幂的运算 基础练习
幂的运算练习题
![幂的运算练习题](https://img.taocdn.com/s3/m/1b8987943086bceb19e8b8f67c1cfad6195fe9df.png)
幂的运算练习题幂的运算练习题在数学中,幂是一种常见的运算方式。
它可以表示一个数的多次乘积,也可以用于解决各种实际问题。
在这篇文章中,我们将通过一些练习题来巩固和加深对幂运算的理解。
1. 计算幂的基本运算a) 计算2的3次幂。
b) 计算4的平方根的平方。
c) 计算5的0次幂。
解答:a) 2的3次幂等于2 × 2 × 2,结果为8。
b) 4的平方根是2,2的平方等于4。
c) 5的0次幂等于1,任何数的0次幂都等于1。
2. 幂的乘法和除法a) 计算2的4次幂乘以3的2次幂。
b) 计算8的3次幂除以2的6次幂。
解答:a) 2的4次幂等于2 × 2 × 2 × 2,结果为16。
3的2次幂等于3 × 3,结果为9。
因此,2的4次幂乘以3的2次幂等于16 × 9,结果为144。
b) 8的3次幂等于8 × 8 × 8,结果为512。
2的6次幂等于2 × 2 × 2 × 2 × 2 × 2,结果为64。
因此,8的3次幂除以2的6次幂等于512 ÷ 64,结果为8。
3. 幂的零次方和负次方a) 计算3的零次幂。
b) 计算2的负2次幂。
解答:a) 3的零次幂等于1,根据前面的解答可知,任何数的零次幂都等于1。
b) 2的负2次幂等于1 ÷ (2 × 2),结果为1/4,即0.25。
4. 幂的混合运算a) 计算(2的3次幂)的平方。
b) 计算(3的2次幂)的平方根。
解答:a) 2的3次幂等于8,8的平方等于8 × 8,结果为64。
b) 3的2次幂等于9,9的平方根等于3。
通过以上练习题,我们可以看到幂运算的一些基本规律和特点。
幂运算在数学中有着广泛的应用,特别是在代数、几何和物理等领域。
掌握幂运算的基本概念和运算规则,对于理解和解决各种数学问题非常重要。
幂的运算实数练习题
![幂的运算实数练习题](https://img.taocdn.com/s3/m/eaf9b6865122aaea998fcc22bcd126fff7055df2.png)
幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。
17. 一个数的平方是64,求这个数。
18. 一个数的立方是216,求这个数。
19. 如果一个数的平方根是4,求这个数的平方。
20. 如果一个数的立方根是3,求这个数的立方。
五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。
完整版)幂的运算练习题
![完整版)幂的运算练习题](https://img.taocdn.com/s3/m/1b14cd08590216fc700abb68a98271fe910eaf99.png)
完整版)幂的运算练习题幂的运算练题(每日一页)基础能力训练】一、同底数幂相乘1.下列语句正确的是()A。
同底数的幂相加,底数不变,指数相乘;B。
同底数的幂相乘,底数合并,指数相加;C。
同底数的幂相乘,指数不变,底数相加;D。
同底数的幂相乘,底数不变,指数相加答案:D2.a4·am·an=()A。
a4m B。
a4(m+n) C。
am+n+4 D。
am+n+4答案:B3.(-x)·(-x)8·(-x)3=()A。
(-x)11 B。
(-x)24 C。
x12 D。
-x12答案:A4.下列运算正确的是()A。
a2·a3=a6 B。
a3+a3=2a6 C。
a3a2=a6 D。
a8-a4=a4答案:C5.a·a3x可以写成()A。
(a3)x+1 B。
(ax)3+1 C。
a3x+1 D。
(ax)2x+1 答案:C6.计算:100×100m-1×100m+1答案:m+17.计算:a5·(-a)2·(-a)3答案:-a108.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)答案:-2(x-y)7二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(am)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.答案:(1)a56;(2)10^5m;(3)a3m;(4)b10m;(5)a1410.下列结论正确的是()A。
幂的乘方,指数不变,底数相乘;B。
幂的乘方,底数不变,指数相加;C。
a的m次幂的n次方等于a的m+n次幂;D。
a的m次幂的n次方等于a的mn次幂答案:B11.下列等式成立的是()A。
(102)3=105 B。
(a2)2=a4 C。
(am)2=am+2 答案:B12.下列计算正确的是()A。
高中幂运算练习题及讲解
![高中幂运算练习题及讲解](https://img.taocdn.com/s3/m/be0c113e1fd9ad51f01dc281e53a580216fc50c3.png)
高中幂运算练习题及讲解题目1:基础幂运算计算以下表达式的值:1. \( a^3 \)2. \( b^2 \)3. \( (-2)^3 \)4. \( (-3)^4 \)答案:1. 需要知道 \( a \) 的值才能计算。
2. 需要知道 \( b \) 的值才能计算。
3. \( (-2)^3 = -8 \)4. \( (-3)^4 = 81 \)题目2:幂的乘法计算以下表达式的值:1. \( (x^2)^3 \)2. \( (y^3)^2 \)3. \( (-2)^2 \cdot (-2)^3 \)答案:1. \( (x^2)^3 = x^6 \)2. \( (y^3)^2 = y^6 \)3. \( (-2)^2 \cdot (-2)^3 = 4 \cdot (-8) = -32 \) 题目3:幂的除法计算以下表达式的值:1. \( \frac{x^6}{x^2} \)2. \( \frac{y^8}{y^4} \)3. \( \frac{(-3)^6}{(-3)^2} \)答案:1. \( \frac{x^6}{x^2} = x^4 \)2. \( \frac{y^8}{y^4} = y^4 \)3. \( \frac{(-3)^6}{(-3)^2} = 729 \) 题目4:幂的乘方计算以下表达式的值:1. \( (x^2)^4 \)2. \( (y^3)^3 \)3. \( (-2)^6 \)答案:1. \( (x^2)^4 = x^8 \)2. \( (y^3)^3 = y^9 \)3. \( (-2)^6 = 64 \)题目5:组合幂运算计算以下表达式的值:1. \( (x^2y^3)^2 \)2. \( (3a^2b^3)^2 \)3. \( (-4x^2y^3)^3 \)答案:1. \( (x^2y^3)^2 = x^4y^6 \)2. \( (3a^2b^3)^2 = 9a^4b^6 \)3. \( (-4x^2y^3)^3 = -64x^6y^9 \)题目6:零指数幂计算以下表达式的值:1. \( a^0 \)2. \( (-3)^0 \)3. \( (2x)^0 \)答案:1. \( a^0 = 1 \)(对于任何非零的 \( a \))2. \( (-3)^0 = 1 \)3. \( (2x)^0 = 1 \)(对于任何非零的 \( x \))题目7:负指数幂计算以下表达式的值:1. \( a^{-2} \)2. \( (-3)^{-1} \)3. \( (2x)^{-3} \)答案:1. \( a^{-2} = \frac{1}{a^2} \)2. \( (-3)^{-1} = -\frac{1}{3} \)3. \( (2x)^{-3} = \frac{1}{(2x)^3} \)幂运算讲解幂运算是代数学中的基础概念,它涉及到将一个数(称为底数)自身乘以自身若干次(称为指数)。
幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点
![幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点](https://img.taocdn.com/s3/m/4beaf72554270722192e453610661ed9ac515570.png)
第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)1. 计算32m m ÷的结果是( )A. mB. m 2C. m 3D. m 5(2023春·江苏·七年级专题练习)2. 已知32816x x ⨯=,则x 的值为( )A. 2B. 3C. 4D. 5(2023春·江苏·七年级专题练习)3. 计算23m m ⋅的结果是( )A. 6mB. 5mC. 6mD. 5m(2023春·江苏·七年级专题练习)4. 计算()32a a - 的结果是( )A. 6aB. 6a -C. 5aD. 5a -(2022春·江苏常州·七年级常州市清潭中学校考期中)5. 下列计算正确的是( )A. 236a a a+= B. 236a a a ⨯=C. 826a a a ÷=D. ()437a a =(2023春·江苏·七年级专题练习)6. 计算:()323·a a -结果为( )A. 9a -B. 9aC. 8aD. 8a (2023春·江苏·七年级专题练习)7. 如果()21633n =,则n 的值为( )A. 3B. 4C. 8D. 14(2022春·江苏连云港·七年级统考期中)8. 目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是( )A. 41.210⨯ B. 41.210⨯﹣ C. 50.1210⨯ D. 50.1210⨯﹣(2023春·江苏·七年级专题练习)9. 下列运算正确的是( )A. 842x x x ÷= B. ()239xx =C. 437x x x ⋅= D. ()22222xy x y =(2022秋·江苏·七年级专题练习)10. 式子5555555555++++化简的结果是( )A. 25 B. 55 C. 65 D. 555+二、填空题(2022春·江苏泰州·七年级校考阶段练习)11. 把数字0.0000009用科学记数法表示为 _____.(2023春·江苏·七年级专题练习)12. 计算:()22y -= ___.(2021春·江苏泰州·七年级校考期中)13. 4月9日,以“打造城市硬核 塑造都市功能”为主题的2021泰州城市推介会在中国医药城会展交易中心举行,某出席企业研制的溶液型药物分子直径为0.00000008厘米,该数据用科学记数法表示为______厘米.(2021春·江苏南京·七年级南京钟英中学校考期中)14. 在()()22323xy x y =的运算过程中,依据是______.(2022秋·江苏·七年级校考阶段练习)15. 计算:9999188⎛⎫⨯-= ⎪⎝⎭_____________.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)16. 计算:(1)()102132363π-⎛⎫--⨯+- ⎪⎝⎭(2)()()333nnn a a a a +-⋅(2023春·江苏·七年级专题练习)17. 计算:()()()3443x x x x ⋅+-⋅---.(2021春·江苏苏州·七年级苏州草桥中学校考期中)18. 计算:3272(2)a a a a -⋅+÷.(2022春·江苏连云港·七年级校考期中)19. 计算: ()100100133⎛⎫⨯- ⎪⎝⎭.(2022春·江苏宿迁·七年级统考期中)20. 我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快.科学家们发现,光在空气中的传播速度约为8310m/s ⨯,而声音在空气中的传播速度约为300m /s .问:在空气中光的传播速度是声音的多少倍?(结果用科学记数法表示)【常考】一.选择题(共4小题)(2022春•江阴市校级月考)21. 计算(﹣0.25)2022×42021的结果是( )A. ﹣1B. 1C. 0.25D. 44020(2022春•吴江区期中)22. 计算()234a 的正确结果是( )A. 616a B. 516a C. 68a D. 916a (2022春•沛县月考)23. 下列运算正确的是( )A. 2242x x x += B. 236x x x ⋅=C. 236()x x = D. 22(2)4x x -=-(2021春•秦淮区期末)24. 下列计算正确的是( )A. 235a a a += B. 236a a a ⋅= C. ()326a a = D. 624a a a ÷=二.填空题(共8小题)(2022春•亭湖区校级期末)25. H9N2型禽流感病毒的病毒粒子的直径在0.00008毫米~0.00012毫米之间,数据0.00012用科学记数法可以表示为_____.(2022春•邗江区期末)26. 若x +y =3,则2x •2y 的值为_____.(2021春•惠山区校级期中)27. 已知2,4x y m m ==,则x y m +=_____.(2022春•浦口区校级月考)28. 计算:22(2)xy - =____________________.(2022春•泰兴市校级月考)29. 16=a 4=2b ,则代数式a+2b=__.(2022春•广陵区期末)30. 已知a m =3,a n =2,则a 2m ﹣n 的值为_____.(2021春•梁溪区期中)31. 已知2x =3,2y =5,则22x+y-1=_____.(2020春•丹阳市校级月考)32. 若0(1)1x -=,则x 满足条件__________.三.解答题(共8小题)(2021春•高新区校级月考)33. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春•建邺区校级期中)34. 如果c a b =,那么我们规定(),a b c =,例如:因为328=,所以()2,83=(1)根据上述规定,填空:()3,27= ,()4,1= ,()2,0.25= ;(2)记()()()3,5,3,6,3,30a b c ===.求证:a b c +=.(2021春•东台市月考)35. 若105x =,103y =,求2310x y +的值.(2022春•宝应县校级月考)36. (1)若10x =3,10y =2,求代数式103x +4y 的值.(2)已知:3m +2n ﹣6=0,求8m •4n 的值.(2022春•亭湖区校级月考)37. 阅读下列材料:若32a =,53b =,则,a b 的大小关系是a_____b.(填“<”或“>”)解:因为15355()232a a ===,15533()327b b ===,32>27,所以1515a b >,所以a b >解答下列问题:(1)上述求解过程中,逆用的幂的运算性质是:A.同底数幂的乘法 B.同底数幕的除法C.幂的乘方D.积的乘方(2)已知72x =,93y =,试比较x 与y 的大小.(2020秋•淇滨区校级月考)38. 已知2,3m n x x ==,求32m n x -的值.(2021春•高新区校级月考)39. 已知23,25x y ==.求:(1)2x y +的值;(2)32x 的值;(3)212x y +-的值.(2020•盐城二模)40. 计算:()0112π42-----【易错】一.选择题(共4小题)(2022春•吴江区校级期中)41. 新型冠状病毒呈圆形或者椭圆形,最大直径约0.00000014米,怕酒精,不耐高温,相信我们团结一心,必定早日战胜病毒.用科学记数法表示新冠病毒的直径是( )A. 61410⨯﹣ B. 71410⨯﹣ C. 61.410⨯﹣ D. 71.410⨯﹣(2022春•东海县期末)42. 算式35-可以表示为( )A. ()()()()()33333-⨯-⨯-⨯-⨯- B.1555⨯⨯C. ()()()()()33333-+-+-+-+- D. 555-⨯⨯(2022春•相城区期末)43. 下列运算中,正确的是( )A. 2221a a -= B. ()2222a a = C. 633a a a ÷= D. 428a a a ⋅=(2022春•工业园区校级期中)44. 下列运算正确的是( )A. 326a a a ⋅= B. 323a a a +=C. ()3339a a-=- D. ()236aa -=二.填空题(共7小题)(2022春•丹阳市期末)45. 每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.(2022春•宜兴市校级月考)46. (1)若2•4m •8m =221,则m =_____.(2)若3x ﹣5y ﹣1=0,则103x ÷105y =_______.(2022秋•通州区期中)47. 计算:()02-=__.(2021春•宝应县月考)48. 若()3n n -的值为1,则n 的值为__.当x __时,()0241x -=(2020春•高新区期中)49. 20182019133⎛⎫⨯-= ⎪⎝⎭________.(2022春•相城区校级期末)50. 若416m =,28n =,则22m n -=________.(2019春•滨湖区期中)51. 计算:()2020201940.25⨯-_______.三.解答题(共5小题)(2022春•盐都区月考)52. 若a m =a n (a >0且a ≠1,m ,n 是正整数),则m =n .你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!(1)如果2×8x ×16x =222,求x 的值;(2)已知9n +1﹣32n =72,求n 的值.(2022春•江阴市校级月考)53. 计算:()()2020********π-⎛⎫----+- ⎪⎝⎭.(2022春•泰兴市校级月考)54. 世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,体长仅0.021厘米,其质量也只有0.000005克.(1)用科学记数法表示上述两个数据.(2)一个鸡蛋的质量大约是50克,多少只卵蜂的质量和与这个鸡蛋的质量相等?(2020春•沭阳县期中)55. 已知:23a =,25b =,275c =.(1)求22a 的值;(2)求2c b a -+的值.(2022春•江都区月考)56. (1)已知a +3b =4,求3a ×27b 的值;(2)解关于x 的方程4321313155x x x +++⨯=.【压轴】一、单选题(2021春·江苏无锡·七年级宜兴市实验中学校考期中)57. 计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( )A.25033333⋅⋅⋅ 个B.26033333⋅⋅⋅ 个C.27033333⋅⋅⋅ 个D.28033333⋅⋅⋅ 个(2023春·七年级单元测试)58. 设m ,n 是正整数,且m n >,若9m 与9n 的末两位数字相同,则m n -的最小值为( )A. 9B. 10C. 11D. 12(2022春·江苏无锡·七年级校考阶段练习)59. 计算20206060(0.125)(2)-⨯的结果是( )A. 1B.1- C. 8 D. 8-(2022春·江苏·七年级专题练习)60. 观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2 ,若1002S =,用含S 的式子表示这组数据的和是( )A. 22S S -B. 22S S +C. 222S S -D. 2222S S --二、填空题(2022春·江苏扬州·七年级校考阶段练习)61. 已知23a =,26b =,212c =,现给出3个数a ,b ,c 之间的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④2b a =+.其中,正确的关系式是____(填序号).(2022春·江苏扬州·七年级校考期中)62. 已知5160x =,32160y =,则(1)(1)1(2022)x y ----=__________.(2022秋·江苏南通·七年级南通田家炳中学校考阶段练习)63. 计算:202320222021(0.125)24-⨯⨯=________.(2023春·七年级单元测试)64. 观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++ ,若502a =,则用含a 的代数式表示下列这组数50515299100222.....22++++的和_________.(2022春·江苏·七年级专题练习)65. 已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.三、解答题(2023春·江苏·七年级专题练习)66. 规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(5,25)=,(2,1)=,(3,19)=.(2)小明在研究这种运算时发现一个特征:(3n ,4n )=(3,4),并作出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n .所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法证明下面这个等式:(3,2)+(3,5)=(3,10).(2023春·江苏·七年级专题练习)67. 如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:d (10)=____ ,d (10-2)=______;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn)=d (m )-d (n );根据运算性质,填空:3()()d a d a =________.(a 为正数)(3)若d (2)=0.3010,分别计算d (4);d (5).(2023春·江苏·七年级专题练习)68. 阅读下列材料:按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,⋯为等比数列,其中11a =,公比为3q =.然后解决下列问题.(1)等比数列3,6,12,⋯的公比q 为 ,第4项是 .(2)如果已知一个等比数列的第一项(设为1)a 和公比(设为)q ,则根据定义我们可依次写出这个数列的每一项:1a ,1a q ,21a q ,31a q ,⋯.由此可得第n 项n a = (用1a 和q 的代数式表示).(3)若一等比数列的公比2q =,第2项是10,求它的第1项与第4项.(4)已知一等比数列的第3项为12,第6项为96,求这个等比数列的第10项.(2023春·七年级单元测试)69. 阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)(2023春·江苏·七年级专题练习)70. 阅读下列材料,并解决下面的问题:我们知道,加减运算是互逆运算,乘除运算也是互逆运算,其实乘方运算也有逆运算,如我们规定式子328=可以变形为25log 83log 252==,也可以变形为2525=.在式子328=中,3叫做以2为底8的对数,记为2log 8.一般地,若()010n a b a a b =≠>且,>,则n 叫做以a 为底b 的对数,记为()a log log a b b n 即,=且具有性质:()log log log log log log n n a a a a a a b n b a n M N M N ==+=⋅①;②;③,其中0a >且100.a M N ≠,>,>根据上面的规定,请解决下面问题:(1)计算:31010log 1_____log 25log 4=+=, _______(请直接写出结果);(2)已知3log 2x =,请你用含x 的代数式来表示y ,其中3log 72y =(请写出必要的过程).(2022春·江苏·七年级专题练习)71. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春·江苏宿迁·七年级统考阶段练习)72. (1)你发现了吗?2222()333=⨯,22211133()222322()333-==⨯=⨯,由上述计算,我们发现2223(___(32-;(2)请你通过计算,判断35()4与34(5-之间的关系;(3)我们可以发现:()m b a -____()m a b(0)ab ≠(4)利用以上的发现计算:3477()()155-⨯.(2022秋·江苏·七年级专题练习)73. 观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)【1题答案】【答案】A【解析】【分析】根据同底数幂的除法法则进行解答即可.【详解】解: 3232m m m m -÷==.故选:A .【点睛】此题主要考查了同底数幂的除法运算,底数不变,指数相减,正确掌握相关运算法则是解题关键.(2023春·江苏·七年级专题练习)【2题答案】【答案】B【解析】【详解】根据幂的乘方,可得同底数幂的乘法,根据同底数的幂相等,可得指数相等,可得答案.【解答】解:由题意,得34122222x x x ⋅==,412x =,解得3x =,故选:B .【点睛】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.(2023春·江苏·七年级专题练习)【3题答案】【答案】D【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】解:原式235m m +==,故选D .【点睛】本题考查了同底数幂的乘法,掌握m n m n a a a +⋅=是解题的关键.(2023春·江苏·七年级专题练习)【4题答案】【答案】D【解析】【分析】利用同底数幂的乘法的法则进行求解即可.【详解】解:()32a a - =32a +-=5a -.故选:D【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.(2022春·江苏常州·七年级常州市清潭中学校考期中)【5题答案】【答案】C【解析】【分析】依据合并同类项,同底数幂的乘除法法则、幂的乘方法则进行判断,即可得出结论.【详解】解:A .235a a a +=,故错误,不合题意;B .235a a a ⨯=,故错误,不合题意;C .826a a a ÷=,故正确,符合题意;D .()1432a a =,故错误,不合题意;故选:C .【点睛】本题主要考查了合并同类项,同底数幂的乘除法、幂的乘方,掌握幂的运算法则是解题的关键.(2023春·江苏·七年级专题练习)【6题答案】【答案】A【解析】【分析】利用幂的乘方的法则及同底数幂的除法的法则对式子进行运算即可.【详解】解:()323639··a a a a a -=-=-.故选:A .【点睛】本题主要考查了同底数幂的除法,幂的乘方;解答的关键是对相应的运算法则的掌握.(2023春·江苏·七年级专题练习)【7题答案】【答案】C【解析】【分析】把左边的数化成底数是3的幂的形式,然后利用利用相等关系,可得出关于n 的相等关系,解即可.【详解】解:∵()2233nn =,∴21633n =,∴216n =,∴8n =.故选:C .【点睛】本题考查了幂的乘方,掌握幂的乘方运算公式是关键.(2022春·江苏连云港·七年级统考期中)【8题答案】【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.00012 1.210.-=⨯故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2023春·江苏·七年级专题练习)【9题答案】【答案】C【解析】【分析】分别根据同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法则对各选项进行计算即可.【详解】解:A .原式4x =,故本选项错误,不合题意;B .原式6x =,故本选项错误,不合题意;C .原式7x =,故本选项正确,符合题意;D .原式224x y =,故本选项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法,解题的关键是掌握同底数幂的乘法(除法),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方,(2022秋·江苏·七年级专题练习)【10题答案】【答案】C【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:555555655555555++++=⨯=.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(2022春·江苏泰州·七年级校考阶段练习)【11题答案】【答案】7910-⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:70.0000009910-=´,故答案为:7910-⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.(2023春·江苏·七年级专题练习)【12题答案】【答案】4y 【解析】【分析】根据幂的乘方法则计算,即可求解.【详解】解:()422y y -=.故答案为:4y .【点睛】本题主要考查了幂的乘方,熟练掌握幂的乘方,底数不变,指数相乘是解题的关键.(2021春·江苏泰州·七年级校考期中)【13题答案】【答案】8810-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2021春·江苏南京·七年级南京钟英中学校考期中)【14题答案】【答案】积的乘方运算法则【解析】【分析】根据积的乘方法则∶把每一个因式分别乘方,再把所得的幂相乘可得答案.【详解】解∶在()()22323xy x y =的运算过程中,依据是积的乘方运算法则,故答案为∶积的乘方运算法则.【点睛】此题主要考查了单项式乘法和积的乘方,关键是掌握积的乘方计算法则.(2022秋·江苏·七年级校考阶段练习)【15题答案】【答案】-1【解析】【分析】根据积的乘方的逆用进行计算即可得.【详解】解:原式=9918(8⎡⎤⨯-⎢⎥⎣⎦=99(1)-=-1故答案为:-1.【点睛】本题考查了积的乘方的逆用,解题的关键是掌握积的乘方的逆用并正确计算.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)【16题答案】【答案】(1)14-(2)332n n a a +-【解析】【分析】(1)根据乘方运算,负指数幂的运算,非零数的零次幂运算法则即可求解;(2)根据幂的乘方,同底数幂的乘法运算法则即可求解.【小问1详解】解:()102132363π-⎛⎫--⨯+- ⎪⎝⎭9231=--⨯+14=-.【小问2详解】解:()()333n n n a a a a +-⋅333n n n a a a +=+-332n n a a +=-.【点睛】本题主要考查整式的混合运算,掌握同底数幂的乘法法则,幂的乘方,负指数幂的运算,非零数的零次幂的运算是解题的关键.(2023春·江苏·七年级专题练习)【17题答案】【答案】0【解析】【分析】根据同底数幂的乘法以及积的乘方计算法则进行求解即可【详解】()()()3443x x x x ⋅+-⋅---()()4343x x x x ⋅+=⋅---4343x x ++-=77x x =-0=.【点睛】本题主要考查了同底数幂的乘法和积的乘方,解题的关键在于能够熟练掌握相关计算法则进行求解.(2021春·江苏苏州·七年级苏州草桥中学校考期中)【18题答案】【答案】57a -【解析】【分析】先计算积的乘方运算,再计算同底数幂的乘法,同底数幂的除法运算,再合并同类项即可.【详解】解:3272(2)a a a a -⋅+÷3258a a a =-+558a a =-+57a =-.【点睛】本题考查的是积的乘方运算,同底数幂的乘法运算,除法运算,合并同类项,掌握以上基础运算的运算法则是解本题的关键.(2022春·江苏连云港·七年级校考期中)【19题答案】【答案】1【解析】【分析】逆用积的乘方公式即可求解.【详解】解:()100100133⎛⎫⨯- ⎪⎝⎭100133⎛⎫=-⨯ ⎪⎝⎭1=.【点睛】本题考查积的乘方,灵活运用积的乘方公式是解题关键.(2022春·江苏宿迁·七年级统考期中)【20题答案】【答案】6110⨯【解析】【分析】先根据同底数幂相除法则计算,再改写成科学记数法表示即可.【详解】解:根据题意得:8310300⨯=82310310⨯⨯ =610=6110⨯答:在空气中光的传播速度是声音的6110⨯倍【点睛】本题考查同底数幂相除,用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.【常考】一.选择题(共4小题)(2022春•江阴市校级月考)【21题答案】【答案】C【解析】【分析】根据积的乘方的逆运算法则计算即可.【详解】原式()2021202120212021111111144114444444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-=-⨯⨯-=-⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选:C .【点睛】本题考查积的乘方的逆运算,熟练掌握运算法则是解题的关键.(2022春•吴江区期中)【22题答案】【答案】A【解析】【分析】根据积的乘方运算法则来进行计算,再与选项进行比较求解.【详解】解:()2323264416a a a ⨯==.故选:A .【点睛】本题主要考查了积的乘方.积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.理解相关知识是解答关键.(2022春•沛县月考)【23题答案】【答案】C【解析】【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则进行计算即可.【详解】解:A 222.2x x x +=,故A 不符合题意;B.235x x x ⋅=,故B 不符合题意;C.236()x x =,故C 符合题意;D.22(2)4x x -=,故D 不符合题意;故选:C .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.(2021春•秦淮区期末)【24题答案】【答案】C【解析】【分析】根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则对每个选项进行分析,即可得出答案.【详解】解:∵235a a a +≠,∴选项A 不符合题意;∵232356a a a a a +⋅==≠,∴选项B 不符合题意;∵()326a a =,∴选项C 符合题意;∵624a a a ÷=,∴选项D 不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方,熟练掌握同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则是解决问题的关键.二.填空题(共8小题)(2022春•亭湖区校级期末)【25题答案】【答案】1.2×10﹣4.【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:数据0.00012用科学记数法可以表示为1.2×10﹣4.故答案为:1.2×10﹣4.【点睛】本题考查了科学记数法,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.(2022春•邗江区期末)【26题答案】【答案】8【解析】【分析】运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:∵x +y =3,∴2x •2y=2x +y=23=8故答案为8.【点睛】本题考查同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.(2021春•惠山区校级期中)【27题答案】【答案】8【解析】【分析】根据幂的运算法则即可求解.【详解】∵2,4x y m m ==∴x y m +=248x y m m =⨯⨯=故答案为:8.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.(2022春•浦口区校级月考)【28题答案】【答案】244x y 【解析】【分析】根据积的乘方运算以及幂的乘方运算法则求解即可.【详解】解:22(2)xy -()()22222x y =-⋅244x y =,故答案为:244x y .【点睛】本题考查整式运算,涉及到积的乘方运算以及幂的乘方运算,熟练掌握整式运算的法则是解决问题的关键.(2022春•泰兴市校级月考)【29题答案】【答案】10或6【解析】【分析】根据16=24,求出a,b的值,即可解答.【详解】解:∵16=24,16=a4=2b,∴a=±2,b=4,∴a+2b=2+8=10,或a+2b=﹣2+8=6,故答案为:10或6.【点睛】本题考查的知识点是幂的乘方与积的乘方,利用已知条件得出a、b的值是解此题的关键.(2022春•广陵区期末)【30题答案】【答案】4.5【解析】【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的逆运算方法,求出a2m-n的值为多少即可.【详解】详解:∵a m=3,∴a2m=32=9,∴a2m-n=292mnaa=4.5.故答案为4.5.【点睛】此题主要考查了同底数幂的除法的逆运算法则,以及幂的乘方的逆运算,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2021春•梁溪区期中)【31题答案】【答案】45 2【解析】【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2=452故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.(2020春•丹阳市校级月考)【32题答案】【答案】x ≠1.【解析】【分析】根据0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1求解即可.【详解】解:∵0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1,∴x-1≠0,∴x ≠1,故答案是:x ≠1.【点睛】本题考查了零次幂的性质,掌握零次幂的性质是关键.三.解答题(共8小题)(2021春•高新区校级月考)【33题答案】【答案】(1)1012 2.-(2)()41231.⨯-【解析】【分析】(1)根据已知材料的方法解答即可(2)先把式子化简成与题干中的式子一致的形式再解答.【详解】解:(1)令231002222S =+++⋯+①,将等式两边同时乘以2得到:23410122222S ②,=+++⋯+②-①得:10122S =-∴即2310010122222 2.+++⋯+=-(2)()4023404123643413333+++⋯+⨯=++++⋯+令()2340413333S =++++⋯+①,将等式两边同时乘以3得到:()2341343333S ②,=+++⋯+②-①得:()412431S =-()41S 231.=⨯-【点睛】此题重点考查学生对同底数幂的乘法的应用,能根据材料正确找到做题方法是解题关键.(2022春•建邺区校级期中)【34题答案】【答案】(1)3,0,2-(2)见解析【解析】【分析】(1)根据规定求解即可;(2)根据规定,得到35,36,330a b c ===,进而得到33356303a b a b c +⋅==⨯==,即可得证.【小问1详解】解∵3021327,41,20.254-====∴()3,273=,()4,10=,()2,0.252=-,故答案为:3,0,2-;【小问2详解】解:由题意,得:35,36,330a b c ===,∵33356303a b a b c +⋅==⨯==,∴a b c +=.【点睛】本题考查零指数幂,负整数指数幂,同底数幂的乘法.理解并掌握题干中的规定,熟练掌握相关运算法则,是解题的关键.(2021春•东台市月考)【35题答案】【答案】675【解析】【分析】根据同底数幂的乘法,可得要求的形式,根据幂的乘方,可得答案.【详解】解:因为10x=5,10y=3,所以102x+3y=102x⋅103y=(10x)2⋅(10y)3=52×33=25×27=675.故答案为675.【点睛】本题考查了幂的乘方以及同底数幂的乘法.(2022春•宝应县校级月考)【36题答案】【答案】(1)432;(2)64【解析】【分析】(1)利用同底数幂的乘法、幂的乘方运算法则将原式变形进行求解;(2)利用同底数幂的乘法运算法则将原式变形进行求解.【详解】(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.【点晴】考查了同底数幂的乘法运算以及幂的乘方运算,解题关键是熟记运算法则.(2022春•亭湖区校级月考)【37题答案】【答案】1、C,2、x<y【解析】【分析】(1)、根据幂的乘方法则将其化成同指数,然后进行比较大小得出答案;(2)、将x 和y 的指数化成相同,然后进行比较幂的大小从而得出底数的大小.【详解】(1)、C(2)、解∵x 63=(x 7)9=29=512,y 63=(y 9)7=37=2187,2187>512,∴x 63<y 63,∴x <y .(2020秋•淇滨区校级月考)【38题答案】【答案】89【解析】【分析】根据幂的乘方及同底数幂的除法的逆运算,进行运算即可.【详解】解: 32m n x -32m nx x =÷()()32m n x x =÷89=÷89=.【点睛】本题主要考查了幂的乘方及同底数幂的除法的逆运算,熟练掌握幂的乘方及同底数幂的除法的逆运算是解题的关键.(2021春•高新区校级月考)【39题答案】【答案】(1)15(2)27(3)22.5【解析】【分析】(1)根据同底数幂乘法的逆运算计算,即可求解;(2)根据幂的乘方的逆运算,即可求解;(3)根据同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算计算,即可求解.【小问1详解】解:2223515x y x y +=⋅=⨯=【小问2详解】解:()33322327x x ===【小问3详解】解:()2212222235222.5x y x y +-=÷⨯=⋅=÷【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算,熟练掌握相关运算法则是解题的关键.(2020•盐城二模)【40题答案】【答案】1-.【解析】【分析】先计算负整数指数幂、零指数幂运算,再计算有理数的减法即可.【详解】原式11122=--1=-.【点睛】本题考查了负整数指数幂、零指数幂运算、有理数的减法,熟记各运算法则是解题关键.【易错】一.选择题(共4小题)(2022春•吴江区校级期中)【41题答案】【答案】D【解析】【分析】根据科学记数法的表示方法求解即可.【详解】解:70.00000014 1.410-=⨯.故选:D .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.(2022春•东海县期末)【42题答案】。
(完整版)幂的运算练习及答案
![(完整版)幂的运算练习及答案](https://img.taocdn.com/s3/m/36cbb85cf56527d3240c844769eae009581ba200.png)
(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。
各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。
(完整版)幂的运算练习题
![(完整版)幂的运算练习题](https://img.taocdn.com/s3/m/62fbb9b3caaedd3382c4d34a.png)
8.计算:(x -y )2·(x -y )3-(x -y )4·(y -x )幂的运算练习题(每日一页)基础能力训练】 、同底数幂相乘1.下列语句正确的是( )A .同底数的幂相加,底数不变,指数相乘;B .同底数的幂相乘,底数合并,指数相加;C .同底数的幂相乘,指数不变,底数相加;D .同底数的幂相乘,底数不变,指数相加 2. a 4·a m ·a n =( )A .a4mB . a4(m+n )C . a m+n+4D .am+n+47.计算: a 5·(- a )2·(-a )33.(- x )·(-x )8·(- x )3=( ) A .(- x )11 B .(- x )24 C .x 12 4.下列运算正确的是( ) A .a 2· a 3=a 6 B . a 3+a 3=2a 6 C .a 3a 2=a 65.a ·a 3x 可以写成( ) A .( a 3)x+1 B .(a x )3+1 C .a 3x+16.计算: 100×100m -1×100m+1D.D .-x 12a8-a 4=a D .(a x )2x+1、幂的乘方9.填空:(1)(a8)7= ____ ;(2)(105)m= ___ ;(3)(a m)3= ___ ;(4)(b2m)5= _______ ;(5)(a4)2·(a3)3= ____ .10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a 的m 次幂的n 次方等于 a 的m+n 次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是()A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()A.(a2)3·(a3)2=a6·a6=2a6 B.(-a3)4·a7=a7·a2=a9 2 3 3 2 6 6 12C.(-a )·(-a )=(-a )·(-a )=aD.-(-a3)3·(-a2)2=-(-a9)·a4=a1313.计算:若642×83=2x,求x 的值.、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x· y n()(3)(3xy)n=3(xy )n()(4)(ab)nm=a m b n()(5)(-abc)n=(-1)n a n b n c n()15.(ab3)4=()A.ab12B.a4b7C.a5b7D.a4b1222.已知 2×8n ×16n =222,求 n 的值.16.(- a 2b 3c )3=( )A .a 6b 9c 3B .-a 5b 6c 3C .-a 6b 9c 3D .- a 2b 3c 317.(- a m+1b 2n )3=( ) A .a 3m+3b 6nB .- a 3m +b 6nC .-a 3m+3b 6nD .-a 3m+1b 8m318.如果( a n b m b )3=a 9b 15,那么 m ,n 的值等于( ) A .m=9,n=- 4 B . m=3,n=4n=6【综合创新训练】 一、综合测试 19.计算:11 m+1 12-m n -1 (- x · y )·(- x y )33、创新应用20.下列计算结果为 m 14 的是( )A .m 2·m 7B .m 7+m 7C .m ·m 6·m 721.若 5m+n =56·5n -m ,求 m 的值.3)(-a m b n c )2·(a m -1b n+1c n )24)[( 12)2] 4·(-23)C . m=4,n=3D .m=9,2)10× 102× 1 000×10n -3D .m ·m 8·m 623.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c 的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想1 2 227.(1)( 2 )2× 42412)[(12)2] 3×(23)23)(-0.125)12×(- 1 2)7×(-8)13×3-35)4)-82003×(0.125)2002+(0.25)17×417计宜¢-2) i∞+ (-2)鈴所得的结果是( )A> -2" , -2C、产DK 22、当M是正整数时,下列等式咸立的有( )(1) a2fτ= (a ra) 2; <2) a2m= (a2) m; (3) a2m= ( -a m) 2; ( 4> a lm= (-a2> m.4 4个3个C、2个D* 1个3、下列运尊正确的是( >A S 2x+3γ=5xy B、(■ 3x2y)'二-9χδy3C、4χ3y2∙ ( -py2) χ-2x4y4DS(X-V) 5√-/4、a与b互为相反数,且都不等于0, n为正整数,则下列各组中一定互为相反数的是(A、J与b” B^a2n⅛b2nC、严⅞b2n*tD、孑2⅛-b2n^15、下列等戒中正确的个数是( )O5+a5=a ic∣②(- B ) δ∙ ( - a) 3∙a=a1°J Φ-a4∙ C -3 ) 5≡a2°J Φ5+25≡2δ.AZ个3、1个5 2个D・3个6 、计真;χ2∙χi≡ _____________ ; ( - a") 3+ ( - a2) 2=__________________ ・7 .若2π⅛,2'6,则2决叫_______________ •8、BftI 3κ (χπ+5 ) ≡3χ,Hl+45,求X 的值•9χ ≡ T3+2"求代数式(X ft Y) (χn*1v2) CX n V> - <x2yπ'1) (√)的值•10、已知2x+5y3 √*32v的值・11、已知25πn∙2∙10⅛7∙24≡ 求m、n∙12、EJD a x=5> a x4v=25> 求齐2的值.13、若严叫询χf⅛b求严「的值•14、e⅜ ID a=3» 10p=5> ICi7,试把105写咸底数是IO的幕的形式15、比较下列一组数的大小.8产,2产,95-16、如果a2+a=0 C a?O)J求a2005÷a2c°4+l2 的値.17 > B⅛ 9Γ*∙-32Γ=72^求n 的值.18、若< aπb m k>) 3=a5b15∙求2* 的值・19、计勒厂'<a r V2) 2+ (a n∙V z) 3 ( -b3m*2>迹若心T严, 当a=2 y n=3时,求一ay的值.21 > SJffls 2κ=4v*1> 27y≡3x'1 * 求X-Y 的值.22、i⅛M ≡ Ce e b)"」・(b β a ) J 〈匕―b) Cb-匕)23、若 C a rn*I b IH2) Ca2r∙1b2fl) =a⅛3则求m+n 的值•24用简便方法计算:Cl)(2丄)2χ424(2)( 一0.25〉12×41Z答案:【基础能力训练】1.D 2.D 3.C 4.C 5. C 6. 1002m+1 7.- a 10 8.原式 =(x -y )5-(x -y )4·[-(x -y )]=2(x -y )5 9.(1)a 56 (2) 105m(3)a 3m (4)b 10m (5)a 1710. D 11.B 12.D13.左边 =(82)2×83=84×83=87=(23)7=22115. D 16.C 17.C 18.20.C 解析: A 应为 m 9,B 应为 2m 7,D 应为 m 15.21.由 5m+n =56·5n -m =56+m -n 得 m+n=6+n -m ,即 2m=6,所以 m=3.22.式子 2×8n × 16n 可化简为: 2×23n ×24n =21+7n , 而右边为 222 比较后发现 1+7n=22,n=3.23.x 6n +x 4n ·x 5n =x 6n +x 9n =(x 3n )2+(x 3n )3把x 3n =2 代入可得答案为 12.而右边 =2x ,所以 x=21. 14.(1)× (2)× (3)× ( 4)×5)∨综合创新运用】1119.原式 =(- )×( )·33 y 1+n -1= 1 x 3y n9 原式 =10×102×103×10n -3=101+2+3+n -3=103+n 原式=(-1)2(a m )2·(b n )2·c 2·(a m -1) b 2n ·c 2·a 2m-2b 2n+2c 2n =a 4m -2b 4n+2c 2n+2xm+1·x 2-m·y ·y n -11 m+1+2-m=x 9(2)(3) 2m=a2·(b n+1)2(c n )2 4)原式=(21)2×4·(-1)3·23×3=-(21)829 29=-228=-224.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2× 6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533327.(1)原式=(9)2×42=814(2)原式=(1)6×29=(1×2)6×23=23=8223)原式= -1)12×(-5)7×(-8)13×(-3)98 3 5=-(1)12×813×(5 )7×(3)98 3 5=-(1 ×8)12×8×(5×3)7×(3)2=-8×9728 3 5 5 25 254)原式= 82003×(1 )20 02+(-1)17×4178 4=-(8× 1)2002×8+(-1×4)17=-8+(-1)=-9 84探究学习】设拉面师傅拉n 次就可以变成一碗面条,则2n=256,由于256=28,∴ n=8.。
(完整版)幂的运算练习及答案
![(完整版)幂的运算练习及答案](https://img.taocdn.com/s3/m/3808bbc33c1ec5da50e2709d.png)
初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数 次数 2、多项式2a 2b-35是 次 项式。
各项的系数分别是3、在下列各式53b a +, 3x , π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式 有 多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是( )A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是( )A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为( )A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为( )A 、a<b<c<dB 、a<b<d<cC 、b<a<c<dD 、a<d<b<c6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -⋅-⋅-⋅-(4) 2344()()2()()x x x x x x -⋅-+⋅---⋅四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关, 求y 的值。
幂的运算计算100题(专项练习)
![幂的运算计算100题(专项练习)](https://img.taocdn.com/s3/m/cbe7d7fd3086bceb19e8b8f67c1cfad6195fe91f.png)
幂的运算计算(专项练习)1.计算:3x 2y 2•(﹣2xy 2z )2. 2.计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.3.()()32212π312--⎛⎫-÷-++- ⎪⎝⎭. 4.已知a 2m =2,an =3,试求a 4m ﹣3n 的值.5.()4533()a a a ⋅---6.计算:(1)75x x ÷; (2)88m m ÷; (3)107()()a a -÷-; (4)53()()xy xy ÷.7.计算:(1)2()m a ; (2)43()m ⎡⎤-⎣⎦; (3)32()m a -.8.计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 9.计算(1)a •a 2•a 3; (2)(﹣2ab )2; (3)(a 3)5; (4)(﹣a )6÷(﹣a )2÷(﹣a )2.10.计算:()32722a a a a -++ 11.(1)()()25343a a a-⋅+- (2)()()2020312-+-+(π-1)0214-⎛⎫+- ⎪⎝⎭(3)32113b a ab ab ab ⎛⎫⎛⎫-+÷- (4)()()()3316842-2ab a b ab a b a b -÷++(1)(﹣2)3+(2020+π)0﹣|﹣3|; (2)(﹣3a 2)3﹣4a 2•a 4+5a 9÷a 3.13.计算:()()()3020******* 3.14π0.12582-⎛⎫----⨯- ⎪⎝⎭.14.计算:|﹣16|﹣20210﹣(14)﹣1. 15.计算:()3322a a a a ⋅⋅+.16.计算:202132()2--+-- 17.计算:()()224323534x x x x ⎡⎤⨯+-÷⎢⎥⎣⎦18.计算:352()()()y y y y ---. 19.计算:2342552()()x x x x x x ⋅⋅⋅+-+-20.计算:(1)()2310 (2)()23n n n -21.计算:(﹣2a )3+(a 4)2÷(﹣a )5. 22.计算:23523()()x x x x ⋅+-+23.化简求值:2333236(2)()5xy x y x y --,其中3x =,1y =.24.计算:()()3202013132π-⎛⎫-+-⨯--- ⎪⎝⎭.(1)()()120201132π-⎛⎫-+-- ⎪⎝⎭; (2)()3248222a a a a a +÷--.26.()()5x y x y -÷-27.计算:(1)()()2332423x x x x ---; (2)()()2434422a a a a a ⋅⋅+-+.28.化简:()2532a a a ⋅--29.计算: (1)()()220201120192-⎛⎫-+-- ⎪⎝⎭(2)()3104224232a a a a a ÷---⋅30.计算:(1)()()131202022-⎛⎫-++- ⎪⎝⎭; (2)()3252a a a -•.31.计算:m 4·m 5+m 10÷m -(m 3)3. 32.计算:345·a a a ÷.33.计算:()235223a a a a a -⋅+÷.34.计算或化简:(1)31202052-⎛⎫--- ⎪⎝⎭; (2)()()23542aa a ÷-; (3)()20192020122⎛⎫⨯- ⎪⎝⎭.35.计算:()2248233a a a a a -÷+.36.计算:(1)()020201113π---++() (2)242()a a ÷37.计算:﹣a 4•a 3•a +(a 2)4﹣(﹣2a 4)2. 38.计算:()42342x x x x -⋅⋅.39.计算: (1)01113()16()422-⨯- (2)322(48)42(2)ab a b ab a a b -÷+-40.计算:5x 2•x 4﹣(﹣2x 3)2+x 8÷x 2 41.计算:(2a 2)2﹣a •3a 3+a 5÷a .42.计算:(1)(﹣t 4)3+(﹣t 2)6; (2)(m 4)2+(m 3)2﹣m (m 2)2•m 3.43.已知:35m =,310n =,求值:(1)23m (2)3m n +45.计算:(﹣310)2021×(313)2020×(﹣1)2022.46.计算: ()20202121π33-⎛⎫-++- ⎪⎝⎭; 47.计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.48.计算:()232622a a a a a ⋅-+÷. 49.已知254x y +=,求432x y ⋅得值.50.计算:(1)22012()272--+-; (2)2642135(2)5x x x x x ⋅--+÷ (3)253()()[()]a b b a a b -⋅-÷--;(4)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.51.计算:(1)2563()2x x x x -÷+⋅; (2)23322(927)(3)x y x y xy -÷.52.计算:(1)21n n n a a a ++⋅⋅; (2)41122n n a a a a -+⋅+⋅; (3)25()()x y y x -⋅-.53.(1)若3230x y +-=,求279x y ⋅的值; (2)已知36m =,92n =,求2413m n -+的值.54.已知:3x =2,3y =5,求3x+y +32x+3y 的值.55.计算(1)()()()235222--- (2)()()432x x x --- (3)()()()34m n n m n m ---56.计算:2726733333(3)⨯-⨯+⨯-.57.计算:(1)4326()()t t -+-; (2)4232223()()()m m m m m +-.58.(1)已知2,3m n a a ==,求2m n a ++的值; (2)已知48,432x y ==,求x y +的值.59.规定22a b a b *=⨯,求:(1)求13*; (2)若()22164x *+=,求x 的值.60.计算:723()()()a a a -⋅-÷. 61.计算:()242104392a a a a a +÷-.62.(1)计算:()()32224422a a a a a --⋅+-÷;(2)先化简,再求值:()()2222132522x y xy x y xy --+,其中1,2x y =-=.63.计算:()22436·310a a a a +--. 64.计算∶()()()332222223x x x x -+-+⋅65.(1)已知342x x +=,求x 的值, (2)若23n a =,14n b =,求2)n ab -(.66.计算:(1)x •x 3+x 2•x 2. (2)5x 2y •(﹣2xy 2)3. (3)7x 4•x 5•(﹣x )7+5(x 4)4.67.计算:(1)43x x - (2)6253a a a a - (3)()()32x y x y --68.计算:(1)()()320191152π-⎛⎫-⨯--- ⎪⎝⎭(2)()()203511021010210--⎛⎫-⨯⨯-⨯⨯ ⎪⎝⎭(3)322312xy z ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (4)()()()35b a b a a b ---69.(1)已知3×9m ×27m =311,求m 的值. (2)已知2a =3,4b =5,8c =5,求8a +c -2b 的值.70.计算:(1)(x 2y 3)4+(﹣x )8(y 6)2; (2)(9x 2y 3﹣27x 3y 2)÷(3xy )2.71.计算:(1)33223()(2)a b ab ⋅-+- (2)5755(4)0.25-⨯(3)120211()(2)5()42---+-⨯- (4)435()()()p q p q q p -÷-⋅-72.计算:(1)2253224243⎛⎫⎛⎫-⨯--÷- ⎪ ⎪⎝⎭⎝⎭; (2)()()()2020220202021110.50.125833⎡⎤-+-⨯⨯⨯--⎢⎥⎣⎦.73.计算:()()()3352322x xx x -⋅⋅+ 74.计算:()()1020*******π-⎛⎫--+-+- ⎪⎝⎭.75.计算:(1)322x x x x ⋅+⋅; (2)3()pq -;(3)()422a b --; (4)()()4234242a a a a a ⋅⋅++-.76.计算:()()4235243a a a a ⋅++-. 77.2(x 3)2∙x 3-(3x 3)3+(5x )2∙x 778.已知2310x y ,求927x y ⋅的值.(1)()2344x x x x ⋅⋅+- (2)()()32232423a a a a -+--⋅80.计算:()()()()()322323a a a a a---+---81.已知n 为正整数,且24n x =.(1)求()313n n x x +-的值; (2)求()()2232913nn x x -的值.82.计算:()326222()x x x x ⋅+-⋅-83.计算题.(1)()2432a a ⋅. (2)()()()2322252x xy x y ⋅-÷-.84.已知n 为正整数,且x 3n =3,求(4x 3n )2+(-3x 2n )3的值.85.计算:(1)(2 a 3) 3-3 a 3 a 2+3 a 9 (2)(x 3) 3 (-x 4) 3÷(x 2) 3 ÷(x 3) 286.已知1639273m m ⨯⨯=,求()()3232m m m -÷⋅的值.(1)23223(2)x y x y ⋅-; (2)223(2)(35)a ab ab -⋅-.88.(-x )2 • x 3 • (-2y )3 + (-2xy )2 • (-x )3y89.已知:a n =2, a m =3,a k =4,试求a 2n+m-2k 的值.90.计算:(﹣a 2)3+a 2•a 3+a 8÷(﹣a 2) 91.()()2333322a a a a +-+92.用简便方法计算下列各题:(1)201620174( 1.25)5⎛⎫⨯- ⎪⎝⎭ (2)1010112512562⎛⎫⎛⎫⎛⎫⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭93.若518,53x y ==, 求25x y +的值.94.如果3915(2)8m m n a b a b +=,求m 和n 的值.95.已知84m =,85n =,求328m n +的值. 96.若10m =5,10b =3,求102m+3b 的值.11 97.计算:(1)(12x 4y 6﹣8x 2y 4﹣16x 3y 5)÷4x 2y 3. (2)(34a 2b 3﹣3ab )•23ab(3)(﹣2x 2y 3)+8(x 2)2•(﹣x )2•(﹣y ) (4)(5x 2﹣3x +4)(4x ﹣7).98.已知24a =,26b =,212c =(1)求证:1a b c +-=; (2)求22a b c +-的值.99.已知22342612x x x ++-=⋅,求22(52)47x x --+的值.100.计算:(1)2323()a a a a ⋅⋅+ (2)()3224x y xy ⋅-。
幂的运算专项练习50题(有答案)
![幂的运算专项练习50题(有答案)](https://img.taocdn.com/s3/m/98ed231a3968011ca2009101.png)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂的运算基础练习题
![幂的运算基础练习题](https://img.taocdn.com/s3/m/5a9e946bfe4733687e21aaa3.png)
幂的运算基础练习题一、同底数幂相乘1.下列语句正确的是A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·am·an=A.a4m B.a4 C.am+n+ D.am+n+43.·8·3=A.11B.24C.x1D.-x124.下列运算正确的是A.a2·a3=a B.a3+a3=2a C.a3a2=aD.a8-a4=a4 5.a·a3x可以写成A.x+1B.3+1C.a3x+1 D.2x+16.计算:100×100m-1×100m+17.计算:a5·2·38.计算:2·3-4·二、幂的乘方9.填空:7=________;m=_______;3=_______;5=_________;2·3=________.10.下列结论正确的是A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是A.3=10 B.2=a C.2=am+212.下列计算正确的是A.3·2=a6·a6=2a6B.4·a7=a7·a2=a9C.3·2=·=a12D.-3·2=-·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:积的乘方,等于把其中一个因式乘方,把幂相乘n=x·ynn=3nnm=ambnn=nanbncn15.4=A.ab1 B.a4b C.a5b7D.a4b12D.2=x2n )16.3=A.a6b9c3B.-a5b6c C.-a6b9c D.-a2b3c317.3=A.a3m+3b6nB.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318.如果3=a9b15,那么m,n的值等于A.m=9,n=-4B.m=3,n=C.m=4,n=D.m=9,n=6一、综合测试19.计算:11· 10×102×1 000×10n-33312·[2]·32二、创新应用20.下列计算结果为m14的是A.m2·m B.m7+m C.m·m6·m D.m·m8·m621.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.×4[2]×4212××13×95-82003×2002+17×417答案:1.D .D .C .C .C .1002m+1 .-a108.原式=5-4·[-]=259.a5 105m a3m b10m a1710.D 11.B 12.D13.左边=2×83=84×83=87=7=221而右边=2x,所以x=21.14.× × × × ∨15.D 16.C 17.C 18.C11 19.原式=×·xm+1·x2-m·y·yn-1311 =xm+1+2-m·y1+n-1=x3yn9原式=10×102×103×10n-3=101+2+3+n-3=103+n 原式=22·2·c2·2·2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+212×4182933×3原式=··2=-·2=-8=-22220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=2+3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.1111115.3222==9111,2333==8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533392)×42=8111 原式=6×29=6×23=23=227.原式=A.-2B.2C.-D.2.当n是正整数时,下列等式成立的有A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是A. B.C.D.6.若.7.10.11.计算:12.若13.用简便方法计算:,则求m+n的值.1.32.3..m=2,n=5.10 .87.8.9、1210.1 11. D2. B3. 04. 180.C.12.08.C.210.311. 12. 13. 1 1 14.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是 A.an与bnB.a2n与b2n C.a2n+1与b2n+1 D.a2n-1与-b2n-1 17.已知9n+1-32n=72,求n的值. 18.若3=a9b15,求2m+n的值.19.计算:an-52+20.若x=3an,y=-12n-1a,当a=2,n=3时,求anx-ay的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.2.计算:m+3?2?m?23.若=a5b3,则求m+n的值.平面图形的认识提高练习班级:________姓名:___________一、选择题:1、下列图形中,不能通过其中一个四边形平移得到的是:2、在下列各图的△ABCBDCD中,正确画出AC边上的高的图形是:BDACBCBDDAAC3、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:A、600m2B、551m2C、550m2D、500m24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:A、56°第3题图第4题图B、68°1C、62° D、66°5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:A、1个、下列B、2个叙述中C、3个,正确D、4个的有:①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形. A、0个、如图,B、1个,则下C、2个列各式中D、3个正确的是OP∥QR∥ST:A、∠1+∠2+∠3=180° C、∠1-∠2+∠3=90°B、∠1+∠2-∠3=90° D、∠2+∠3-∠1=180° ?9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:A、75°B、60°C、65°D、55°二、填空题1、如图,面积为6cm的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm.A l1第1题图l222第2第3题图2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。
幂函数的运算专项练习50题(有答案)
![幂函数的运算专项练习50题(有答案)](https://img.taocdn.com/s3/m/7f56d838a36925c52cc58bd63186bceb18e8ed7f.png)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
幂的运算练习题及答案
![幂的运算练习题及答案](https://img.taocdn.com/s3/m/6c18a3438f9951e79b89680203d8ce2f006665f1.png)
幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299B。
-2C。
299D。
22.当m是正整数时,下列等式成立的有()1) a^(2m)=(a^m)^2;2) a^(2m)=(a^2)^m;3) a^(2m)=(-a^m)^2;4) a^(2m)=(-a^2)^m.A。
4个B。
3个C。
2个D。
1个3.下列运算正确的是()A。
2x+3y=5xyB。
(-3x^2y)^3=-9x^6y^3C。
(x-y)^3=x^3-y^3D。
无正确答案4.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXXB。
a^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1)D。
a^(2n-1)与(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6*(-a)^3*a=a^10;③(-a)^4*(-a)^5=a^20;④25+25=26.A。
0个B。
1个C。
2个D。
3个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^(n+1)+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))的值。
10.已知2x+5y=3,求4x*3^(2y)的值.11.已知25^m*2^10n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.17.删除该题18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^(n-1),当a=2,n=3时,求a^n*x-a*y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)3]答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299D、2解答:根据负数的奇偶次幂性质,(-2)100为正数,(-2)99为负数,所以(-2)100+(-2)99=-299.因此,选A。
完整版)幂的运算经典习题
![完整版)幂的运算经典习题](https://img.taocdn.com/s3/m/48f7d429fe00bed5b9f3f90f76c66137ee064f0e.png)
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
幂的运算基础练习题(整理1)
![幂的运算基础练习题(整理1)](https://img.taocdn.com/s3/m/7f1e341ba32d7375a4178068.png)
幂的运算基础题小测一.填空题(每空1分)1.计算:(1)()=-42x (2)()=32y x(3)()()=-∙342a a (4)()()=-÷-a a 42.填上适当的指数:(1)()54a a a =∙ (2)()45a a a =÷(3)()()84aa = (4)()()()333b a ab ab =÷3.填上适当的代数式:(1)()843x x x =∙∙(2)()612a a =÷(3)()()=-∙-45y x y x4、若2,x a =则3xa = 若a m =2,a n =3,则a m+n =5. 计算:(b a 2)()3ab ∙2= 323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、()()=-∙342a a ()[]52x --=7、(b a 2)()3ab ∙2= (a +b)2·(b +a)3= (2m -n)3·(n -2m)2= ; 二.选择题(每小题2分) 1.下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y = 2. 下列各式中错误的是( )A.()[]()623y x y x -=- B.(22a -)4=816aC.363227131n m n m -=⎪⎭⎫ ⎝⎛- D.()=-33ab-b a 363.下列各式(1) 523743x x x =∙; (2) 933632x x x =∙ (3) (5x )72x = (4) (3xy)3=933y x ,其中计算正确的有 ( ) A.0个 B.1个 C.2个 D.3个4.下列各式(1)55b b ∙52b = (2) (-2a 2)2=4-4a (3) (1-n a )3=13-n a(4) 963321256454y x y x =⎪⎭⎫ ⎝⎛,其中计算错误的有 ( ) A.1个 B.2个 C.3个 D.4个5.下列4个算式(1)()()-=-÷-24c c 2c (2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 6.()21--k x 等于 ( )A.12--k xB.22--k xC.22-k xD.12-k x 7.已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( )A. ()12--n c B.nc 2- C.c -n2 D.n c 28.计算()734x x ∙的结果是 ( )A. 12xB. 14xC. x19D.84x9.下列等式正确的是 ( )A.()532x x -=- B. 248x x x =÷ C.3332x x x =+ D.(xy )33xy =10.下列运算中与44a a ∙结果相同的是 ( ) A.82a a ∙ B.()2a 4 C.()44a D.()()242a a ∙411.下列计算正确的是 ( )A.523a a a =∙ B.aa a =÷33C.()a a =325 D.(a 3)333a =12.下列计算正确的( )A.5322x x x =+B.632x x x =∙C.)(3x -62x -= D.xx x =÷36313.下列计算正确的是 ( )A .143341-=⨯÷- B.()121050=÷- C.52⨯2210= D.81912=⎪⎭⎫⎝⎛--14.计算(﹣2)100+(﹣2)99所得的结果是( ) A 、﹣299 B 、﹣2 C 、299 D 、215.a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a2n+1与b 2n+1 D 、a2n ﹣1与﹣b2n ﹣116、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个 三.解答题 1.计算(每小题4分)(1) )1(1699711111-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛11(2) ()m m x x x 232÷∙(3)(-3a)3-(-a)·(-3a)2(4)()()()23675244432x x x x x x x +∙++(5)(p -q)4÷(q -p)3·(p -q)2(6) ()()y x x y --2+3)(y x -+()x y y x -∙-2)(2(7)()1132)(--∙÷∙n m n m x x x x (8)()a b - ()3a b -()5b a -2求值(9)已知: 8·22m -1·23m =217.求m 的值.(10)、已知y x y x x a a a a +==+求,25,5的值.(11)、若n m n n m x x x ++==求,2,162的值.12.用简便方法计算:(4).若3521221))(b a b a b a n n n m =-++(,则求m +n 的值.(5)已知2x +5y -3=0,求y x 324∙的值.(6)如果的值求12),0(020*******++≠=+a a a a a(7)解关于x 的方程: 33x+1·53x+1=152x+4(8)、若1+2+3+…+n =a ,求代数式))(())()(123221n n n n n xy y x y x y x y x --- (的值.(9)已知9n+1﹣32n =72,求n 的值.(10)若x=3a n ,y=﹣,当a=2,n=3时,求a n x ﹣ay 的值.(11)已知:2x =4y+1,27y =3x ﹣1,求x ﹣y 的值4、已知,710,510,310===c b a 试把105写成底数是10的幂的形式.5、比较下列一组数的大小. 61413192781,,。
幂的运算基础练习题(整理1)
![幂的运算基础练习题(整理1)](https://img.taocdn.com/s3/m/66d4a3342cc58bd63086bdaa.png)
幂的运算基础练习题一.填空题 1.计算:〔1〕()=-42x 〔2〕()=32y x〔3〕()()=-•342a a 〔4〕()()=-÷-a a 42.填上适当的指数:〔1〕()54a a a =• 〔2〕()45a a a =÷〔3〕()()84aa = 〔4〕()()()333b a ab ab =÷3.填上适当的代数式:〔1〕()843x x x =••〔2〕()612a a =÷(3) ()()()345-=-•-y x y x4、假设2,x a =则3x a = 假设a m =2,a n =3,则a m+n =5. 计算:(b a 2)()3ab •2= 323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、已知x m -n ·x 2n+1=x 11,且y m -1·y 4-n =y 7,则m=____,n=____.7、()()=-•342a a ()[]52x --=8、(b a 2)()3ab •2= (a +b)2·(b +a)3=(2m -n)3·(n -2m)2= ;二.选择题1.以下各式中,正确的选项是〔 〕A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y = 2. 以下各式中错误的选项是( ) A.()[]()623y x y x -=- B.(22a -)4=816a C.363227131n m n m -=⎪⎭⎫⎝⎛- D.()=-33ab -b a 363.以下各式(1) 523743x x x =•; (2) 933632x x x =• (3) (5x )72x =(4) (3xy)3=933y x ,其中计算正确的有 ( ) A.0个 B.1个 C.2个 D.3个4.以下各式(1)55b b •52b = (2) (-2a 2)2=4-4a (3) (1-n a )3=13-n a(4) 963321256454y x y x =⎪⎭⎫⎝⎛,其中计算错误的有 ( )5.以下4个算式(1)()()-=-÷-24c c 2c (2) ()y -()246y y -=-÷(3)303z z z =÷(4)44a a a m m =÷其中,计算错误的有 ( )6.()21--k x 等于 ( )A.12--k xB.22--k xC.22-k xD.12-k x n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2- C.c-n2 D.n c 28.计算()734x x •的结果是 ( )A. 12xB. 14xC. x19D.84x9.以下等式正确的选项是 ( )A.()532x x -=- B. 248x x x =÷ C.3332x x x =+ D.(xy )33xy =44a a •结果相同的是 ( )A.82a a •B.()2a 4C.()44a D.()()242a a •411.以下计算正确的选项是 ( )A.523a a a =•B.a a a =÷33C.()a a =325 D.(a 3)333a =12.以下计算正确的( )A.5322x x x =+B.632x x x =•C.)(3x -62x -= D.xx x =÷36313.以下计算正确的选项是 〔 〕A .143341-=⨯÷- B.()121050=÷- C.52⨯2210= D.81912=⎪⎭⎫⎝⎛--14.计算〔﹣2〕100+〔﹣2〕99所得的结果是〔 〕A 、﹣299B 、﹣2C 、299D 、215.a 与b 互为相反数,且都不等于0,n 为正整数,则以下各组中一定互为相反数的是〔 〕A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣116、以下等式中正确的个数是〔 〕①a 5+a 5=a 10;②〔﹣a 〕6•〔﹣a 〕3•a=a 10;③﹣a 4•〔﹣a 〕5=a 20;④25+25=26. A 、0个B 、1个C 、2个D 、3个(1) )1(1699711111-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛11(2) ()m mx x x 232÷•〔3〕(-3a)3-(-a)·(-3a)2〔4〕()()()23675244432x x x x x x x +•++〔5〕(p -q)4÷(q -p)3·(p -q)2(6) ()()y x x y --2+3)(y x -+()x y y x -•-2)(2(7)()1132)(--•÷•n m n m x x x x (8)()a b - ()3a b -()5b a -(9)()mm a b b a 25)(--()ma b 7-÷ (m 为偶数,b a ≠ )(10)2.用简便方法计算:3、求值〔1〕已知: 8·22m -1·23m =217.求m 的值. 〔2〕、已知y x y x x a a a a +==+求,25,5的值.〔3〕、假设n m n n m x x x ++==求,2,162的值.〔4〕.假设3521221))(b a b a b a n n n m =-++(,则求m +n 的值.〔5〕已知2x +5y -3=0,求y x 324•的值.〔6〕如果的值求12),0(020*******++≠=+a a a a a〔7〕解关于x 的方程: 33x+1·53x+1=152x+4〔8〕、假设1+2+3+…+n =a ,求代数式))(())()(123221n n n n n xy y x y x y x y x --- (的值.〔9〕已知9n+1﹣32n =72,求n 的值.〔10〕假设x=3a n ,y=﹣,当a=2,n=3时,求a n x ﹣ay 的值.〔11〕已知:2x =4y+1,27y =3x ﹣1,求x ﹣y 的值4、已知,710,510,310===c b a 试把105写成底数是10的幂的形式.5、比较以下一组数的大小. 61413192781,,。
幂的运算练习题-基础
![幂的运算练习题-基础](https://img.taocdn.com/s3/m/47bb4303f02d2af90242a8956bec0975f465a402.png)
幂的运算-基础一.选择题1.(2015•杭州模拟)计算的x 3×x 2结果是( )A .x 6B .6xC . x 5D . 5x 2.的值是( ).A. B. C. D. 3.(2016•淮安)下列运算正确的是( )A .a 2•a 3=a 6B .(ab )2=a 2b 2C .(a 2)3=a 5D .a 2+a 2=a 44.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×=B. 1000×=C. 100×=D. 100×1000=5.下列计算正确的是( ).A. B. C. D. 6.若成立,则( ).A. =6,=12B. =3,=12C. =3,=5D. =6,=5 二.填空题7.(2016•大庆)若a m =2,a n =8,则a m+n = .8. 若,则=_______. 9. 已知,那么______. 10.若,则=______;若,则=______.2n n a a +⋅3n a +()2n n a +22n a +8a 21031010103010310510410()33xy xy =()222455xyx y -=-()22439x x -=-()323628xy x y -=-()391528m n a b a b =m n m n m n m n ()319x a a a ⋅=x 35n a =6n a =38m a a a ⋅=m 31381x +=x11. ______; ______; =______. 12.若n 是正整数,且,则=__________.三.解答题 13.(2015春•莱芜校级期中)计算:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2.14.(1) ; (2);(3); (4);(5);15.(1)若,求的值.(2)若,求、的值.()322⎡⎤-=⎣⎦()33n ⎡⎤-=⎣⎦()523-210n a=3222()8()n n a a --3843()()x x x ⋅-⋅-2333221()()3a b a b -+-3510(0.310)(0.410)-⨯-⨯⨯⨯()()3522b a a b --()()2363353a a a -+-⋅3335n n x xx +⋅=n ()3915n m a b ba b ⋅⋅=m n一.选择题1. 【答案】C ;【解析】解:原式=x 3+2=x 5,故选C .2. 【答案】C ;【解析】. 3. 【答案】B ;【解析】解:A 、a 2•a 3=a 2+3=a 5,故本选项错误;B 、(ab )2=a 2b 2,故本选项正确;C 、(a 2)3=a 2×3=a 6,故本选项错误;D 、a 2+a 2=2a 2,故本选项错误.故选B .4. 【答案】C ;【解析】100×=;1000×=;100×1000=.5. 【答案】D ;【解析】;;.6. 【答案】C ;【解析】,解得=3,=5. 二.填空题7. 【答案】16;【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16.8. 【答案】6;【解析】.2222n n n n n a aa a ++++⋅==21041010101310510()333xy x y =()2224525xy x y -=()22439x x -=()333915288,39,315m n m n a ba b a b m n ====m n 3119,3119,6x a a x x +=+==【解析】.10.【答案】5;1;【解析】;. 11.【答案】64;;;12.【答案】200;【解析】. 三.解答题13.【解析】解:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2=﹣x 2n+2+x 2n+2=0.14.【解析】解:(1);(2); (3);(4); (5). 15.【解析】解:(1)∵ ∴∴4+3=35()2632525n n a a ===338,38,5m m a a aa m m +⋅==+==3143813,314,1x x x +==+==9n -103-()()32322222()8()81000800200n n n n a a a a --=-=-=3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-233322696411()()327a b a b a b a b -+-=-+3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯()()()()()3535822222b a a b a b a b a b --=---=--()()236331293125325272aa a a a a a -+-⋅=-⋅=-3335n n x xx +⋅=4335n x x +=n∴=8(2)=4,=3 解:∵ ∴ ∴3=9且3+3=15 ∴=3且=4 n m n ()3915n m a b b a b ⋅⋅=333333915n m n m a b b a b a b +⋅⋅=⋅=n m n m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法:1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5 ④p 2+p 2+p 2=3p 2正确的有( ) A.1个 B.2个 C.3个 D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=1045.a4·a4=_______;a4+a4=_______。
6、 b 2·b ·b 7=________。
7、103·_______=1010 8、(-a)2·(-a)3·a5=__________。
9、a5·a( )=a2·( )=a1810、(a+1)2·(1+a)·(a+1)5=__________。
11. 判断下列计算是否正确,并改正: (1) a ·a 2=a 2;( ) ________(2) a +a 2=a 3;( ) _______(3)a 3·a 3=a 9;( ) _______(4)a 3+a 3=a 6.( ) _______ 12、(-10)3·10+100·(-102)的运算结果是( )A.108B.-2×104C.0D.-10413、(x-y)6·(y-x)5=_______。
14、10m ·10m-1·100=______________。
15、a 与b 互为相反数且都不为0,n 为正整数,则下列两数互为相反数的是( )A.a2n-1与-b2n-1B.a2n-1与b2n-1C.a2n 与b2nD.a2n 与b2n16.计算(a-b)2n ·(b-a) 2n-1等于( )A.(a-b)4n-1B.(b-a)4n-1C.+(a-b)4n-1D.非以上答案17.x7等于( )A.(-x2 )·x5 B 、(-x2)·(-x5) C.(-x)3·x4 D.(-x)·(-x)618、解答题(1) –x2·(-x3) (2) –a·(-a)2·a3 (3) –b2·(-b)2·(-b)3(4) x·(-x2)·(-x)2·(-x3)·(-x)3(5) 1+-⋅n n xx x (6)x4-m·x 4+m·(-x)(7) x 6·(-x)5-(-x)8 ·(-x)3 ※(8) -a3·(-a)4·(-a)519.计算(-2)1999+(-2)2000等于( )A.-23999B.-2C.-21999D.2199920.若a2n+1·ax =a3那么x=______________幂的乘方:1、幂的乘方,底数_______,指数____.(a m)n= ___(其中m、n都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a3)2=______;(4)(-x2)3=_______。
3、如果x2n=3,则(x3n)4=_____.4、下列计算错误的是().A.(a5)5=a25 B.(x4)m=(x2m)2 C.x2m=(-x m)2 D.a2m=(-a2)m 5、在下列各式的括号内,应填入b4的是().A.b12=()8 B.b12=()6 C.b12=()3 D.b12=()2 6、如果正方体的棱长是(1-2b)3,那么这个正方体的体积是().A.(1-2b)6 B.(1-2b)9 C.(1-2b)12 D.6(1-2b)67、计算(-x5)7+(-x7)5的结果是().A.-2x12 B.-2x35 C.-2x70 D.08、计算:(1)x·(x2)3(2)(x m)n·(x n)m (3)(y4)5-(y5)4(4)(m3)4+m10m2+m·m3·m8 (5)[(a-b)n] 2 [(b-a)n-1] 29、若x m·x2m=2,求x9m=__________10、若a2n=3,求(a3n)4=____________。
11、已知a m=2,a n=3,求a2m+3n=___________.12、若644×83=2x,求x的值。
13、已知a=355,b=444,c=533,请把a,b,c按大小排列.14.已知:3x=2,求3x+2的值.15.已知x m+n·x m-n=x9,求m的值.积的乘方:1.计算1)、(-5ab)22)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)25)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、(-a 2)2·(-2a 3)2 8)、(-a 3b 6)2-(-a 2b 4)39)、-(-x m y)3·(xy n+1)2 10)、2(a n b n )2+(a 2b 2)n 11)、(-x 2y)3+8(x 2)2·(-x 2)·(-y 3)2.下列计算错误的个数是( ) A .2个 B .3个 C .4个 D .5个 ①()23636xx =;②()2551010525ab ab-=-;③332833x x ⎛⎫-=- ⎪⎝⎭;④()43726381yyx x=3.若()391528mm n abab+=成立,则( )A .m=3,n=2 B .m=n=3 C .m=6,n=2 D .m=3,n=54.()211nn p +⎡⎤-⋅⎢⎥⎣⎦等于( ) A .2npB .2n p -C .2n p+- D .无法确定5.计算()2323xy y x -⋅⋅的结果是( ) A .y x 105⋅ B .y x 85⋅ C .y x 85⋅- D .y x 126⋅ 6.若N=()432b a a ⋅⋅,那么N 等于( ) A .77ba B .128b a C .1212b a D .712b a7.已知3,5==a a y x ,则a y x +的值为( ) A .15 B .35C .a 2D .以上都不对8.若()()b a b a b a m n n m 5321221=-++,则m+n 的值为( ) A .1 B .2 C .3 D .-39.()23220032232312⎪⎭⎫ ⎝⎛-∙-∙⎪⎭⎫ ⎝⎛--y x y x 的结果等于( ) A .y x 10103 B .y x 10103- C .y x 10109 D .y x 10109- 10.如果单项式y x b a 243--与y x ba +331是同类项,那么这两个单项式的积为( )A .y x 46B .y x 23-C .y x 2338- D .y x 46-11.()()322223ab bc a -⋅-=_______________。
12.(-0.125)2=_________13.{-2[-(a m )2]3}2=________ 14.已知(x 3)5=-a 15b 15,则x=_______ 15.(0.125)1999·(-8)1999=_______ 16. ()__________10211042335=⎪⎭⎫⎝⎛⨯-⨯⨯ 17.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为____。
18.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a)19.如果a ≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=____,q=_____。
20.(3a 2)3+(a 2)2·a 2=________.同底数幂的除法:(1)26a a ÷ (2))()(8b b -÷- (3)24)()(ab ab ÷ (4)232t t m ÷+(m 是正整数)2.下面的计算是否正确?如有错误,请改正. (1)248a a a =÷ (2)t t t=÷910(3)55m m m =÷ (4)426)()(z z z -=-÷-3.计算:(1)131533÷ (2)473434)()(-÷- (3)214y y ÷(4))()(5a a -÷- (5)25)()(xy xy -÷- (6)n na a 210÷(n 是正整数)4.计算:(1)25)a a ÷-( (2)252323)()(-÷ (3))()(224y x xy -÷- (4)23927÷ 5.填空:(1) ()85a a =⋅ (2) ()62m m =⋅ (3) ()1032x x x =⋅⋅(4) ()73)()b b -=⋅-( (5) ()63)()(y x y x -=⋅- (6) ()8224=⋅6.下面的计算对不对?如果不对,应该怎样改正?(1) 236x x x =÷ (2)z z z =÷45 (3)33a a a =÷ (4) 224)()(c c c -=-÷-7.计算:(1)57x x ÷ (2)89y y ÷ (3)310a a÷(4)35)()(xy xy ÷ (5)236t t t ÷÷ (6)453p p p ÷⋅ (7))()()(46x x x -÷-÷- (8) 112-+÷m m a a (m 是正整数)(9)[]3512)(x x x ⋅-÷ (10)x x x x x ⋅÷⋅÷431012(11) 32673)()(x x x ÷(12)279)3()3(252⋅÷-⋅- (13)232232432)()()(y x y x y x ⋅-÷ 8.已知4,32==bax x ,求ba x-.9.说出下列各题的运算依据,并得出结果.(1)23x x ⋅ (2)23x x ÷ (3)23)(x (4)23)(xy (5)m m x x x 2243)()⋅-÷-(10.写出下列幂的运算公式的逆向形式,完成后面的题目.=+n m a =-n m a =mn a =n n b a11. 已知3,2==yxa a ,求yx a- ,yx a-2,yx a32-的值.。