甲醇制烯烃几种工艺比较

合集下载

甲醇制烯烃生产工艺

甲醇制烯烃生产工艺

甲醇制烯烃生产工艺甲醇制烯烃是将甲醇转化为烯烃的一种工艺。

烯烃是一类重要的有机化工原料,广泛应用于合成塑料、橡胶、纤维等领域。

以下将介绍甲醇制烯烃的生产工艺。

首先,甲醇制烯烃的关键步骤是通过甲醇脱氢反应生成烯烃。

脱氢反应通常在催化剂存在下进行。

常用的催化剂包括氧化铜-锌(Cu-Zn-O)催化剂、模型选区氧化镁(MOx)催化剂和氧化铝(Al2O3)载体上的甲醇蒸汽重整催化剂等。

甲醇脱氢反应的条件是高温和低压。

通常反应温度在400℃~600℃之间,反应压力在0.1~1.0 MPa之间。

在这些条件下,甲醇分子发生脱氢反应,生成一氧化碳和氢气,同时还会生成一系列的烯烃产物。

接下来,脱氢反应产生的一氧化碳和氢气需要进行增氢反应才能转化为烯烃。

增氢反应通常在氧化铝载体上的催化剂存在下进行。

常用的催化剂有氧化镁(MOx)和氧化铝(Al2O3)催化剂等。

增氢反应的条件是中温和中压。

一氧化碳和氢气在催化剂上发生增氢反应,生成了一系列的烯烃产品。

这些烯烃产品可通过分离和精馏等方式得到纯度较高的产物。

甲醇制烯烃最大的难点是选择合适的催化剂和控制反应条件。

对于不同类型的催化剂,需要探索合适的反应温度、压力和甲醇的进料速率等工艺参数,以达到最佳的反应效果和产物选择性。

甲醇制烯烃的生产工艺还面临着一些挑战。

首先,催化剂具有一定的寿命,需要进行周期性的再生和更换;其次,反应过程中会生成一些副产物,如甲烷、乙烷等,需要通过后续的处理步骤进行处理。

此外,甲醇制烯烃是一个高温、高压的反应过程,对设备和安全管理提出了更高的要求。

总之,甲醇制烯烃是一种重要的有机合成工艺,可以将甲醇转化为烯烃原料。

通过选择合适的催化剂和控制反应条件,可以实现高效、高选择性的烯烃产物得到。

这种工艺的应用在化工行业具有广阔的前景。

甲醇制烯烃几种工艺比较培训

甲醇制烯烃几种工艺比较培训

甲醇制烯烃几种工艺比较培训甲醇制烯烃是一种重要的化工过程,可以将甲醇转化为乙烯和丙烯等烯烃化合物,具有广泛的应用前景。

目前,甲醇制烯烃的工艺主要有热解法、氧化法和水蒸汽法等几种。

本文将对这几种工艺进行比较。

首先是热解法。

热解法是最早研发出来的甲醇制烯烃工艺,通过在高温条件下将甲醇分解产生烯烃。

这种方法的优点是反应温度较高,可以提高反应速率,同时产物中的乙烯和丙烯的选择性较好。

然而,热解法存在一些缺点,比如氧化剂的消耗量大,并且产生大量的副产品和废气,对环境造成污染。

其次是氧化法。

氧化法是通过加入氧化剂使甲醇发生氧化反应产生乙烯和丙烯。

这种方法的优点是反应条件相对温和,反应速率较快,可以实现大规模生产。

而且,氧化法能够实现对原料的充分利用,减少了废物的产生。

然而,氧化法的不足之处在于选择性较差,产物中会含有大量的其他氧化产物,且需要大量的氧化剂,经济性较差。

最后是水蒸汽法。

水蒸汽法是将甲醇和水蒸汽共同通过催化剂进行反应,生成乙烯和丙烯。

该工艺的优点在于反应条件温和,选择性较好,产生的副产品较少。

此外,水蒸汽法相对环保,不会产生废气污染。

然而,水蒸汽法也存在一些问题,比如催化剂的寿命较短,需要经常更换。

此外,该工艺的过程复杂,工艺设备投资较大。

综上所述,甲醇制烯烃的几种工艺各有优劣。

热解法反应速率快、选择性好,但是对环境造成严重污染;氧化法可以实现大规模生产,但是选择性较差;水蒸汽法环保,并且产物选择性好,但是催化剂寿命较短。

因此,在实际应用中,需要根据具体情况选择适合的工艺,并对其进行改进和优化,以提高生产效率和经济效益。

甲醇制烯烃是一种重要的化工过程,在石化工业中具有广泛的应用前景。

乙烯和丙烯是石化工业中最重要的两种烯烃化合物,广泛应用于塑料、合成纤维、橡胶、涂料及胶粘剂等领域。

甲醇制烯烃技术的发展,对于满足烯烃需求、降低石化行业的碳排放、提高能源利用效率具有重要的意义。

目前,甲醇制烯烃的工艺主要有热解法、氧化法和水蒸汽法等。

甲醇制烯烃技术报告(非常好)

甲醇制烯烃技术报告(非常好)

1 甲醇制烯烃1.1 工艺技术方案的选择1.1.1 甲醇制烯烃工艺技术1.1.1.1 原料路线确定的原则和依据甲醇制乙烯、丙烯等低碳烯烃(Methanol-to-Olefin,简称MTO)是最有希望替代石脑油为原料制烯烃的工艺路线,目前工艺技术开发已趋于成熟。

该技术的工业化,开辟了由煤炭或天然气经气化生产基础有机化工原料的新工艺路线,有利于改变传统煤化工的产品格局,是实现煤化工向石油化工延伸发展的有效途径。

甲醇制烯烃的反应比较复杂,在高选择性催化剂上,MTO主要发生如下放热反应:2CH3OH CH3OCH3+H2O12CH3OH C2H4+ 2C3H6+ C4H8+12H2O6CH3OCH3C2H4+ 2C3H6+ C4H8+6H2O本项目采用煤炭气化制甲醇,甲醇制烯烃的生产路线。

1.1.1.2 国内、外工艺技术概况(1) 国外工艺技术概况二十世纪八十年代初,美国美孚(Mobil)公司在研究采用沸石催化剂利用甲醇制汽油(MTG)工艺的过程中发现并发展甲醇制烯烃(MTO)工艺。

Mobil对反应机理进行了细致的研究,优化催化剂,合成了针对MTO和MTG反应的新型沸石催化剂ZSM-5。

Mobil基于流化床的工艺示范装置自1982年底运行至1985年末,成功地证明了流化床反应系统可以应用于MTG和MTO过程。

Mobil甲醇制汽油技术的成功开发推动了甲醇制烯烃(MTO)、甲醇制丙烯(MTP)等工艺的开发。

目前,国外的工艺技术中,由※※※※/※※※※公司共同开发的MTO 工艺、由Lurgi公司开发的MTP工艺最具有产业化前景。

1986年UCC发现采用SAPO-34(磷酸硅铝分子筛)可以有效地将甲醇转化为低碳烯烃,而后UCC将相关技术转让给了※※※※公司。

1992年※※※※和Norsk※※※※合作开发了以多孔性MTO-100(主要活性组分为SAPO-34)为催化剂的※※※※/※※※※工艺,MTO-100催化剂具有更好稳定性和耐磨性。

dmto-ⅲ合成烯烃工艺

dmto-ⅲ合成烯烃工艺

dmto-ⅲ合成烯烃工艺
DMTO(Dimethyl Ether to Olefins)是一种将甲醇转化为烯烃的工艺。

它是一种通过催化剂使甲醇分子断裂,并在特定温度和压力条件下重新组合为烯烃的方法。

DMTO工艺包括以下几个步骤:
1. 烷基化:将甲醇加入到催化剂中,催化剂通常是沸石类材料。

在高温下,催化剂将甲醇分子分解成甲基和氢分子。

2. 烯烃生成:甲基与催化剂表面上的其他甲基或烯烃中的碳氢键进行反应,形成烯烃和水。

这些烯烃可以是乙烯、丙烯等。

3. 烯烃分离:生成的混合物经过分离和纯化步骤,将烯烃单独提取出来。

DMTO工艺具有以下优点:
1. 原料广泛:DMTO工艺可以使用甲醇作为主要原料,而甲醇可以从多种来源获得,包括天然气、煤炭等。

2. 产品多样:DMTO工艺可以生产多种烯烃产品,包括乙烯、丙烯等,这些产品在化工工业中有广泛的应用。

3. 环保高效:DMTO工艺相较于传统的烯烃制备工艺,排放的污染物较少,能耗较低。

4. 市场前景广阔:随着对可替代能源和化工产品的需求日益增长,DMTO工艺的市场前景广阔。

然而,DMTO工艺也存在一些挑战,包括烯烃选择性、催化剂的稳定性和寿命等问题。

因此,进一步的研究和改进仍然需要进行,以提高工艺的效率和经济性。

甲醇制烯烃工艺技术

甲醇制烯烃工艺技术

甲醇制烯烃工艺技术甲醇制烯烃是一种重要的石油化工工艺,可以将甲醇转化为乙烯、丙烯等烯烃产品。

随着对环境和资源的要求越来越高,甲醇制烯烃技术也逐渐受到关注。

甲醇制烯烃的工艺技术主要包括催化剂选择、工艺条件控制等方面。

首先,催化剂的选择非常关键。

甲醇制烯烃主要采用多金属氧化物催化剂,如铅铋钼氧化物、铋铜钒氧化物等。

这些催化剂具有活性高、选择性好、稳定性强的特点,可以在较低温度下实现高效的甲醇转化。

其次,工艺条件的控制也是很重要的。

甲醇制烯烃的反应条件包括温度、压力、甲醇进料量等。

适当的反应温度可以提高催化剂的活性,一般在300-400摄氏度之间;适宜的反应压力可以提高产物的选择性,一般在2-3兆帕之间;合理的甲醇进料量可以平衡反应速率和产物选择性。

此外,还需要注意控制产物中杂质的含量,以提高烯烃产品的质量。

甲醇制烯烃的工艺技术不仅对催化剂和工艺条件的选择要求严格,还需要考虑反应系统的热力学平衡和传质效应。

在甲醇转化过程中,会伴随有热量的吸收和释放,需要对热力学平衡进行控制,以避免产生过多的副反应和能量的浪费。

同时,传质效应也会对反应速率和产物选择性产生影响,需要通过优化反应器的结构和使用合适的填料来提高传质效应。

甲醇制烯烃工艺技术的发展离不开催化剂和反应器的创新。

目前,研究人员正在尝试开发新型的催化剂,以提高甲醇的转化率和产物的选择性。

同时,也在努力改进反应器的结构和工艺,以提高反应效率和降低能源消耗。

综上所述,甲醇制烯烃是一项有前景的石油化工工艺,其工艺技术的发展将有助于提高能源利用效率和化石能源的可持续利用。

随着科技的进步和环境保护意识的增强,相信甲醇制烯烃工艺技术将会得到更广泛的应用和发展。

甲醇制烯烃技术进展及评价

甲醇制烯烃技术进展及评价

甲醇制烯烃技术进展及经济评价甲醇制烯烃技术主要分两步。

首先由天然气转化生成粗甲醇,该过程已实现工业化;然后甲醇转化生成烯烃,主要是乙烯和丙烯。

不同的工艺生成的乙烯与丙烯的比例也不同。

UOP/Hydro公司的甲醇制烯烃工艺(MTO)是在Mobil公司的甲醇制汽油技术(MTG)上发展起来的。

该MTO工艺具有很大的灵活性,可根据市场的需求变化,通过改变反应器的操作条件,来调整乙烯与丙烯的产量。

产品中乙烯与丙烯之产量比可在0.77-1.33的范围内进行调节。

1 催化剂进展UOP/Hydro公司在SAPO-34催化剂基础上开发了新型催化剂MTO-100,取得了突破性的进展。

SAPO-34催化剂是磷酸硅铝分子筛,对甲醇转化乙烯和丙烯具有较高的选择性。

新型催化剂MTO-100具有择形选择性,其酸性位和强度具有可控性,大大提高了向乙烯和丙烯转化的选择性,可使乙烯、丙烯的选择性达到80%。

SAPO系列属通用性较强的催化材料,尽管它与沸石的热稳定性不同,但其化学性质和晶体结构与沸石材料很相似,具有均一的孔隙率、晶体分子结构、可调酸度、择形催化剂以及酸性交换能力。

其最大的改进在于孔隙更小,酸性位和强度具有可控性。

尽管改进的SAPO-34是MTO工艺理想的催化材料,但对于流化床反应器来说仍不是最佳的选择。

必须将SAPO-34与一系列专门选择的粘合剂结合起来。

粘合剂的选择极其重要,它必须要能提高催化剂的活性,但又不能影响催化剂的选择性。

美国Nexant化学系统公司认为采用处理过的氧化硅和氧化铝作粘合剂可达到一定的孔隙率、酸度以及强度。

粘合剂的孔隙率很重要,它必须允许甲醇和MTO的产品快速地进出SAPO-34。

该催化剂与FCC催化剂的制备方式相似,通过喷雾法干燥制备。

2 工艺进展UOP/Hydro公司的MTO工艺设计与Mobil公司的工艺很相似,由于需要分离和处理的较重副产品很少,分离系统相对简单。

该工艺采用的原料是粗甲醇,因此没必要通过蒸馏制取AA级的甲醇(纯度为99.85%),减少了上游甲醇装置的资本投资。

甲醇制烯烃(MTO)的生产技术现状及发展趋势

甲醇制烯烃(MTO)的生产技术现状及发展趋势

第"期聂晓明,等:甲醇制烯烃(MTO )的生产技术现状及发展趋势• 99 •氮气g 圍淖生烟气滑阀主风蒸汽图3 D M T O 技术工艺流程图大连化学物理研究所在D M T O -I 技术工业运行的基础上 加了 C 4以上重组分回 元,可将乙烯、丙烯收 80%提高到85%左右, 烯的 耗由3 t (D M T O -I )降至2.6~2.7 t (D M T O -II ),消耗 , 减少。

1.4 S M T O 工艺S M T O 技术由上海石油化工研究院与中国石化工程建设公司合作 。

该工艺流程图如图4所[5]。

1.3 D M T O 技术D M T O 技术 国科学院大连化学物理研究所研 。

技术在2004-2006年, 了 首例 级M T O 工业试 验。

神华包头煤化工分公司2010年 实现了 首套百万级D M T O 商业工厂的运营。

该工原则流程[4]如 3所。

原以汽 态通过分布器进人 密相床层,在内流化状态下的催化剂存在下 ,部分转化为二 ,甲与二 继转化为低碳烯烃。

工气进人 上部扩 大的稀,流 ,大部分催化 重力的作用下沉进人密相床层继续参与化学反应,小部分催化剂通过旋风 分离器进行 回收 回。

内设 的 t的 ,再生配备 。

D M T O -I 工业化运行 为: 化 99%,产气中乙烯质量选择性为39.84%,丙烯 性为39.40%,生焦率2)0%[2]。

甲醇制乙烯、丙烯的M T O 工艺(Methanol to Olefins ,M T O )国 代表性的M T O 工艺技术主要有:霍尼韦尔U O P /H y dro 技术、森美孚M o b i 的技术、鲁奇Lurgl M T P 的技术。

国内代表性的M T O 工艺技术主要有:大化物所D M T O 技术、 石化的S M T O 技术。

1各自技术特点及优势 1.1 UOP 公司的MTO工艺2000年U O P 公司公开的M T O 工艺的 设计[1],流化床 如图1所。

甲醇制烯烃的几种技术分析

甲醇制烯烃的几种技术分析
公 司于 1 9 8 4年 内先 后 进 行 了长 达 9个 月 的 实验 .其 规 模 是 1 0 0 桶/ d , 在实验 中, 甲 醇 向催 化剂 孔进 行 扩 散 。 并产生反应 , 先 生 成 左 右 的 丙 烯 及 乙烯 的选 择 性 能 , 以及 9 9 . 9 %左 右 的 甲醇 转 化 效
出 甲 醇 法 的 是 Mo b i l ( 美 孚) 公司, 接着埃克森公 司 、 巴斯 夫 公 司 、
烯、 丙烯 以及 乙烯 能 够 达 到 大约 9 7 %的选 择 性 [ 3 】 。 通 过 三 乙胺 和 艺 中, 丙烯 和 乙烯 所 占 的 比例 各有 不 同 。将 天 然 气用 来 生 成 烯 烃 氟 化 物 制 取 出 较 高活 性 的 S A P O -3 4类 型 的 催 化 剂 。 该 化 工 研 究 主要 包 含 了 3种 工艺 技 术 , 主 要 包 括 甲烷 氧 化 偶 联 法 、 费 一 托 合 所 利 用 相 关 的催 化 剂 能 够 确 保 在 循 环 流 化 床 进 行 超 过 两 千 小 时 成 法 以 及最 常使 用 的 甲 醇 法[ 1 1 。ቤተ መጻሕፍቲ ባይዱ甲醇 法 主 要 是 通 过将 合 成 气 与 的运 作 周 期 , 该工艺具有大于 8 0 % 的丙 烯 及 乙烯 的选 择 性 . 甲 醇 甲 醇作 用 生 成烯 烃 的 方法 ,这 一 技 术 为 当前 制 取 烯 烃 工 艺 中 最 保 持 了高 于 9 9 . 8 %的 转化 效 率 。 具 现代 化 条 件 的 技 术 之一 。 2 . 甲醇 制低 碳 烯 烃 ( DMT O1 的工 艺探 究
1 . 甲醇 制烯 烃( S MT O) 的 工 艺探 究
中石 化 工 集 团 中的 上 海 研 究 院 是 较 早 进 行 甲醇 制 烯 烃 工 艺 研 发 的部 门 之 一 。其 主要 是 通 过 晶 化液 内添 人 锌 盐 , 该 研 究 院 成 功制取 Z n S A P O 一 3 4的特 殊 类 型 催 化 剂 ,在 这 一 实 验 过 程 中 , 丁

甲醇制烯烃工艺流程设计与产率提高

甲醇制烯烃工艺流程设计与产率提高

甲醇制烯烃工艺流程设计与产率提高甲醇制烯烃工艺是一种重要的烃化工过程,可以通过催化剂将甲醇转化为乙烯和丙烯等烯烃产品。

本文将介绍甲醇制烯烃的工艺流程设计,并探讨提高产率的方法。

一、甲醇制烯烃工艺流程设计甲醇制烯烃的工艺流程一般包括甲醇脱水制取白炭黑、白炭黑催化裂化以及烯烃分离等步骤。

1. 甲醇脱水制取白炭黑甲醇脱水是制取白炭黑的关键步骤。

常用的方法是在合适的催化剂存在下,将甲醇加热脱水生成甲烯和水。

该反应需要在适当的温度和压力条件下进行,以提高产率和选择性。

同时,对于催化剂的选择和活性的保持也是关键。

2. 白炭黑催化裂化白炭黑催化裂化是将甲醇分解为乙烯和丙烯等烯烃的重要步骤。

在催化剂的作用下,甲醇分子发生裂解并生成烯烃产品。

选择合适的催化剂对产率和选择性都至关重要。

3. 烯烃分离烯烃与其他副产物需要经过分离步骤进行有效的分离。

传统的分离方法包括蒸馏、吸附和结晶等。

针对不同的烯烃和副产物,可以采用不同的分离组合,以提高产率和纯度。

二、提高产率的方法为了提高甲醇制烯烃的产率,可以从以下几个方面进行考虑和优化。

1. 催化剂选择和改进催化剂的选择和活性对于甲醇制烯烃的产率至关重要。

通过合理选择催化剂并对其进行改进,可以提高反应的速率和选择性,从而提高产率。

此外,催化剂的稳定性和寿命也需要考虑,以保证长期稳定的生产。

2. 工艺条件优化工艺条件的选择和优化对于提高产率非常重要。

例如,适当的反应温度和压力可以提高反应速率和产率。

此外,反应过程中的流量、停留时间、催化剂的用量等参数也需要进行优化,以达到最佳的效果。

3. 副产物的深度利用甲醇制烯烃过程中会产生一些副产物,如甲烷和二甲醚等。

合理利用这些副产物可以提高整体产率。

例如,将甲烷用作燃料供应给反应器,可以提高热能利用率。

而将二甲醚转化为更有价值的烯烃产品,则可以进一步提高产率。

4. 采用新的技术和装置随着科技的进步,新的技术和装置可以帮助提高甲醇制烯烃的产率。

甲醇制烯烃技术工艺及分析

甲醇制烯烃技术工艺及分析

第七章甲醇制烯烃7.1 甲醇制烯烃概述7.1.1简介随着天然气探明储量的不断增加、油田伴生气的利用和煤层气的开采,以及世界石油的持续短缺和资源日益枯竭,以甲烷为主要成分的天然气原料的化工利用逐渐成为国际各大石油化工公司的战略研究和开发重点。

特别是天然气制烯烃技术的开发更是重中之重,因为天然气制烯烃与传统的石脑油法相比,在装置的投资和原料成本上具有优势。

传统的石脑油、轻柴油制烯烃工业与炼油工业的发展密切相关,从油田开采的原油需经炼油装置的加工获得用于生产乙烯的石脑油和轻柴油。

过去由于炼油工业和乙烯工业大多独自建厂,导致重复建设过多、投资过大、效益低下。

而天然气制烯烃无需投资巨大的炼油装备,故装置组成简单,投资省,产品乙烯中固定成本费用大为降低。

与传统油基烯烃工艺比较,甲醇制烯烃工艺从成本上来看,当煤炭价格为250元/吨时,聚烯烃的成本价格为5440元/吨。

按当前的市场价格9500元/吨推算,利润为4060元/吨,相当于原油价格为50美元/桶时油基烯烃的利润。

随着国际市场原油价格的不断提升,以煤为原料,通过甲醇制烯烃的工艺路线在经济上有不少优势.目前,天然气制烯烃的研究开发主要集中在三种方法上。

第一是天然气直接合成制烯烃,称作一步法。

一般天然气中含有95%以上甲烷,用甲烷制取乙烯是一条较合理的工艺路线,但技术难度很大,研究工作目前尚处于实验室阶段;第二是天然气经合成气制烯烃,称为二步法,由天然气蒸汽转化制取合成气,再由合成气制乙烯,其方法是用费一托法由合成气直接制乙烯,即以CO与H2反应制烯烃,副产水和coz,该法产品分布受Andorson—Sohulz—Flory规律的限制,轻质烯烃的收率不高,近期没有工业化的可能;第三种是天然气先制成甲醇再制烯烃,称作三步法,该法又分为甲醇制乙烯、丙烯(MTO)和甲醇制丙烯(MTP)两种工艺。

生产烯烃的常规工艺路线是通过蒸汽裂化。

乙烷的裂化非常适合于NGL(液态天然气)物流丰富的地区;而且产品主要是乙烯、和少量的丙烯,特别适合提供给聚乙烯生产厂。

甲醇制烯烃技术及进展

甲醇制烯烃技术及进展

甲醇制烯烃技术概述
甲醇制烯烃技术是将甲醇通过一系列反应转化为低碳烯烃的过程。根据反应 条件和催化剂的不同,甲醇制烯烃技术主要分为两大类:直接法和间接法。直接 法是指在高温高压条件下,甲醇直接转化为烯烃;间接法则包括甲醇脱水生成二 甲醚,然后二甲醚断裂为烯烃。反应原理和主要过程如图1所示。
图1.甲醇制烯烃反应原理及主要 过程
结论
甲醇制烯烃技术作为一种高效、环保的石油替代技术,已引起了广泛和深入 研究。该技术在技术工艺、催化剂、反应条件等方面取得了显著进展,并且已在 石油替代、材料制造、医药等领域得到广泛应用。然而,甲醇制烯烃技术仍然存 在一些挑战和问题,如催化剂活性、选择性和稳定性有待进一步提高,反应条件 还需要进一步优化等。
未来,需要继续深入研究甲醇制烯烃技术,提高其效率和稳定性,降低生产 成本,以更好地满足市场需求并推动可持续发展。
谢谢观看
甲醇制烯烃技术及进展
01 引言
目录
02 甲醇制烯烃技术概述
03 图1.甲醇制烯烃反应 原理及主要过程
04 甲醇制烯烃技术进展
05 甲醇制烯烃技术应用
06 结论引言来自随着全球石油资源的日益枯竭和环境保护意识的增强,寻求替代石油的可持 续资源已成为迫切需求。甲醇制烯烃技术作为一种高效、环保的石油替代技术, 引起了广泛。本次演示将详细介绍甲醇制烯烃技术的分类、原理、进展及其在各 个领域中的应用,并探讨该技术的未来发展方向。
3、反应条件的优化
反应条件对甲醇制烯烃技术的效率和产物分布有着重要影响。近年来,研究 者们通过调控制反应温度、压力、物料流量等参数,进一步优化了反应条件。此 外,还开发了一些新型的能源回收和余热利用技术,降低了整个工艺过程的能耗。
4、产业化的前景

甲醇制烯烃的总结

甲醇制烯烃的总结

甲醇制烯烃的总结1. 简介甲醇制烯烃技术是指通过甲醇作为原料,经过一系列催化反应将其转化为烯烃的过程。

烯烃是一类重要的化工原料,广泛应用于合成高级烃类化合物(如聚乙烯、聚丙烯等)以及生产橡胶、塑料、合成纤维等产品。

本文将对甲醇制烯烃的原理、催化剂和反应机理进行总结。

2. 原理甲醇制烯烃的原理主要涉及两个步骤:甲醇脱氢和裂解。

2.1 甲醇脱氢甲醇脱氢是将甲醇分子中的氢原子去除,形成甲醛和水蒸气的反应。

脱氢反应的条件通常为高温和高压下进行,以增加反应的速率和产物的选择性。

此反应一般需要催化剂的存在,常用的催化剂包括氧化物、硅铝酸盐等。

2.2 裂解甲醇脱氢产生的甲醛可进一步通过裂解反应产生烯烃。

裂解反应是将甲醛分子中的C-C键断裂,形成低碳烯烃和不饱和烃的过程。

裂解反应条件一般为高温和高压,通过控制反应温度和催化剂的选择,可以获得不同碳数的烯烃产物。

3. 催化剂催化剂在甲醇制烯烃过程中起到了关键作用,可以促进反应速率、提高产物选择性和延长催化剂寿命。

常见的甲醇制烯烃催化剂包括氧化物催化剂和分子筛催化剂。

3.1 氧化物催化剂氧化物催化剂主要包括氧化钇、氧化钇-锆、氧化镧等。

它们具有高的烯烃选择性和良好的热稳定性,在高温和高压条件下表现出较好的催化活性。

3.2 分子筛催化剂分子筛催化剂是一种结构具有微孔和介孔的催化剂,常见的分子筛催化剂包括ZSM-5、SAPO-34等。

这些催化剂具有较大的表面积和孔容,能够提供更多的催化活性位点,并能有效抑制副反应的发生,从而提高产物的选择性。

4. 反应机理甲醇制烯烃反应机理是一个复杂的过程,涉及多个步骤和中间产物。

以下是一种常见的甲醇制烯烃反应机理:1.甲醇脱氢:甲醇在催化剂的作用下脱氢生成甲醛和水蒸气。

2.甲醛裂解:甲醛进一步通过裂解反应,形成C1至C4的低碳烯烃和不饱和烃。

3.低碳烯烃重排:低碳烯烃在催化剂的作用下发生重排反应,形成C5以上的高碳烯烃。

4.高碳烯烃裂解和重排:高碳烯烃在反应中会发生自身的裂解和重排反应,产生更高碳数的烯烃。

甲醇制烯烃_MTO_和MTP工艺

甲醇制烯烃_MTO_和MTP工艺

甲醇制烯烃(M TO)和M T P工艺甲醇制烯烃的M TO和甲醇制丙烯(M T P)是两个重要C1化工新工艺。

上世纪80年代美国M o2 b il公司在研究甲醇制汽油催化工艺时,发现以ZS M25为催化剂,通过改变工艺条件同样可将甲醇转化为乙烯、丙烯和其它低碳烯烃。

然而,取得突破性进展的是美国U O P公司和挪威N o rsk H ydro公司合作开发的以SA PO234为基础的M TO工艺。

一套粗工业甲醇加工能力为0.75t a装置在1995年6月运行90多天,其甲醇转化率始终保持接近100%,乙烯和丙烯选择性分别为55%(质量分数)和27%(质量分数)。

而且通过反应苛刻度的调节可以改变乙烯和丙烯之间的比例[1]。

近年来,由于丙烯需求量的迅速增长,致使以甲醇为原料的M T P工艺又引起广泛关注。

有报道称, 2000年全球乙烯需求量为89000k t,2000~2007年均需求增长率约4.6%。

2001年全球丙烯需求量约56000k t,年均需求增长率为5%~5.5%,超过乙烯需求增长率。

但目前丙烯65%来自蒸汽裂解制乙烯装置,30%左右来自炼厂流化催化裂化(FCC)装置[2]。

以丙烯为目的产物的丙烷脱氢所占比例甚微,大约不到5%。

因而导致丙烯价格上涨(2002.7.5丙烯为450~460美元 t,乙烯为320~340美元 t)。

增产丙烯已成为全球石化工业重要生产技术发展动向。

而M T P工艺则为增产丙烯的重要手段之一。

1 催化反应机理 以甲醇为原料制乙烯和丙烯的化学反应方程式和热效应为[3]2CH3O H→C2H4+2H2O(△H=11.72KJ m o l,427℃)3CH3O H→C3H6+3H2O(△H=30.98KJ m o l,427℃)一般认为,M TO或M T P的反应机理与甲醇制汽油的M T G工艺有相似之处,即:2CH3O H -H2O+H2OCH3O CH3(DM E)-H2OC=2~C =5异构烷烃芳烃C+5烯烃甲醇首先脱水为二甲醚(DM E),继续脱水生成包括乙烯和丙烯在内的低碳烯烃,少量低碳烯烃则以缩聚、环化、脱氢、烷基化、氢转移等反应、生成饱和烃、芳烃及高级烯烃等。

甲醇制烯烃知识点总结

甲醇制烯烃知识点总结

甲醇制烯烃知识点总结一、甲醇制烯烃的原理甲醇制烯烃的原理主要是通过甲醇在催化剂的作用下进行裂解反应,生成烯烃。

这个反应的原理是在高温下,甲醇分子结构发生改变,甲醇分子中的碳-氢键和碳-氧键被切断,产生碳碳双键,最终形成烯烃。

整个反应过程主要包括甲醇的脱氢和结构改变,形成烯烃和一定量的乙烯、甲烷等轻质烃。

二、甲醇制烯烃的催化剂在甲醇制烯烃的工艺中,催化剂是至关重要的,它直接影响了反应的产物、选择性、反应速率、催化剂的寿命等重要性能。

目前,常用的甲醇制烯烃催化剂主要包括氧化铝、硅铝酸和分子筛等,其中以分子筛作为催化剂具有较好的选择性和活性,广泛应用于甲醇制烯烃的工业生产中。

此外,还有一些金属氧化物、复合氧化物等也被研究和开发用于甲醇制烯烃反应的催化剂。

三、甲醇制烯烃的产物在甲醇制烯烃反应中,产物主要包括甲烷、乙烷、乙烯、丙烯、丁烯等烃类物质,其中乙烯是其中产量最大,且在化工行业应用最广泛的产品之一。

除了烃类产物外,还会生成一小部分的氧化铝、碳、二氧化碳和水等气体和固体产物,这些产物对甲醇制烯烃反应的进行都有一定的影响。

四、甲醇制烯烃的工艺流程甲醇制烯烃的工艺流程主要包括甲醇气化反应、甲醇制烯烃反应和产物分离、净化等步骤。

1. 甲醇气化反应:首先是将甲醇与空气或是氧气在催化剂的作用下进行气化反应,生成气态的甲醛、一氧化碳和二氧化碳等反应产物。

2. 甲醇制烯烃反应:接着,将气相的甲醛、一氧化碳和二氧化碳等反应产物在催化剂的作用下进行裂解反应,生成烯烃、甲烷和乙烯等产品。

3. 产物分离、净化:最后对产物进行分离、净化,得到高纯度的烯烃产品,以供下游加工和应用。

五、甲醇制烯烃的影响因素甲醇制烯烃反应的影响因素主要包括反应温度、反应压力、甲醇气化反应气相组成、催化剂种类和活性等因素。

1. 反应温度:一般来说,反应温度越高,裂解反应速率越快;但过高的温度会导致反应产物的选择性下降,催化剂寿命降低,因此需要在催化剂的适宜温度范围内进行反应。

甲醇制烯烃工艺流程

甲醇制烯烃工艺流程

甲醇制烯烃工艺流程甲醇制烯烃工艺流程是一种将甲醇转化为烯烃的化学过程。

在这个工艺流程中,甲醇经过一系列的催化和反应步骤,最终得到烯烃产品。

下面是甲醇制烯烃的主要工艺流程。

首先,甲醇气体经过净化步骤,除去其中的杂质。

这可以通过冷凝和吸附等方法实现,以确保甲醇的纯度达到要求。

然后,纯净的甲醇气体进入反应器。

在反应器中,甲醇与某种催化剂进行催化反应。

这个催化剂可以是氧化锆、硅钼酸盐或磷钼酸盐等。

这个反应步骤被称为甲醇脱氧反应。

在此过程中,甲醇分子中的氧原子被去除,生成甲烷和水。

接下来,甲烷与催化剂再次发生反应,发生甲烷催化转化反应。

在这个反应中,甲烷分子经过一系列的裂解、重组和转化,最终生成烯烃。

这个转化反应通常需要高温和高压条件下进行。

在甲烷催化转化反应后,产生的混合气体需要进行分离和纯化。

因为烯烃产物与其他烷烃和杂质分子有不同的物理和化学性质,所以可以通过蒸馏、吸附或溶剂提取等分离方法将它们分离出来。

分离和纯化之后,得到的纯净烯烃可以进行后续的处理和利用。

这些烯烃产物可以用于生产塑料、橡胶、合成纤维等化工产品。

它们还可以作为汽油和润滑油的添加剂,或用于制备一些特定的有机化合物。

整个甲醇制烯烃工艺流程需要控制好反应温度、压力和催化剂的选择等因素,以确保高转化率和选择性。

此外,对反应物料和产物进行合理的处理和回收,也是工艺流程中需要考虑的重要环节。

综上所述,甲醇制烯烃工艺流程是一种将甲醇通过催化反应转化为烯烃的过程。

这个工艺流程包括甲醇脱氧反应、甲烷催化转化反应和产物的分离和纯化等步骤。

通过科学合理地控制反应条件和处理工艺,可以提高烯烃的产率和质量,从而实现高效利用甲醇资源的目标。

甲醇制烯烃技术

甲醇制烯烃技术
Page 17
反应单器击的此选处择编辑母版标题样式
地开发具有我国自主知识产权的DMTO工艺技术,洛阳石油化工工程 公司与大连化物所、陕西省新兴煤化工有限公司决定分两步合作实施 1-1.5Mt/a规模DMTO装置建设。 2、MTO工艺的中试试验数据 UOP/HYDRO-MTO工业性示范装置(甲醇加工能力为0.75t/d)采用 最大量生产乙烯方案时,C2与C3比值为1.45。如果将工艺条件改变为 多产丙烯方案,C2与C3比值可降低到0.75。目前大连化物所中试的乙 烯质量收率与UOP公司相当,质量收率可以达到22%~24%,丙烯质 量收率达到12%~14%。
可形成烯烃
氧合内合 A
盐机理
其它反应机理 E
反应机理
C 串连型机理
2C1→C2H4+ H2O C2H4+ C1→C3H6 C3H6+ C1→C4H8
D 平行型机理
Page 13
反单应击热此效处应编辑母版标题样式
反应为放热反应。由于大量放热使反应器温度剧升,导致甲醇结焦加 剧,并有可能引起甲醇的分解反应发生,反应温度不能过低,否则主 要生成二甲醚。所以,当达到生成低碳烯烃反应温度(催化剂活性温 度)后,应该严格控制反应温度的失控。
性。
分子筛催化剂的制备
分子筛催化剂的研究
Page 15
三单、击甲此醇处制编烯辑烃母工版艺标条题件样式
反应温度
高温利于产物中 n (乙烯) / n (丙烯) 值的提高 ,高于 723 K时 ,催化 剂的积炭速率加 速 ,400℃左右
原料空速
过低和过高的原 料空速都会降低 产物中的低碳烯 烃收率 ,过高会 加快催化剂表面 的积炭生成速率
季铵催微碱化米类剂到,或几但再十价生纳格后米较的之高催间,化,长剂过期与滤以反、来应水改物洗用料等便接操宜触作的后比模表较板现困剂出难或一。C个han 少用诱g等模导通板期过剂,加是对入分分絮子子凝筛筛剂合催,成化使方剂这面进些的行操研预作究处变重理得点,更。使加其容在易孔。中但先会生使制 ➢G成备u一的th定催等的化用结剂吗焦耐啉或磨和烃强H类度F作物降模质低板,。剂然将成后过功再滤合催的成化湿了甲分S醇子A转筛P化O物-,料3是4先提经过1

甲醇制烯烃技术

甲醇制烯烃技术

甲醇制烯烃技术甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要为在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SAPO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。

根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(methanol-to-olefin ,MTO,甲醇制丙烯(methanol-to-propylene ,MTP。

MTC工艺的代表技术有环球石油公司(UOP)和海德鲁公司(Norsk Hydro)共同开发的UOP/Hydro MTOJ术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP工艺的代表技术有鲁奇公司(Lurgi )开发的Lurgi MTP技术和我国清华大学自主研发的FMTP技术。

甲醇制烯烃的基本原理在一定条件(温度、压强和催化剂)下,甲醇蒸汽先脱水生成二甲醚,然后二甲醚与原料甲醇的平衡混合物气体脱水继续转化为以乙烯、丙烯为主的低碳烯烃;少量C2〜C5的低碳烯烃由于环化、脱氢、氢转移、缩合、烷基化等反应进一步生成分子量不同的饱和烃、芳烃、C6+烯烃及焦炭。

整个反应过程可分为两个阶段:脱水阶段、裂解反应阶段1、脱水阶段2CH3OH R CH3OCH3+ H2O + Q2、裂解反应阶段该反应过程主要是脱水反应产物二甲醚和少量未转化的原料甲醇进行的催化裂解反应,包括:(1)主反应(生成烯烃)n CH304 Cn H2n + nH20 + Qn CH30CH4 2CnH2n + nH20 + Qn = 2和3 (主要),4、5和6 (次要)以上各种烯烃产物均为气态。

(2)副反应(生成烷烃、芳烃、碳氧化物并结焦)(n+ 1)CH30F R CnH2n+ 2+ C+(n+ 1)H20 + Q(2n+ 1)CH30F R 2CnH2n+ 2+ C0^ 2nH20 + Q(3 n + 1)CH30F R3CnH2r+ 2+ C0+ (3n —1)H20 + Qn= 1 , 2 , 3 , 4 , 5 ...............n CH30CH4 CnH2n-6+ 3 H2 + n H20 + Qn= 6 ,7,8 .........以上产物有气态(C0 H2、H20 C02 CH4等烷烃、芳烃等)和固态(大分子量烃和焦炭)之分。

甲醇制烯烃

甲醇制烯烃
Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯, 最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。
UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性 进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。
技术简介
技术简介
甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化 工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化 工技术。
上世纪七十年代美国Mobil公司在研究甲醇使用ZSM-5催化剂转化为其它含氧化合物时,发现了甲醇制汽油 (Methanol to Gasoline,MTG)反应。1979年,新西兰政府利用天然气建成了全球首套MTG装置,其能力为75 万吨/年,1985年投入运行,后因经济原因停产。
从国外发表的专利看,MTO又做了一些新的改进。
1、以二甲醚(DME)作MTO中间步骤
水或水蒸气对催化剂有一定危害性,减少水还可节省投资和生产成本,生产相同量的轻质烯烃产生的水,甲 醇是二甲醚的两倍,所以装置设备尺寸可以减小,生产成本也可下降。
技术发展现状
技术发展现状
中科院大连化物所是国内最早从事MTO技术开发的研究单位。该所从上世纪八十年代便开展了由甲醇制烯烃 的工作。“六五”期间完成了实验室小试,“七五”期间完成了300吨/年(甲醇处理量)中试;采用中孔ZSM-5 沸石催化剂达到了当时国际先进水平。90年代初又在国际上首创“合成气经二甲醚制取低碳烯烃新工艺方法(简 称SDTO法)”,被列为国家“八五”重点科技攻关课题。该新工艺是由两段反应构成,第一段反应是合成气在以 金属-沸石双功能催化剂上高选择性地转化为二甲醚,第二段反应是二甲醚在SAPO-34分子筛催化剂上高选择性地 转化为乙烯、丙烯等低碳烯烃。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 其次是由乙烯生产的二氯乙烷和氯乙烯; ➢ 乙烯氧化可制环氧乙烷和乙二醇; ➢ 另外乙烯烃化可制苯乙烯,乙烯氧化制乙醛、乙烯
合成酒精、乙烯制取高级醇等。 聚乙烯的作用:可用于薄膜制品,其次是管材、
注射成型制品、电线包裹层、包装袋等 ,常见 制品:手提袋、水管、油桶、饮料瓶(钙奶 瓶)、日常用品等。
聚丁二烯主要用作合成橡胶,并常与天然橡胶、 丁苯橡胶并用,制造轮胎的胎面和胎体,此外由 于耐磨性好,也用于鞋底、输送带、车辆零件等。 1,2- 聚丁二烯用于胶粘剂和密封剂。
天然气 ④
煤炭 含碳有机物
甲烷氧化偶联
合成气 CO+nH2
甲醇 ①
二甲醚
③ 二甲醚 ②
图 几种生产低碳烯烃可行技术路线示意图
– 1984年进行过9个月在使用ZSM-5催化剂的中试实验中, 在列管式反应器中进行甲醇转化制烯烃的工艺流程发现: 甲醇扩散到催化剂孔中进行反应,首先生成二甲醚,然后 生成乙烯,反应继续进行,生成丙烯、丁烯和高级烯烃, 但在此过程中,由于在大孔沸石上的反应会迅速结焦,催 化剂的寿命尚不理想。
催化剂的研究进展(P68)
乙烯
➢ 它是一种无色易燃的气 态链烯烃,无色气体, 略具烃类特有的臭味 ;
➢ 分子式:C2H4,结构 式:CH2=CH2;
➢ 溶解性: 不溶于水,微 溶于乙醇、酮、苯,溶 于醚;
➢ 健康危害: 具有较强的 麻醉作用 。
分子立体模型
乙烯主要用途
➢ 乙烯用量最大的是生产聚乙烯(PE),约占乙烯 耗量的45%;
催化剂的研究进展(P69)
➢SAPO-34(磷酸硅铝)分子筛催化剂:
─ 该类催化剂的特点: SAPO-34 分子筛催化剂 孔径只允许乙烯、丙烯和少量的C4通过,不会 产生重的烃类产品。
─环球油品公司(UOP)开发的MTO-100 ,乙烯、 丙烯比率可以在0.75-1.5之间调节,而且乙烯 和丙烯的纯度均在99.6%以上,可直接满足聚 合级丙烯和乙烯的要求。
甲醇制低碳烯烃 (P63)
➢甲醇制低碳烯烃可分:烯烃(Methanol to olefin, MTO )和甲醇制丙烯(Methanol to Propylene,MTP)
➢最常用的催化剂为:甲醇制烯烃过程中最 有效的催化剂就是SAPO-34(磷酸硅铝) 分子筛。
§甲醇制低碳烯烃的主要反应
➢ MTO /MTP的反应机理是在催化剂作用下甲醇先脱水生成 二甲醚(DME) ,然后DME与原料甲醇的平衡混合物脱水继 续转化为以乙烯、丙烯为主的低碳烯烃,少量C1 ~C5 的 低碳烯烃进一步反应生成分子量不同的饱和烃、芳烃、 C6 +烯烃及焦炭。
1-丁烯
无色气体 ,易燃,与空气混合能形成爆炸性混合 物。遇热源和明火有燃烧爆炸的危险。
分子式: C4H8 ,结构式:CH2=CH-CH2-CH3; 溶解性: 不溶于水,微溶于苯,易溶于乙醇、乙
醚。
健康危害: 有轻度麻醉和刺激作用,并可引起窒 息。
主要用途: 用于制丁二烯、异戊二烯、合成橡胶 等。
➢含金属的沸石催化剂:
─ 美国得克萨斯AM大学开发多功能催化剂:该机 构进行了40多种催化剂活性试验,发现含钨催 化剂对合成低碳烃类有效,烯烃收率达34%;
─ 德国巴斯夫公司研制出了分别含铁、铬及高硅 铝比的ZSM-5沸石和砷沸石2~C4烯 烃占70%~80%。
第三章 低碳烯烃合成技术
章结兵 西安科技大学化学与化工学院
低碳烯烃的定义和制备方法(P63)
➢低碳烯烃通常是指碳原子数≤4的烯烃,如乙 烯、丙烯及丁烯等 。低碳烯烃是石油化工 生产最基本的原料,可以用于生产如聚乙 烯、聚丙烯、丙烯腈、环氧乙烷或者乙二 醇之类的有机化合物。
➢制取低碳烯烃的方法主要有两大类:一是 石油路线;二是非石油路线 。由于考虑能 源危机问题,优选非石油路线。
丙烯
➢ 它为易燃、无色、有 烃类气味的气体;
➢ 分子式: C3H6 ,结构 式:CH2=CH-CH3;
➢ 溶解性: 溶于水、乙 醇。
➢ 健康危害:本品为单 纯窒息剂及轻度麻醉 剂。
分子立体模型
丙烯主要用途
➢丙烯用量最大的是生产聚丙烯,另外丙烯可 制丙烯腈、异丙醇、苯酚和丙酮、丁醇和辛 醇、丙烯酸及其脂类以及制环氧丙烷和丙二 醇、环氧氯丙烷和合成甘油等。
低碳 烯烃
低碳烯烃可行技术路线
➢甲醇制低碳烯烃 ; ➢二甲醚制低碳烯烃 ; ➢合成气制低碳烯烃 ; ➢天然气制低碳烯烃 。
1.甲醇制低碳烯烃
➢甲醇制取低碳烯烃(MTO)技术是以煤/ 或天然气为原料制取基本有机化工原料乙 烯和丙烯的非石油原料路线,不仅能减轻 和缓解对石油的需求和依赖,保障国家能 源安全,也为我国实施石油替代战略提供 一条切实可行的新技术途径。
甲醇制取烯烃技术的关键:催化剂的活性和选择 性以及相应的工艺流程设计。其研究的重点主要集 中在催化剂的筛选和制备。
催化剂的研究进展(P68)
➢ 沸石分子筛催化剂:美国Mobil公司在1976年首先报 道了甲醇制烯烃的研究 ,其催化剂主要是以ZSM-5 沸石分子筛为基础。当甲醇通过HZSM-5、Sb2O3ZSM-5、P- ZSM-5和ZSM-34沸石催化剂时,甲醇裂 解的产品主要是低碳烯烃。
中国乙烯工业的发展
➢中国乙烯存在巨大的市场缺口和消费增长 空间,国产乙烯的市场占有率一直较低。 为缓解国内乙烯供应紧张,满足国内经济 发展需求,虽然中国石油、中国石化和中 海油加快实施乙烯扩能计划,但预计到 2010年中国乙烯当量消费供需缺口仍将达 1119万吨。从整体情况看,中国乙烯工业 还有较大的发展空间。
─ 聚丙烯(PP):包装行业;工程防水材料;汽 车工业 ;家用电器 ;管材 等,常见制品:盆、 桶、家具、薄膜、编织袋、瓶盖、汽车保险杠 等。
─ 丙烯腈:它是合成塑料、橡胶、纤维等高聚物 的原料。
丙烯的发展前景
➢到2010年,中国丙烯的表观消费量将达到 1049万吨。从当量需求来看,丙烯供需矛 盾十分突出。到2010年,丙烯当量需求的 年均增长率将达到7.6%,超过丙烯生产能 力的增长速度。预计到2010年,中国对丙 烯的当量需求将达到1905万吨,供需缺口 将达到825万吨,届时还将有大量丙烯衍生 物进口,中国丙烯开发利用前景广阔。
相关文档
最新文档