2019年北京市海淀区七年级上册期末数学参考样题有答案

合集下载

2019北京海淀初一(上)期末数学

2019北京海淀初一(上)期末数学

2019北京海淀初一(上)期末数学学校班级姓名成绩一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.题号 12345678 9 10答案1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A .5B.-5 C.-15D .53.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510 B .35510 C.45.510D .46104.下列计算正确的是A .325a b abB .325a a a C .232a a aD .3212aaa5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是A .AC +BC =6B .AC =BC =3 C .BC =3D .AB =2AC8.若2x 时42+x mxn 的值为6,则当2x时42+x mxn 的值为A .-6 B.0C.6D.269.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是A B C D10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a bB .a bC .abD .a b二、填空题(本大题共16分,每小题2分)11.比较大小:- 3 -2.1(填“>”,“<”或“=”).12.右图中A ,B 两点之间的距离是厘米(精确到厘米),点B在点A 的南偏西°(精确到度).13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:.14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有(请写出所有答案).AMB北西南东BA图1图2从正面看abab16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比点B 表示的数小,则点B表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变.(1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x =.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.计算:(1)2533;(2)118(11)24.20.解方程:(1)5812xx ;(2)12323x x .21.22a b已知,求代数式223(24)2(32)aba b aba b 的值.E1FDC BAO22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ;(2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据:.四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2.(1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为,则每一行三个数的和均为,而这9个数的和恰好为1到9这9个正整数之和,由此可得=;BA O CxC M A BD C M A B【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数.请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.已知0k,将关于x 的方程0kx b 记作方程◇.(1)当2k=,4b=时,方程◇的解为;(2)若方程◇的解为3x=-,写出一组满足条件的k ,b 值:k ,b=;(3)若方程◇的解为4x=,求关于y 的方程320k yb-的解.26.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,∠BOD 与∠AOC 互余.(1)若∠AOC :∠BOD =4:5,则∠BOD = ;(2)若∠AOC =α(0°<α≤45°),ON 平分∠COD .①当点D 在∠BOC 内,补全图形,直接写出∠AON 的值(用含α的式子表示);②若∠AON 与∠COD 互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33的数阵A ,数阵每个位置所对应的数都是1,2或3.定义a b 为数阵中第a 行第b 列的数.例如,数阵A 第3行第2列所对应的数是3,所以32=3.(1)对于数阵A ,23的值为;若23=2x ,则x 的值为;(2)若一个33的数阵对任意的a ,b ,c 均满足以下条件:条件一:a a =a ;条件二:()a b c a c ;则称此数阵是“有趣的”.①请判断数阵A 是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足12=2,试计算21的值;③是否存在“有趣的”数阵,对任意的a ,b 满足交换律a b =b a ?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.C B AOCB AO。

2019-2020学年北京市海淀区初一年级第一学期期末数学试题(含答案)

2019-2020学年北京市海淀区初一年级第一学期期末数学试题(含答案)

海 淀 区 七 年 级 第 一 学 期 期 末 调 研数 学 2020.1学校 班级 姓名 成绩 一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory (胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B . 若4223x x -=-,则4322x x +=-C . 若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D . 若3112123x x+--=,则3(31)2(12)6x x +--= 8. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB 在点O 南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为 A .20°B . 70°C .110°D .160°9. 已知线段8AB =cm ,6AC =cm ,下面有四个说法:①线段BC 长可能为2cm ; ②线段BC 长可能为14cm ; ③线段BC 长不可能为5cm ;④ 线段BC 长可能为9cm .所有正确说法的序号是A . ①②B .③④C .①②④D .①②③④10. 某长方体的展开图中,P 、A 、B 、C 、D (均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A 、B 、C 、D 四点,则蚂蚁爬行距离最短的路线是A . P→AB . P→BC . P→CD . P→D二、填空题(本题共16分,每小题2分) 11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数机场记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12. 一个单项式满足下列两个条件:①系数是2-;②次数是3.请写出一个同时满足上述两个条件的单项式_______.13. 计算48396731''︒+︒的结果为_______.14. 如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长_______ (填:大或小),理由为__________________________________________________ .15. 已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a的代数式表示)2a6a图1 图216. 如下图,点C在线段AB上,D是线段CB的中点. 若47AC AD==,,则线段AB的长为_______.17. 历史上数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示.例如,对于多项式3()5f x mx nx=++,当2x=时,多项式的值为(2)825f m n=++,若(2)6f=,则(2)f-的值为_______.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.B则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元. 三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-20.解方程:(1)3265x x -=-+(2)325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹);B(3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示.||3m x y =+||3m x y =-(1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ②求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2②a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.OBAOBAOCBAODCBA图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分∠BOD. 求证:∠AOC 与∠BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次1111011100+将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =,因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有 个.。

2019.1海淀区七年级上学期期末数学(试题)

2019.1海淀区七年级上学期期末数学(试题)

海淀区七年级上学期期末数 学 2019.1一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A .5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯B .35510⨯C .45.510⨯D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a --=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC 8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b+ B .a b -C .abD .a b-二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B在点A 的南偏西°(精确到度).13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).西南东B图2从正面看15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有(请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B 表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变. (1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-; (2)118(11)24-⨯+-.20.解方程:(1)5812x x +=-; (2)12323x x+-=.21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ; (3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: . 四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2. (1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为 ,则每一行三个数的和均为 ,而这9个数的和恰好为1到9这9个正整数之和,由此可得 = ;【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数 .请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为 ;(2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ; (3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.26.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,∠BOD 与∠AOC 互余. (1)若∠AOC :∠BOD =4:5,则∠BOD = ; (2)若∠AOC =α(0°<α≤45°),ON 平分∠COD .①当点D 在∠BOC 内,补全图形,直接写出∠AON 的值(用含α的式子表示); ②若∠AON 与∠COD 互补,求出α的值.27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A ,数阵每个位置所对应的数都是1,2或3.定义a b 为数阵中第a 行第b 列的数.例如,数阵A 第3行第2列所对应的数是3,所以3 2=3.(1) 对于数阵A ,2 3的值为 ;若2 3=2 x ,则x 的值为 ;备用图(2)若一个33⨯的数阵对任意的a ,b ,c 均满足以下条件:条件一:a a =a ;条件二:()a b c a c **=*; 则称此数阵是“有趣的”.①请判断数阵A 是否是“有趣的”.你的结论:_______(填“是”或“否”); ②已知一个“有趣的”数阵满足1 2=2,试计算2 1的值;③是否存在“有趣的”数阵,对任意的a ,b 满足交换律a b =b a ?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.。

2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析

2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析

2019-2020学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH2.4的绝对值为()A.±4B.4C.﹣4D.23.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107 4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.45.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.16.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.09.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣﹣(填“>”“<”或“=”)12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是cm.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有对.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒米.三.解答题(共4小题,满分24分)19.(8分)计算(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.20.(8分)解方程(1)4﹣3(2﹣x)=5x(2)=21.(4分)(1)设A=2a2﹣a,B=a2+a,若,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.22.(4分)如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).四.解答题(共2小题,满分11分)23.(6分)已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.24.(5分)蜗牛沿10米高的柱往上爬,每天清晨到傍晚向上爬5米,晚上又滑下4米,像这样从某天清晨开始爬,第几天爬到柱顶?五.解答题(共3小题,满分19分)25.(6分)解方程a(a﹣)x=.26.(6分)如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD =∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?27.(7分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).2019-2020学年北京市海淀区七年级上期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH【分析】依据点F是线段EG的中点,点G是线段FH的中点,即可得到EF=FG,FG =GH,进而得出结论.【解答】解:如图,∵点F是线段EG的中点,点G是线段FH的中点,∴EF=FG,FG=GH,∴EF=GH,故选:D.【点评】本题主要考查了线段的中点,线段的中点就是把一条线段分成两条相等的线段的点.2.4的绝对值为()A.±4B.4C.﹣4D.2【分析】数轴上某个数与原点的距离叫做这个数的绝对值.根据绝对值的定义求解.【解答】解:∵数轴上表示4的点与原点的距离为4,∴4的绝对值是4,故选:B.【点评】此题考查了绝对值的定义,数轴上某个数与原点的距离叫做这个数的绝对值.3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.4【分析】先将原式去括号、合并同类项化简,再由多项式的值与x无关知x的项的系数为0,据此求得a和b的值,最后代入计算可得.【解答】解:x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)=x2+ax﹣2y+7﹣2bx2+4x﹣18y+2=(1﹣2b)x2+(a+4)x﹣20y+9,∵x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,∴1﹣2b=0且a+4=0,则a=﹣4,b=,∴a﹣2b=﹣4﹣2×=﹣5,故选:A.【点评】本题主要考查整式的加减,解题的关键是掌握整式的加减混合运算顺序和运算法则.5.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.1【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【点评】此题主要考查了度分秒的换算,正确掌握运算法则是解题关键.7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意画出的图形进行解答.【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.【点评】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0【分析】令x=1,即可求出所求.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【解答】解:从上面看,是正方形右边有一条斜线,如图:故选:B.【点评】本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2【分析】首先根据BC=2,C点所表示的数为x,求出B表示的数是多少,然后根据OA =OB,求出A点所表示的数是多少即可.【解答】解:∵BC=2,C点所表示的数为x,∴B点表示的数是x﹣2,又∵OA=OB,∴B点和A点表示的数互为相反数,∴A点所表示的数是﹣(x﹣2),即﹣x+2.故选:A.【点评】此题主要考查了列代数式,在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣>﹣(填“>”“<”或“=”)【分析】根据两个负数比较大小,绝对值大的反而小可得答案.【解答】解:||=,|﹣|=,∵,∴﹣>﹣,故答案为:>.【点评】此题主要考查了有理数的大小比较,关键是掌握有理数比较大小的方法.12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是1cm.【分析】先画出图象,则AC=AB+BC=5cm+3cm=8cm,根据点D是线段AC的中点可得到AD=4cm,然后利用DB=AB﹣AD进行计算.【解答】解:如图,∵AB=5cm,BC=3cm,∴AC=AB+BC=5cm+3cm=8cm,∵点D是线段AC的中点,∴AD=AC=×8cm=4cm,∴DB=AB﹣AD=5cm﹣4cm=1cm.故答案为1.【点评】本题考查了两点间的距离:两点间的连线段的长度叫这两点间的距离.也考查了线段中点的定义.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为3x4+6x3﹣4x2y﹣5xy2+2.【分析】根据字母x的指数从大到小排列即可.【解答】解:按x的降幂排列为:3x4+6x3﹣4x2y﹣5xy2+2,故答案为:3x4+6x3﹣4x2y﹣5xy2+2.【点评】此题主要考查了多项式,关键是掌握降幂排列定义.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠P AH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有6对.【分析】根据补角的概念、角平分线的定义计算,得到答案.【解答】解:∵∠AOD=120°,∴∠BOD=180°﹣120°=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,∴∠AOE=150°,则∠AOD+∠COE=180°,∠AOE+∠BOE=180°,∠AOE+∠DOE=180°,∠AOD+∠DOC=180°,∠AOC+∠BOC=180°,∠AOD+∠EOC=180°,∴图中互为补角的角有6对,故答案为:6.【点评】本题考查的是补角的概念,如果两个角的和等于180°,就说这两个角互为补角.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为45x+16=50x﹣9.【分析】设有x辆汽车,根据去郊游的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x辆汽车,根据题意得:45x+16=50x﹣9.故答案为:45x+16=50x﹣9.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是1或﹣3.【分析】根据数轴上点的位置特征确定出终点表示的数即可.【解答】解:根据题意得:2+3﹣4=1或﹣2+3﹣4=﹣3,此时终点所表示的数是1或﹣3,故答案为:1或﹣3【点评】此题考查了数轴,弄清题意是解本题的关键.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒6米.【分析】设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,故答案为:6【点评】本题是函数图象的信息题,又是行程问题,首先要明确三个量:路程、时间和速度,题中有三人:甲、乙、丙,正确读出图形中甲、乙相遇及到达目的地的时间是本题的关键;重点理解图象中x与y所表示的含义,也是本题的难点.三.解答题(共4小题,满分24分)19.(8分)计算(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式通分后,计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣++﹣==;(3)原式=×(﹣)××=﹣;(4)原式=﹣16﹣1×3×=﹣16﹣16=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程(1)4﹣3(2﹣x)=5x(2)=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:﹣2x=2,解得:x=﹣1;(2)去分母得:4x﹣2+6=2x+1,移项合并得:2x=﹣3,解得:x=﹣1.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(4分)(1)设A=2a2﹣a,B=a2+a,若,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.【分析】(1)把A、B的值代入得出A﹣2B=(2a2﹣a)﹣2(a2+a),去括号后合并后再代入计算即可求解;(2)设去年乙类收入为a,则甲类收入是2a;进一步表示出预计今年甲类收入为(1﹣20%)×1.5a,乙类收入为(1+40%)a;分别算出两年甲类、乙类两种经营总收入,进一步比较得出答案.【解答】解:(1)A﹣2B=(2a2﹣a)﹣2(a2+a)=2a2﹣a﹣2a2﹣2a=﹣3a,当时,原式=﹣3×(﹣)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1﹣9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1﹣9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.【点评】(1)考查了整式的加减﹣求值,主要考查学生化简能力和计算能力.(2)考查列代数式,比较有理数的大小,列式时注意单位“1”,以单位“1”为标准列示解决问题.22.(4分)如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).【分析】(1)根据线段的垂直平分线的性质即可作图;(2)作点P关于ON的对称点P′,根据两点之间线段最短即可作图.【解答】解:(1)如图点A即为所求作的点.(2)如图点B即为所求作的点,此时△ABP周长最短.【点评】本题考查了尺规作图、线段的垂直平分线的性质,解决本题的关键是准确画图.四.解答题(共2小题,满分11分)23.(6分)已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=m(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.【分析】(1)根据已知AB=m(m为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得2AP+CQ﹣2PQ=0,即可得出2AP+CQ﹣2PQ与1的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵点C恰好在线段AB中点,∴AC=BC=AB,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×AB+×AB=AB=m;故答案为:m;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×(AC+BC)=AB=m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CP﹣CQ=BC﹣AC=×(BC﹣AC)=AB=m;③点C在线段AB的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ﹣CP=AC﹣BC=×(AC﹣BC)=AB=m;故PQ是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0,∴2AP+CQ﹣2PQ<1.【点评】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.24.(5分)蜗牛沿10米高的柱往上爬,每天清晨到傍晚向上爬5米,晚上又滑下4米,像这样从某天清晨开始爬,第几天爬到柱顶?【分析】规定向上爬为“+”,则向下滑为“﹣”,然后根据题意,列出算式来解答.【解答】解:设第x天爬到柱顶,规定向上爬为“+”,则向下滑为“﹣”,则根据题意,得5x﹣4(x﹣1)=10,解得x=6.故蜗牛在第6天爬到柱顶.【点评】在解答此题时注意,蜗牛在最后一天爬到顶端后,不用再滑下来了,即在计算天数时,上爬的天数应该比下滑的天数多一天.五.解答题(共3小题,满分19分)25.(6分)解方程a(a﹣)x=.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:a(a﹣)x=a+x+,移项合并得:(a2﹣﹣)x=a+,去分母得:(6a2﹣a﹣1)x=3a+1,解得:x=.【点评】此题考查了单项式乘多项式,以及解一元一次方程,熟练掌握运算法则是解本题的关键.26.(6分)如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD =∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【解答】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点评】本题考查了余角和补角的计算,牢固掌握相关性质并正确列式,是解题的关键.27.(7分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+...+29,两边乘以2得到2S=2+22+ (210)然后把两式相减计算出S即可;(2)利用题中的方法设S=3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=3+32+33+34+…+310 ①,则3S=32+33+34+35+…+311 ②,②﹣①得2S=311﹣3,所以S =,即3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,a=1时,不能直接除以a﹣1,此时原式等于n+1;a不等于1时,a﹣1才能做分母,所以S =,即1+a+a2+a3+a4+..+a n =,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.第21 页共21 页。

2019北京海淀初一(上)期末数学含答案

2019北京海淀初一(上)期末数学含答案

2019北京海淀初一(上)期末数学考生须知:1.本试卷满分100分。

2.在试卷和答题卡上准确填写学校、班级、姓名和学号。

3.试题答案一律填写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。

5.考试结束时,将本试卷、答题卡一并交回。

一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定2.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(3分)2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A.5.5×103B.55×103C.5.5×104D.6×1044.(3分)下列计算正确的是()A.3a+2b=5ab B.3a﹣(﹣2a)=5aC.3a2﹣2a=a D.(3﹣a)﹣(2﹣a)=1﹣2a5.(3分)若x=﹣1是关于x的方程2x+3=a的解,则a的值为()A.﹣5 B.5 C.﹣1 D.16.(3分)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是()A.27°40′B.57°40′C.58°20′D.62°20′7.(3分)已知AB=6,下面四个选项中能确定点C是线段AB中点的是()A.AC+BC=6 B.AC=BC=3 C.BC=3 D.AB=2AC8.(3分)若x=2时x4+mx2﹣n的值为6,则当x=﹣2时x4+mx2﹣n的值为()A.﹣6 B.0 C.6 D.269.(3分)从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.10.(3分)数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是()A.a+b B.a﹣b C.ab D.|a|﹣b二、填空题(本大题共16分,每小题2分)11.(2分)比较大小:﹣3﹣2.1(填“>”,“<”或“=”).12.(2分)图中A,B两点之间的距离是厘米(精确到厘米),点B在点A的南偏西°(精确到度).13.(2分)如图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:.14.(2分)如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).15.(2分)如图,点O在直线AB上,射线OD平分∠COA,∠DOF=∠AOE=90°,图中与∠1相等的角有(请写出所有答案).16.(2分)传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程.17.(2分)已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是.18.(2分)如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x的值为多大,输出y 的值总不变.(1)a=;(2)若输入一个整数x,某些滚珠相撞,输出y值恰好为﹣1,则x=.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)5﹣32÷(﹣3);(2)﹣8×(+1﹣1).20.(8分)解方程:(1)5x+8=1﹣2x;(2).21.(4分)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.22.(4分)如图,点C在∠AOB的边OA上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD的角平分线OE;(2)在射线OD上取一点F,使得OF=OC;(3)在射线OE上作一点P,使得CP+FP最小;(4)写出你完成(3)的作图依据:.四、解答题(本大题共11分,23题6分,24题5分)23.(6分)已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)如图1,求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.24.(5分)洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=,b=;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.26.(6分)如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD=;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.27.(7分)数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为;若2*3=2*x,则x的值为;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.2019北京海淀初一(上)期末数学参考答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=5.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵3a+2b不能合并,故选项A错误;∵3a﹣(﹣2a)=3a+2a=5a,故选项B正确;∵3a2﹣2a不能合并,故选项C错误;∵(3﹣a)﹣(2﹣a)=3﹣a﹣2+a=1,故选项D错误,故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2+3=a,解得:a=1,则a的值为1,故选:D.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【分析】根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°﹣∠EAC,即可求出∠2的度数.【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:B.【点评】本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.【解答】解:A、AC+BC=6,C不一定在线段AB中点的位置,不符合题意;B、AC=BC=3,点C是线段AB中点,符合题意;C、BC=3,点C不一定是线段AB中点,不符合题意;D、AB=2AC,点C不一定是线段AB中点,不符合题意.故选:B.【点评】本题考查了两点间的距离,要注意根据条件判断出A、B、C三点是否共线.8.【分析】把x=2代入求出4m﹣n的值,再将x=﹣2代入计算即可求出所求.【解答】解:把x=2代入得:16+4m﹣n=6,解得:4m﹣n=﹣10,则当x=﹣2时,原式=16+4m﹣n=16﹣10=6,故选:C.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【分析】数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,再根据整式的加减乘法运算的计算法则即可求解.【解答】解:数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,则a﹣b<0,ab<0,|a|﹣b<0,故运算结果一定是正数的是a+b.故选:A.【点评】考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,a+b>0,b>0且|a|<|b|.二、填空题(本大题共16分,每小题2分)11.【分析】直接根据负数比较大小的法则进行比较即可.【解答】解:∵|﹣3|>|﹣2.1|,∴﹣3<﹣2.1,故答案为:<.【点评】本题考查的是有理数大小,熟知以下知识是解答此题的关键:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.12.【分析】根据长度的测量可求图中A,B两点之间的距离;根据方向角的定义可求点B的方向.【解答】解:测量可得,图中A,B两点之间的距离是2厘米(精确到厘米),点B在点A的南偏西58°(精确到度).故答案为:2,58.【点评】考查了两点间的距离,关键是熟练掌握长度和角的测量方法.13.【分析】根据多项式的次数定义进行填写,答案不唯一,可以是2x3,3x3等.【解答】解:可以写成:2x3+xy﹣5,故答案为:2x3.【点评】本题考查了多项式的定义和次数,明确如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.14.【分析】利用矩形的性质得到剩余白色长方形的长为b,宽为(b﹣a),然后计算它的周长.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.【点评】本题考查了矩形的周长.15.【分析】根据角平分线定义可得∠COD=∠1;根据同角的余角相等可得∠EOF=∠1.【解答】解:∵射线OD平分∠COA,∴∠COD=∠1.∵∠DOF=∠AOE=90°,∴∠DOE+∠EOF=90°,∠DOE+∠1=90°,∴∠EOF=∠1.∴图中与∠1相等的角有∠COD,∠EOF.故答案为∠COD,∠EOF.【点评】本题考查了余角和补角,角平分线定义,掌握余角的性质是解题的关键.16.【分析】设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于x的一元一次方程,此题得解.【解答】解:设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据题意得:(2x﹣700)+x=5900.故答案为:(2x﹣700)+x=5900.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【分析】根据AO=10,得到点A表示的数为±10,由AB=8,且点A表示的数比点B表示的数小,得到点B 表示的数在点A表示的数的右边,于是得到结论.【解答】解:∵AO=10,∴点A表示的数为±10,∵AB=8,且点A表示的数比点B表示的数小,∴点B表示的数是﹣2或18,故答案为:﹣2或18【点评】本题考查了数轴,正确的理解题意是解题的关键.18.【分析】(1)根据题意得到y=2x﹣1+3+ax=(2+a)x+2,由y的值与x的值无关,可知x的系数为0,即2+a=0,由此求得a的值;(2)结合(1)的a的值,可知当y=﹣1时,此时只有两个球相撞,分两种情况,从而可以求得x的值.【解答】解:(1)(2x﹣1)+3+ax=2x﹣1+3+ax=(2+a)x+2,∵当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变,∴2+a=0,得a=﹣2,故答案为:﹣2;(2)当y=2x﹣1+3=2x+2时,令y=﹣1,则﹣1=2x+2,得x=﹣1.5(舍去),当y=3+(﹣2x)=﹣2x+3时,令y=﹣1,则﹣1=﹣2x+3,得x=2,故答案为:2.【点评】本题考查有理数的混合运算、代数式求值,解答本题的关键是明确题意,求出a的值和相应的x的值.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【分析】(1)先根据乘方的意义计算乘方运算,然后利用除法法则把除法运算化为乘法运算,根据负因式的个数判断得到结果的符号,最后利用加法法则即可得出结果;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=5﹣9÷(﹣3),=5+3,=8;(2)原式=,=﹣4﹣8+10,=﹣2.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解本题的关键.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:5x+2x=1﹣8,合并得:7x=﹣7,解得:x=﹣1;(2)去分母得:3(x+1)=2(2﹣3x),去括号得:3x+3=4﹣6x,移项合并得:9x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.【点评】本题考查整式的加减﹣化简求值,解答本题的关键是明确整式化简求值的方法.22.【分析】(1)、(2)根据几何语言画出对应的几何图形;(3)连接CF交OE于P;(4)利用两点之间线段最短求解.【解答】解:(1)如图,OD、OE为所作;(2)如图,点F为所作;(3)如图,点P为所作;(4)连接FC交OE于P,则根据两点之间,线段最短可判断此时PC+PF最小.答案为:两点之间,线段最短.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共11分,23题6分,24题5分)23.【分析】(1)方法一:根据线段的和差关系可求AB,再根据中点的定义可求BM,再根据CM=BM﹣CB或方法二:CM=AC﹣AM即可求解;(2)方法一:由(1)可知,DM=DB﹣MB,可得DM=MC,从而求解;方法二:根据等量关系可得AD=CB,根据中点的定义可得AM=MB,再根据等量关系可得DM=MC,从而求解.【解答】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴,∴CM=BM﹣CB=5﹣2=3.或方法二:∴CM=AC﹣AM=8﹣5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB﹣MB=8﹣5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC﹣DC=BD﹣DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM﹣AD=MB﹣CB,∴DM=MC∴由图可知,点M是线段CD的中点.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.24.【分析】(1)根据每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S 的值;(2)设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系列出方程,解方程即可.【解答】解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15﹣3x=45,解得:x=5.故中间数x的值为5.【点评】本题考查了一元一次方程的应用,理解洛书对应的九宫格的要求是解题的关键.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【分析】(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=﹣4k,整体代入即可;【解答】解:(1)当k=2,b=﹣4时,方程◇为:2x﹣4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=﹣4.解得:y=﹣2.方法二:依题意:4k+b=0,∴b=﹣4k.解关于y的方程:k(3y+2)﹣(﹣4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=﹣2.【点评】本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.26.【分析】(1)根据余角的定义即可求解;(2)①先根据余角、平角的定义求出∠BOC,再根据角平分线的定义求出∠COD,再根据角的和差关系即可求解;②分点D在∠BOC内,点D在∠BOC外两种情况即可求解.【解答】解:(1)∵∠AOC:∠BOD=4:5,∠BOD与∠AOC互余,∴∠BOD=90°×=50°;(2)①补全图形如下:∵∠BOD与∠AOC互余,∴∠BOD+∠AOC=90°,∴∠COD=90°,∵ON平分∠COD,∴∠CON=45°,∴∠AON=α+45°;②情形一:点D在∠BOC内.此时,∠AON=α+45°,∠COD=90°,依题意可得:α+45°+90°=180°,解得:α=45°.情形二:点D在∠BOC外.在0°<α≤45°的条件下,补全图形如下:此时∠AON=45°,∠COD=90°+2α,依题意可得:45°+90°+2α=180°,解得:α=22.5°.综上,α的取值为45°或22.5°.故答案为:50°.【点评】本题考查了余角和补角、角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.27.【分析】(1)根据定义a*b为数阵中第a行第b列的数即可求解;(2)①根据“有趣的”定义即可求解;②根据a*a=a;(a*b)*c=a*c,将2*1变形得到2*1=(1*2)*1即可求解;③若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.进一步得到1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.【解答】解:(1)对于数阵A,2*3的值为2;若2*3=2*x,则x的值为1,2,3;(2)①由数阵图可知,数阵A是“有趣的”.②∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=1.(3)不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.∵1*1=1,2*2=2,3*3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.方法二:由条件二可知,a*b只能取1,2或3,由此可以考虑a*b取值的不同情形.例如考虑1*2:情形一:1*2=1.若满足交换律,则2*1=1,再次计算1*2可知:1*2=(2*1)*2=2*2=2,矛盾;情形二:1*2=2由(2)可知,2*1=1,1*2≠2*1,不满足交换律,矛盾;情形三:1*2=3若满足交换律,即2*1=3,再次计算2*2可知:2*2=(2*1)*2=3*2=(1*2)*2=1*2=3,与2*2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.故答案为:2;1,2,3;是.【点评】考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.。

北京市海淀区2019-2020学年第一学期七年级期末数学试题及答案(初一)

北京市海淀区2019-2020学年第一学期七年级期末数学试题及答案(初一)

北京市海 淀 区 2019~2020学年度第一学期七 年 级 第 一 学 期 期 末 调 研一、选择题(本题共30分,每小题3分)1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B.若4223x x-=-,则4322x x+=-C.若4(1)32(1)x x+-=+,则4(1)2(1)3x x+++=D.若3112123x x+--=,则3(31)2(12)6x x+--=8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为A.20°B.70°C.110°D.160°9.已知线段8AB=cm,6AC=cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是A.①②B.③④C.①②④D.①②③④10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是A.P→A B.P→BC.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12.一个单项式满足下列两个条件:①系数是2-;②次数是3.请写出一个同时满足上述两个条件的单项式_______.13.计算48396731''︒+︒的结果为_______.14.如图,将五边形ABCDE 沿虚线裁去一个角得到六边形ABCDGF ,则该六边形的周长一定比原五边形的周长_______ (填:大或小),理由为__________________________________________________ . 15.已知一个长为6a ,宽为2a 的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a 的代数式表示)图1 图216.如下图,点C 在线段AB 上,D 是线段CB 的中点. 若47AC AD ==,,则线段AB 的长为_______.17.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式3()5f x mx nx =++,当2x =时,多项式的值为(2)825f m n =++,若(2)6f =,则(2)f -的值为_______. 18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A 、B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:2a6aB C(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-20.解方程:(1)3265x x -=-+ (2) 325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹); (3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.||3m x y =+ ||3m x y =-24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”. 2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示. (1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中. (2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ②求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2②a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)OBA26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分∠BOD. 求证:∠AOC 与∠BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使A O H ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.O BAOCBAODCBA27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =, 因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有 个.1111011100+七年级第一学期期末调研数学参考答案 2020.1一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)11. 丁. 12. 32x -(不唯一) 13. 0′1°116 14. 小,两点之间线段最短 15. 2a 16. 1017. 418. B ,B ,12820注:① 第12题答案不唯一,只要符合题目要求的均可给满分;② 第14题每空1分;③ 第18题前两个空均答对给1分,第三个空1分.三、解答题(本大题共24分,第19题8分,第20题8分,第21题4分,第22题4分) 19.(每小题满分4分)(1)解:7(6)(4)(3)--+-?7612=++ …………………………………..2分 25= …………………………………..4分(2)解:2313(2)1()2-?-? 341(8)=-?? …………………………………..2分128=-+ …………………………………..3分 4=- …………………………………..4分20.(每小题满分4分)(1)解:3265x x -=-+3562x x -=-+ …………………………………..2分 24x -=- …………………………………..3分2x = …………………………………..4分(2)解:325123x x +--=3(32)2(5)16x x +--=? …………………………………..1分962106x x +-+= …………………………………..2分710x =- …………………………………..3分107x =- …………………………………..4分 21.(本小题满分4分)解: 222222(2)(6)3xy x y x y xy x y --++=222224263xy x y x y xy x y ---+ …………………………………..2分 =22xy - …………………………………..3分当2,1x y ==-时,原式222(1)=-创- 4=- ………………………………..4分 22. (本小题满分5分) (1)(2)(3)如图所示:正确画出射线AC ,线段BC ………………………………….2分 正确画出线段AB 及延长线,点D 以及线段CD ………………………………….4分 正确画出点E 以及线段BE ………………………………….5分四、解答题(本大题共10分,第23题4分,第24题6分)23. (本小题满分4分) 解:(1) ∵2x =-,3y =,∴x y <, ………………………………..1分 ∴32337m x y =-=--?-. ………………………………..2分(2)由已知条件可得4,x y m ==,当4m >时,由43m m +=,得2m =-,符合题意; ………………………………..3分 当4m £时,由43m m -=得1m =,不符合题意,舍掉.∴2y =-. …………………………………..4分 24. (本小题满分4分)解:(1) 32 …………………………………..1分A (2) 设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为(5)x -场 ………………..2分 依题意可列方程 32(5)121x x +-+= ………………………………….4分 3210121x x +-+= 530x =6x = …………………………………..5分则积2分取胜的场数为51x -=,所以取胜的场数为617+=答:巴西队取胜的场数为7场. …………………………………..6分 五、解答题(本大题共19分,25~26每题6分,27题7分) 25. (本小题满分6分)(1)① 0a b += …………………………………..1分 ②∵M M 为AB 中点,∴AM BM =. …………………………………..2分 ∴m a b m -=-. ∴2+=ba m . …………………………………..3分 (2) ①如图所示 …………………………………..4分②a c d b <<<或者c a b d <<< …………………………………..6分26. (本小题满分6分)(1)证明:点O 在直线AD 上, ∴180AOB BOD ?? . 即180AOB BOC COD ???.∴180AOC COD ??. …………………………………..1分OC 平分BOD Ð,∴BOC COD ??. ∴180AOC BOC ??.\AOC BOC 与互补行. ………………………………….2分(2)如图所示期末试题北京市2019-2020学年 或 ………………………4分(3)45或|45|b - ………………………6分27.(本小题满分7分)解:(1) 10111101,………………………2分 (2)①2(23)01M =,2(12)10M =,22(12)(23)11M M +=,2(1223)11M +=∴222(12)(23)(1223)M M M +=+,∴12与23 满足“模二相加不变”.2(23)01M =,2(65)01M =,22(65)(23)10M M +=,2(6523)00M +=222(65)(23)(6523)M M M +?,∴65与23不满足“模二相加不变”.2(23)01M =,2(97)11M =,22(97)(23)100M M +=,2(9723)100M +=222(97)(23)(9723)M M M +=+,∴97与23满足“模二相加不变”…………………….5分 ②38……………………7分。

【推荐】2019-2020学年北京市海淀区七年级上册期末数学参考样题有答案-优质版

【推荐】2019-2020学年北京市海淀区七年级上册期末数学参考样题有答案-优质版

七年级第一学期期末调研数学学校班级姓名成绩一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.5的相反数是()A.15B.15C.5 D.52.2019-202010月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在 1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应为()A.517.410B.51.7410 C.417.410 D.60.174103.下列各式中,不相等...的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.32和324.下列是一元一次方程的是()A.2230x x B.25x y C.112xxD.10x5. 如图,下列结论正确的是()A. c a bB. 11b cC. ||||a b D. 0abc6. 下列等式变形正确的是()A. 若35x,则35x B. 若1132x x,则23(1)1x xC. 若5628x x,则5286x x D. 若3(1)21x x,则3321x x7. 下列结论正确的是()A. 23ab和2b a是同类项 B. π2不是单项式C. a比a大D. 2是方程214x的解8.将一副三角板按如图所示位置摆放,其中与一定互余的是()A. B. C. D.9. 已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A. 点A在线段BC上B. 点B在线段AC上C. 点C在线段AB上D. 点A在线段CB的延长线上10. 由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是()A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分)11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费元.(用含a ,b 的代数式表示)13.已知,则=.14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC =°.15. 若2是关于x 的一元一次方程1的解,则a = ________. 16. 规定图形表示运算a b c ,图形表示运算x z y w .则 + =________________(直接写出答案).17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为.18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长2|2|(3)0a b a b 从正面看从上面看BAC为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 次变化时,图形的面积是否会变化,________(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)21862; (2)411293. 20.解方程:(1)3(21)15x; (2)71132x x . 21.已知37=3ab ,求代数式2(21)5(4)3a b a b b 的值.22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边,且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距离之和最短,并写出画图的依据.23. 几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数.解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________=__________° + __________° =__________°因为OD 平分∠AOC所以∠COD=1__________=__________°224. 如图1, 线段AB=10,点C, E, F在线段AB上.(1)如图2, 当点E, 点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E, 点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。

2019北京海淀初一(上)期末数学

2019北京海淀初一(上)期末数学

2019北京海淀初一(上)期末数 学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A .5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯B .35510⨯C .45.510⨯D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a --=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b+ B .a b -C .abD .a b-二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B在点A的南偏西 °(精确到度).13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).15.如图,点O 在直线AB上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).西南东B图2从正面看16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B 表示的数小,则点B表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变.(1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-; (2)118(11)24-⨯+-.20.解方程:(1)5812x x +=-; (2)12323x x+-=.21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ; (3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: . 四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2. (1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为 ,则每一行三个数的和均为 ,而这9个数的和恰好为1到9这9个正整数之和,由此可得 = ;【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数 .请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为 ;(2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ; (3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.26.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,∠BOD 与∠AOC 互余. (1)若∠AOC :∠BOD =4:5,则∠BOD = ; (2)若∠AOC =α(0°<α≤45°),ON 平分∠COD .①当点D 在∠BOC 内,补全图形,直接写出∠AON 的值(用含α的式子表示); ②若∠AON 与∠COD 互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A ,数阵每个位置所对应的数都是1,2或3.定义a b 为数阵中第a 行第b 列的数.例如,数阵A 第3行第2列所对应的数是3,所以3 2=3.(1) 对于数阵A ,2 3的值为 ;若2 3=2 x ,则x 的值为 ;(2)若一个33⨯的数阵对任意的a ,b ,c 均满足以下条件:条件一:a a =a ;条件二:()a b c a c **=*; 则称此数阵是“有趣的”.①请判断数阵A 是否是“有趣的”.你的结论:_______(填“是”或“否”); ②已知一个“有趣的”数阵满足1 2=2,试计算2 1的值;③是否存在“有趣的”数阵,对任意的a ,b 满足交换律a b =b a ?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.。

2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析

2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析

2019-2020学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH2.4的绝对值为()A.±4B.4C.﹣4D.23.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107 4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.45.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.16.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.09.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣﹣(填“>”“<”或“=”)12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是cm.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有对.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒米.。

2018-2019年北京市海淀区七年级上数学期末试卷+答案

2018-2019年北京市海淀区七年级上数学期末试卷+答案

2019北京海淀初一(上)期末数 学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中. 题号 12345678910答案1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是 A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A .5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯B .35510⨯C .45.510⨯D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a --=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是 A .27°40′ B .57°40′ C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b +B .a b -C .abD .a b-二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B在点A 的南偏西 °(精确到度).13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .AM B北西南东BA从正面看图1图214.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B 表示的数小,则点B表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变.(1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-; (2)118(11)24-⨯+-.20.解方程:(1)5812x x +=-; (2)12323x x+-=.E1FDC BA O21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ; (3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: . 四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2. (1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S ,则每一行三个数的和均为S ,而这9个数的和恰好为1到9这9个正整数之和,由此可得S = ;BA O C【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x .请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为 ;(2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ; (3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.26.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,∠BOD 与∠AOC 互余. (1)若∠AOC :∠BOD =4:5,则∠BOD = ; (2)若∠AOC =α(0°<α≤45°),ON 平分∠COD .①当点D 在∠BOC 内,补全图形,直接写出∠AON 的值(用含α的式子表示); ②若∠AON 与∠COD 互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A ,数阵每个位置所对应的数都是1,2或3.定义a ∗b 为数阵中第a 行第b 列的数.xCB A O CB AO例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3的值为;若2∗3=2∗x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:()a b c a c**=*;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.七年级第一学期期末调研2019.1数学参考答案一、选择题(本大题共30分,每小题3分)11. <12. 2, 58 (答56,57,59,60均算正确) 13. 答案不唯一,如:32x14. 42b a -15. COD ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)5900x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分=53+=8………………………………………………………………………………4分 (2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分 =2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分) 解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-=解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分 91x = ……………………………………………………………………………3分19x =……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分22.(本小题4分)(1)-(3)如图所示:正确画出OD ,OE ……………………1分 正确画出点F …………………………2分 正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分) 23.(本小题6分)DB(1)解:方法一: ∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点, ∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分 或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下: 方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分 ∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分 方法二: ∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分 ∵点M 为线段AB 的中点,∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-, ∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分 解得:5x =. ……………………………………………………………………5分 (注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分 (3)方法一:依题意:40k b +=, …………………………………………………………3分 ∵0k ≠, ∴4bk=-. ………………………………………………………………………4分 解关于y 的方程:32b y k+=, ∴324y +=-. …………………………………………………………………5分 解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分 ∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分解得:2y =-. …………………………………………………………6分26.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下:此时,45AON ︒∠=,…………………………………………………………………5分 90+2COD α︒∠=,依题意可得:45902180α︒︒++=︒B AB A解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵a ∗a =a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有:()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形.例如考虑12*:*=.情形一:121*=,若满足交换律,则211再次计算12*可知:*=**=*=,矛盾;12(21)2222*=情形二:122*=,由(2)可知,211*≠*,不满足交换律,矛盾;1221*=情形三:123*=,若满足交换律,即213再次计算22*可知:*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。

北京市海淀区2019-2020学年七年级上学期期末数学试卷(含解析)

北京市海淀区2019-2020学年七年级上学期期末数学试卷(含解析)

北京市海淀区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 如图,点O 在直线AB 上,若乙BOC=89°50X 则"OC 的大小是()A. 90。

50‘B. 90°10'C. 90°D. 89°10z 2. 北京时间2019年4月10 0 21点整,全球新闻发布会宣布首次直接拍摄到黑洞的照片,这颗黑 洞距离地球5300万光年之遥,其中5300万这个数据可以用科学记数法表示为()A. 5.3 X 108B. 5.3 X 107C. 5.3 X 103D. 53 X 1023.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是() A. 一3 °CB. 15 °C 4. 下列计算正确的是()A. 2a + 3a = 5a 2若关于x 的方程2x + a - 4 = 0的解是尤=1,则a 的值等于(C ・由{= 2,得兀=| 8.下而图形中,射线OP 是表示北偏东60。

方向的是()C. 一 10 °C D ・ 一1 °C B. 5a 2b — 3ab 2 = 2ab C. 3x 2 - 2x 2 = x 2D. 6m 2 - 5m 2 = 15. 6. 7. A. 2 B. -2 实数",b 在数轴上的位置如图所示, A.大于0B.小于0 F 列四组等式变形中,正确的是(A.由5% + 7 = 0,得5咒=-7 C. 6 则茫的值()・C.等于0 B.由 2咒—3 = 0,D. —6D.为非负数 得2咒-3+3 = 0以长为&7旅6cm. \0crn.牡加的四条线段中的三条线段为边,可以画出三角形的个数为()A.1个B.2个C.3个D.4个 如图,点A 和点B 分别是棱长为20“?的正方体盒子上相邻而的两个中心.一只蚂蚁在盒子表而由A 处向B 处爬行,所走的最短路程是()A. 40<?加B. 20忑cmC. 20c/?/D. 10\/2cm填空题(本大题共8小题,共16.0分) 7筐西红柿,每筐以12仪为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg ): -1> +1.5, 2, -0.5, -1.5, 1.5, 1 •则这7筐西红柿的总质量为 ______ .单项式一3ab 次数是 __ ・ 90。

[精选]2019-2020年(人教版)北京市海淀区七年级上册期末数学考试题(有答案)

[精选]2019-2020年(人教版)北京市海淀区七年级上册期末数学考试题(有答案)

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学学校 班级 姓名 成绩 一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置. 1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形,得到的平面图形是3.若30a +=,则a 的相反数是 A .3 B .13 C .13-D .3-4.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4m .隧道贯通后,往海淀山前山后地区较之前路程有望缩短一半,其主要依据是 A .两点确定一条直线 B .两点之间,线段最短 C .直线比曲线短 D .两条直线相交于一点7.已知线段10AB =cm ,点C 在直线AB 上,且2AC =cm ,则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ,则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为A .738.53元B .125.45元C .136.02元D .477.58元 10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为 A .14,17 B .14,18 C .13,16 D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对2.017取近似数是 . 14. 请写出一个只含有字母、,且次数为3的单项式 . 15.已知()2120x y ++-=,则yx 的值是 .16.已知2=-b a ,则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒,则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是 .19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为︒.20.下面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x +-=.七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分)21.计算:(1)111()12462+-⨯.(2)1031(1)2()162-÷+-⨯.22.解方程:12324x x +--=.23.设11324()() 2323A x x y x y=---+-+.(1)当1,13x y=-=时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的、y的条件还可以是 . 24.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E 为顶点的角中,小于平角的角共有 个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分. 如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.问题一:若∠AOC =36°,∠BOC =136°,求∠DOE 的度数. 问题二:若∠AOB =100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF .请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法; (2)说明(1)中所标EF 符合要求.图1 图227.在数轴上,把表示数1的点称为基准点,记作点O ∙. 对于两个不同的点M 和N ,若点M 、点N 到点O ∙的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1-,点N 表示数3,它们与基准点O ∙的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.① 若a,则b = ;若4a =,则b = ;② 用含a 的式子表示b ,则b = ; (2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动(>0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动个单位长度得到3P ,4P 为3P 的基准变换点,……,依此顺序不断地重复,得到5P ,6P ,…,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,……,依此顺序不断地重复,得到5Q ,6Q ,…,n Q .若无论为何值,n P 与n Q 两点间的距离都是4,则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)13.2.02 ; 14. 22m n -(答案不唯一); 15.1; 16. 4; 17.108 ,24; 18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 20.奖品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.(1)解:原式326=+- ----------------------3分1=-. ----------------------4分(2)解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分23.解:(1)143242323A x x y x y =--+-+ ---------------------2分 62x y =-+ . ---------------------3分当1,13x y =-=时,16()213A =-⨯-+⨯=4.∴A 的值是4. ----------------4分(2)32x y -+= .(答案不唯一) ---------------5分24.(1)---------------4分(2)8. ---------------5分25.解:问题一:∵ OD 平分AOC ∠,36AOC ∠=︒, ∴ 1182DOC AOC ∠=∠=︒. …………………2分 ∵ OE 平分BOC ∠,136BOC ∠=︒, ∴ 1682EOC BOC ∠=∠=︒. …………………3分 ∴ 50DOE EOC DOC ∠=∠-∠=︒. ……………… 4分 问题二:∵ OD 平分AOC ∠, ∴ 12DOC AOC ∠=∠. …………………1分 ∵ OE 平分BOC ∠, ∴ 12EOC BOC ∠=∠. …………………2分 ∴ DOE EOC DOC ∠=∠-∠1122BOC AOC =∠-∠ 12AOB =∠. ……………… 4分 ∵ 100AOB ∠=︒,∴ 50DOE ∠=︒. ……………… 5分(注:无推理过程,若答案正确给2分)26.解:(1)(解法不唯一)……………… 2分如图,在CD 上取一点M ,使CM =CA , F 为BM 的中点,点 E 与点C 重合. …3分 (2)∵F 为BM 的中点, ∴MF =BF .∵AB =AC +CM +MF +BF ,CM =CA , ∴AB =2CM +2MF =2(CM +MF )=2EF . ∵AB =40m ,∴EF =20m .……………… 4分∵20AC BD +<m ,40AB AC BD CD =++=m , ∴CD >20m.∵点E 与点C 重合,20EF =m , ∴20CF =m.∴点F 落在线段CD 上.∴EF 符合要求.……………… 5分27.解:(1)①2,-2;……………… 2分②2a -;……………… 4分 (2)107;……………… 5分 (3)4或12. ……………… 7分。

2019年海淀区初一年级第一学期期末数学试题及答案(WORD版)

2019年海淀区初一年级第一学期期末数学试题及答案(WORD版)

海淀区初一年级第一学期期末学业水平调研2019.1数 学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.题号 12345678910答案1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是 A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A . 5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥 ——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯B .35510⨯C .45.510⨯D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a--=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是 A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D 10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b +B .a b -C .abD .a b-二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B 在点A 的南偏西 °(精确到度).A M B北西南东BA从正面看图1图213.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变. (1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-; (2)118(11)24-⨯+-.E1FDC BA O abab20.解方程:(1)5812x x +=-; (2)12323x x+-=.21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: .四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2. (1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试 探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S ,则每一行三 个数的和均为S ,而这9个数的和恰好为1到9这9个正整数之和,由此可得S = ;图xD C M A B【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x .请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为 ; (2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ;(3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.26.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD= ;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3的值为;若2∗3=2∗x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:()**=*;a b c a c则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.七年级第一学期期末调研2019.1数学参考答案11. < 12. 2, 58 (答56,57,59,60均算正确) 13. 答案不唯一,如:32x14. 42b a -15. COD ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)5900x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分 =53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分=2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分)解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-=解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分 91x = ……………………………………………………………………………3分19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分 ∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分22.(本小题4分) (1)-(3)如图所示:正确画出OD ,OE ……………………1分 正确画出点F …………………………2分 正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分) 23.(本小题6分) (1)解:方法一: ∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点,∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下: 方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分 ∴3DM MC ==,B∴由图可知,点M 是线段CD 的中点. ……………………………………………6分 方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分 ∵点M 为线段AB 的中点,∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k=-. ………………………………………………………………………4分 解关于y 的方程:32b y k +=, ∴324y +=-. …………………………………………………………………5分解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,k≠,∵0y+=. …………………………………………………………5分∴360y=-. …………………………………………………………6分解得:226.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下:此时,45AON ︒∠=,…………………………………………………………………5分 90+2COD α︒∠=,依题意可得:B AB A45902180α︒︒++=︒解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵a ∗a =a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有:()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形. 例如考虑12*:情形一:121*=.若满足交换律,则211*=,再次计算12*可知:12(21)2222*=**=*=,矛盾;情形二:122*=由(2)可知, 211*=,1221*≠*,不满足交换律,矛盾;情形三:123*=若满足交换律,即213*=,再次计算22*可知:22(21)232(12)2123*=**=*=**=*=,*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。

北京市海淀区2019-2020学年七年级上学期期末数学试卷 (含解析)

北京市海淀区2019-2020学年七年级上学期期末数学试卷 (含解析)

北京市海淀区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,点O在直线AB上,若∠BOC=89°50′,则∠AOC的大小是()A. 90°50′B. 90°10′C. 90°D. 89°10′2.北京时间2019年4月10日21点整,全球新闻发布会宣布首次直接拍摄到黑洞的照片,这颗黑洞距离地球5300万光年之遥,其中5300万这个数据可以用科学记数法表示为()A. 5.3×108B. 5.3×107C. 5.3×103D. 53×1023.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A. −3℃B. 15℃C. −10℃D. −1℃4.下列计算正确的是()A. 2a+3a=5a2B. 5a2b−3ab2=2abC. 3x2−2x2=x2D. 6m2−5m2=15.若关于x的方程2x+a−4=0的解是x=1,则a的值等于()A. 2B. −2C. 6D. −66.实数a,b在数轴上的位置如图所示,则a−ba+b的值().A. 大于0B. 小于0C. 等于0D. 为非负数7.下列四组等式变形中,正确的是()A. 由5x+7=0,得5x=−7B. 由2x−3=0,得2x−3+3=0C. 由x6=2,得x=13D. 由5x=7.得x=578.下面图形中,射线OP是表示北偏东60°方向的是()A. B.C. D.9.以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数为()A. 1个B. 2个C. 3个D. 4个10.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A. 40cmB. 20√2cmC. 20cmD. 10√2cm二、填空题(本大题共8小题,共16.0分)11.7筐西红柿,每筐以12kg为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg):−1,+1.5,2,−0.5,−1.5,1.5,1.则这7筐西红柿的总质量为______.12.单项式−3ab次数是______.13.90°−39°32′=______ .14.若三角形的两边长分别为3和5,且周长为奇数,则第三边可以是______(只填符合条件的一个即可).15.已知长方形的长是a,面积是s,用含a、s的代数式表示长方形的宽是______.16.如图,点M是线段AB的中点,AC:CB=1:2,CM=2.则AB=______.17.如果多项式−2a+3b+8的值为5,则多项式9b−6a+2的值等于______.18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆.该品牌自行车销售量的月平均增长率为____________.三、计算题(本大题共1小题,共8.0分))]×[−10+(−3)2]19.[−12−(1−0.5×13四、解答题(本大题共8小题,共46.0分)20.解方程:(1)5(2−x)=−(2x−7);(2)x+36=1−3−2x4.21.先化简,再求值:3x2−[6xy+2(x2−y2)]−3(y2−2xy),其中x=−2,y=3.22.如图,已知点A、B、C,根据下列语句画图:(尺规作图,要保留作图痕迹.)(1)画出直线AB;(2)画出射线AC;(3)在线段AB的延长线上截取线段BD,使得AD=AB+BC;(4)画出线段CD.23.如图是一个数值转换机的示意图,若输入的x的值为6,y的值为−4,求输出的结果.24.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?25.在数轴上,有理数m,n的位置如图所示:(1)试在数轴上标出有理数−m,−n的大致位置;(2)试将m,n,−m,−n用“<”连接起来.26.如图,∠AOM与∠BOM互余,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.27.从2开始,连续的偶数相加,它们的和的情况如下表:加数m的个数和(S)1-----------→2=1×22--------→2+4=6=2×33------→2+4+6=12=3×44----→2+4+6+8=20=4×55--→2+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为______;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:______;(3)应用上述公式计算:①2+4+6+⋯+200②202+204+206+⋯+300.-------- 答案与解析 --------1.答案:B解析:本题考查的是角的计算有关知识,根据点O在直线AB上,∠BOC=89°50′,即可得出∠AOC的度数.解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=89°50′,∴∠AOC=90°10′.故选B.2.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,据此即可解答.解:5300万=53000000,53000000=5.3×107.故选B.3.答案:C解析:本题考查了有理数大小的比较,属于基础题.先比较大小,再判断结果即可.解:因为−10℃<−3℃<−1℃<15℃,所以平均气温最低的是−10℃.故选C.4.答案:C解析:解:A、2a+3a=5a,故本选项错误;B、5a2b−3ab2不能合并同类项,故本选项错误;C、正确;D、6m2−5m2=m2,故本选项错误;故选:C.根据合并同类项是把同类项系数相加减而字母和字母的指数不变,由此计算即可.本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.5.答案:A解析:把x=1代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.解:把x=1代入方程得:2+a−4=0,解得:a=2,故选:A.6.答案:B解析:本题考查了实数与数轴,根据数轴得出−1<a<0,b>2,可判断出a−b<0,a+b>0,进而可得答案.解:根据数轴可知:−1<a<0,b>2,所以a−b<0,a+b>0,<0.所以a−ba+b7.答案:A解析:解:A、由5x+7=0,得5x=−7,故正确;B、由2x−3=0,得2x−3+3=0+3,故错误;=2,得x=12,故错误;C、由x6D、由5x=7.得x=7,故错误;5故选A.根据等式的性质进行选择即可.本题考查了等式的性质,掌握等式的性质是解题的关键.8.答案:C解析:本题考查的是方向角的概念,熟知方向角的表示方法是解答此题的关键.根据方向角的概念进行解答即可.解:∵方向角是以正北,正南方向为基准,来描述物体所处的方向,∴射线OP是表示北偏东60°方向可表示为如图.故选C.9.答案:C解析:解:分成四种情况:①4cm,6cm,8cm;②4cm,6cm,10cm;③4cm,8cm,10cm;④6cm,8cm,10cm,∵4+6=10,∴②不能够成三角形,故可以画出三角形的个数为3个.故选:C.此题分成四种情况,再利用三角形的三边关系讨论即可.此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.答案:C解析:本题考查了两点之间线段最短在实际问题中的应用,熟练掌握两点之间线段最短这一性质是解决本题的关键.根据两点之间线段最短这一性质,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.解:如图,根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.11.答案:87kg解析:解:−1+1.5+2−0.5−1.5+1.5+1=3(kg),3+12×7=87(kg).即这7筐西红柿的总质量为87kg.故答案为:87kg.先求出7筐西红柿称重记录的和,再加上7筐西红柿标准质量的和,即可求解.本题考查了正负数在实际生活中的应用,利用有理数的加法运算是解题关键.12.答案:2解析:解:单项式−3ab次数是:2.故答案为:2.直接利用单项式的次数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.答案:50°28′解析:解:90°−39°32′=50°28′.故答案为:50°28′.根据度、分、秒是60进制进行计算即可得解.本题考查了度、分、秒的换算,关键在于度分秒是60进制.14.答案:3或5或7(其中一个即可)解析:解:根据三角形的三边关系,得第三边应大于5−3=2,而小于5+3=8.又三角形的两边长分别为3和5,且周长为奇数,所以第三边应是奇数,则第三边是3或5或7(任意填其中一个即可).根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据已知的两边和是8,即为偶数,结合周长为奇数,则第三边应是奇数,即可求解.考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.15.答案:sa解析:解:由题意可得:,长方形的宽是:sa.故答案为:sa根据题意可以用含a、s的代数式表示长方形的宽.本题考查列代数式,解答本题的关键是根据面积公式找出a,s和宽之间的关系式,列出相应的代数式.16.答案:12解析:解:∵点M是线段AB的中点,AC:CB=1:2,∴AM=12AB,AC=13AB,∴CM=12AB−13AB=16AB,∵CM=2.∴AB=12.故答案为:12.由中点的定义、线段的倍分关系可求AM=12AB,AC=13AB,根据线段的和差关系和已知条件可求AB即可.考查了两点间的距离,解题的关键是由中点的定义、线段的倍分关系得到AM=12AB,AC=13AB.17.答案:−7解析:解:∵−2a+3b+8=5,∴−2a+3b=−3,则原式=3(−2a+3b)+2=3×(−3)+2=−9+2=−7,故答案为:−7.根据−2a+3b+8=5可得−2a+3b=−3,将其代入到由原式变形所得多项式3(−2a+3b)+2,计算可得.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.答案:30%解析:本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.设该品牌自行车销售量的月均增长率为x.等量关系为:4月份的销售量×(1+增长率)2=6月份的销售量,把相关数值代入求解即可.解:设该品牌自行车销售量的月均增长率为x,根据题意列方程:200(1+x)2=338,解得x1=−2.3(不合题意,舍去),x2=30%.答:该品牌自行车销售量的月均增长率30%.故答案为30%.19.答案:解:[−12−(1−0.5×13)]×[−10+(−3)2]=[−1−(1−12×13)]×[−10+9]=[−1−(1−16)]×(−1)=[−1−56]×(−1)=−11×(−1)=116.解析:本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先算乘方,后算乘除,最后算加减,有括号的先算括号里面的.根据有理数混合运算的运算法则可以解答本题.20.答案:解:(1)去括号,可得:10−5x=7−2x,移项,合并同类项,可得:3x=3,解得x=1.(2)去分母,可得:2(x+3)=12−3(3−2x),去括号,可得:2x+6=12−9+6x,移项,合并同类项,可得:4x=3,解得x=0.75.解析:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求解即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.答案:解:3x2−[6xy+2(x2−y2)]−3(y2−2xy)=3x2−(6xy+2x2−2y2)−3y2+6xy=3x2−6xy−2x2+2y2−3y2+6xy=x2−y2,当x=−2,y=3时,原式=(−2)2−32=4−9=−5.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.22.答案:解:如图所示:(1)直线AB即为所求;(2)射线AC即为所求;(3)D点即为所求;(4)线段CD即为所求.解析:此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.直接利用直线、射线、线段的定义分别得出答案.23.答案:解:根据题意得,[2x+(y)2]÷4=(2x+y2)÷4,把x=6,y=−4代入得,(12+16)÷4=7.即输出的结果为7.解析:本题考查的是有理数的混合运算,求代数式的值,解题关键是理解题意,依据图示把x,y的值代入所给程序计算即可.24.答案:解:设设该队共胜了x场,根据题意得:3x+(11−x)=23,解得x=6.故该队共胜了6场.解析:可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11−x,由题意可得出:3x+(11−x)=23,解方程求解.此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.25.答案:解:(1)如图,(2)m<−n<n<−m.解析:根据有理数的大小比较,即可解答.本题考查了有理数的大小比较,解决本题的关键是熟记有理数的大小比较.26.答案:解:∵∠AOM与∠BOM互余,∴∠AOM+∠BOM=90°,即∠AOB=90°.∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12(∠AOC−∠BOC)=12∠AOB=12×90°=45°.解析:此题考查角平分线定义,互余的定义.根据题意得出∠MON=12∠AOB是解题的关键.先由∠AOM与∠BOM互余,得出∠AOB=90°,再根据角平分线定义得出∠MOC=12∠AOC,∠NOC=12∠BOC,那么∠MON=∠MOC−∠NOC=12∠AOB=45°.27.答案:(1)42;(2)2+4+6+⋯+2m=m(m+1);(3)①2+4+6+⋯+200=100×101,=10100;②∵2+4+6+⋯+300=150×151=22650,∴202+204+206+⋯+300.=22650−10100,=12550.解析:解:(1)∵2+2=2×2,2+4=6=2×3=2×(2+1),2+4+6=12=3×4=3×(3+1),2+4+6+8=20=4×5=4×(4+1),∴m=6时,和为:6×7=42;(2)∴和S与m之间的关系,用公式表示出来:2+4+6+⋯+2m=m(m+1);(3)①2+4+6+⋯+200=100×101,=10100;②∵2+4+6+⋯+300=150×151=22650,∴202+204+206+⋯+300.=22650−10100,=12550.(1)仔细观察给出的等式可发现从2开始连续两个偶数和1×2,连续3个偶数和是2×3,连续4个,5个偶数和为3×4,4×5,从而推出当m=6时,和的值;(2)根据分析得出当有m个连续的偶数相加是,式子就应该表示成:2+4+6+⋯+2m=m(m+1).(3)根据已知规律进行计算,得出答案即可.此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.。

2019年北京市海淀区七年级上册期末数学参考样题有答案

2019年北京市海淀区七年级上册期末数学参考样题有答案

七年级第一学期期末调研数学一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是 ()A .15B .15- C .5 D .5- 2.2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站 关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为 ()A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯ 3. 下列各式中,不相等...的是() A .(-3)2和-32 B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是() A .2230x x --= B .25x y += C .112x x += D .10x += 5. 如图,下列结论正确的是() A. c a b >>B. 11b c >C. ||||a b <D. 0abc >6. 下列等式变形正确的是() A. 若35x -=,则35x =- B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+D. 若3(1)21x x +-=,则3321x x +-= 7. 下列结论正确的是() A. 23ab -和2b a 是同类项B. π2不是单项式C. 比大D. 2是方程214x +=的解 8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是()A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是() A. 点A 在线段BC 上 B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是() A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分)11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费元.(用含a ,b 的代数式表示)13.已知,则=.14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC =°.若2是关于的一15.元一次方程的解则a = ________.16. 规定图形表示运算a b c --,图形表示运算x z y w --+.则 + =________________(直接写出答案).17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为.18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次2|2|(3)0a b -++=ab 从正面看 从上面看 B C变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 次变化时,图形的面积是否会变化,________(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭; (2)()411293⎛⎫-+-÷--- ⎪⎝⎭. 20.解方程:(1)3(21)15x -=; (2)71132x x -+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边,且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距离之和最短,并写出画图的依据.23. 几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数.解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________=__________° + __________°=__________°因为OD 平分∠AOC所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时,求线段EF的长;(2)当点E, 点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。

2019-2020年北京市海淀区七年级上册期末考试数学试题有答案

2019-2020年北京市海淀区七年级上册期末考试数学试题有答案

七 年 级 第 一 学 期 期 末 调 研数 学学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是( )A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为( )A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯3. 下列各式中,不相等...的是( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32-4. 下列是一元一次方程的是( )A .2230x x --=B .25x y +=C .112x x+= D .10x += 5. 如图,下列结论正确的是( )A. c a b >>B.11b c> C. ||||a b <D. 0abc >6. 下列等式变形正确的是( )A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-= 7. 下列结论正确的是( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. 比大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A. B. C. D. 9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是( )A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是 ( )A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示) 13.已知2|2|(3)0a b -++=,则a b = .14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC = °.若2是关于的一15.元一次方程的解,则a = ________. 16. 规定图形a b c --,图形表示运算x z y w --+.+=________________(直接写出答案). 17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为 .从正面看从上面看BC18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化, 得到图形如图(3),称为第二次变化.如此 连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第n 次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”),图形的周长为 . 三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分) 19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭.20.解方程:(1) 3(21)15x -=;(2)71132x x-+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值. 22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边, 且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距 离之和最短,并写出画图的依据. 23.几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数. 解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________第二次变化第一次变化(3)(2)(1)AA=__________° + __________° =__________° 因为OD 平分∠AOC 所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时, 求线段EF 的长;(2)当点E , 点F 是线段AB 和线段BC 的中点时,请你 写出线段EF 与线段AC 之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。

2019-2020年北京市海淀区七年级上册期末数学考试题有答案

2019-2020年北京市海淀区七年级上册期末数学考试题有答案

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学学校 班级 姓名 成绩 一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置. 1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形,得到的平面图形是3.若30a +=,则a 的相反数是 A .3 B .13 C .13-D .3-4.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4m .隧道贯通后,往海淀山前山后地区较之前路程有望缩短一半,其主要依据是 A .两点确定一条直线 B .两点之间,线段最短 C .直线比曲线短 D .两条直线相交于一点7.已知线段10AB =cm ,点C 在直线AB 上,且2AC =cm ,则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ,则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为 A .738.53元B .125.45元C .136.02元D .477.58元 10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为 A .14,17 B .14,18 C .13,16 D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对2.017取近似数是 . 14. 请写出一个只含有字母、,且次数为3的单项式 . 15.已知()2120x y ++-=,则yx 的值是 .16.已知2=-b a ,则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒,则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是 .19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为︒.20.下面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x +-=.七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分)21.计算:(1)111()12462+-⨯.(2)1031(1)2()162-÷+-⨯.22.解方程:12324x x +--=.23.设11324()() 2323A x x y x y=---+-+.(1)当1,13x y=-=时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的、y的条件还可以是 . 24.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图①射线BA;②直线AD,BC相交于点E;③在线段DC 的延长线上取一点F ,使CF=BC ,连接EF . (2)图中以E 为顶点的角中,小于平角的角共有 个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分. 如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.问题一:若∠AOC =36°,∠BOC =136°,求∠DOE 的度数. 问题二:若∠AOB =100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF .请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法; (2)说明(1)中所标EF 符合要求.图1 图227.在数轴上,把表示数1的点称为基准点,记作点O ∙. 对于两个不同的点M 和N ,若点M 、点N 到点O ∙的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1-,点N 表示数3,它们与基准点O ∙的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.① 若a,则b = ;若4a =,则b = ;② 用含a 的式子表示b ,则b = ; (2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动(>0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动个单位长度得到3P ,4P 为3P 的基准变换点,……,依此顺序不断地重复,得到5P ,6P ,…,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,……,依此顺序不断地重复,得到5Q ,6Q ,…,n Q .若无论为何值,n P 与n Q 两点间的距离都是4,则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)13.2.02 ; 14. 22m n -(答案不唯一); 15.1; 16. 4; 17.108 ,24; 18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 20.奖品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.(1)解:原式326=+- ----------------------3分1=-. ----------------------4分(2)解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分23.解:(1)143242323A x x y x y =--+-+ ---------------------2分62x y =-+ . ---------------------3分当1,13x y =-=时,16()213A =-⨯-+⨯=4.∴A 的值是4. ----------------4分(2)32x y -+= .(答案不唯一) ---------------5分24.(1)---------------4分(2)8. ---------------5分25.解:问题一:∵ OD 平分AOC ∠,36AOC ∠=︒, ∴ 1182DOC AOC ∠=∠=︒. …………………2分 ∵ OE 平分BOC ∠,136BOC ∠=︒, ∴ 1682EOC BOC ∠=∠=︒. …………………3分 ∴ 50DOE EOC DOC ∠=∠-∠=︒. ……………… 4分 问题二:∵ OD 平分AOC ∠, ∴ 12DOC AOC ∠=∠. …………………1分 ∵ OE 平分BOC ∠, ∴ 12EOC BOC ∠=∠. …………………2分 ∴ DOE EOC DOC ∠=∠-∠1122BOC AOC =∠-∠12AOB =∠. ……………… 4分 ∵ 100AOB ∠=︒,∴ 50DOE ∠=︒. ……………… 5分 (注:无推理过程,若答案正确给2分)26.解:(1)(解法不唯一)……………… 2分如图,在CD 上取一点M ,使CM =CA , F 为BM 的中点,点 E 与点C 重合. …3分 (2)∵F 为BM 的中点, ∴MF =BF .∵AB =AC +CM +MF +BF ,CM =CA , ∴AB =2CM +2MF =2(CM +MF )=2EF . ∵AB =40m ,∴EF =20m .……………… 4分∵20AC BD +<m ,40AB AC BD CD =++=m , ∴CD >20m.∵点E 与点C 重合,20EF =m , ∴20CF =m.∴点F 落在线段CD 上.∴EF 符合要求.……………… 5分27.解:(1)①2,-2;……………… 2分②2a -;……………… 4分 (2)107;……………… 5分 (3)4或12. ……………… 7分。

[推荐]2019-2020年北京市海淀区七年级上册期末数学考试题有答案

[推荐]2019-2020年北京市海淀区七年级上册期末数学考试题有答案

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学学校 班级 姓名 成绩 一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置. 1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形,得到的平面图形是3.若30a +=,则a 的相反数是 A .3 B .13 C .13-D .3-4.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4m .隧道贯通后,往海淀山前山后地区较之前路程有望缩短一半,其主要依据是 A .两点确定一条直线 B .两点之间,线段最短 C .直线比曲线短 D .两条直线相交于一点7.已知线段10AB =cm ,点C 在直线AB 上,且2AC =cm ,则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ,则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为 A .738.53元B .125.45元C .136.02元D .477.58元 10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为 A .14,17 B .14,18 C .13,16 D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对2.017取近似数是 . 14. 请写出一个只含有字母、,且次数为3的单项式 . 15.已知()2120x y ++-=,则yx 的值是 .16.已知2=-b a ,则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒,则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是 .19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为︒.20.下面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x +-=.七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分)21.计算:(1)111()12462+-⨯.(2)1031(1)2()162-÷+-⨯.22.解方程:12324x x +--=.23.设11324()() 2323A x x y x y=---+-+.(1)当1,13x y=-=时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的、y的条件还可以是 . 24.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E 为顶点的角中,小于平角的角共有 个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分. 如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.问题一:若∠AOC =36°,∠BOC =136°,求∠DOE 的度数. 问题二:若∠AOB =100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF .请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法; (2)说明(1)中所标EF 符合要求.图1 图227.在数轴上,把表示数1的点称为基准点,记作点O ∙. 对于两个不同的点M 和N ,若点M 、点N 到点O ∙的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1-,点N 表示数3,它们与基准点O ∙的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.① 若a,则b = ;若4a =,则b = ;② 用含a 的式子表示b ,则b = ; (2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动(>0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动个单位长度得到3P ,4P 为3P 的基准变换点,……,依此顺序不断地重复,得到5P ,6P ,…,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,……,依此顺序不断地重复,得到5Q ,6Q ,…,n Q .若无论为何值,n P 与n Q 两点间的距离都是4,则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)13.2.02 ; 14. 22m n -(答案不唯一); 15.1; 16. 4; 17.108 ,24; 18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 20.奖品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.(1)解:原式326=+- ----------------------3分1=-. ----------------------4分(2)解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分23.解:(1)143242323A x x y x y =--+-+ ---------------------2分 62x y =-+ . ---------------------3分当1,13x y =-=时,16()213A =-⨯-+⨯=4.∴A 的值是4. ----------------4分(2)32x y -+= .(答案不唯一) ---------------5分24.(1)---------------4分(2)8. ---------------5分25.解:问题一:∵ OD 平分AOC ∠,36AOC ∠=︒, ∴ 1182DOC AOC ∠=∠=︒. …………………2分 ∵ OE 平分BOC ∠,136BOC ∠=︒, ∴ 1682EOC BOC ∠=∠=︒. …………………3分 ∴ 50DOE EOC DOC ∠=∠-∠=︒. ……………… 4分 问题二:∵ OD 平分AOC ∠, ∴ 12DOC AOC ∠=∠. …………………1分 ∵ OE 平分BOC ∠, ∴ 12EOC BOC ∠=∠. …………………2分 ∴ DOE EOC DOC ∠=∠-∠1122BOC AOC =∠-∠ 12AOB =∠. ……………… 4分 ∵ 100AOB ∠=︒,∴ 50DOE ∠=︒. ……………… 5分(注:无推理过程,若答案正确给2分)26.解:(1)(解法不唯一)……………… 2分如图,在CD 上取一点M ,使CM =CA , F 为BM 的中点,点 E 与点C 重合. …3分 (2)∵F 为BM 的中点, ∴MF =BF .∵AB =AC +CM +MF +BF ,CM =CA , ∴AB =2CM +2MF =2(CM +MF )=2EF . ∵AB =40m ,∴EF =20m .……………… 4分∵20AC BD +<m ,40AB AC BD CD =++=m , ∴CD >20m.∵点E 与点C 重合,20EF =m , ∴20CF =m.∴点F 落在线段CD 上.∴EF 符合要求.……………… 5分27.解:(1)①2,-2;……………… 2分②2a -;……………… 4分 (2)107;……………… 5分 (3)4或12. ……………… 7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级第一学期期末调研数学一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是 ()A .15B .15- C .5 D .5- 2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站 关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为 ()A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯3. 下列各式中,不相等...的是() A .(-3)2和-32 B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是() A .2230x x --= B .25x y += C .112x x += D .10x += 5. 如图,下列结论正确的是() A. c a b >>B. 11b c >C. ||||a b <D. 0abc >6. 下列等式变形正确的是() A. 若35x -=,则35x =- B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+D. 若3(1)21x x +-=,则3321x x +-= 7. 下列结论正确的是() A. 23ab -和2b a 是同类项B. π2不是单项式C. 比大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是()A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是() A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是() A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分)11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费元.(用含a ,b 的代数式表示)13.已知,则=.14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC =°.若2是关于的一15.元一次方程的解则a = ________.16. 规定图形表示运算a b c --,图形表示运算x z y w --+.则 + =________________(直接写出答案).17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为.18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次2|2|(3)0a b -++=ab 从正面看 从上面看 B C变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 次变化时,图形的面积是否会变化,________(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭; (2)()411293⎛⎫-+-÷--- ⎪⎝⎭. 20.解方程:(1)3(21)15x -=; (2)71132x x -+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边,且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距离之和最短,并写出画图的依据.23. 几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数.解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________=__________° + __________°=__________°因为OD 平分∠AOC所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时,求线段EF的长;(2)当点E, 点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。

王冠做成后,国王拿在手里觉得有点轻。

他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤称,结果与原的金块一样重。

国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫,要他解决这个难题。

回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解。

一天,他的夫人逼他洗澡。

当他跳入池中时,水从池中溢了出。

阿基米德听到那哗哗哗的流水声,灵感一下子冒了出。

他从池中跳出,连衣服都没穿,就冲到街上,高喊着:"优勒加!优勒加!(意为发现了)"。

夫人这回可真着急了,嘴里嘟囔着"真疯了,真疯了",便随后追了出去。

街上的人不知发生了什么事,也都跟在后面追着看。

原,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同。

如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假。

阿基为德跑到王宫后立即找一盆水,又找同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假。

在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银。

烦人的王冠之谜终于解开了。

小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为____________;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?26. 对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc-ad.例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)=;(2)若有理数对(-3,2-1)★(1,+1)=7,则=;(3)当满足等式(-3,2-1)★(,+)=5+2的是整数时,求整数的值.27.如图1,在数轴上A ,B 两点对应的数分别是6, -6,90DCE ∠=︒(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分ACE ∠,则AOF ∠=_________;(2)如图2,将DCE ∠沿数轴的正半轴向右平移t (0<t <3)个单位后,再绕点顶点C 逆时针旋转30t 度,作CF 平分ACE ∠,此时记DCF α∠=.①当t =1时,_______;②猜想BCE ∠和的数量关系,并证明;(3)如图3,开始111D C E ∠与DCE ∠重合,将DCE ∠沿数轴的正半轴向右平移t (0<t <3)个单位,再绕点顶点C 逆时针旋转30t 度,作CF 平分ACE ∠,此时记DCF α∠=,与此同时,将111D C E ∠沿数轴的负半轴向左平移t (0<t <3)个单位,再绕点顶点1C 顺时针旋转30t 度,作11C F 平分11AC E ∠,记111D C F β∠=,若与β满足20αβ-=︒,请直接写出t 的值为_________.七年级第一学期期末调研数学参考答案一、选择题:11.10212'︒;12.410a b +; 13.9; 14.59︒; 15.1; 16.8-;17.2或10; 18.不会;32n a +.三、解答题19.解:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭ 436=+…………………………………..2分40=…………………………………..3分(2)()411293⎛⎫-+-÷--- ⎪⎝⎭169=-+-…………………………………..2分59=-4=-…………………………………..3分20.解:(1)215x -=26x =…………………………………..2分=3x …………………………………..3分(2)7161632x x -+⨯-=⨯() 27)3(1)16x x --+=⨯(…………………………………..1分214336x x ---=236+14+3x x -=…………………………………..2分23x -=23x =-…………………………………..3分21.解:2(21)5(4)3a b a b b +-+--=4225203a b a b b +-+--=9212a b --…………………………………..2分37=3a b --Q∴原式=9212a b --=3(37)2a b --=3(3)2⨯--=92--=11-…………………………………..4分22. 解:(1)作图如图1所示:说明:连接MA可得1分,作出点N可得2分.(2)作图如图2所示:作图依据是:两点之间线段最短.说明:作出点O可得1分,说出依据可得2分.23. 解:因为∠BOC =3∠AOB ,∠AOB =40°,所以∠BOC =__120__°.……………………..1分所以∠AOC =_∠AOB _ + __∠BOC __………………….2分=____40___° + ___120___°=___160___°.……………………..4分因为OD 平分∠AOC ,所以∠COD =12__∠AOC __=___80___°.……………………..6分24. 解:(1)Q 当点E 、点F 是线段AC 和线段BC 的中点12AE CE AC ==,12CF FB CB == Q 111()222EF CE CF AC CB AC CB =+=+=+Q 线段AB =10,点C 、E 、F 在线段AB 上.AB =AC +CB5EF =……………………..3分(2) 如图:结论:12EF AC =Q 当点E 、点F 是线段AC 和线段BC 的中点12AE EB AB ==,12CF FB CB == Q EF EB FB =-1111()2222EF AB CB AB CB AC =-=-=……………………..6分 25.探究一:23;……………………..2分探究二:每个A 型号钢球使得水面上升(3630)32-÷= mm每个B 型号钢球使得水面上升(3630)23-÷= mm设放入水中的A 型号钢球为个,则B 型号钢球为(10x -)个,则由题意列方程:23(10)5730x x +-=-……………………..4分解得:3x =,所以10=7x -答:放入水中的A 型号钢球3个,B 型号钢球7个.……………………..6分26. 解:(1)﹣5……………………..2分(2)1 ……………………..4分(3)∵等式(-3,2-1)★(,+)=5+2的是整数∴(2﹣1)﹣(﹣3)(﹢)=5﹢2∴(2﹢3)=5 ∴523x k =+ ∵是整数∴2+3=±1或±5∴=1,﹣1,﹣2,﹣4……………………..7分27.解:(1)45︒;……………………..1分(2)①当t =1时,____30︒_____……………………..2分②猜想:=2BCE α∠证明:90DCE DCF α∠=︒∠=,90ECF DCE DCF α∴∠=∠-∠=︒-∵CF 平分ACE ∠9090902ACF ECF ACD ACF DCF αααα∴∠=∠=︒-∴∠=∠-∠=︒--=︒-∵点A ,O ,B 共线180AOB ∴∠=︒18090(902)2BCE AOB DCE ACDαα∴∠=∠-∠-∠=︒-︒-︒-=……………………..5分(3)23t =.……………………..7分 说明:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数;2.其它正确解法可以参照评分标准按相应步骤给分。

相关文档
最新文档