =∠FOE +∠FOC =12(∠BOF +∠AOF )=12×80°=40°.故②错误;∵∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,∴∠OCB :∠OFB =1:2.故③错误;∵∠OEB =∠OCA =∠AOE =∠BOC ,∴∠AOE -∠COE =∠BOC -∠COE ,∴∠BOE =∠AOC ,∴∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°, ∴∠OCA =∠BOC =3∠BOE =60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.26.如图,已知//AB CD ,BF 平分ABE ∠,//BF DE ,且40D ∠=︒,则BED ∠的度数为______.答案:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平解析:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平行线的性质解答.【详解】解:如图,延长DE 交AB 的延长线于G ,∵//AB CD ,∴∠D =∠AGD =40°,。
(完整版)七年级下数学期末试卷填空题汇编精选复习试题(word版)(二)培优试卷
一、填空题 1.若1x -+(y +1)2=0,则(x +y )3=_____.答案:0【分析】根据非负数的性质列式求出x 、y ,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x ﹣1=0,y+1=0,解得x =1,y =﹣1,所以,(x+y )3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x 、y ,然后代入代数式进行计算即可得解.【详解】解:∵1x -+(y +1)2=0∴x ﹣1=0,y +1=0,解得x =1,y =﹣1,所以,(x +y )3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.如图,将一副三角板按如图放置,90,45,60BAC DAE B E ∠=∠=︒∠=︒∠=︒,则①13∠=∠;②2180CAD ∠+∠=︒;③如果230∠=︒,则有//AC DE ;④如果245∠=︒,则有//BC AD .上述结论中正确的是________________(填写序号).答案:①②③④【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,解析:①②③④【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,故①正确;∵∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°,故②正确;∵∠2=30°,∴∠1=60°=∠E,∴AC∥DE,故③正确;∵∠2=45°,∴∠3=45°=∠B,∴BC∥AD,故④正确;故答案为:①②③④.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.3.在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.点M的坐标为(32,1),点N是坐标轴的负半轴上的一个动点,当四边形ABOM的面积与三角形ABN的面积相等时,此时点N的坐标为___________________.答案:(0,﹣1)或(﹣1.5,0)【分析】分点N在x轴的负半轴上或y轴的负半轴上两种情况讨论即可.【详解】∵|a﹣2|+(b﹣3)2=0.∴a=2,b=3,∴A(0,2),B(3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N在x轴的负半轴上或y轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.4.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.答案:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.5.如图所示,已知A1(1,0),A2(1,﹣1)、A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,按一定规律排列,则点A2021的坐标是________.答案:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.6.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________.答案:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1解析:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,可以看出,3=512+,5=912+,7=1312+,各个点的纵坐标等于横坐标的相反数+1,故202112+=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.7.阅读下列解题过程:计算:232425122222++++++解:设232425122222S=++++++①则232526222222S=+++++②由②-①得,2621S=-运用所学到的方法计算:233015555++++⋯⋯+=______________.答案:.【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.8.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.答案:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.9.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).答案:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.10.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 答案:.【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“点睛”本题 解析:21n n ++. 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =21n n ++. 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=21n n ++. “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.11.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n个奇数的和:1+3+5+7+…+(2n-1)=n2;∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.12.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A、B,则点A表示的数为______.答案:.【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A 的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数.【详解】∵正方形的面积为3,∴正方形的边长为解析:13【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数.【详解】∵正方形的面积为3,∴3,∴A点距离031∴点A表示的数为13【点睛】本题考查实数与数轴,解决本题时需注意圆的半径即是点A到1的距离,而求A点表示的数时,需求出A点到原点的距离即A点的绝对值,再根据绝对值的性质和数轴上点的特征求解.13.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 ______ .答案:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:解析:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:mS―S=m2017-1.∴S=.考点:阅读理解题;规律探究题.14.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n为正整数)的位置时,用代数式表示所用的时间为_________秒.答案:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.其中需知道2+4+6+…+2n=n(n+1)即可.15.将1,2,3,6按如图方式排列.若规定m,n表示第m排从左向右第n个数,7,3所表示的数是___________.则()答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,36,6.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.答案:(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n的点有n a个(n为正整数),观察图形可得,1a=1,2a=2,3a=3,…,∴n a=n,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.17.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则,则点B在点A的______边(填“左”或“右”).A点表示的数是_____.若点B表示 3.14答案:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.18.规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.答案:-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围.解析:-5【详解】∵3<13<4,∴−4<−13<−3,∴−5<−13−1<−4,∴[−13−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出13的范围.19.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.答案:或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.∠+∠+∠+∠+∠=__________.20.如图,两直线AB、CD平行,则12345答案:【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F点,G点,H点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角,解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F点,G点,H点作2L,3L,4L平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.21.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.答案:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.22.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.23.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.答案:【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,解析:17【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴4285∠+∠=︒,34180∠+∠=︒,13125∠+∠=︒,︒-∠+︒-∠=︒,∴852*******∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∠=︒,∴2134∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.24.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.答案:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90解析:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB∥CG∥HD∥EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.25.如图,△ABC沿AB方向平移3个单位长度后到达△DEF的位置,BC与DF相交于点O,连接CF,已知△ABC的面积为14,AB=7,S△BDO﹣S△COF=___.答案:2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于解析:2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=1122DB CG CF CG⋅⋅-⋅⋅求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于G.∵S△ABC=12•AB•CG,∴CG =2147⨯=4, ∵AD =CF =3,AB =7,∴BD =AB ﹣AD =7﹣3=4,∴S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1111443422222DB CG CF CG ⋅-⋅⋅=⨯⨯-⨯⨯=, 故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题. 26.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在点D '、C ′的位置处,若∠1=56°,则∠EFB 的度数是___.答案:62°【分析】根据折叠性质得出∠DED′=2∠DEF ,根据∠1的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF ,∵∠1=56°解析:62°【分析】根据折叠性质得出∠DED ′=2∠DEF ,根据∠1的度数求出∠DED ′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED ′=2∠DEF ,∵∠1=56°,∴∠DED ′=180°-∠1=124°,∴∠DEF =62°,又∵AD ∥BC ,∴∠EFB =∠DEF =62°.故答案为:62°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.27.如图,将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处,若30AEH ∠=︒,则EFC ∠等于______︒.答案:105°【分析】根据折叠得出∠DEF=∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上解析:105°【分析】根据折叠得出∠DEF =∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF +∠EFC =180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处, ∴∠DEF =∠HEF ,∵∠AEH =30°, ∴1180752DEF HEF AEH ∠=∠=︒-∠=︒(), ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DEF +∠EFC =180°,∴∠EFC =180°-75°=105°,故答案为:105°.【点睛】本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF =∠HEF 和∠DEF +∠EFC =180°是解此题的关键.28.如图,将一副三角板按如图放置(60E ∠=︒,45B ∠=︒),则下列结论: ①13∠=∠;②如果230∠=︒,则有//BC AE ;③如果123∠=∠=∠,则有//BC AE ;④如果//AB ED ,必有30EAC ∠=︒.其中正确的有___(填序号).答案:①③④【分析】根据三角板的性质以及平行线的判定一一判断即可.【详解】解:,,故①正确,当时,,,,故与不平行,故②错误,当时,可得,,故③正确,取与的交点为,,,,,解析:①③④【分析】根据三角板的性质以及平行线的判定一一判断即可.【详解】解:90EAD CAB ∠=∠=︒,13∠∠∴=,故①正确,当230∠=︒时,360∠=︒,445∠=︒,34∴∠≠∠,故AE 与BC 不平行,故②错误,当123∠=∠=∠时,可得3445∠=∠=︒,//BC AE ∴,故③正确,取AC 与ED 的交点为F ,60E ∠=︒,//AB ED ,90FAB EFA ∴∠=∠=︒,906030EAC ∴∠=︒-︒=︒,故④正确,故答案是:①③④.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握三角板的性质.29.如图,在长方形ABCD 中,4AB =,6BC =,将长方形ABCD 沿着BC 方向平移得到长方形A B C D ''''.若ABB A ''是正方形,则四边形ABC D ''的周长是______.答案:28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.30.20b a -=,则2+a b 的值是__________;答案:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】 ∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩,∴22810a b+=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.31.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.答案:﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.32.若不等式组1x ax a-⎧⎨-⎩-的解集中的任何一个x的值均不在2≤x≤5的范围内,则a的取值范围为________.答案:a≤1或a≥5【分析】解不等式组,求出x的范围,根据任何一个x的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组的解集为:a<x<a+1,∵任何一个x 的值均不在2解析:a ≤1或a ≥5【分析】解不等式组01x a x a ->⎧⎨-<⎩,求出x 的范围,根据任何一个x 的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组01x a x a ->⎧⎨-<⎩的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x≤5范围内,∴x <2或x >5,∴a+1≤2或a≥5,解得,a≤1或a≥5,∴a 的取值范围是:a≤1或a≥5,故答案为:a≤1或a≥5.【点睛】本题考查的是不等式的解集的确定,根据不等式的解法正确解出不等式是解题的关键,根据题意列出新的不等式是本题的重点.33.定义运算22a b a ab ⊗=-,下列给出了关于这种运算的几个结论:(1)2516⊗=-;(23)方程0x y ⊗=不是二元一次方程;(4)不等式组(3)10250x x -⊗+>⎧⎨⊗->⎩的解集是5134x -<<-.其中正确的是________(填序号). 答案:(1)(3)(4)【分析】根据题中所给定义运算,依次将新定义的运算化为一般运算,再进一步分析即可.【详解】解:(1),故(1)正确;(2)是有理数,故(2)错误;(3)方程得是二元二次方解析:(1)(3)(4)【分析】根据题中所给定义运算,依次将新定义的运算化为一般运算,再进一步分析即可.【详解】解:(1)225222516⊗=-⨯⨯=-,故(1)正确;(22是有理数,故(2)错误;(3)方程0x y ⊗=得220x xy -=是二元二次方程,故(3)正确;(4)不等式组(3)10250x x -⊗+>⎧⎨⊗->⎩等价于22(3)2(3)1022250x x ⎧--⨯-+>⎨-⨯->⎩,解得 5134x -<<-,故(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查新定义的实数运算,立方根,二元一次方程的定义,解一元一次不等式组.能理解题中新的定义,并根据题中的定义将给定运算化为一般运算是解决此题的关键.34.若方程组234563x y x y m +=⎧⎨+=+⎩的解满足0x y +>,则m 的取值范围是____________ 答案:【解析】【分析】观察方程组,将两个方程左右分别相加并化简,可得,根据题意即可求出的取值范围.【详解】解:①+②得:∴∵∴∴故答案为:【点睛】本题为二元一次方程组变式解析:1m >-【解析】【分析】观察方程组,将两个方程左右分别相加并化简,可得1x y m +=+,根据题意即可求出m 的取值范围.【详解】解:234563x y x y m +=⎧⎨+=+⎩①②①+②得:6666x y m +=+∴1x y m +=+∵0x y +>∴10m +>∴1m >-故答案为:1m >-【点睛】本题为二元一次方程组变式题,考查了解二元一次方程组以及求不等式解集,熟练掌握相关知识点是解答本题的关键.35.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是___________. 答案:【分析】先解出不等式组的解集,由题意确定m 的取值范围【详解】解:解不等式(1)得:解不等式(2)得:所以不等式组的解集为,其3个整数解只能是3,4,5,所以m 的取值范围是故答案为解析:56m <≤【分析】先解出不等式组的解集,由题意确定m 的取值范围【详解】解:0(1)721(2)x m x -<⎧⎨-≤⎩解不等式(1)得:x m <解不等式(2)得:3x ≥所以不等式组的解集为3x m ≤<,其3个整数解只能是3,4,5,所以m 的取值范围是56m <≤故答案为56m <≤【点睛】本题主要考查了解一元一次不等式组,正确理解题意是解题的关键.36.某校七年级篮球联赛,每个班分别要比赛36场,积分规则是:胜1场计2分,负1场计1分.七(1)班和七(2)班为争夺一个出线名额,展开激烈竞争.目前七(1)班的战绩是17胜13负积47分,七(2)班的战绩是15胜16负积46分.则七(1)班在剩下的比赛中至少需胜_________场可确保出线.答案:4【分析】由题意可知,七(1)班还剩6场比赛,七(2)班还剩5场比赛,七(2)班最多能够得56分,七(1)班要想出线,得分必须超过56分,设七(1)班在剩下的比赛中需胜x 场,由此列出不等式,解不。
(完整版)七年级下册期末试卷填空题汇编精选数学试题及解析培优试题
一、填空题1.…,则3100++=_______.答案:5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第1个算式:,第2个算式:,第3个算式:,第4个算式:,...,第解析:5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第11==,第2123===+=,第31236=++=,第4123410==+++=,...,第n12 3...n===+++,∴当n=100()1001100 123 (1005050)2+=++++==,故答案为:5050.【点睛】本题考查了有理数的运算,二次根式的化简,通过探索发现数字间的规律是解题关键.2.如图,在长方形ABCD中,4AB=,6BC=,将长方形ABCD沿着BC方向平移得到长方形A B C D''''.若ABB A''是正方形,则四边形ABC D''的周长是______.答案:28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.3.在平面直角坐标系中,点A 与原点重合,将点A 向右平移1个单位长度得到点A 1,将A 1向上平移2个单位长度得到点A 2,将A 2向左平移3个单位长度得到A 3,将A 3向下平移4个单位长度得到A 4,将A 4向右平移5个单位长度得到A 5…按此方法进行下去,则A 2021点坐标为_______________.答案:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1解析:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,可以看出,3=512+,5=912+,7=1312+,各个点的纵坐标等于横坐标的相反数+1,故202112+=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.4.一只电子玩具在第一象限及x,y轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点______.答案:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次解析:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,⨯次,(0,5)用(0,3)用的次数是9次,即23次,(0,4)用的次数是24次,即46的次数是25次,即25次,以此类推,(0,45)用的次数是2025次,即245次,后退4次可得2021次所对应的坐标.【详解】由题可知,电子玩具是每次跳一个单位长度,则(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,(0,3)用的次数是9次,即23次,⨯次,(0,4)用的次数是24次,即46(0,5)用的次数是25次,即25次,…以此类推,(0,45)用的次数是2025次,即245次,2025-1-3=2021,∴第2021次时电子玩具所在位置的坐标是(3,44).故答案为:(3,44).【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而确定次数的规律.5.如图,正方形ABCD的各边分别平行于x轴或y 轴,且CD边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2020次相遇地点的坐标是____.答案:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----,∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒)∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2),∴M 、N 第一次相遇的坐标为(0, 2),又∵M 、N 的速度比为1:3,时间相同,∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标,第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标,第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标,第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标,……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0).故答案为:(2, 0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.6.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.答案:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n=()12n n+,当n=9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.7.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 答案:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.8.请先在草稿纸上计算下列四个式子的值:326++=__________.答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】3n ++=1+2+3+n + ∴326++=1+2+326+=351故答案为:351【点睛】 本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.9.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.答案:20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000=401401. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 10.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.答案:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 答案:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.12.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.答案:﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!13.若我们规定[)x 表示不小于x 的最小整数,例如[)33=,[)1.21-=-,则以下结论:①[)0.21-=-;②[)001-=;③[)x x -的最小值是0;④存在实数x 使[)0.5x x -=成立.其中正确的是______.(填写所有正确结论的序号)答案:③④【分析】根据的定义逐个判断即可得.【详解】①表示不小于的最小整数,则,结论错误②,则,结论错误③表示不小于x 的最小整数,则,因此的最小值是0,结论正确④若,则此时,因此,存在实解析:③④【分析】根据[)x 的定义逐个判断即可得.【详解】①[)0.2-表示不小于0.2-的最小整数,则[)0.20-=,结论错误②[)00=,则[)000-=,结论错误③[)x 表示不小于x 的最小整数,则[)0x x -≥,因此[)x x -的最小值是0,结论正确 ④若 1.5x =,则[)1.52=此时,[)1.5 1.52 1.50.5-=-=因此,存在实数x 使[)0.5x x -=成立,结论正确综上,正确的是③④故答案为:③④.【点睛】本题考查了新定义下的实数运算,理解新定义是解题关键.14.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.答案:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.对于数x,符号[x]表示不大于x的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[347x]=2的整数解为_____.答案:6,7,8 【解析】【分析】根据已知可得,解不等式组,并求整数解可得. 【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x-≤,解不等式组,并求整数解可得.【详解】因为,3427x-⎡⎤=⎢⎥⎣⎦,所以,依题意得34237x-≤,所以,34273437xx-⎧≤⎪⎪⎨-⎪⎪⎩,解得1 683x≤,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.答案:(﹣5,13)【解析】【分析】设纵坐标为n 的点有个(n 为正整数),观察图形每行点的个数即可得出=n ,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n 的点有n a 个(n 为正整数),观察图形每行点的个数即可得出n a =n ,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n 的点有n a 个(n 为正整数),观察图形可得,1a =1,2a =2,3a =3,…,∴n a =n ,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.17.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 答案:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 18.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 答案:3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.19.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.答案:【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.20.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ∥MN.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动_________秒,两灯的光束互相平行.答案:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.21.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.22.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.答案:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90解析:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB∥CG∥HD∥EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.23.如图,已知∠A=(60﹣x)°,∠ADC=(120+x)°,∠CDB=∠CBD,BE平分∠CBF,若∠DBE=59°,则∠DFB=___.答案:【分析】根据题意可得,设,分别表示出,进而根据平行线的性质可得∠DFB.【详解】∠A=(60﹣x)°,∠ADC=(120+x)°,,,,,,BE 平分∠CBF ,,设,∠DB解析:62︒【分析】根据题意可得//AB CD ,设EBF EBC α∠=∠=,分别表示出,ABD DBF ∠∠,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,180A ADC ∴∠+∠=︒,//AB CD ∴,CDB ABD ∴∠=∠,CDB CBD ∠=∠,ABD CBD ∴∠=∠,BE 平分∠CBF ,EBF EBC ∴∠=∠,设EBF EBC α∠=∠=,∠DBE =59°,∴59DBF α∠=︒-,59ABD DBC α∴∠=∠=︒+,5959118ABF ABD DBF αα∴∠=∠+∠=︒++︒-=︒,//AB CD ,180********DFB ABF ∴∠=︒-∠=︒-︒=︒.故答案为:62︒.【点睛】本题考查了平行线的判定与性质,角平分线的定义,证明//AB CD 是解题的关键. 24.如图所示,12355∠=∠=∠=︒,则4∠的度数为______.答案:125°【分析】结合题意,根据对顶角相等的性质,通过证明,得,再根据补角的性质计算,即可得到答案.【详解】如图:∵,且∴∴∴∴故答案为:125°.【点睛】本题考查了解析:125°【分析】结合题意,根据对顶角相等的性质,通过证明1//2l l ,得63∠=∠,再根据补角的性质计算,即可得到答案.【详解】如图:∵52∠=∠,且12355∠=∠=∠=︒∴51∠=∠∴1//2l l∴6355∠=∠=︒∴41806125∠=︒-∠=︒故答案为:125°.【点睛】本题考查了平行线、对顶角、补角的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.25.如图,将直角三角形ABC 沿AB 方向平移得到三角形4,1,4,3DEF AD EF CH ===,三角形ABC 周长为12.下列结论:①//BH EF ;②AD BE =;③ACB DFE ∠=∠;④四边形ACFE 的周长为14;⑤阴影部分的面积为203.其中正确的是_________.答案:①②③④【分析】①由平移变换可知,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知,可得到,,即可得出结论;③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边解析:①②③④【分析】①由平移变换可知//BC EF ,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知DE AB =,可得到AB AD DB =+,DE BE DB =+,即可得出结论; ③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边形ADFC 是平行四边形,四边形ACFE 的周长为:AD CF DE EF AC ++++,求解即可;⑤S 阴影=ADFC HCF SS -,根据条件求解即可. 【详解】①DEF 是由ABC 平移得来的, //,BC EF ∴又点B 、H 、C 三点在同一条直线上,∴//BH EF ,∴①正确;②DEF 是由ABC 平移得来的,,,,,DE AB AB AD DB DE BE DB AD BE ∴==+=+∴=∴②正确;③DEF 是由ABC 平移得来的,∴平移前后角的度数是不变的,∴ACB DFE ∠=∠,④三角形ABC 周长为12,12AB BC AC ∴++=, DEF 是由ABC 平移得来的,∴边的长度不变且//AC DF ,12,12,DE EF DF DE EF AC ∴++=∴++=∴四边形ADFC 是平行四边形,1,AD CF ∴==四边形ACFE 的周长为:AD CF DE EF AC ++++,∴四边形ACFE 的周长为:2+12=14,∴④正确;⑤由④得四边形ADFC 是平行四边形,1CF AD ∴==, S 阴影=ADFC HCF S S -,,,,BC AE BC AD BC CF ⊥∴⊥∴⊥S ∴阴影=12AD EF HC CF -141412324310,3=⨯-⨯⨯=-= ∴⑤错误.故答案为:①②③④.【点睛】本题主要考查了图形的平移变换,平行线的公理,平行四边形的性质,有一定综合性,熟练掌握和运用这些性质是解题的关键.26.如图,已知40ABC ∠=︒,点D 为ABC ∠内部的一点,以D 为顶点,作EDF ∠,使得//DE BC ,//DF AB ,则EDF ∠的度数为___________.答案:或【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.解:由题意得:①如图,∵,,∴,∵,∴;②如图,∵,,∴,∵,∴,∴;综上所述解析:40︒或140︒【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴40DFC EDF ∠=∠=︒;②如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴180DFC EDF ∠+∠=︒,∴140EDF ∠=︒;综上所述:EDF ∠的度数为40︒或140︒;故答案为40︒或140︒.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,注意分类讨论. 27.如图,已知//AB CD ,BF 平分ABE ∠,//BF DE ,且40D ∠=︒,则BED ∠的度数为______.答案:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平解析:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平行线的性质解答.【详解】解:如图,延长DE 交AB 的延长线于G ,∵//AB CD ,∴∠D =∠AGD =40°,∵BF //DE ,∴∠AGD =∠ABF =40°,∵BF 平分∠ABE ,∴∠EBF =∠ABF =40°,∵BF //DE ,∴∠BED =180°﹣∠EBF =140°.故答案为:140°.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键. 28.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.答案:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒ CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 29.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.答案:33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.30.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P表示的数是___________,点2P 表示的数是___________.答案:. .【分析】首先利用勾股定理计算出的长,再根据题意可得,然后根据数轴上个点的位置计算出表示的数即可.【详解】解:点表示的数是,是原点,, ,以为圆心、长为半径画弧,,解析:12-12-【分析】首先利用勾股定理计算出AB 的长,再根据题意可得122AP AB AP ==上个点的位置计算出表示的数即可.【详解】解:点A 表示的数是1-,O 是原点,1,1AO BO ∴==,112AB ∴=+以A 为圆心、AB 长为半径画弧,。
(完整版)人教版初一数学下册期末试卷填空题汇编精选试题(带答案) 培优试题
一、解答题1.在平面直角坐标系中,点(,1)A a ,(,3)B b 满足关系式2(1)|2|0++-=a b .(1)求a ,b 的值;(2)若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)线段AB 与y 轴交于点C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-M 出发,以每秒2个单位长度的速度向右运动,问t 为何值时有2ABEABFSS=,请直接写出t 的值.解析:(1)1a =-,2b =;(2)233或13-;(3)2215或2【分析】(1)根据一个数的平方与绝对值均非负,且其和为0,则可得它们都为0,从而可求得a 和b 的值;(2)过点P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设点Q 坐标为(3,)a ,过A 作AH l ⊥交直线l 于点H ,根据面积关系求出Q 点坐标,再求出PQ 的长度,即可求出n 的值;(3)先根据AGOC CONB AGNB S S S +=梯形梯形梯形求出C 点坐标,再根据ADGDNBAGNB S S S+=梯形求出D 点坐标,根据题意可得F 点坐标,由2ABEABFS S=得关于t 的方程,求出t 值即可.【详解】(1)2(1)0a +≥,|2|0-≥b ,且2(1)|2|0++-=a b 2(1)0∴+=a ,|2|0b -=a 1∴=-,b 2=(2)过P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设点Q 坐标为(3,)a , 过A 作AH l ⊥交直线l 于点H ,如图所示∵AHQ ABH BQH S S S =+△△△ ∴1114(1)42(1)1222a a ⨯-=⨯⨯+-⨯ 解得113a =,Q 点坐标为113,3⎫⎛ ⎪⎝⎭∵11341222ABP AQP BPQ S S S PQ PQ PQ =-=⨯-⨯=△△△ ∴313162n -= 解得:233n =或13- (3)当2215t =或2时,有2ABEABFS S=.如图,延长BA 交x 轴于点D ,过A 点作AG ⊥x 轴于点G ,过B 点作BN ⊥x 轴于点N ,∵AGOC CONB AGNB S S S +=梯形梯形梯形∴111(1)1(3)2(13)3222OC OC +⨯++⨯=⨯+⨯ 解得:53OC =∴50,3C ⎛⎫ ⎪⎝⎭∵ADGDNBAGNB S S S+=梯形∴1111(13)3(3)3222DG DG ⨯+⨯+⨯=+⨯ 解得:32DG = ∵(1,0)G -∴5,02D ⎛⎫- ⎪⎝⎭当运动t 秒时,(82,0)F t -+∴51182222DF t t ⎛⎫=-+--=- ⎪⎝⎭∵CE =t ∴13=[2(1)]22ABES CE t ⨯--=,111(31)222ABFBDFDAFS SSDF t =-=⨯-=- ∵2ABEABFS S=∴3112222t t =- 解得:2215t =或2. 【点睛】本题主要考查三角形的面积,含绝对值方程解法,熟练掌握直角坐标系的知识,三角形的面积,梯形的面积等知识是解题的关键,难点在于对图形进行割补转化为易求面积的图形.2.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由; (3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 1β.2【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.3.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.4.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105° 【分析】(1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN , ∴∠C =∠AOB , ∵AB ⊥BC , ∴∠ABC =90°, ∴∠A +∠AOB =90°, ∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM , ∴DB ⊥BG , ∴∠DBG =90°, ∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°, ∴∠ABD =∠CBG , ∵AM ∥CN , ∴∠C =∠CBG , ∴∠ABD =∠C ;(3)如图3,过点B 作BG ∥DM ,∵BF 平分∠DBC ,BE 平分∠ABD , ∴∠DBF =∠CBF ,∠DBE =∠ABE , 由(2)知∠ABD =∠CBG , ∴∠ABF =∠GBF , 设∠DBE =α,∠ABF =β, 则∠ABE =α,∠ABD =2α=∠CBG , ∠GBF =∠AFB =β, ∠BFC =3∠DBE =3α, ∴∠AFC =3α+β,∵∠AFC +∠NCF =180°,∠FCB +∠NCF =180°, ∴∠FCB =∠AFC =3α+β,△BCF 中,由∠CBF +∠BFC +∠BCF =180°得:2α+β+3α+3α+β=180°, ∵AB ⊥BC , ∴β+β+2α=90°, ∴α=15°, ∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°. 故答案为:105°. 【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 5.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点. (1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ; (2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.6.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 解析:(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q=∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ; (2)180FMN GHF ∠+∠=︒; 理由:由(1)得//AB CD ,MNF PME ∴∠=∠, MGH MNF ∠=∠, PME MGH ∴∠=∠,//GH PN ∴, GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠,PER PFQ ∴∠=∠, //ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x Ry x EPM =+∠⎧⎨=+∠⎩,可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.7.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122° 【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒, 70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠. 理由如下: 过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=, 设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒,DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒, 1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.8.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.解析:(1)(0,4)或(0,-4);(2)23S ≤≤;(3)答案见解析 【解析】(1)先根据S △ABM =S □ABDC ,得出△ABM 的高为4,再根据三角形面积公式得到M 点的坐标;(2)先计算出S 梯形OBDC=5,再讨论:当点P 运动到点B 时,S △POC 的最小值=2,当点P 运动到点D 时,S △POC 的最大值=3,即可判断S =S △PCD +S △POB 的取值范围的取值范围;(3)分类讨论:当点P 在BD 上,如图1,作PE ∥CD ,根据平行线的性质得CD ∥PE ∥AB ,则∠DCP=∠EPC ,∠BOP=∠EPO ,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ; 当点P 在线段BD 的延长线上时,如图2,同样有∠DCP=∠EPC ,∠BOP=∠EPO ,由于∠EPO-∠EPC=∠BOP-∠DCP ,于是∠BOP-∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP-∠BOP=∠CPO . 解:(1)由题意,得C (0,2) ∴□ABDC 的高为2若S △ABM =S □ABDC ,则△ABM 的高为4 又∵点M 是y 轴上一点 ∴点M 的坐标为(0,4)或(0,-4) (2)∵B (-2,0),O (0,0) ∴OB =2由题意,得C (0,2),D (-3,2) ∴OC =2,CD =3 ∴S 梯形OBDC =232522OB CD OC ++⨯=⨯= 点P 在线段BD 上运动,当点P 运动到端点B 时,△PCO 的面积最小,为1122222BO CO ⨯⨯=⨯⨯=当点P 运动到端点D 时,△PCO 的面积最大,为1132322CD CO ⨯⨯=⨯⨯=∴S =S △PCD +S △POB = S 梯形OBDC -S △PCO =5-S △PCO ∴S 的最大值为5-2=3,最小值为5-3=2 故S 的取值范围是:23S ≤≤ (3)如图:当点P 在线段BD 上运动时,CPO DCP BOP ∠=∠+∠ 当点P 在射线BD 上运动时,CPO BOP DCP ∠=∠-∠ 当点P 在射线DB 上运动时,CPO DCP BOP∠=∠-∠点睛:本题主要考查坐标与图形的性质及三角形的面积.利用分类讨论思想,并构造辅助线利用平行线的性质推理是解题的关键.9.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得S△POB=23S△ABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.解析:(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明见解析.【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根据S△POB=23S△ABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到BH//AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)∵A(4,0),∴OA=4,∵C点x轴负半轴上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=12×6×3=9,S△BOP=12OP×2=OP,又∵S△POB=23S△ABC,∴OP=23×9=6,∴点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明如下:∵把点C往上平移3个单位得到点H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如图1,当点M在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;综上,∠BMA=∠MAC±∠HBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.10.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P进行“t 型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为.(2)①将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中,在线段A ′B ′上的点是 .②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是 .(3)已知点C (6,1),D (8,﹣1),点M 是线段CD 上的一个动点,将点B 进行“t 型平移”后得到的对应点为B ',当t 的取值范围是 时,B 'M 的最小值保持不变.解析:(1)(3,0);(2)①P 1;②42-≤≤-t 或1t =;(3)13t ≤≤ 【分析】(1)根据“l 型平移”的定义解决问题即可. (2)①画出线段A 1B 1即可判断.②根据定义求出t 最大值,最小值即可判断.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B 'M 的最小值保持不变,最小值为2.【详解】(1)将点A (2,1)进行“l 型平移”后的对应点A '的坐标为(3,0), 故答案为:(3,0);(2)①如图1中,观察图象可知,将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中, 在线段A ′B ′上的点是P 1,故答案为:P 1;②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是﹣4≤t ≤﹣2或t =1.故答案为:﹣4≤t ≤﹣2或t =1.(3)如图2中,观察图象可知,当B ′在线段B ′B ″上时,B 'M 的最小值保持不变,最小值为2,此时1≤t ≤3.故答案为:1≤t ≤3. 【点睛】本题属于几何变换综合题,考查了平移变换,“t 型平移”的定义等知识,解题的关键理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题,属于中考创新题型. 11.请阅读求绝对值不等式3x <和3x >的解的过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以3x <的解为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以3x >的解为3x <-或3x >.(1)求绝对值不等式32x ->的解(2)已知绝对值不等式21x a -<的解为3b x <<,求2a b -的值(3)已知关于x ,y 的二元一次方程组234461x y m x y m -=-⎧⎨+=-+⎩的解满足2x y +≤,其中m 是负整数,求m 的值.解析:(1)x >5或x <1;(2)9;(3)m =-3或m =-2或m =-1 【分析】(1)由绝对值的几何意义即可得出答案; (2)由|21|x a -<知21a x a -<-<,据此得出1122a a x -+<<,再结合3b x <<可得出关于a 、b 的方程组,解之即可求出a 、b 的值,从而得出答案;(3)两个方程相加化简得出1x y m +=--,由||2x y +知22x y -+,据此得出212m ---,解之求出m 的取值范围,继而可得答案.【详解】解:(1)根据绝对值的定义得:32x ->或32x -<-, 解得5x >或1x <; (2)|21|x a -<,21a x a ∴-<-<,解得1122a a x -+<<, 解集为3b x <<, ∴12132a b a -⎧=⎪⎪⎨+⎪=⎪⎩, 解得52a b =⎧⎨=-⎩,则2549a b -=+=;(3)两个方程相加,得:3333x y m +=--, 1x y m ∴+=--,||2x y +,22x y ∴-+,212m ∴---,解得31m -, 又m 是负整数,3m ∴=-或2m =-或1m =-.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握绝对值的几何意义及解一元一次不等式和不等式组的能力.12.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.解析:(1)50α∠=︒,130β∠=︒;(2)40C ∠=︒ 【分析】(1)把α∠和β∠当做未知数,利用加减消元法解二元一次方程组即可;(2)先证明AB ∥EF ,则可以得到CD ∥AB ,∠C +∠CAB =180°,求出∠CAB 的度数即可求解.【详解】解:(1)2230320αβαβ⎧∠+∠=⎨∠-∠=⎩①②用② +①得:5=250α∠,解得=50α∠,把=50α∠代入① 解得=130β∠;(2)∵=50130=180αβ∠++∠∴AB ∥EF ,∵//CD EF ,∴CD ∥AB ,∴∠C +∠CAB =180°,∵∠CAB =∠EAC +∠BAE ,AC ⊥AE ,∴∠CAE =90°,∴∠CAB =140°∴C ∠=40°.【点睛】本题考查了平行线的判定和性质,解二元一次方程组,解答本题的关键是明确题意,利用数形结合的思想解答.13.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示);(2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示);乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 解析:(1)2(a +b );(2)(2+21b a +);(2+21a b +);(3)36. 【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论; (2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB 两地的距离为S 千米,根据路程=速度×时间,即可得出关于(a+b ),S 的二元一次方程组(此处将a+b 当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了2a千米,乙已经走了2b千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21ba+小时到达B地,乙还需21ab+小时到达A地,所以甲从A到B所用的时间为(2+21ba+)小时,乙从B到A所用的时间为(2+21ab+)小时.故答案为:(2+21ba+);(2+21ab+).(3)设AB两地的距离为S千米,3小时36分钟=185小时.依题意,得:2()182(11)5S a bS a b=+⎧⎪⎨=+++⎪⎩,令x=a+b,则原方程变形为2182(2)5S xS x=⎧⎪⎨=+⎪⎩,解得:1836xS=⎧⎨=⎩.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.解析:(1)12xy=⎧⎨=⎩;(2)41mn=-⎧⎨=-⎩;(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.15.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?解析:(1)见解析;(2)6元【分析】(1)设单价为20元的书买了x 本,单价为24元的书买了y 本,根据总价=单价×数量,结合购买两种书30本共花费(700−38)元,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,结合x ,y 的值为整数,即可得出小明搞错了;(2)设单价为20元的书买了a 本,则单价为24元的书买了(30−a )本,笔记本的单价为b 元,根据总价=单价×数量,即可得出关于a ,b 的二元一次方程,化简后可得出a =14+24b +,结合0<b <10,且a ,b 均为整数,可得出b =2或6,将b 值代入a =14+24b +中可求出a 值,再结合单价为20元的书多于24元的书,即可确定b 值. 【详解】解:(1)设20元的书买了x 本,24元的书买了y 本,由题意,得30202470038x y x y +=⎧⎨+=-⎩,解得14.515.5x y =⎧⎨=⎩, ∵x ,y 的值为整数,故x ,y 的值不符合题意(只需求出一个即可)∴小明搞错了;(2)设20元的书买了a 本,则24元的书买了()30a -本,笔记本的单价为b 元, 由题意,得:()20243780003a a b +=-+-, 化简得:5821444b b a ++==+ ∵110b ≤<,∴2b =或6.当2b =,15a =,即20元的书买了15本,24元的书买了15本,不合题意舍去 当6b =,16a =,即20元的书买了16本,则24元的书买了14本∴6b =.答:笔记本的价格为6元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程. 16.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”.(1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为 ;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P的坐标.解析:(1)(3,3);(2)272;(3)(32,0)或(152-,0) 【分析】 (1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0,解23060x y x y -+=⎧⎨+-=⎩即可得答案; (2)设直线AB 交y 轴于D ,求出B 、C 、D 的坐标,根据S △ABC =S △BCD +S △ACD 即可求出答案;(3)设点P 的坐标为(n ,0),根据△PBC 的面积等于△ABC 的面积,即272,列出方程,解之即可.【详解】解:(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0, 解23060x y x y -+=⎧⎨+-=⎩得:33x y =⎧⎨=⎩, ∴A 的坐标为(3,3);故答案为:(3,3);(2)设直线AB 交y 轴于D ,如图:∵B 是x 轴上的“健康点”,在x -2y +3=0中,令y =0得x =-3,∴B (-3,0),∵C 是y 轴上的“快乐点”,在x +y -6=0中,令x =0得y =6,∴C (0,6),在x -2y +3=0中,令x =0得y =32, ∴D (0,32), ∴CD =92, ∴S △ABC =S △BCD +S △ACD =12CD •|x B |+12CD •|x A | =1919332222⨯⨯+⨯⨯ =272; (3)设点P 的坐标为(n ,0),则BP =3n +,∵△BPC 与△ABC 面积相等,∴S △BPC =1362n ⨯+⨯=272, ∴932n +=, ∴32n =或152-, ∴点P 的坐标为(32,0)或(152-,0). 【点睛】本题考查三角形面积,涉及新定义、坐标轴上点坐标特征等知识,解题的关键是理解“健康点”、“快乐点”含义.17.材料1:我们把形如ax by c +=(a 、b 、c 为常数)的方程叫二元一次方程.若a 、b 、c 为整数,则称二元一次方程ax by c +=为整系数方程.若c 是a ,b 的最大公约数的整倍数,则方程有整数解.例如方程342,735,426x y x y x y +=-=+=都有整数解;反过来也成立.方程6310421x y x y +=-=和都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.材料2:求方程56100x y +=的正整数解. 解:由已知得:1006100520555y y y y x y ---===--……① 设5y k =(k 为整数),则5y k =……② 把②代入①得:206x k =-.所以方程组的解为2065x k y k =-⎧⎨=⎩, 根据题意得:206050k k ->⎧⎨>⎩. 解不等式组得0<k <103.所以k 的整数解是1,2,3. 所以方程56100x y +=的正整数解是:145x y =⎧⎨=⎩,810x y =⎧⎨=⎩,215x y =⎧⎨=⎩. 根据以上材料回答下列问题:(1)下列方程中:① 3911x y +=,② 15570x y -=,③ 63111x y +=,④27999x y -=,⑤ 9126169x -=,⑥ 22121324x y +=.没有整数解的方程是 (填方程前面的编号);(2)仿照上面的方法,求方程3438x y +=的正整数解;(3)若要把一根长30m 的钢丝截成2m 长和3m 长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)解析:(1)①⑥;(2)28x y =⎧⎨=⎩,65x y =⎧⎨=⎩,102x y =⎧⎨=⎩;(3)有四种不同的截法不浪费材料,分别为2m 长的钢丝12根,3m 长的钢丝2根;或2m 长的钢丝9根,3m 长的钢丝4根;或2m 长的钢丝6根,3m 长的钢丝6根;或2m 长的钢丝3根,3m 长的钢丝8根【分析】(1)依据题中给出的判断方法进行判断,先找出最大公约数,然后再看能否整除c ,从而来判断是否有整数解;(2)依据材料2的解题过程,即可求得结果;(3)根据题意,设2m 长的钢丝为x 根,3m 长的钢丝为y 根(,x y 为正整数).则可得关于x ,y 的二元一次方程,利用材料2的求解方法,求得此方程的整数解,即可得出结论.【详解】解:(1)① 3911x y +=,因为3,9的最大公约数是3,而11不是3的整倍数,所以此方程没有整数解;② 15570x y -=,因为15,5的最大公约数是5,而70是5的整倍数,所以此方程有整数解;③ 63111x y +=,因为6,3的最大公约数是3,而111是3的整倍数,所以此方程有整数解;④ 27999x y -=,因为27,9的最大公约数是9,而99是9的整倍数,所以此方程有整数解;⑤ 9126169x -=,因为91,26的最大公约数是13,而169是13的整倍数,所以此方程有整数解;⑥ 22121324x y +=,因为22,121的最大公约数是11,而324不是11的整倍数,所以此方程没有整数解;故答案为:① ⑥.(2)由已知得:38436232-12+333y y y y x y -+--===-. ① 设23y k -=(k 为整数),则23y k =-. ② 把②代入①得:104x k =+.所以方程组的解为10+423x k y k =⎧⎨=-⎩. 根据题意得:10+40230k k >⎧⎨>⎩-, 解不等式组得:25-<k <23. 所以k 的整数解是-2,-1,0.故原方程所有的正整数解为:28x y =⎧⎨=⎩,65x y =⎧⎨=⎩,102x y =⎧⎨=⎩. (3)设2m 长的钢丝为x 根,3m 长的钢丝为y 根(,x y 为正整数).根据题意得:2330x y . 所以30330215222y y y y x y ---===--. 设2y k =(k 为整数),则2y k =. ∴1532x k y k=⎧⎨=⎩-. 根据题意得:153020k k ->⎧⎨>⎩,解不等式组得:05k <<. 所以k 的整数解是1,2,3,4.故2330x y 所有的正整数解为:122x y =⎧⎨=⎩ ,94x y =⎧⎨=⎩,66x y =⎧⎨=⎩,38x y =⎧⎨=⎩. 答:有四种不同的截法不浪费材料,分别为2m 长的钢丝12根,3m 长的钢丝2根;或2m 长的钢丝9根,3m 长的钢丝4根;或2m 长的钢丝6根,3m 长的钢丝6根;或2m 长的钢丝3根,3m 长的钢丝8根.【点睛】此题主要考查了求二元一次方程的整数解,理解题意,并掌握利用一元一次不等式组求二元一次方程的整数解的方法及是解题的关键.18.在平面直角坐标系xOy 中,已知点M (a ,b ).如果存在点N (a ′,b ′),满足a ′=|a +b |,b ′=|a ﹣b |,则称点N 为点M 的“控变点”.(1)点A (﹣1,2)的“控变点”B 的坐标为 ;(2)已知点C (m ,﹣1)的“控变点”D 的坐标为(4,n ),求m ,n 的值;(3)长方形EFGH 的顶点坐标分别为(1,1),(5,1),(5,4),(1,4).如果点P (x ,﹣2x )的“控变点”Q 在长方形EFGH 的内部,直接写出x 的取值范围.。
人教版七年级数学下学期期末试卷填空题汇编精选复习精选及答案(1)
一、填空题1.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 答案:或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.2.将一副三角板中的两块直角三角板的顶点C 按如图方式放在一起,其中30A ∠=︒,45E ECD ∠=∠=︒,且B 、C 、D 三点在同一直线上.现将三角板CDE 绕点C 顺时针转动α度(0180α︒<<︒),在转动过程中,若三角板CDE 和三角板ABC 有一组边互相平行,则转动的角度α为__________.答案:或或【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若和只有一组边互相平行,分三种情况:①若,则;②若,则;③当时,,故答案为:或或.【点睛】本题考查了三角板的角度解析:30或45︒或90︒【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若CDE ∆和ABC ∆只有一组边互相平行,分三种情况:①若//DE AC ,则180********α=︒-︒-︒-︒=︒;②若//CE AB ,则180********α=︒-︒-︒-︒=︒;α=︒,③当//DE BC时,90故答案为:30或45︒或90︒.【点睛】本题考查了三角板的角度运算,平行线的性质,掌握旋转的性质是本题的关键.3.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________.答案:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1解析:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,可以看出,3=512+,5=912+,7=1312+,各个点的纵坐标等于横坐标的相反数+1,故202112+=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.4.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到A n,则A2021的坐标是___________.答案:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.5.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.答案:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,⋯右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5).【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键. 6.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2020次相遇地点的坐标是____.答案:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----,∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒)∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2),∴M 、N 第一次相遇的坐标为(0, 2),又∵M 、N 的速度比为1:3,时间相同,∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标,第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标,第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标,第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标,……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0).故答案为:(2, 0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.7.观察下列各式:_____. 答案:n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为:【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.8.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____答案:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.9.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.答案:或【详解】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}==2x+1 解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1, ∵M{3,2x +1,4x -1}=min{2,-x +3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.10.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.答案:403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达 解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 答案:.【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“点睛”本题解析:21n n ++. 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =21n n ++. 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=21n n ++. “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.答案:【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4、6、8、10…则归纳可知,第7行最后一个数是7【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.13.对于正整数a ,我们规定:若a 为奇数,则()f a 3a 1=+;若a 为偶数,则()a f a .2=例如()f 15315146=⨯+=,()8f 842==,若1a 16=,()21a f a =,()32a f a =,()43a f a =,⋯,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,⋯,n a ,(n ⋯为正整数),则1232018a a a a +++⋯+=______.答案:4728【分析】先求出,,,,寻找规律后即可解决问题.【详解】由题意,,,,,,, ,从开始,出现循环:4,2,1,,,,故答案为4728.【点睛】本题考查了规律型——数字的变解析:4728【分析】先求出1a ,2a ,3a ,⋯,寻找规律后即可解决问题.【详解】由题意1a 16=,2a 8=,3a 4=,4a 2=,5a 1=,6a 4=,7a 2=,8a 1=⋯,, 从3a 开始,出现循环:4,2,1,()201823672-÷=,2018a 1∴=,1232018a a a a 16867274728∴+++⋯+=++⨯=,故答案为4728.【点睛】本题考查了规律型——数字的变化类问题,解题的关键是从一般到特殊,寻找规律,利用规律解决问题.14.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______答案:或19【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案.【详解】解:点,,中点,,中点恰好位于轴上,且到轴的距离是2,,解得:或,或19;故答案为:或19.【点睛解析:5-或19【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案.【详解】 解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2, ∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩, 5a b ∴-=-或19;故答案为:5-或19.【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a、b的值.15.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 ______ .答案:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:解析:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:mS―S=m2017-1.∴S=.考点:阅读理解题;规律探究题.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(1,3)-,......根据这个规律探索可得,第93个点的坐标为__________.答案:(-5,14)【分析】从图中可以看出纵坐标为1的有一个点,纵坐标为2的有2个点,纵坐标为3的有3个点,…依此类推纵坐标为n 的有n 个点.题目要求写出第93个点的坐标,我们可以通过加法计算算出第93解析:(-5,14)【分析】从图中可以看出纵坐标为1的有一个点,纵坐标为2的有2个点,纵坐标为3的有3个点,…依此类推纵坐标为n 的有n 个点.题目要求写出第93个点的坐标,我们可以通过加法计算算出第93个点位于第几行第几列,然后对应得出坐标规律,将行列数代入规律式.【详解】在纵坐标上,第一行有一个点,第二行有2个点,…,第n 行有n 个点,并且奇数行点数对称,而偶数行点数x 轴右方比左方多一个,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第93个点在第14行上,所以奇数行的坐标自右而左为(12n -,n ),(112n --,n ),,(12n -,n ), 偶数行的坐标自左而右为(12n -,n ),(22n -,n ),,(2n ,n ), 由加法推算可得到第93个点位于第14行自左而右第2列.∴第93个点的坐标为(-5,14),故答案为:(-5,14).【点睛】 本题主要考查了点的规律型,观察得到纵坐标相等的点的个数与纵坐标相同是解题的关键,还要注意纵坐标为奇数和偶数时的排列顺序不同.17.已知M 是满足不等式a <N M N +的平方根为__________.答案:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.18.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.答案:①④⑤【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.19.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).答案:或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=, 5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠, 22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-.故答案为:41203α︒-或36047α︒-.【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键.20.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.答案:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题. 21.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.22.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)答案:【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB ∥CD所以,AB ∥CD ∥ IF ∥GK ∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.23.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.24.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B 作BE ∥m ,则根据平行公理及推论可知l ∥BE ,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B 作BE ∥m ,则根据平行公理及推论可知l ∥BE ,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.25.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.答案:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒ CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 26.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.答案:33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.27.一副三角板按如图所示(共定点A )叠放在一起,若固定三角板ABC ,改变三角板ADE 的位置(其中A 点位置始终不变),当∠BAD =___°时,DE ∥AB .答案:30或150【分析】分两种情况,根据ED ∥AB ,利用平行线的性质,即可得到∠BAD 的度数.【详解】解:如图1所示:当ED ∥AB 时,∠BAD=∠D=30°;如图2所示,当ED ∥AB 时,∠D解析:30或150【分析】分两种情况,根据ED ∥AB ,利用平行线的性质,即可得到∠BAD 的度数.【详解】解:如图1所示:当ED ∥AB 时,∠BAD =∠D =30°;如图2所示,当ED ∥AB 时,∠D =∠BAD =180°,∵∠D =30°∴∠BAD =180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.28.一副直角三角板叠放如图①,90C E ∠=∠=︒.现将含45︒角的三角板ADE 固定不动,把含30角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角()0180αα︒<<︒.(1)如图②,当α=______度时,边BC 和边AE 所在的直线互相垂直;(2)当旋转角α在30180α︒<<︒的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=______.答案:60°或105°或135°【分析】(1)根据条件只需证BC ⊥AE 即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(解析:60°或105°或135°【分析】(1)根据条件只需证BC ⊥AE 即可,α=∠DEA -∠BAC =45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(1)在△ABC 中,AC ⊥BC ,AE 与AC 重合,则AE ⊥BC ,α=∠DEA -∠BAC =45°-30°=15°,∴当α=15°时,BC ⊥AE .故答案为15;(2)当BC ∥AD 时,∠C =∠CAD =90°,∴α=∠BAD =90°-30°=60°;如图,当AC ∥DE 时,∠E =∠CAE =90°,则α=∠BAD =45°+60°=105°,此时∠BAE =90°-30°=60°=∠B ,则AE ∥BC ;如图,当AB ∥DE 时,∠E =∠BAE =90°,∴α=∠BAD =45°+90°=135°;综上:符合条件的α为60°或105°或135°,故答案为:(1)15;(2)60°或105°或135°.【点睛】本题考查了平行线的性质,三角板的角度计算,正确确定△ABC 旋转的过程中可以依次出现几次平行的情况是关键.29.如图,将一副三角板按如图放置,90,45,60BAC DAE B E ∠=∠=︒∠=︒∠=︒,则①13∠=∠;②2180CAD ∠+∠=︒;③如果230∠=︒,则有//AC DE ;④如果245∠=︒,则有//BC AD .上述结论中正确的是________________(填写序号).答案:①②③④【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,解析:①②③④【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,故①正确;∵∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°,故②正确;∵∠2=30°,∴∠1=60°=∠E,∴AC∥DE,故③正确;∵∠2=45°,∴∠3=45°=∠B,∴BC∥AD,故④正确;故答案为:①②③④.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.30.对于数x,符号[x]表示不大于x的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[347x]=2的整数解为_____.答案:6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得. 【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x -≤,解不等式组,并求整数解可得.【详解】因为,3427x -⎡⎤=⎢⎥⎣⎦, 所以,依题意得34237x -≤,所以,34273437x x -⎧≤⎪⎪⎨-⎪⎪⎩, 解得1683x ≤, 所以,x 的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.31.在“实践与探究”的数学活动中,让一组和二组分别用8个一样大小的长方形纸片进行拼图.一组拼成一个如图1所示的大长方形:二组拼成一个如图2所示的正方形,但中间留下一个边长为3cm 的小正方形,据此计算出每个小长方形的面积是______2cm答案:135【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的宽为,长为,根据题中的等量关系:①5个长方形的宽个长方形的长,②大矩形面积大正方形的面积,解析:135【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的宽为xcm ,长为ycm ,根据题中的等量关系:①5个长方形的宽3=个长方形的长,②大矩形面积9+=大正方形的面积,列方程求解.【详解】解:设每个长方形的宽为xcm ,长为ycm ,那么可列出方程组为:5323x y x y =⎧⎨-=⎩,。
七年级下学期期末试卷填空题汇编精选复习数学试题
一、填空题1.x y的值是____. 答案:【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可.【详解】解:∵与互为相反数,∴+=0,∴∴∴.故答案为:.【点睛】本题主要考查了实数 解析:12【分析】,进而得出1120-+-=y x ,然后用含x 的代数式表示y ,再代入求值即可.【详解】解:∵∴,∴1120-+-=y x∴2y x = ∴1=22x x y x =. 故答案为:12.【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得y 与x 之间的关系是解题关键.2.如图,//AB CD ,2P E 平分1PEB ∠,2P F 平分1PFD ∠,若设1PEB x ∠=︒,1PFD y ∠=︒则1P ∠=______度(用x ,y 的代数式表示),若3PE 平分2P EB ∠,3PF 平分2P FD ∠,可得3P ∠,4P E 平分3P EB ∠,4P F 平分3P FD ∠,可得4P ∠…,依次平分下去,则n P ∠=_____度.答案:【分析】过点P1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得.【详解】解:过点作∥AB ,可得∥CD ,设,,∴,,解析:()x y + 12n x y -+⎛⎫⎪⎝⎭【分析】过点P 1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得1E x PF y ︒=∠︒+,再根据角平分线的定义总结规律可得n P ∠. 【详解】解:过点1P 作1PG ∥AB ,可得1PG ∥CD ,设1PEB x ∠=︒,1PFD y ∠=︒, ∴11G x PEB EP =︒∠=∠,11G y PFD FP =︒∠=∠,∴11111P EP FP PEB P E F G G x y FD ∠=+=︒∠∠∠=︒++∠;同理可得:222P P EB P FD ∠+∠∠=,333P P EB P FD ∠+∠∠=,...,∵2P E 平分1PEB ∠,2P F 平分1PFD ∠, ∴()22212P P EB P FD x y ∠+∠=︒+︒∠=,()33314P P EB P FD x y ∠+∠=︒+︒∠=, ...,∴12n n n n x y P P EB P FD -∠︒+︒∠+∠==, 故答案为:()x y +,12n x y -+⎛⎫ ⎪⎝⎭.【点睛】本题考查了平行线性质的应用和角平分线的定义,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题,属于中考常考题型.3.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________. 答案:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.4.如图所示,已知A1(1,0),A2(1,﹣1)、A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,按一定规律排列,则点A2021的坐标是________.答案:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.5.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为_____________.答案:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P 2021在第二象限,∵点P 5(﹣2,1),点P 9(﹣3,2),点P 13(﹣4,3),∴点P 2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标. 6.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.答案:【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=C解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇; 当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇; 当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P (2,0)处相遇,此时物体甲乙回到原来出发点, ∴物体甲乙每相遇三次,则回到原出发点P 处,∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点,故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.7.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f (2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 答案:5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】 由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】 解:1()1f x x=+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 8.阅读下列解题过程:计算:232425122222++++++解:设232425122222S =++++++①则232526222222S=+++++②由②-①得,2621S=-运用所学到的方法计算:233015555++++⋯⋯+=______________.答案:.【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.9.用⊕表示一种运算,它的含义是:1(1)(1)xA BA B A B⊕=++++,如果5213⊕=,那么45⊕=__________.答案:【分析】按照新定义的运算法先求出x,然后再进行计算即可. 【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745 【分析】 按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.10.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.答案:、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.11.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.答案:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6,a7的值,根据规律找出部分a n的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环,∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0来解决问题.12.对于数x,符号[x]表示不大于x的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[347x]=2的整数解为_____.答案:6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得. 【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8. 故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x-≤,解不等式组,并求整数解可得.【详解】因为,3427x-⎡⎤=⎢⎥⎣⎦,所以,依题意得34237x-≤,所以,34273437xx-⎧≤⎪⎪⎨-⎪⎪⎩,解得1 683x≤,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.13.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 ______ .答案:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:解析:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2016+m 2017…………………② ②一①得:mS―S =m 2017-1.∴S =.考点:阅读理解题;规律探究题.14.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.答案:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2, 解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解. 详解:根据题意得,P 1(2,0),P 2(1,4),P 3(-3,3),P 4(-2,-1),P 5(2,0),P 6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P 2017与P 1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.15.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3)所表示的数是6,故答案为6.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.16.如图,一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第2019秒时这个点所在位置的坐标是_____.答案:(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点解析:(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点移动的速度是1个单位长度/每秒,则:运动到(1,1)是2秒,2=1×2运动到(2,2)是6秒,6=2×3运动到(3,3)是12秒,12=3×4运动到(4,4)是20秒,20=4×5⋯⋯44×45=1980,即1980秒运动到点(44,44)2019- 1980=39∵坐标为偶数的点的运动方向是:向上、向左,故第2019秒时这个点所在位置是点(44,44)向左运动39个单位,44-39=5,即第2019秒时这个点所在位置的坐标是(5,44)故答案为:(5,44)【点睛】此题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第2019秒时点所在位置的坐标是解决问题的关键.17.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则,则点B在点A的______边(填“左”或“右”).A点表示的数是_____.若点B表示 3.14答案:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.18.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________. 答案:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P (x ,y )的关联点Q 坐标为(-2,3),∴y′=y -x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P 的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.19.如图1,为巡视夜间水面情况,在笔直的河岸两侧(//PQ MN )各安置一探照灯A ,BC (A 在B 的左侧),灯A 发出的射线AC 从AM 开始以a 度/秒的速度顺时针旋转至AN 后立即回转,灯B 发出的射线BD 从BP 开始以1度/秒的速度顺时针旋转至BQ 后立即回转,两灯同时转动,经过55秒,射线AC 第一次经过点B ,此时55ABD ∠=︒,则a =________,两灯继续转动,射线AC 与射线BD 交于点E (如图2),在射线...BD ..到达..BQ ..之前..,当120AEB ∠=︒,MAC ∠的度数为________.答案:或.【分析】(1)由平行线的性质,得到角之间的关系,然后列出方程,解方程即可; (2)由题意,根据旋转的性质,平行线的性质,可对运动过程分成两种情况进行分析:①射线AC 没到达AN 时,;②解析:120︒或60︒.【分析】(1)由平行线的性质,得到角之间的关系,然后列出方程,解方程即可;(2)由题意,根据旋转的性质,平行线的性质,可对运动过程分成两种情况进行分析:①射线AC 没到达AN 时,120AEB ∠=︒;②射线AC 到达AN 后,返回旋转的过程中,120AEB ∠=︒;分别求出答案即可.【详解】解:(1)如图,射线AC 第一次经过点B ,∵//PQ MN ,∴MAB ABP ABD DBP ∠=∠=∠+∠,∴55MAB DBP ∠=︒+∠,∴5555551a =︒+⨯︒,解得:2a =;故答案为:2.(2)①设射线AC 的转动时间为t 秒,则如图,作EF //MN //PQ ,由旋转的性质,则1802EAN t ∠=︒-︒,PBE t ∠=︒,∵EF //MN //PQ ,∴1802AEF EAN t ∠=∠=︒-︒,FEB PBE t ∠=∠=︒,∵120AEB AEF FEB ∠=∠+∠=︒,∴1802120︒-︒+︒=︒,t t∴60t=(秒),∴260120∠=⨯=︒;MAC②设射线AC的转动时间为t秒,则如图,作EF//MN//PQ,此时AC为达到AN之后返回途中的图像;与①同理,∴3602MAC t∠=︒-︒,180∠=︒-︒,QBE t∵120∠=∠+∠=︒,AEB AEF FEB∴3602180120︒-︒+︒-︒=︒,t tt=(秒);解得:120∴360212060∠=︒-⨯=︒;MAC∠的度数为:120︒或60︒;综合上述,MAC故答案为:120︒或60︒.【点睛】本题考查了旋转的性质,平行线的性质,解题的关键是熟练掌握所学的知识,正确的分析题意,作出辅助线,运用分类讨论的思想进行解题.20.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.答案:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.21.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.答案:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.∠+∠+∠+∠+∠=__________.22.如图,两直线AB、CD平行,则12345答案:【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F点,G点,H点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角,解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F点,G点,H点作2L,3L,4L平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.23.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.24.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.答案:【分析】连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,根据平行线性质得出∠BAC +∠ACD =180°,求出∠CAE +∠ACE =180°−(2x +2y ),求出∠AEC =2解析:129︒【分析】连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,根据平行线性质得出∠BAC +∠ACD =180°,求出∠CAE +∠ACE =180°−(2x +2y ),求出∠AEC =2(x +y ),∠AFC ═2(x +y ),即可得出答案.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∴∠AEC=3∠AFC=129°.2故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.∠=︒则∠4的度数是___度.25.如图,a∥b,∠2=∠3,140,答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a ∥c ,a ∥d ,则a ∥b ∥解析:40【分析】分别作a ∥c ,a ∥d ,则a ∥b ∥c ∥d ,由题可知5678,∠+∠=∠+∠根据平行线的性质得出67,∠=∠再用等式的性质得出58,∠=∠再根据平行线的性质由a ∥c ,b ∥d ,得出15,48,∠=∠∠=∠即可得出1440∠=∠=︒.【详解】如图,作a ∥c ,a ∥d ,则a ∥b ∥c ∥d ,∵∠2=∠3,∴5678,∠+∠=∠+∠又∵c ∥d ,∴67,∠=∠∴58,∠=∠∵a ∥c ,b ∥d ,∴15,48,∠=∠∠=∠∴1440,∠=∠=︒故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 26.如图,AB ∥CD ,EM 是∠AMF 的平分线,NF 是∠CNE 的平分线,EN ,MF 交于点O .若∠E +60°=2∠F ,则∠AMF 的大小是___.答案:【分析】作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数.【详解】解:作,如图,,,,,是的平分线,,,,同理可得,,,,解析:40︒【分析】作//EH AB ,则1AME ∠=∠,2CNE ∠=∠,而12AME AMF ∠=∠,所以12MEN AMF CNE ∠=∠+∠,同理可得12F AMF CNE ∠=∠+∠,变形得到22F AMF CNE ∠=∠+∠,利用等式的性质得322F E AMF ∠-∠=∠,加上已给条件602MEN F ∠+︒=∠,于是得到3602AMF ∠=︒,易得AMF ∠的度数. 【详解】解:作//EH AB ,如图,//AB CD ,//EH CD ,1AME ∴∠=∠,2CNE ∠=∠, EM 是AMF ∠的平分线,12AME AMF ∴∠=∠, 12MEN ∠=∠+∠,12MEN AMF CNE ∴∠=∠+∠, 同理可得,12F AMF CNE ∠=∠+∠, 22F AMF CNE ∴∠=∠+∠,322F MEN AMF ∴∠-∠=∠, 602MEN F ∠+︒=∠,即260F MEN ∠-∠=︒,∴3602AMF ∠=︒, 40AMF ∴∠=︒,故答案为:40︒.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,合理作辅助线和把一般结论推广是解决问题的关键.27.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.答案:33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.28.如图,将一副三角板按如图放置(60E ∠=︒,45B ∠=︒),则下列结论: ①13∠=∠;②如果230∠=︒,则有//BC AE ;③如果123∠=∠=∠,则有//BC AE ;④如果//AB ED ,必有30EAC ∠=︒.其中正确的有___(填序号).答案:①③④【分析】根据三角板的性质以及平行线的判定一一判断即可.【详解】解:,,故①正确,当时,,,,故与不平行,故②错误,当时,可得,,故③正确,取与的交点为,,,,,解析:①③④【分析】根据三角板的性质以及平行线的判定一一判断即可.【详解】解:90EAD CAB ∠=∠=︒,13∠∠∴=,故①正确,当230∠=︒时,360∠=︒,445∠=︒,34∴∠≠∠,故AE 与BC 不平行,故②错误,当123∠=∠=∠时,可得3445∠=∠=︒,//BC AE ∴,故③正确,取AC 与ED 的交点为F ,60E ∠=︒,//AB ED ,90FAB EFA ∴∠=∠=︒,906030EAC ∴∠=︒-︒=︒,故④正确,故答案是:①③④.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握三角板的性质.29.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∠1=28°,则∠2的度数是______.答案:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如解析:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如图,由折叠的性质,可得∠3=∠1=28°,∴∠4=∠1+∠3=56°,∵CD ∥BE ,AC ∥BD ,∴∠EBD =180°﹣∠4=124°,又∵CD ∥BE ,∴∠2=180°﹣∠CBD =180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 30.若()2210a b -+=.则a b =______. 答案:1【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()220a-,∴()220a-==,∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2(1)1-=,故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性.31.已知21xy=⎧⎨=⎩,是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的平方根为______.答案:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.32.已知关于x 的不等式组114()324x m x x +>⎧⎪⎨-≤+⎪⎩有2019个整数解,则m 的取值范围是_______.答案:【分析】先求出不等式组的解集为,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】解:解不等式①得, ,解不等式②得解析:20162017m【分析】先求出不等式组的解集为13m x ,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】 解:114()324x m x x ①②+>⎧⎪⎨-≤+⎪⎩解不等式①得,1x m >- ,解不等式②得,3x ≤,∴不等式组的解集为13m x ,∵原不等式组有2019个整数解,分别为3,2,1,0,-1…-2014,-2015,共2019个,∴201612015m∴20162017m .故答案为:20162017m .【点睛】本题考查不等式组的整数解,理解解集的意义及处理临界点值是解答此题的关键. 33.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017初一数学下期填空题专题训练3一.填空题(共30小题)1.两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图(2).已知AD=4,BC=8,若阴影部分的面积是四边形A′B′C的D面积的,则图(2)中平移距离A′A=.2.如图,按角的位置关系填空:∠A与∠1是;∠A与∠3是;∠2与∠3是.3.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.4.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠B=80°,则∠BDF=.5.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为 280m ,且桥宽忽略不计,则小桥总长为 m .6.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的 “钥匙 ”.目前,已破译出 “今天考试”的真实意思是 “努力发挥”.若 “今 ”所处的位置为(x ,y ),你找到的密码钥匙是,破译“正做数学 ”的真实意思是 . 7.如图,直线a ∥b ,Rt △ABC 的直角顶点 C 在直线b 上,∠1=20°,则∠ 2= °.8.若第二象限内的点 P (x ,y )满足 | x| =3,y2=25,则点 P 的坐标是 .9.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→方”向排列,如( 1,0),(2,0),(2,1),(1,1),(1,2),(2,2)⋯ 根 据这个规律,第 2012 个点的横坐标为 .10.在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为.11.点P(x﹣2,x+3)在第一象限,则x的取值范围是.12.将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.13.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.14.已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a=.15.点A(0,﹣3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C的坐标是.16.已知点M(a+3,4﹣a)在y轴上,则点M的坐标为.17.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.m﹣n﹣5y m+n﹦6是二元一次方程,则m﹦,n﹦.18.若方程4x19.若关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=,y=.20.若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于.21.若方程组的解为,则点P(a,b)在第象限.22.关于x、y的方程组,那么=.23.若不等式组有解,则a的取值范围是.24.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是.25.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n ﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.论:给出下列关于(x)的结①(1.493)=1;②(2x)=2(x);范围是9≤x<11;实数x的取值③若()=4,则,有(m+2013x)=m+(2013x);整数时④当x≥0,m为非负⑤(x+y)=(x)+(y);论有(填写所有正确的序号).其中,正确的结26.若不等式组的解集是﹣1<x<1,则(a+b)2009=.27.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,为.n的值最小值为n,则m﹣28.已知关于x的不等式组仅有三个整数解,则a的取值范围是.29.已知a>5,不等式(5﹣a)x>a﹣5解集为.30.不等式组的最小整数解是.2017初一数学下期填空题专题训练参考答案与试题解析一.填空题(共30小题)1.(2011?葫芦岛)两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图(2).已知AD=4,BC=8,若阴影部分的面积是四边形A′B′C的D面积的,则图(2)中平移距离A′A=3.【分析】由两梯形全等,得到上底及下底对应相等,设梯形A′B′C的′高D′为h,A′A=,x则B′B=,x由上底及下底的长分别表示出AD′和BC′,根据平移的性质得到图(2)除去阴影部分左边把右边四边形的面积相等,根据阴影部分的面积等于图(2)总面积的,得到阴影部分的面积等于梯形A′B′C面′积D′的一半,由梯形的面积公式分别表示出阴影部分的面积等于梯形A′B′C的′面D′积,把各自表示出的边代入,消去h求出x的值,即为平移距离A′A的长.【解答】解:∵梯形ABCD与梯形A′B′C全′等D′,∴AD=A′D′,=4BC=B′C′,=8设梯形A′B′C的′高D′为h,A′A=,x则B′B=,x∴AD′=A′﹣D′A′A=﹣4x,B C′=B′﹣C B′′B=﹣8x,由平移的性质可知:S四边形A′ABB=′S,′四边形D′DCC又∵S阴影=S,C D四边形A′B′∴S阴影=S四边形ABCD,∴h(AD′+BC′)=×h(A′D+′B′C)′,即h(4﹣x+8﹣x)=h(4+8),化简得:6﹣x=3,解得:x=3,∴A′A=.3故答案为:3【点评】此题考查了平移的性质,以及梯形的面积公式,平移的性质有:对应点的连线平行(或重合)且相等,对应线段平行(或重合)且相等.其中根据平移的性质及题意得出是解本题的关键.2.(2014春?濉溪县期末)如图,按角的位置关系填空:∠A与∠1是同旁内角;∠A与∠3是同位角;∠2与∠3是内错角.【分析】根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形找出即可.【解答】解:根据图形,∠A与∠1是直线AC、MN被直线AB所截形成的同旁内角,∠A与∠3是直线AC、MN被直线AB所截形成的同位角,∠2与∠3是直线AC、AB被直线MN所截形成的内错角.故答案为:同旁内角;同位角;内错角.【点评】本题考查了三线八角中的同旁内角,同位角,内错角的概念,知同位角、内错角、同旁内角是两直线被第三条直线所截而成的角.3.(2016?潮州校级一模)已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为3﹣.【分析】根据特殊角的锐角三角函数值,求出EC、EG、AE的长,得到阴影部分的面积.【解答】解:∵∠F=45°,BC=3,∴CF=3,又EF=4,则EC=1,∵BC=3,∠A=30°,∴AC=3,则AE=3﹣1,∠A=30°,∴EG=3﹣,阴影部分的面积为:×3×3﹣×(3﹣1)×(3﹣)=3﹣.故答案为:3﹣.【点评】本题考查的是平移的性质,正确运用锐角三角函数和特殊角的三角函数值是解题的关键.4.(2014春?建邺区校级期末)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥D E,若∠B=80°,则∠BDF=20°.【分析】首先利用平行线的性质得出∠ADE=8°0,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵B C∥DE,若∠B=80°,∴∠ADE=8°0,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=80°,∴∠BDF=180°﹣80°﹣80°=20°,故答案为:20°.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.5.(2013?岳阳)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为140m.【分析】利用平移的性质直接得出答案即可.【解答】解:根据题意得出:小桥可以平移到矩形的边上,得出小桥的长等于矩形的长与宽的和,故小桥总长为:280÷2=140(m).故答案为:140.【点评】此题主要考查了生活中的平移,根据已知正确平移小桥是解题关键.6.(2013?随州)如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是x+1,y+2,破译“正做数学”的真实意思是祝你成功.【分析】根据坐标中文字位置得出“今”所处的位置为(x,y),则对应文字位置是:(x+1,y+2),进而得出密码钥匙,即可得出“正做数学”的真实意思.【解答】解:∵已破译出“今天考试”的真实意思是“努力发挥”.“今”所处的位置为(x,y),则对应文字位置是:(x+1,y+2),∴找到的密码钥匙是:对应文字横坐标加1,纵坐标加2,∴“正”的位置为(4,2)对应字母位置是(5,4)即为“祝”,“做”的位置为(5,6)对应字母位置是(6,8)即为“你”,“数”的位置为(7,2)对应字母位置是(8,4)即为“成”,“学”的位置为(2,4)对应字母位置是(3,6)即为“功”,∴“正做数学”的真实意思是:祝你成功.故答案为:x+1,y+2;祝你成功.【点评】此题主要考查了推理论证,根据已知得出“今”对应文字位置是:(x+1,y+2)进而得出密码钥匙是解题关键.7.(2016?镇江)如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=70°.【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.【解答】解:∵∠1=20°,∴∠3=90°﹣∠1=70°,a∥b,∵直线∴∠2=∠3=70°,故答案是:70.性质并准确识图是解题,熟记的,平角的定义【点评】本题考查了平行线的性质.关键8.(2015?广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标3,5).是(﹣【分析】根据绝的意义和平方根得到x=±5,y=±2,再根据第二象限的点对值5,y=2,然后可直接写出P点坐标.特点得到x<0,y>0,于是x=﹣的坐标2=25,【解答】解:∵|x|=3,y∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,3,5),﹣∴点P的坐标为(3,5).:(﹣故答案为的符号特征以及解不等式,记住各象限内了各象限内点的坐标考查】本题【点评是:第一象限(+,+);的符号是解决的关键,四个象限的符号特点分别点的坐标).);第四象限(+,﹣,+);第三象限(﹣第二象限(﹣,﹣9.(2012?泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,中“→方”向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,序按图其顺【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于 x 轴上右下角的点的横坐标的平方, 并且右下角的点的横坐标是奇数时最后以横坐标 为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为 1,纵坐 标为右下角横坐标的偶数减 1 的点结束,根据此规律解答即可. 【解答】 解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于 x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有 1 个,1=1 2,右下角的点的横坐标为2时,共有 4 个, 4=22, 右下角的点的横坐标为3时,共有 9 个, 9=32, 右下角的点的横坐标为4时,共有 16 个, 16=42, ⋯右下角的点的横坐标为n 时,共有 n 2 个,2=2025,45 是奇数, ∵45∴第 2025 个点是( 45,0), 第 2012 个点是( 45,13), 所以,第 2012 个点的横坐标为45. 故答案为: 45.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题 的关键.10.(2015?铁岭)在平面直角坐标系中,正方形 ABCD 的顶点 A 、B 、C 的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点 D 的坐标为(1, 1) .四个顶点的坐标求出来即可.【解答】解:∵正方形两个顶点的坐标为A(﹣1,1),B(﹣1,﹣1),∴AB=1﹣(﹣1)=2,∵点C的坐标为:(1,﹣1),∴第四个顶点D的坐标为:(1,1).故答案为:(1,1).【点评】本题考查了坐标与图形的性质,解决本题的关键是弄清当两个点的横坐标相等时,其两点之间的距离为纵坐标的差.11.(2016?衡阳)点P(x﹣2,x+3)在第一象限,则x的取值范围是x>2.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.【点评】此题主要考查了点的坐标,正确得出关于x的不等式组是解题关键.12.(2016?广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.(2014?赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).【分析】以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).【点评】本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.14.(2016春?夏津县期末)已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a=﹣1或﹣4.【分析】由于点P的坐标为(2﹣a,3a+6)到两坐标轴的距离相等,则|2﹣a|=|3a+6|,然后去绝对值得到关于a的两个一次方程,再解方程即可.【解答】解:根据题意得|2﹣a|=|3a+6|,所以2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4.故答案为﹣1或﹣4.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.15.(2016春?柘城县期中)点A(0,﹣3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C的坐标是(30,0)或(﹣30,0).【分析】根据A、B两点特点,求出线段AB的长度,根据C点特征设出C点坐标,然后利用面积列出一个方程,从而求得点C的坐标.【解答】解:∵点A(0,﹣3),点B(0,﹣4),∴AB=1∵点C在x轴上,设C(x,0),∵△ABC的面积为15,∴×AB×|x|=15,即:×1×|x|=15解得:x=±30∴点C坐标是:(30,0),(﹣30,0).故答案为:(30,0),(﹣30,0).【点评】题目考查了平面直角坐标系点的坐标和图形的性质,通过对三角形的面积求解,求出相关点的坐标.题目整体较为简单,需要注意的是不要出现漏解现象.16.(2015春?高密市期末)已知点M(a+3,4﹣a)在y轴上,则点M的坐标为(0,7).【分析】根据y轴上点的特点解答即可.【解答】解:∵点M(a+3,4﹣a)在y轴上,∴a+3=0,即a=﹣3,∴4﹣a=7,∴点M的坐标为(0,7).故答案填(0,7).【点评】本题主要考查坐标轴上的点的坐标的特征,注意y轴上点的特点即横坐标为0.17.(2015?南充)已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k 的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.m﹣n﹣5y m+n﹦6是二元一次方程,则m﹦18.(2015春?龙口市期中)若方程4x1,n﹦0.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据题意,得解,得m=1,n=0.故答案为:1,0.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.19.(1998?广东)若关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=4,y=3.【分析】本题先代入解求出得,再将其代入二元一次方程组得到,解出即可.【解答】解:∵二元一次方程组的解是,∴有,解得;将代入二元一次方程组,得,解得.【点评】本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.注意:在运用加减消元法消元时,两边同时乘以或除以一个不为0的整数或整式,一定注意不能漏项.20(.2014?牡丹江二模)若4x﹣3y﹣6z=0,x+2y﹣7z=(0xyz≠0),则的值等于﹣13.【分析】先由4x﹣3y﹣6z=0,x+2y﹣7z=0,用含y、z的代数式表示x,则x=y+z,x=7z﹣2y,利用两式相等得出y=2z,x=3z,然后代入代数式求解即可.【解答】解:∵4x﹣3y﹣6z=0,∴x=y+z,又∵x+2y﹣7z=0,∴x=7z﹣2y,∴7z﹣2y=y+z,解得y=2z,把它代入x=7z﹣2y,∴x=3z,∴==﹣13,故答案为:﹣13.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.21.(2015?丹东模拟)若方程组的解为,则点P(a,b)在第四象限.【分析】将x与y的值代入方程组计算求出a与b的值,即可作出判断.【解答】解:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.故答案为:四【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.22.(2016?潍坊一模)关于x、y的方程组,那么=10.【分析】设a=,b=,方程组化为关于a与b的方程组,求出方程组的解得到a与b的值,即为与的值,即可求出所求式子的值.【解答】解:设a=,b=,方程组化为,②×2得:5a=65,①×3﹣解得:a=13,将a=13代入①得:b=3,3=10.b=13﹣则﹣=a﹣:10故答案为型.【点评了解二元一次方程组,利用了换元的思想,是一道基本题考查】此题23.(2013?宁夏)若不等式组有解,则a的取值范围是a>﹣1.有解,即可求【分析】先解出不等式组的解集,根据已知不等式组范围.出a的取值a,【解答】解:∵由①得x≥﹣由②得x<1,﹣a≤x<1,故其解集为∴﹣a<1,即a>﹣1,1.∴a的取值范围是a>﹣:a>﹣1.故答案为的公共解,要遵循以下原则:同大的解集,求不等式组了不等式组【点评】考查小,小大大小中间找,大大小小解不了.取较大,同小取较.可以先将另一未知是已知不等式组的解集,求不等式中另一未知数的问题本题,进的解集并与已知解集比较而求得另一个未理,求出不等式组数当作已知数处范围.知数的取值24.(2015?成都校级模拟)不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的是m<2.取值范围3,不等式的两边同乘或除以同一个负数,不等号的【分析】根据不等式的性质方向改变,可得答案.m的解集为x<﹣1,2)x>2﹣【解答】解:不等式(m﹣2<0,∴m﹣故答案为:m<2.了不等式的解集,由不等号方向改变,得出未知数的系数小于【点评】本题考查0.25.(2013?乐山)对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.,若n﹣:给出下列关于(x)的结论①(1.493)=1;②(2x)=2(x);是9≤x<11;范围数x的取值③若()=4,则实,有(m+2013x)=m+(2013x);④当x≥0,m为非负整数时⑤(x+y)=(x)+(y);有①③④(填写所有正确的序号).其中,正确的结论可以根据题于①可直接判断,②、⑤可用举反例法判断,③、④我们【分析】对意所述利用不等式判断.【解答】解:①(1.493)=1,正确;误;,(2x)=1,2(x)=0,故②错②(2x)≠2(x),例如当x=0.3时≤x﹣1<4+,解得:9≤x<11,故③正确;4﹣③若()=4,则整数,故(m+2013x)=m+(2013x),故④正确;④m为,(x+y)=1,(x)+(y)=0,故⑤⑤(x+y)≠(x)+(y),例如x=0.3,y=0.4时;错误综上可得①③正确.故答案为:①③④.了理解题意的能力,关键是看到所得值是个位数四舍五入后的】本题考查【点评问题可得解.,值26.(2009?凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009=,可以求出a、b的【分析】解出不等式组的解集,与已知解集﹣1<x<1比较值,然后相加求出2009次方,可得最终答案.【解答】解:由不等式得x>a+2,x<,∵﹣1<x<1,1,=1∴a+2=﹣3,b=2,∴a=﹣2009=(﹣1)2009=﹣1.∴(a+b).可以先将】本题是已知不等式组的解集,求不等式中另一未知数的问题【点评而求得零一个未知数.,进理,求出解集与已知解集比较另一未知数当作已知处27.(2010?内江)已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的n的值为7.m﹣最大值为n,则为m,最小值a=5数,所以m、n一定≥0;根据a+b=7和c﹣【分析】由于已知a,b,c为非负化为a=5把S=a+b+c转;然后再根据a+b=7和c﹣推出c的最小值与a的最大值.只含a或c的代数式,从而确定其最大值与最小值非负数;【解答】解:∵a,b,c为∴S=a+b+c≥0;a=5;又∵c﹣∴c=a+5;∴c≥5;∵a+b=7;∴S=a+b+c=7+c;又∵c≥5;S最小,即S最小=12;∴c=5时∴n=12;∵a+b=7;∴a≤7;∴a=7时S最大,即S最大=19;∴m=19;n=19﹣12=7.∴m﹣:7.故答案为:【点评】不等式的性质加(或减)同一个数(或式子),不等号的方向不变.(1)不等式两边乘(或除以)同一个正数,不等号的方向不变.(2)不等式两边乘(或除以)同一个负数,不等号的方向改变.(3)不等式两边28.(2016?凉山州)已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣≤a<0.【分析】根据解不等式组的解,根据不等式组的解是整数,可得,可得不等式组答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,2)+5,解得3a﹣2<x<1,由2x>3(x﹣2,2<﹣3≤3a﹣由关于x的不等式组仅有三个整数解,得﹣≤a<0,解得﹣故答案为≤a<0.:﹣考查,利用不等式的解得出关于a的不等式是了一元一次不等式组】本题【点评.解题关键29.(2014春?恩施市校级期末)已知a>5,不等式(5﹣a)x>a﹣5解集为x 1.<﹣a<0,由不等式的基本性质得出答案.【分析】先由a>5,得出5﹣【解答】解:∵a>5,∴5﹣a<0,(共22页)第21页∴解不等式(5﹣a)x>a﹣5,得x<﹣1.故答案为:x<﹣1.【点评】本题主要考查了不等式的性质,解题的关键是注意不等号的方向是否改变.30.(2015?安顺)不等式组的最小整数解是x=﹣3.【分析】先分别求出各不等式的解集,再求出其公共解集,画出数轴便可直接得出答案.【解答】解:由①得,x>﹣,由②得,x<,所以不等式的解集为﹣<x<,在数轴上表示为:由图可知,不等式组的最小整数解是x=﹣3.【点评】此题考查的是一元一次不等式组的解法和一元一次方程的解,根据x的取值范围,得出x的最小整数解.第22页(共22页)。