幂的运算练习题

合集下载

幂的运算总结性练习题

幂的运算总结性练习题

幂的运算总结性练习题幂运算是数学中常见且重要的运算方法之一。

它的原理是将一个数字乘以自己多次,通过指数来表示运算的次数。

在实际应用中,幂运算常用于表示面积、体积、复利计算等方面。

为了巩固对幂运算的理解和运用,下面给出一些幂运算的练习题,帮助读者巩固相关知识点。

题目一:计算幂1. 计算 2^3。

2. 计算 4^2。

3. 计算 5^0。

4. 计算 6^1。

5. 计算 3^4。

题目二:幂的运算规则1. 计算 (2^3)^2。

2. 计算 2^(3+2)。

3. 计算 (4^2)^(1/2)。

4. 计算 2^(3-2)。

5. 计算 (6^3)^(-1)。

题目三:幂运算的性质1. 把一个数的幂的幂记作数的幂的幂的幂,简化表达式2^(2^3)。

2. 计算 2^0+2^1+2^2+2^3+2^4。

题目四:应用题1. 小明每年年末将10000元存入银行,年利率为5%。

存款连续存5年,计算五年后小明的本息合计。

2. 若一个正方形的边长为a,计算正方形的面积。

3. 若一个圆的半径为r,计算圆的周长。

4. 若一个正方体的边长为a,计算正方体的体积。

5. 若一个长方体的长、宽、高分别为a、b、c,计算长方体的体积。

以上练习题旨在通过计算幂的运算,帮助读者熟悉幂运算的基本概念、运算规则和性质,并将其应用于实际问题中。

通过多次练习,读者将对幂运算有更深入的理解和熟练的运用。

建议读者在完成练习题后,自行核对答案,找出自己的错误,并尝试录入实际数值进行计算,提高运算的准确性和速度。

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。

幂的运算实数练习题

幂的运算实数练习题

幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。

17. 一个数的平方是64,求这个数。

18. 一个数的立方是216,求这个数。

19. 如果一个数的平方根是4,求这个数的平方。

20. 如果一个数的立方根是3,求这个数的立方。

五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。

完整版)幂的运算练习题

完整版)幂的运算练习题

完整版)幂的运算练习题幂的运算练题(每日一页)基础能力训练】一、同底数幂相乘1.下列语句正确的是()A。

同底数的幂相加,底数不变,指数相乘;B。

同底数的幂相乘,底数合并,指数相加;C。

同底数的幂相乘,指数不变,底数相加;D。

同底数的幂相乘,底数不变,指数相加答案:D2.a4·am·an=()A。

a4m B。

a4(m+n) C。

am+n+4 D。

am+n+4答案:B3.(-x)·(-x)8·(-x)3=()A。

(-x)11 B。

(-x)24 C。

x12 D。

-x12答案:A4.下列运算正确的是()A。

a2·a3=a6 B。

a3+a3=2a6 C。

a3a2=a6 D。

a8-a4=a4答案:C5.a·a3x可以写成()A。

(a3)x+1 B。

(ax)3+1 C。

a3x+1 D。

(ax)2x+1 答案:C6.计算:100×100m-1×100m+1答案:m+17.计算:a5·(-a)2·(-a)3答案:-a108.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)答案:-2(x-y)7二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(am)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.答案:(1)a56;(2)10^5m;(3)a3m;(4)b10m;(5)a1410.下列结论正确的是()A。

幂的乘方,指数不变,底数相乘;B。

幂的乘方,底数不变,指数相加;C。

a的m次幂的n次方等于a的m+n次幂;D。

a的m次幂的n次方等于a的mn次幂答案:B11.下列等式成立的是()A。

(102)3=105 B。

(a2)2=a4 C。

(am)2=am+2 答案:B12.下列计算正确的是()A。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

幂的运算专题

幂的运算专题

幂的运算专题一专题:幂的运算1.同底数幂的乘法法则mnm?n同底数幂相乘,底数不变,指数相加。

即:a?a?a(m,n都是正整数)。

mnpa?a?a公式拓展:= 。

【典型例题】238223x?(?x)10?10(-x)(??x)例1:计算:(1);(2);(3)2323(a?b)?(b?a)?(a?b)(x?2y)(?2y-x)例2:计算:(1)(2)52(x?y)?(y?x)?(x?y) an?2?an?1?an?a (3)(4)【变式练习】1.(1)已知xm=3,xn=5,求xm+n。

(2):已知xm=3,xn=5,求x2m+n;(3):已知xm=3,x2m+n=36,求xn。

(4)已知x+y=a,求(x+y)3(2x+2y)3(3x+3y)3的值.aa?4b3?43?324 ,试求b的值。

(5)已知,2已知x3=m,x5=n,试用含m,n的代数式表示x11.二.幂的乘方(重点)53(a5)幂的乘方是指几个相同的幂相乘,如是三个a相乘,读作a的五次幂的三次方。

n(am)?amn(m,n都是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘。

即。

【典型例题】32242253(?x)?____,[(x?y)]?__________,(x)?(x)?______. 例1、填空:2n?12n?12n?352222432a?(a)?a2(?a)?(a)?(?a)?(a) 例2、计算:5m311a?(a)?a,则m?_______. 例3、已知5422?8?16?____________ 例4、【变式练习】322323(a)?____,(?x)?_____,[?(x?y)]?__________1、填空: 3?8?2?,162?2(),(?x3)2?x7?________682a?________,a?________a?32、若,则 mm?316,求m的值。

3.已知3?9?27三.积的乘方(重点)1.积的乘方的意义:指底数是乘积形式的乘方。

幂的运算综合专项练习题(有答案过程)ok

幂的运算综合专项练习题(有答案过程)ok

幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。

幂的运算经典练习题

幂的运算经典练习题

同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-∙-y x y x 4、若a m=2,a n=3,则a m+n等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =∙6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ). (A)a7(B)a8(C)a6(D)a 383a a a a m =∙∙,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c-n2D.nc29、已知x m -n ·x 2n+1=x 11,且y m -1·y4-n =y 7,则m=____,n=____.幂的乘方 1、()=-42x 2、()()84a a =3、( )2=a 4b 2; 4、()21--k x = 5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x ∙的结果是 ( )A. 12x B. 14x C. x 19D.84x7、()()=-∙342a a8、nn 2)(-a 的结果是 ()[]52x --= 若2,xa =则3xa =同底数幂的除法1、()()=-÷-a a 42、()45a aa =÷3、()()()333b a ab ab =÷ 4、=÷+22x x n5、()=÷44ab ab . 6、下列4个算式(1)()()-=-÷-24c c 2c (2)()y -()246y y -=-÷ (3)303z z z =÷(4)44a a a mm=÷其中,计算错误的有 ( )A.4个B.3个C.2个D.1个幂的混合运算1、a 5÷(-a 2)·a = 2、(b a 2)()3ab ∙2=3、(-a 3)2·(-a 2)34、()m mx x x 232÷∙=5、()1132)(--∙÷∙n m n m x x x x6、(-3a)3-(-a)·(-3a)27、()()()23675244432x x x x x x x +∙++8、下列运算中与44a a ∙结果相同的是( ) A.82a a ∙ B.()2a 4C.()44aD.()()242a a ∙4*9、32m×9m×27=10、化简求值a 3·(-b 3)2+(-21ab 2)3, 其中a =41,b =4。

(完整版)幂的运算练习及答案

(完整版)幂的运算练习及答案

初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数 次数 2、多项式2a 2b-35是 次 项式。

各项的系数分别是3、在下列各式53b a +, 3x , π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式 有 多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。

5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。

11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是( )A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是( )A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为( )A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为( )A 、a<b<c<dB 、a<b<d<cC 、b<a<c<dD 、a<d<b<c6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -⋅-⋅-⋅-(4) 2344()()2()()x x x x x x -⋅-+⋅---⋅四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关, 求y 的值。

(完整版)《幂的运算》练习题及答案

(完整版)《幂的运算》练习题及答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

幂的运算计算100题(专项练习)

幂的运算计算100题(专项练习)

幂的运算计算(专项练习)1.计算:3x 2y 2•(﹣2xy 2z )2. 2.计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.3.()()32212π312--⎛⎫-÷-++- ⎪⎝⎭. 4.已知a 2m =2,an =3,试求a 4m ﹣3n 的值.5.()4533()a a a ⋅---6.计算:(1)75x x ÷; (2)88m m ÷; (3)107()()a a -÷-; (4)53()()xy xy ÷.7.计算:(1)2()m a ; (2)43()m ⎡⎤-⎣⎦; (3)32()m a -.8.计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 9.计算(1)a •a 2•a 3; (2)(﹣2ab )2; (3)(a 3)5; (4)(﹣a )6÷(﹣a )2÷(﹣a )2.10.计算:()32722a a a a -++ 11.(1)()()25343a a a-⋅+- (2)()()2020312-+-+(π-1)0214-⎛⎫+- ⎪⎝⎭(3)32113b a ab ab ab ⎛⎫⎛⎫-+÷- (4)()()()3316842-2ab a b ab a b a b -÷++(1)(﹣2)3+(2020+π)0﹣|﹣3|; (2)(﹣3a 2)3﹣4a 2•a 4+5a 9÷a 3.13.计算:()()()3020******* 3.14π0.12582-⎛⎫----⨯- ⎪⎝⎭.14.计算:|﹣16|﹣20210﹣(14)﹣1. 15.计算:()3322a a a a ⋅⋅+.16.计算:202132()2--+-- 17.计算:()()224323534x x x x ⎡⎤⨯+-÷⎢⎥⎣⎦18.计算:352()()()y y y y ---. 19.计算:2342552()()x x x x x x ⋅⋅⋅+-+-20.计算:(1)()2310 (2)()23n n n -21.计算:(﹣2a )3+(a 4)2÷(﹣a )5. 22.计算:23523()()x x x x ⋅+-+23.化简求值:2333236(2)()5xy x y x y --,其中3x =,1y =.24.计算:()()3202013132π-⎛⎫-+-⨯--- ⎪⎝⎭.(1)()()120201132π-⎛⎫-+-- ⎪⎝⎭; (2)()3248222a a a a a +÷--.26.()()5x y x y -÷-27.计算:(1)()()2332423x x x x ---; (2)()()2434422a a a a a ⋅⋅+-+.28.化简:()2532a a a ⋅--29.计算: (1)()()220201120192-⎛⎫-+-- ⎪⎝⎭(2)()3104224232a a a a a ÷---⋅30.计算:(1)()()131202022-⎛⎫-++- ⎪⎝⎭; (2)()3252a a a -•.31.计算:m 4·m 5+m 10÷m -(m 3)3. 32.计算:345·a a a ÷.33.计算:()235223a a a a a -⋅+÷.34.计算或化简:(1)31202052-⎛⎫--- ⎪⎝⎭; (2)()()23542aa a ÷-; (3)()20192020122⎛⎫⨯- ⎪⎝⎭.35.计算:()2248233a a a a a -÷+.36.计算:(1)()020201113π---++() (2)242()a a ÷37.计算:﹣a 4•a 3•a +(a 2)4﹣(﹣2a 4)2. 38.计算:()42342x x x x -⋅⋅.39.计算: (1)01113()16()422-⨯- (2)322(48)42(2)ab a b ab a a b -÷+-40.计算:5x 2•x 4﹣(﹣2x 3)2+x 8÷x 2 41.计算:(2a 2)2﹣a •3a 3+a 5÷a .42.计算:(1)(﹣t 4)3+(﹣t 2)6; (2)(m 4)2+(m 3)2﹣m (m 2)2•m 3.43.已知:35m =,310n =,求值:(1)23m (2)3m n +45.计算:(﹣310)2021×(313)2020×(﹣1)2022.46.计算: ()20202121π33-⎛⎫-++- ⎪⎝⎭; 47.计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.48.计算:()232622a a a a a ⋅-+÷. 49.已知254x y +=,求432x y ⋅得值.50.计算:(1)22012()272--+-; (2)2642135(2)5x x x x x ⋅--+÷ (3)253()()[()]a b b a a b -⋅-÷--;(4)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.51.计算:(1)2563()2x x x x -÷+⋅; (2)23322(927)(3)x y x y xy -÷.52.计算:(1)21n n n a a a ++⋅⋅; (2)41122n n a a a a -+⋅+⋅; (3)25()()x y y x -⋅-.53.(1)若3230x y +-=,求279x y ⋅的值; (2)已知36m =,92n =,求2413m n -+的值.54.已知:3x =2,3y =5,求3x+y +32x+3y 的值.55.计算(1)()()()235222--- (2)()()432x x x --- (3)()()()34m n n m n m ---56.计算:2726733333(3)⨯-⨯+⨯-.57.计算:(1)4326()()t t -+-; (2)4232223()()()m m m m m +-.58.(1)已知2,3m n a a ==,求2m n a ++的值; (2)已知48,432x y ==,求x y +的值.59.规定22a b a b *=⨯,求:(1)求13*; (2)若()22164x *+=,求x 的值.60.计算:723()()()a a a -⋅-÷. 61.计算:()242104392a a a a a +÷-.62.(1)计算:()()32224422a a a a a --⋅+-÷;(2)先化简,再求值:()()2222132522x y xy x y xy --+,其中1,2x y =-=.63.计算:()22436·310a a a a +--. 64.计算∶()()()332222223x x x x -+-+⋅65.(1)已知342x x +=,求x 的值, (2)若23n a =,14n b =,求2)n ab -(.66.计算:(1)x •x 3+x 2•x 2. (2)5x 2y •(﹣2xy 2)3. (3)7x 4•x 5•(﹣x )7+5(x 4)4.67.计算:(1)43x x - (2)6253a a a a - (3)()()32x y x y --68.计算:(1)()()320191152π-⎛⎫-⨯--- ⎪⎝⎭(2)()()203511021010210--⎛⎫-⨯⨯-⨯⨯ ⎪⎝⎭(3)322312xy z ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (4)()()()35b a b a a b ---69.(1)已知3×9m ×27m =311,求m 的值. (2)已知2a =3,4b =5,8c =5,求8a +c -2b 的值.70.计算:(1)(x 2y 3)4+(﹣x )8(y 6)2; (2)(9x 2y 3﹣27x 3y 2)÷(3xy )2.71.计算:(1)33223()(2)a b ab ⋅-+- (2)5755(4)0.25-⨯(3)120211()(2)5()42---+-⨯- (4)435()()()p q p q q p -÷-⋅-72.计算:(1)2253224243⎛⎫⎛⎫-⨯--÷- ⎪ ⎪⎝⎭⎝⎭; (2)()()()2020220202021110.50.125833⎡⎤-+-⨯⨯⨯--⎢⎥⎣⎦.73.计算:()()()3352322x xx x -⋅⋅+ 74.计算:()()1020*******π-⎛⎫--+-+- ⎪⎝⎭.75.计算:(1)322x x x x ⋅+⋅; (2)3()pq -;(3)()422a b --; (4)()()4234242a a a a a ⋅⋅++-.76.计算:()()4235243a a a a ⋅++-. 77.2(x 3)2∙x 3-(3x 3)3+(5x )2∙x 778.已知2310x y ,求927x y ⋅的值.(1)()2344x x x x ⋅⋅+- (2)()()32232423a a a a -+--⋅80.计算:()()()()()322323a a a a a---+---81.已知n 为正整数,且24n x =.(1)求()313n n x x +-的值; (2)求()()2232913nn x x -的值.82.计算:()326222()x x x x ⋅+-⋅-83.计算题.(1)()2432a a ⋅. (2)()()()2322252x xy x y ⋅-÷-.84.已知n 为正整数,且x 3n =3,求(4x 3n )2+(-3x 2n )3的值.85.计算:(1)(2 a 3) 3-3 a 3 a 2+3 a 9 (2)(x 3) 3 (-x 4) 3÷(x 2) 3 ÷(x 3) 286.已知1639273m m ⨯⨯=,求()()3232m m m -÷⋅的值.(1)23223(2)x y x y ⋅-; (2)223(2)(35)a ab ab -⋅-.88.(-x )2 • x 3 • (-2y )3 + (-2xy )2 • (-x )3y89.已知:a n =2, a m =3,a k =4,试求a 2n+m-2k 的值.90.计算:(﹣a 2)3+a 2•a 3+a 8÷(﹣a 2) 91.()()2333322a a a a +-+92.用简便方法计算下列各题:(1)201620174( 1.25)5⎛⎫⨯- ⎪⎝⎭ (2)1010112512562⎛⎫⎛⎫⎛⎫⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭93.若518,53x y ==, 求25x y +的值.94.如果3915(2)8m m n a b a b +=,求m 和n 的值.95.已知84m =,85n =,求328m n +的值. 96.若10m =5,10b =3,求102m+3b 的值.11 97.计算:(1)(12x 4y 6﹣8x 2y 4﹣16x 3y 5)÷4x 2y 3. (2)(34a 2b 3﹣3ab )•23ab(3)(﹣2x 2y 3)+8(x 2)2•(﹣x )2•(﹣y ) (4)(5x 2﹣3x +4)(4x ﹣7).98.已知24a =,26b =,212c =(1)求证:1a b c +-=; (2)求22a b c +-的值.99.已知22342612x x x ++-=⋅,求22(52)47x x --+的值.100.计算:(1)2323()a a a a ⋅⋅+ (2)()3224x y xy ⋅-。

幂的运算经典练习题

幂的运算经典练习题

幂的运算经典练习题1、正确的式子是C.mm=m。

2、102·107=109.3、(x-y)5·(x-y)4=(x-y)9.4、am+n=2+3=5.5、a4·a1=a5.6、a3·a2·a3=a8,括号里的代数式是a3.7、-t3·(-t)4·(-t)5=-t12.8、(-c)n-1·(-c)n+1=-c2n。

9、m=5,n=8.10、(-x2)4=x8.11、a4·a4=a8.12、(ab)2=a2b2.13、xn+2=xn·x2.14、(ab)4/ab4=a3b3.15、计算错误的算式是第四个,应该是a4m/am=a3m。

16、a5/(-a2)·a=-a2.17、(a2b)(ab3)=a3b4.18、(-a3)2·(-a2)3=-a12.19、x2·xm/x2m=xm-2.20、xm·(xn)3/xm-1·2xn-1=xn+1.21、(-3a)3-(-a)·(-3a)2=-24a3.22、x3·x4+x4·x2+x5·x7/x3·x2=x9+x6+x12/x5=x4+x6+x7.与a4·a4结果相同的是B.a8.14、长为2.2×10m,宽是1.5×10m,高是4×10m的长方体体积为_________。

答案:16.5×10^3 m^3.一、选择题:(每小题3分,共24分)1.可以写成()A。

B。

C。

D。

答案:B。

2.下列计算正确的是()A。

B。

C。

D。

答案:C。

3.下列计算正确的是()A。

B。

C。

D。

答案:B。

4.如果将写成下列各式,正确的个数是( ) ①;②;③;④;⑤。

A。

1;B。

2;C。

3;D。

4.答案:C。

5.计算的结果正确的是()A。

七年级幂的运算100道

七年级幂的运算100道

七年级幂的运算100道1. 计算 $2^3$。

2. 计算 $5^2$。

3. 计算 $(-3)^4$。

4. 计算 $(-2)^3$。

5. 计算 $10^0$。

6. 计算 $4^2$。

7. 计算 $(-5)^3$。

8. 计算 $3^4$。

9. 计算 $(-4)^2$。

10. 计算 $2^5$。

11. 计算 $(-6)^2$。

12. 计算 $7^3$。

13. 计算 $(-2)^4$。

14. 计算 $3^2$。

15. 计算 $(-8)^3$。

16. 计算 $5^4$。

18. 计算 $4^3$。

19. 计算 $(-7)^4$。

20. 计算 $2^6$。

21. 计算 $(-5)^2$。

22. 计算 $6^3$。

23. 计算 $(-2)^5$。

24. 计算 $8^2$。

25. 计算 $(-4)^3$。

26. 计算 $3^5$。

27. 计算 $(-6)^4$。

28. 计算 $9^2$。

29. 计算 $(-3)^3$。

30. 计算 $5^5$。

31. 计算 $(-7)^2$。

32. 计算 $2^7$。

33. 计算 $(-4)^4$。

35. 计算 $(-8)^3$。

36. 计算 $3^6$。

37. 计算 $(-5)^4$。

38. 计算 $7^2$。

39. 计算 $(-2)^6$。

40. 计算 $4^5$。

41. 计算 $(-6)^2$。

42. 计算 $8^3$。

43. 计算 $(-3)^5$。

44. 计算 $5^6$。

45. 计算 $(-7)^3$。

46. 计算 $2^8$。

47. 计算 $(-4)^2$。

48. 计算 $6^4$。

49. 计算 $(-8)^2$。

50. 计算 $3^7$。

52. 计算 $7^4$。

53. 计算 $(-2)^7$。

54. 计算 $4^6$。

55. 计算 $(-6)^3$。

56. 计算 $8^4$。

57. 计算 $(-3)^6$。

58. 计算 $5^7$。

59. 计算 $(-7)^5$。

幂的运算基础练习题

幂的运算基础练习题

幂的运算基础练习题一、同底数幂相乘1.下列语句正确的是A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·am·an=A.a4m B.a4 C.am+n+ D.am+n+43.·8·3=A.11B.24C.x1D.-x124.下列运算正确的是A.a2·a3=a B.a3+a3=2a C.a3a2=aD.a8-a4=a4 5.a·a3x可以写成A.x+1B.3+1C.a3x+1 D.2x+16.计算:100×100m-1×100m+17.计算:a5·2·38.计算:2·3-4·二、幂的乘方9.填空:7=________;m=_______;3=_______;5=_________;2·3=________.10.下列结论正确的是A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是A.3=10 B.2=a C.2=am+212.下列计算正确的是A.3·2=a6·a6=2a6B.4·a7=a7·a2=a9C.3·2=·=a12D.-3·2=-·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:积的乘方,等于把其中一个因式乘方,把幂相乘n=x·ynn=3nnm=ambnn=nanbncn15.4=A.ab1 B.a4b C.a5b7D.a4b12D.2=x2n )16.3=A.a6b9c3B.-a5b6c C.-a6b9c D.-a2b3c317.3=A.a3m+3b6nB.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318.如果3=a9b15,那么m,n的值等于A.m=9,n=-4B.m=3,n=C.m=4,n=D.m=9,n=6一、综合测试19.计算:11· 10×102×1 000×10n-33312·[2]·32二、创新应用20.下列计算结果为m14的是A.m2·m B.m7+m C.m·m6·m D.m·m8·m621.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.×4[2]×4212××13×95-82003×2002+17×417答案:1.D .D .C .C .C .1002m+1 .-a108.原式=5-4·[-]=259.a5 105m a3m b10m a1710.D 11.B 12.D13.左边=2×83=84×83=87=7=221而右边=2x,所以x=21.14.× × × × ∨15.D 16.C 17.C 18.C11 19.原式=×·xm+1·x2-m·y·yn-1311 =xm+1+2-m·y1+n-1=x3yn9原式=10×102×103×10n-3=101+2+3+n-3=103+n 原式=22·2·c2·2·2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+212×4182933×3原式=··2=-·2=-8=-22220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=2+3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.1111115.3222==9111,2333==8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533392)×42=8111 原式=6×29=6×23=23=227.原式=A.-2B.2C.-D.2.当n是正整数时,下列等式成立的有A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是A. B.C.D.6.若.7.10.11.计算:12.若13.用简便方法计算:,则求m+n的值.1.32.3..m=2,n=5.10 .87.8.9、1210.1 11. D2. B3. 04. 180.C.12.08.C.210.311. 12. 13. 1 1 14.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是 A.an与bnB.a2n与b2n C.a2n+1与b2n+1 D.a2n-1与-b2n-1 17.已知9n+1-32n=72,求n的值. 18.若3=a9b15,求2m+n的值.19.计算:an-52+20.若x=3an,y=-12n-1a,当a=2,n=3时,求anx-ay的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.2.计算:m+3?2?m?23.若=a5b3,则求m+n的值.平面图形的认识提高练习班级:________姓名:___________一、选择题:1、下列图形中,不能通过其中一个四边形平移得到的是:2、在下列各图的△ABCBDCD中,正确画出AC边上的高的图形是:BDACBCBDDAAC3、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:A、600m2B、551m2C、550m2D、500m24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:A、56°第3题图第4题图B、68°1C、62° D、66°5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:A、1个、下列B、2个叙述中C、3个,正确D、4个的有:①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形. A、0个、如图,B、1个,则下C、2个列各式中D、3个正确的是OP∥QR∥ST:A、∠1+∠2+∠3=180° C、∠1-∠2+∠3=90°B、∠1+∠2-∠3=90° D、∠2+∠3-∠1=180° ?9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:A、75°B、60°C、65°D、55°二、填空题1、如图,面积为6cm的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm.A l1第1题图l222第2第3题图2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。

幂的运算练习题及答案

幂的运算练习题及答案

幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。

在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。

1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。

1. 计算 2^3。

答案:2^3 = 8。

2. 计算 (-3)^4。

答案:(-3)^4 = 81。

3. 计算 (4^2)^3。

答案:(4^2)^3 = 4^6 = 4096。

4. 计算 (2^3)(2^4)。

答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。

5. 计算 (2^3)^4。

答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。

6. 计算 (2^3)/2。

答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。

7. 计算 (2^4)/(2^2)。

答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。

8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。

9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。

10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。

11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。

12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。

13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。

14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。

...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。

每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。

祝您练习顺利!。

幂的运算练习卷

幂的运算练习卷

《幂的运算》练习卷一、选择题1.计算a6•a2的结果是()A.a12B.a8C.a4D.a32.计算:(-x)3·2x的结果是()A.-2x4;B.-2x3;C.2x4;D.2x3.3.下列计算错误的是()A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a64.计算(-2a2)3的结果是()A.-6a2B.-8a5C.8a5D.-8a65.下列计算正确的是()A.(xy)3=x3yB.(2xy)3=6x3y3C.(-3x2)3=27x5D.(a2b)n=a2n b n6.如果3a=5,3b=10,那么9a﹣b的值为()A.12B.14C.18D.不能确定7.下列计算中正确的是()A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x28.已知23×83=2n,则n的值是()A.18B.8C.7D.129.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3B.5C.4或5D.3或4或510.计算x5m+3n+1÷(x n)2•(﹣x m)2的结果是()A.﹣x7m+n+1B.x7m+n+1C.x7m﹣n+1D.x3m+n+1二、填空题11.计算:(﹣x)3•x2=.12.计算:(34)2027×(-43)2028=13.计算:3a·a2+a3=_______.14.计算:[(-x)2]n·[-(x3)n]=______.15.化简:6a6÷3a3=.16.已知2m=a,32n=b,m,n是正整数,则用a,b的式子表示23m﹣10n=_______.三、解答题17.化简:a3•a2•a4+(﹣a)2;18.化简:(2x2)3-x2·x419.计算:(1)(3﹣1﹣1)0﹣2﹣3+(﹣3)2﹣)﹣1(2)(﹣3a4)2﹣a•a3•a4﹣a10÷a2.20.计算:(1)a2•a4+(﹣a2)3;(2)(a2)3•(a2)4÷(﹣a2)5;(3)(p﹣q)4÷(q﹣p)3•(p﹣q)2.21.已知4x=8,4y=32,求x+y的值.22.已知4×2a×2a+1=29,且2a+b=8,求a b的值.23.若2×8n×16n=222,求n的值.24.“已知a m=4,a m+n=20,求a n的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得:a m+n=a m a n,所以20=4a n,所以a n=5.请利用这样的思考方法解决下列问题:已知a m=3,a n=5,求下列代数的值:(1)a2m+n;(2)a m-3n.25.已知2n=a,5n=b,20n=c,试探究a,b,c之间有什么关系.26.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把(a≠0)记作a n,读作“a的n次商”.【初步探究】(1)直接写出计算结果:23=,(﹣3)4=;(2)关于除方,下列说法错误的是;A.任何非零数的2次商都等于1;B.对于任何正整数n,(﹣1)n=﹣1;C.34=43;D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:24=2÷2÷2÷2=2×××=()2.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4=;()5=.(4)想一想:将一个非零有理数a的n次方商a n写成幂的形式等于.(5)算一算:52÷(﹣)4×(﹣)5+(﹣)3×=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算练习题(每日一页)
【基础能力训练】
一、同底数幂相乘
1.下列语句正确的是()
A.同底数的幂相加,底数不变,指数相乘;
B.同底数的幂相乘,底数合并,指数相加;
C.同底数的幂相乘,指数不变,底数相加;
D.同底数的幂相乘,底数不变,指数相加
2.a4·a m·a n=()
A.a4m B.a4(m+n)C.a m+n+4D.a m+n+4
3.(-x)·(-x)8·(-x)3=()
A.(-x)11B.(-x)24C.x12D.-x12
4.下列运算正确的是()
A.a2·a3=a6B.a3+a3=2a6C.a3a2=a6D.a8-a4=a4
5.a·a3x可以写成()
A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+1
6.计算:100×100m-1×100m+1
7.计算:a5·(-a)2·(-a)3
8.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)
二、幂的乘方
9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(a m)3=_______;
(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.
10.下列结论正确的是()
A.幂的乘方,指数不变,底数相乘;
B.幂的乘方,底数不变,指数相加;
C.a的m次幂的n次方等于a的m+n次幂;
D.a的m次幂的n次方等于a的mn次幂
11.下列等式成立的是()
A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n
12.下列计算正确的是()
A.(a2)3·(a3)2=a6·a6=2a6
B.(-a3)4·a7=a7·a2=a9
C.(-a2)3·(-a3)2=(-a6)·(-a6)=a12
D.-(-a3)3·(-a2)2=-(-a9)·a4=a13
13.计算:若642×83=2x,求x的值.
三、积的乘方
14.判断正误:
(1)积的乘方,等于把其中一个因式乘方,把幂相乘()
(2)(xy)n=x·y n()
(3)(3xy)n=3(xy)n()
(4)(ab)nm=a m b n()
(5)(-abc)n=(-1)n a n b n c n()
15.(ab3)4=()
A.ab12B.a4b7C.a5b7D.a4b12
16.(-a2b3c)3=()
A.a6b9c3B.-a5b6c3C.-a6b9c3D.-a2b3c3
17.(-a m+1b2n)3=()
A.a3m+3b6n B.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m3 18.如果(a n b m b)3=a9b15,那么m,n的值等于()
A.m=9,n=-4 B.m=3,n=4 C.m=4,n=3 D.m=9,n=6
【综合创新训练】
一、综合测试
19.计算:
(1)(-1
3
x m+1·y)·(-
1
3
x2-m y n-1)(2)10×102×1 000×10n-3
(3)(-a m b n c)2·(a m-1b n+1c n)2(4)[(1
2
)2] 4·(-23)3
二、创新应用
20.下列计算结果为m14的是()
A.m2·m7B.m7+m7C.m·m6·m7D.m·m8·m6 21.若5m+n=56·5n-m,求m的值.
22.已知2×8n×16n=222,求n的值.
23.已知x3n=2,求x6n+x4n·x5n的值.
24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.
25.比较6111,3222,2333的大小.
26.比较3555,4444,5333的大小.
三、巧思妙想
27.(1)(21
4
)2×42(2)[(
1
2
)2] 3×(23)3
(3)(-0.125)12×(-12
3
)7×(-8)13×(-
3
5
)9
(4)-82003×(0.125)2002+(0.25)17×417
答案:
【基础能力训练】
1.D 2.D 3.C 4.C 5.C 6.1002m+17.-a10
8.原式=(x-y)5-(x-y)4·[-(x-y)]=2(x-y)5
9.(1)a56(2)105m(3)a3m(4)b10m(5)a17
10.D 11.B 12.D
13.左边=(82)2×83=84×83=87=(23)7=221而右边=2x,所以x=21.14.(1)×(2)×(3)×(4)×(5)∨
15.D 16.C 17.C 18.C
【综合创新运用】
19.原式=(-1
3
)×(
1
3
)·x m+1·x2-m·y·y n-1
=1
9
x m+1+2-m·y1+n-1=
1
9
x3y n
(2)原式=10×102×103×10n-3=101+2+3+n-3=103+n
(3)原式=(-1)2(a m)2·(b n)2·c2·(a m-1)2·(b n+1)2(c n)2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+2
(4)原式=(1
2
)2×4·(-1)3·23×3=-(
1
2
)8·29=-
9
8
2
2
=-2
20.C 解析:A应为m9,B应为2m7,D应为m15.
21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,
而右边为222比较后发现1+7n=22,n=3.
23.x6n+x4n·x5n=x6n+x9n=(x3n)2+(x3n)3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,
所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>5333
27.(1)原式=(9
4
)2×42=81
(2)原式=(1
2
)6×29=(
1
2
×2)6×23=23=8
(3)原式=(-1
8
)12×(-
5
3
)7×(-8)13×(-
3
5
)9
=-(1
8
)12×813×(
5
3
)7×(
3
5
)9
=-(1
8
×8)12×8×(
5
3
×
3
5
)7×(
3
5
)2=-8×
972
2525
=-
(4)原式=-82003×(1
8
)2002+(-
1
4
)17×417
=-(8×1
8
)2002×8+(-
1
4
×4)17=-8+(-1)=-9
【探究学习】
设拉面师傅拉n次就可以变成一碗面条,则2n=256,由于256=28,∴n=8.。

相关文档
最新文档