七年级-幂的运算-提高练习题

合集下载

专题复习提升训练卷(幂的运算)-苏科版七年级数学下册【含答案】

专题复习提升训练卷(幂的运算)-苏科版七年级数学下册【含答案】

—1—专题复习提升训练卷(幂的运算)-苏科版七年级数学下册一、选择题1、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是 米.()A .B .C .D .7610-⨯6610-⨯5610-⨯4610-⨯2、下列运算正确的是 ()A .B .C .D . 632a a a ÷=224m m m +=325()a a a -= 3(2a 327)8a =3、下列计算正确的是( )A .(3×103)2=6×105B .36×32=384、在等式中,括号内的代数式应是( )()()512a a a ⋅-=A .B .C . D .6a ()6a - 6a -7()a -5、若,则m -n 等于( ).3122m m n n x y x y -++⋅99x y =A .0B .2C .4D .无法确定6、计算()2019×()2020的结果是( )125-522A .B .C .D .﹣2020125-512-1257、若m=,n=,则m 、n 的大小关系正确的是( )722483A .m >n B .m <n C .m=n D .大小关系无法确定8、如果,,,那么、、三数的大小为 0(2019)a =-1(0.1)b -=-25(3c -=-a b c ()A .B .C .D .a b c >>c a b >>a c b >>c b a>>9、若有意义,则取值范围是 01(3)2(24)x x ----x ()A .B .C .或D .且3x ≠2x ≠3x ≠2x ≠3x ≠2x ≠10、如果,那么用含m 的代数式表示n 为()31,29a a m n =+=+A .B .C .D .23n m=+2n m =2(1)2n m =-+22n m =+二、填空题—2—11、计算:_____()()4223-⋅=a a 12、当a ______时,(a -2)0=1.13、下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个14、已知3m =15,3n =29,3m+n 的值为_____.15、若9×32m ×33m =322,则m 的值为_____.16、已知2x﹣6y+6=0,则2x ÷8y =_____.17、若,,则_____________.45m =23n=432m n -=18、计算:()2019×()﹣2020=_____.878719、用科学记数法表示-0.0000058,结果是_____________.20、若,则x 的值为 ()3211x x +-=三、解答题21、计算:(1) (2)()()524232)(a a a -÷⋅()()()34843222b a b a ⋅-+-(3) (4) ()123041323--⎪⎭⎫ ⎝⎛--+-()a b -()3a b -()5b a - (5). (6)211122(3)2()m m m m a a a a a +-+--+÷ 424422()()y y y y +÷--22、计算:—3—(1) ( ) ·() (2) ( -)÷(-)·(-)3a -42a -5p q 4p q 3p q 2(3)()÷()·()(≠0) (4) (-2)-(-)·(-2)2a bc 42ab c 3abc 2abc x 5x 3x 2(5)(-1)+2-()+(π-3.14) (6) (-0.125) ×(-1)×(-8) ×(-)20151-322-0122371335823、(1)已知4 × 16×64=4,求(-m )÷(m ·m )的值m m 212332(2)已知=4,=8,求代数式的值.m a n a 202023)33(--m n a(3)已知,求的值.3142x x -=x (4)已知,,求的值.23n a =35m a =69n m a -24、(1)若=2,=3,=4,试比较、、的大小a 55b 44c 33a b c (2)若.猜想与的大小关系;证明你的猜想.2510a b ==a b +ab 25、用简便方法计算:—4—(1) (2)333)31()32()9(⨯-⨯-3014225.0⨯-(3). (4).201520164(( 1.25)5⨯-1211318(3()(2)825⨯⨯-26、如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,)= ;41(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.27、材料:一般地,若且,那么叫做以为底的对数,记作,比如指数(0x a N a =>1)a ≠x a N log a x N =式可以转化为对数式,对数式可以转化为指数式.328=23log 8=62log 36=2636=根据以上材料,解决下列问题:(1)计算: , , ;2log 4=2log 16=2log 64=(2)观察(1)中的三个数,猜测: 且,,,并加以证log log a a M N +=(0a >1a ≠0M >0)N >明这个结论;(3)已知:,求和的值且.log 35a =log 9a log 27a (0a >1)a ≠—5—专题复习提升训练卷(幂的运算)-苏科版七年级数学下册一、选择题1、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是 米.()A .B .C .D .7610-⨯6610-⨯5610-⨯4610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法10n a -⨯不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【答案】解:由题意可得:6万,95160000106101000000000--⨯=⨯=⨯故选:.C 2、下列运算正确的是 ()A .B .C .D . 632a a a ÷=224m m m +=325()a a a -= 3(2a 327)8a =【分析】分别根据同底数幂的除法法则,合并同类项的法则,同底数幂的乘法法则以及积的乘方运算法则逐一判断即可.【答案】解:,故选项不合题意;633a a a ÷=A ,故选项不合题意;2222m m m +=B ,正确,故选项符合题意;325()a a a -= C ,故选项不合题意.3(2a 39)8a =D 故选:.C 3、下列计算正确的是( )A .(3×103)2=6×105B .36×32=38C .()4×34=﹣1D .36÷32=3331-【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.—6—【解答】解:A 、(3×103)2=9×106,故此选项错误;B 、36×32=38,正确;C 、()4×34=1,故此选项错误;31-D 、36÷32=34,故此选项错误;故选:B .4、在等式中,括号内的代数式应是( )()()512a a a ⋅-=A .B .C . D .6a ()6a - 6a -7()a -【答案】C【分析】先计算:再计算从而可得答案.()56,a a a -=- ()126,a a ÷-【详解】解:由 所以:括号内填的是: ()56,a a a -=- ()1266,a a a ∴÷-=-6.a -故选:.C 5、若,则m -n 等于( ).3122m m n n x y x y -++⋅99x y =A .0B .2C .4D .无法确定【答案】B 【分析】根据同底数幂的乘法法则运算,再结合等式性质,即可列出m 和n 的二元一次方程组,求解方程组即可得到答案.【解析】∵∴312299m m n n x y x y x y -++= +32199m n n m x y x y +++=∴ ∴ ,∴39219m n n m ++=⎧⎨++=⎩24n m =⎧⎨=⎩2m n -= 故选:B .6、计算()2019×()2020的结果是( )125-522A .B .C .D .﹣2020125-512-125—7—【分析】先根据积的乘方进行变形,再求出即可.【解答】解:原式=﹣()2019×()2020125512=﹣(×)2019×125512512=﹣1×=-,512512故选:B .7、若m=,n=,则m 、n 的大小关系正确的是( )722483A .m >nB .m <nC .m=nD .大小关系无法确定【答案】B【分析】把m=272化成=824,n=348化成924,根据8<9即可得出答案.【解析】解:∵m=,n=,∵8<9∴∴m<n ,2723244(2)28==2482244(3)39==242489<故选:B .8、如果,,,那么、、三数的大小为 0(2019)a =-1(0.1)b -=-25(3c -=-a b c ()A .B .C .D .a b c >>c a b >>a c b >>c b a>>【答案】解:,,, ,1a =11(1010b -=-=-239()525c =-=a c b ∴>>故选:.C 9、若有意义,则取值范围是 01(3)2(24)x x ----x ()B .B .C .或D .且3x ≠2x ≠3x ≠2x ≠3x ≠2x ≠【答案】解:若有意义,01(3)2(24)x x ----则且,解得:且.故选:.30x -≠240x -≠3x ≠2x ≠D—8—10、如果,那么用含m 的代数式表示n 为( )31,29a a m n =+=+A .B .C .D .23n m=+2n m =2(1)2n m =-+22n m =+【答案】C 【分析】由题意可知,,再将代入中,即可得出答案.31a m =-2(3)2a n =+31a m =-2(3)2a n =+【详解】∵,∴.∵,∴.31a m =+31a m =-92a n =+2(3)2a n =+将代入中,得:.31a m =-2(3)2a n =+2(1)2n m =-+故选:C .二、填空题11、计算:_____()()4223-⋅=a a 【答案】2a 【分析】根据幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.【解析】解:原式,故答案为:.862a a a -=⋅=2a 12、当a ______时,(a -2)0=1.【答案】a ≠2【分析】根据零指数幂的定义进行求解即可.【详解】根据零指数幂的定义:任何非零数的零指数幂为1,得到,解得故答案为.20a -≠2a ≠2a ≠13、下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个【答案】D 【分析】根据整数指数幂的运算法则进行计算并做出判断即可.【解析】解:①(ab 2)3=a 2b 6,故①错误;②(3xy 2)3=27x 3y 6,故②错误;—9—③(-2x 3)2=4x 6,故③错误;④(-a 2m )3=-a 6m ,故④错误.所以不正确的有4个.故选D.14、已知3m =15,3n =29,3m+n 的值为_____.【答案】435【分析】根据同底数幂乘法的逆运算进行求解即可.【详解】解:∵3m =15,3n =29,∴3m+n =3m ·3n =15×29=435,故答案为:435.15、若9×32m ×33m =322,则m 的值为_____.【答案】4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【解析】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.16、已知2x﹣6y+6=0,则2x ÷8y =_____.【答案】18【分析】根据已知条件,先求出x﹣3y =﹣3,然后根据幂的乘方的逆运算和同底数幂的除法即可求出结论.【详解】解:2x﹣6y+6=0,2(x﹣3y )=﹣6,x﹣3y =﹣3,∴2x ÷8y =2x ÷23y =2x﹣3y =2﹣3=.故答案为:.181817、若,,则_____________.45m =23n=432m n -=【答案】2527【分析】根据同底数幂的除法运算法则以及幂的乘方运算法则.4343222m n m n -=÷22323(2)(2)4(2)m n m n =÷=÷23(4)(2)m n =÷23255327=÷=—10—【解答】解:故答案为:.4343222m n m n -=÷223(2)(2)m n =÷234(2)m n =÷23255327=÷=252718、计算:()2019×()﹣2020=_____.8787【答案】78【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解析】解:()2019×()﹣2020=.8787201920201887778--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:.7819、用科学记数法表示-0.0000058,结果是_____________.【答案】65.810--⨯【分析】绝对值小于1的数用科学记数法表示为a ×10n ,与较大数的科学记数法不同的是n 是负整数,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】用科学记数法表示﹣0.0000058,a 为-5.8,数字5前面共有6个0,所以用科学记数法表示为:﹣5.8×10﹣6.故答案为:﹣5.8×10﹣6.20、若,则x 的值为()3211x x +-=【答案】-2; 1【详解】情况1: 解得:x =-2; 21030x x -≠⎧⎨+=⎩情况2:,解得:x =1;211x -=情况3:,解得:x =0;x +3=3(奇数),故不符合条件211x -=-故答案为:-2; 1三、解答题—11—21、计算:(1) (2)()()524232)(a a a -÷⋅()()()34843222b a b a ⋅-+-(3) (4) ()123041323--⎪⎭⎫ ⎝⎛--+-()a b -()3a b -()5b a - (5). (6)211122(3)2()m m m m a a a a a +-+--+÷ 424422()()y y y y +÷--解:(1)原式;)(1086a a a -÷⋅=)(1014a a-÷=4a -=(2)原式;128128816b a ba ⋅+=12824b a =(3)原式;49811-+-=875=(4)原式 .()a b -=()3a b -()5b a -()9b a -=(5)原式2222292m m m a a a a +=-+÷22292m m m a a a =-+210ma = (6).42442248444444()()y y y y y y y y y y y y +÷--=+÷-=+-=22、计算:(1) ( ) ·() (2) ( -)÷(-)·(-)3a -42a -5p q 4p q 3p q 2(3)()÷()·()(≠0) (4) (-2)-(-)·(-2)2a bc 42ab c 3abc 2abc x 5x 3x 2(5)(-1)+2-()+(π-3.14) (6) (-0.125) ×(-1)×(-8) ×(-)20151-322-01223713358解:(1)原式= ·(-)=-12a 10a 22a - (2)原式=3()q ρ- (3)原式=÷·==448cb a 363c b a 222c b a 234264238+-+-+-c b a73a c (4)原式==-28235432x x x ∙+-5x(5)原式=-1+-+1=2194181—12—(6)原式=()×[-()]×[-8]×()811235713538 =(×8)×8×(×)×=8112355375324523、(1)已知4 × 16×64=4,求(-m )÷(m ·m )的值m m 212332(2)已知=4,=8,求代数式的值.m a n a 202023)33(--m n a (3)已知,求的值.3142x x -=x (4)已知,,求的值.23n a =35m a =69n m a -解:(1)∵4 × 16×64=4,m m 21∴==,2+10m=42,∴m=4,22∙m 42m 62∙m m 6422++422∴∴原式=-÷=-m=一46m 5m (2)原式=(-33)m na a 23÷2020=[()÷()-33]n a 3m a 22020=()=(-1)=1334823-÷20202020(3),3142x x -= ,23122x x -∴=则,231x x =-解得:;1x =(4),,23n a = 35m a =.6969n m n m a a a -∴=÷2333()()n m a a =÷3335=÷27125=24、(1)若=2,=3,=4,试比较、、的大小a 55b 44c 33a b c (2)若.猜想与的大小关系;证明你的猜想.2510a b==a b +ab 解:(1)∵,b=3==,44114)3(1181 又∵<<,∴<C<.113211641181a b (2);a b ab +=—13—,210a = ①,210ab b ∴=又,510b = ②,510ab a ∴=①②得到,⨯251010ab ab a b⨯=⨯即,(25)10ab a b +⨯=故.a b ab +=25、用简便方法计算:(1)(2)333)31()32()9(⨯-⨯-3014225.0⨯-(3). (4).201520164(( 1.25)5⨯-1211318(3()(2)825⨯⨯-解:(1)原式;823132()9[(33==⨯-⨯-=(2)原式.3014225.0⨯-=44)41(1514-=⨯-=(3)201520164(( 1.25)5⨯-20152015455()(()544=⨯-⨯-2015455[((544=⨯-⨯-;51()4=-⨯-54=(4)原式111125258()()(8)8825=⨯⨯⨯-1125825(825=-⨯⨯.25=-26、如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,)= ;41—14—(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【解答】解:(1)23=8,(2,8)=3,=,(2,)=﹣2,22-4141故答案为:3;﹣2;(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴m p =16,m q =5,m r =t ,∵(m ,16)+(m ,5)=(m ,t ),∴p +q =r ,∴m p +q =m r ,∴m p •m r =m t ,即16×5=t ,∴t =80.27、材料:一般地,若且,那么叫做以为底的对数,记作,比如指数(0x a N a =>1)a ≠x a N log a x N =式可以转化为对数式,对数式可以转化为指数式.328=23log 8=62log 36=2636=根据以上材料,解决下列问题:(1)计算: , , ;2log 4=2log 16=2log 64=(2)观察(1)中的三个数,猜测: 且,,,并加以证log log a a M N +=(0a >1a ≠0M >0)N >明这个结论;—15—(3)已知:,求和的值且.log 35a =log 9a log 27a (0a >1)a ≠【分析】(1)根据,,写成对数式;224=4216=6232=(2)设,,根据对数的定义可表示为指数式为:,,据此计算即log a M x =log a N y =x a M =y a N =可;(3)由,得,再根据同底数幂的乘法法则计算即可.log 35a =53a =【答案】解:(1),,,224= 4216=6232=;;2log 42∴=2log 164=2log 646=故答案为:2;4;6;(2)设,,log a M x =log a N y =则,, ,x a M =y a N =x y x y M N a a a +∴== 根据对数的定义,,log a x y MN +=即; 故答案为:.log log log a a a M N MN +=log a MN (3)由,得,log 35a =53a =,5510933a a a =⨯== 5551527333a a a a =⨯⨯== 根据对数的定义,,.∴log 910a =log 2715a =。

2022-2023学年沪科版七年级数学下册《8-1幂的运算》同步自主提升训练(附答案)

2022-2023学年沪科版七年级数学下册《8-1幂的运算》同步自主提升训练(附答案)

2022-2023学年沪科版七年级数学下册《8.1幂的运算》同步自主提升训练(附答案)一.选择题1.若a•2•23=28,则a等于()A.4B.8C.16D.322.计算()2021×()2022×(﹣1)2023的结果是()A.B.C.D.3.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b35.下列各式中,不正确的是()A.a4÷a3=a B.(a﹣3)2=a﹣6C.a•a﹣2=a3D.a2﹣2a2=﹣a2 6.已知32m=5,32n=10,则9m﹣n+1的值是()A.B.C.﹣2D.4二.填空题10.若9×32m×33m=322,则m的值为.11.若3m=9n=2.则3m+2n=.14.已知a m=22,b m=4,则(a2b)m=.15.若2x+y﹣2=0.则52x•5y=.16.已知(﹣0.5a m)3=﹣64,2a2n=18,则a m+2n=.17.若9a•27b÷81c=9,则2c﹣a﹣b的值为.三.解答题18.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.20.(1)将(x﹣y)2•(y﹣x)4•(y﹣x)6化成以(x﹣y)为底的幂的形式;(2)将(2x﹣y)•(y﹣2x)2•(y﹣2x)3化成(2x﹣y)为底的幂的形式.21.已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.22.如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=,(4,256)=,(2,2)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.23.我们约定a☆b=10a×10b,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.参考答案一.选择题1.解:∵a•2•23=28,∴a=28÷24=24=16.故选:C.2.解:()2021×()2022×(﹣1)2023=(×)2021××(﹣1)=12021××(﹣1)=1××1=﹣,故选:D.3.解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.5.解:A:原式=a,∴不符合题意;B:原式=a﹣6,∴不符合题意;C:原式=a﹣1,∴符合题意;D:原式=﹣a2,∴不符合题意;故选:C.6.解:原式=[(3)2]m﹣n+1=32m﹣2n+2=32m÷32n×32∵32m=5,32n=10,∴原式=5÷10×9=.故选:A.二.填空题10.解:∵9×32m×33m=32×32m×33m=32+2m+3m=32+5m=322,∴2+5m=22,解得m=4.故答案为:4.11.解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:414.解:∵a m=22=4,b m=4,∴(a2b)m=a2m•b m=(a m)2•b m=42×4=16×4=64.故答案为:64.15.解:∵2x+y﹣2=0,∴52x•5y=52x+y=52=25.故答案为:25.16.解:∵(﹣0.5a m)3=﹣64,2a2n=18,∴﹣0.5a m=,a2n=9,即a m=8,a2n=9,∴a m+2n=a m•a2n=8×9=72.故答案为:72.17.解:∵9a•27b÷81c=9,∴32a×33b÷34c=32,32a+3b﹣4c=32,∴2a+3b﹣4c=2,∴,∴.故答案为:﹣1.三.解答题18.解:原式=m12+m12﹣(﹣8m12)=m12+m12+8m12=10m12.19.解:原式=﹣1+1﹣﹣8=﹣.20.解:(1)(x﹣y)2•(y﹣x)4•(y﹣x)6=(x﹣y)2•(x﹣y)4•(x﹣y)6=(x﹣y)12;(2)(2x﹣y)•(y﹣2x)2•(y﹣2x)3=﹣(2x﹣y)•(2x﹣y)2•(2x﹣y)3=﹣(2x﹣y)6.21.解:(1)∵a3m=23,a2n=42=24,a k=32=25,∴a3m+2n﹣k=a3m•a2n÷a k=23•24÷25=23+4﹣5=22=4;(2)∵a k﹣3m﹣n=25÷23÷22=20=1=a0,∴k﹣3m﹣n=0,即k﹣3m﹣n的值是0.22.解:(1)∵33=27,44=256,21=2,∴(3,27)=3,(4,256)=4,(2,2)=1,故答案为:3;4;1;(2)∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,又∵5×6=30,∴3a•3b=3c,∴a+b=c.23.解:(1)12☆3=1012×103=1015;4☆8=104×108=1012;(2)相等,理由如下:∵(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,∴(a+b)☆c=a☆(b+c).。

完整版)幂的运算练习题

完整版)幂的运算练习题

完整版)幂的运算练习题幂的运算练题(每日一页)基础能力训练】一、同底数幂相乘1.下列语句正确的是()A。

同底数的幂相加,底数不变,指数相乘;B。

同底数的幂相乘,底数合并,指数相加;C。

同底数的幂相乘,指数不变,底数相加;D。

同底数的幂相乘,底数不变,指数相加答案:D2.a4·am·an=()A。

a4m B。

a4(m+n) C。

am+n+4 D。

am+n+4答案:B3.(-x)·(-x)8·(-x)3=()A。

(-x)11 B。

(-x)24 C。

x12 D。

-x12答案:A4.下列运算正确的是()A。

a2·a3=a6 B。

a3+a3=2a6 C。

a3a2=a6 D。

a8-a4=a4答案:C5.a·a3x可以写成()A。

(a3)x+1 B。

(ax)3+1 C。

a3x+1 D。

(ax)2x+1 答案:C6.计算:100×100m-1×100m+1答案:m+17.计算:a5·(-a)2·(-a)3答案:-a108.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)答案:-2(x-y)7二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(am)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.答案:(1)a56;(2)10^5m;(3)a3m;(4)b10m;(5)a1410.下列结论正确的是()A。

幂的乘方,指数不变,底数相乘;B。

幂的乘方,底数不变,指数相加;C。

a的m次幂的n次方等于a的m+n次幂;D。

a的m次幂的n次方等于a的mn次幂答案:B11.下列等式成立的是()A。

(102)3=105 B。

(a2)2=a4 C。

(am)2=am+2 答案:B12.下列计算正确的是()A。

第8章 幂的运算(能力提升)-2020-2021学年七年级数学下册单元测试(苏科版)(解析版)

第8章 幂的运算(能力提升)-2020-2021学年七年级数学下册单元测试(苏科版)(解析版)

2020-2021学年七年级数学下册《单元测试定心卷》(苏科版)第8章 幂的运算(能力提升卷卷)班级___________ 姓名___________ 学号____________ 分数____________考试范围:全章; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2021·广西玉林市·八年级期末)计算:a •a 2的结果是( )A .3aB .a 3C .2a 2D .2a 3【答案】B【分析】原式利用同底数幂的乘法法则计算即可得到结果.【详解】解:原式=a 3,故选:B .【点睛】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.(2021·靖江外国语学校九年级月考)计算23(2)a b -的结果是( )A .636a b -B .28a b -C .632a b -D .638a b - 【答案】D【分析】根据积的乘方法则进行计算即可;【详解】 ()326328a b a b -=- , 故选:D .【点睛】本题考查了对积的乘方法则的应用,注意:积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘. 3.(2021·安徽九年级专题练习)下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(-a 2)3D .a 8÷a 2【答案】D【分析】根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.【详解】解:A 、a 3+a 2不能合并,故A 不符合题意;B 、a 2•a 3=a 5,故B 不符合题意;C 、(﹣a 2•)3=﹣a 6,故C 不符合题意;D 、a 8÷a 2=a 6,故D 符合题意;故选D .【点睛】本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,解题关键是熟练掌握运算法则并能准确进行计算.4.(2021·山东枣庄市·九年级一模)下列运算正确的是( )A .236a a a =B .632a a a ÷=C .352()a a =D .2224()a b a b =【答案】D【分析】根据幂的运算法则逐项计算,然后判断正误即可.【详解】解:A . 235a a a =,原选项错误,不符合题意;B . 633a a a ÷=,原选项错误,不符合题意;C . 236()a a =,原选项错误,不符合题意;D . 2224()a b a b =,原选项正确,符合题意;故选:D .【点睛】本题考查了幂的运算,解题关键是熟知幂的运算法则,准确依据法则计算.5.(2021·山东省青岛实验初级中学九年级其他模拟)纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用.有一种纳米材料其理论厚度是0.00000000069m ,这个数用科学记数法表示正确的是( )A .100.6910-⨯B .90.6910-⨯C .96.910-⨯D .106.910-⨯【答案】D【分析】 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:0.00000000069=6.9×10-10.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.(2021·全国七年级专题练习)已知=2m x ,=3n x ,2m n x +=( )A .12B .108C .18D .36 【答案】A【分析】根据幂的乘方以及积的乘方的逆运算即可求出答案.【详解】∵=2m x ,=3n x ,∵()2222234312m n m n mn x x x x x +=⋅=⋅=⨯=⨯= 故选:A【点睛】本题考查学生的计算能力,解题的关键是熟练运用幂的乘方以及积的乘方的逆运算m n m n a a a +=⋅,()()n m mn n m a a a ==.二、填空题(本大题共10小题,每小题2分,共20分)7.(2021·全国九年级专题练习)53a a ÷=________.【答案】2.a【分析】利用同底数幂的除法法则:底数不变,指数相减,从而可得答案.【详解】解:53532,a a aa -÷== 故答案为:2.a【点睛】本题考查的是同底数幂的除法运算,掌握同底数幂的除法运算的运算法则是解题的关键.8.(2021·上海九年级专题练习)计算:62()a a -=________.【答案】8a【分析】先确定积的符号,再按照同底数幂的乘法法则运算即可得到答案.【详解】解:()62628a a a a a -=-•=-. 故答案为:8a .【点睛】本题考查的是同底数幂的乘法,掌握同底数幂的乘法法则是解题的关键.9.(2021·山西吕梁市·八年级期末)计算:202120201(2)()2-⋅-=_________. 【答案】-2【分析】先化成同底数幂,再根据同底数幂的乘法法则,即可求解.【详解】原式=202120201(2)()2-⋅- =20212020(2)(2)--⋅-=20212020(2)--=2-,故答案是:-2.【点睛】本题主要考查同底数幂的乘法,熟练掌握同底数幂的乘法法则,是解题的关键.10.(2021·全国七年级专题练习)如果a 3m +n =27,a m =3,则a n =_____.【答案】1【分析】根据幂的乘方和同底数幂的乘法运算法则,即可求解.【详解】∵a 3m +n =27,∵a 3m ·a n =27,∵(a m )3·a n =27,∵a m =3,∵33· a n =27,∵a n =1.故答案是:1.【点睛】本题主要考查幂的乘方和同底数幂的乘法法则,熟练掌握上述运算法则的逆运用,是解题的关键. 11.(2021·全国八年级)已知231682m ⨯=,则m =________.【答案】17【分析】先把23168⨯化为172,再根据指数相等求出m 的值.【详解】2342338917168(2)(2)2222m ⨯=⨯=⨯==.故17m =.故答案为:17【点睛】本题主要考查了幂的乘方与同底数幂的乘法,解题个关键是把23168⨯化为172.12.(2021·广东韶关市·八年级期末)已知340m n +-=,则28m n ⋅的值为_________.【答案】16【分析】用n 表示出m ,得43m n =-,将m 代入到28m n ⋅即可求解.【详解】解:∵340m n +-=,∵43m n =-,34334222216282m n n n m n -===∴⋅=.故答案为:16【点睛】本题考查了求代数式的值,同底数幂的乘法,正理解同底幂的乘法法则是解题的关键.13.(2021·河南商丘市·八年级期末)在学习了负整数指数幂的知识后,小明和小军两同学做了一个数学游戏,小明出了题目:将()()24252*2m n m n --⋅-的结果化为只含有正整数指数幂的形式,其结果为2416n m,则“*”处的数是多少?聪明的你替小军填上“*”处的数是___________.【答案】3-【分析】先用负整数指数幂将()()24252*2m n m n --⋅-化简为()22452*12m n m n ⎛⎫⋅ ⎪⎝⎭-,再结合积的乘方、幂的乘方解题即可.【详解】解:()()24252*2m nm n --⋅- ()22452*1=2m n m n ⎛⎫⋅ ⎪⎝⎭- 4*410481=2m n m n⋅ 444*+101=2m n由题意得,44*14+01=2m n 2416n m 4*+102=1n n ∴(4*+120)=n n -(4*+10)=2∴-4*12=-*3∴=-故答案为:3-.【点睛】本题考查负整数指数幂、幂的乘方、积的乘方等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.(2021·内蒙古呼和浩特市·八年级期末)下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a -=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可) 【答案】②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.15.(2021·上海九年级专题练习)观察等式:232222+=-;23422222++=-;2345222222+++=-…,若设502a =,则用含a 的式子表示5051529910022222+++++的结果是________.【答案】22a a -【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n +1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∵2+22+23+…+2n =2n +1-2,∵250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∵2101=(250)2•2=22a ,∵原式=22a a -.故答案为:22a a -.【点睛】本题考查规律型问题:数字变化,列代数式,积的乘方等知识,解题的关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n +1-2. 16.(2021·四川成都市·八年级期中)我们规定一个新数“i ”,使其满足i 1=i ,i 2=﹣1,并且进一步规定:一切有理数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1.那么i 6=____,i 1+i 2+i 3+…+i 2022+i 2023=____.【答案】-1 -1【分析】各式利用题中的新定义计算即可求出值.【详解】解:i 6=i 5•i =-1,由题意得,i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,i 5=i 4•i =i ,i 6=i 5•i =-1,故可发现4次一循环,一个循环内的和为0,2023÷4=505 (3)i 1+i 2+i 3+…+i 2022+i 2023=505×0+(i -1-i )=-1.故答案为:-1,-1.【点睛】本题考查了同底数幂的乘法运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤)17.(2020·四川省成都市玉林中学七年级月考)计算题.(1)()2432a a ⋅. (2)()()()2322252x xy x y ⋅-÷-. 【答案】(1)114a ;(2)10-.【分析】(1)先计算积得乘方,再按单项式的乘法法则运算即可;(2)先计算积得乘方,再按单项式的乘除法则运算即可.【详解】(1)原式834a a =⋅114a =.(2)原式()()3242854x xyx y =⋅-÷()()4242404x y x y =-÷10=-. 【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解答本题的关键.18.(2019·扬州市邗江区实验学校七年级月考)计算:(1)﹣b 2×(﹣b )2×(﹣b 3); (2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5【答案】(1)b 7;(2)(x ﹣y )3(y ﹣2)7.【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【详解】解:(1)﹣b 2×(﹣b )2×(﹣b 3)=b 2×b 2×b 3=b 7;(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5=(x ﹣y )3(y ﹣2)7.【点睛】本题考查幂的相关计算,有时候需要有整体思想,把底数可以为多项式的.19.(2020·全国八年级课时练习)已知31cm 的氢气的质量用科学记数法表示约为5910g -⨯,一块橡皮的质量为45g .(1)用小数表示31cm 的氢气质量;(2)这块橡皮的质量是31cm 的氢气质量的多少倍?【答案】(1)5910g 0.00009g -⨯=;(2)5510⨯倍【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2)利用有理数除法运算法则求出答案即可.【详解】(1)5910g 0.00009g -⨯=.(2)5450.00009500000510÷==⨯.故这块橡皮的质量是31cm 的氢气质量的5510⨯倍.【点睛】本题考查用科学记数法表示较小的数以及有理数除法等知识,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.(2021·西安市浐灞欧亚中学七年级期末)(1)计算:()()32224422a a a a a --⋅+-÷; (2)先化简,再求值:()()2222132522x y xyx y xy --+,其中1,2x y =-=. 【答案】(1)62a ;(2)22742x y xy -,23 【分析】(1)根据同底数幂的乘除法、幂的乘方及积的乘方、单项式除以单项式可直接进行求解;(2)先去括号,然后进行整式的加减运算,最后代值求解即可.【详解】解:(1)原式=86666622424a a a a a a a --+÷=-+=;(2)原式=2222225637422x x y y x x x y xy y y ---=-; 把1,2x y =-=代入得:原式=()()22712412716232⨯-⨯-⨯-⨯=+=. 【点睛】本题主要考查同底数幂的乘除法、幂的乘方、积的乘方、单项式除以单项式及整式的化简求值,熟练掌握同底数幂的乘除法、幂的乘方、积的乘方、单项式除以单项式及整式的化简求值是解题的关键. 21.(2020·江西南昌市·八年级期中)规定22a b a b *=⨯,求:(1)求13*(2)若2(21)32x *-=,求x 的值.【答案】(1)16;(2)2x =【分析】(1)直接利用已知22a b a b *=⨯,将原式按定义式变形得出答案;(2)直接利用已知将原式变形得出等式,再利用同底数幂相等指数相等列方程求出答案即可.【详解】解:(1)13*=1322⨯=16;(2)∵()22132x *-=,∵2215222x -⨯=∵21522x +=∵215x +=∵2x =.【点睛】本题主要考查了新定义运算以及同底数幂的乘法运算,正确的将原式按照定义式变形是解题的关键.利用同底数幂的乘法法则时应注意:底数必须相同;指数是1时,不要误以为没有指数.22.(2020·江苏泰州市·七年级期中)我们约定1010a b a b ⊕=⨯,如: 23523101010⊕=⨯=.(1)试求123⊕和48⊕的值;(2)想一想,()a b c ⊕⊕是否与()a b c ⊕⊕相等,并说明理由.【答案】(1)1512310⊕=;124810⊕=;(2)()a b c ⊕⊕=()a b c ⊕⊕;理由见解析.【解析】【分析】(1)根据1010a b a b ⊕=⨯,,可得答案;(2)根据1010a b a b ⊕=⨯,,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.【详解】(1)根据题中的新定义得:123⊕=1012⨯103=1015;481248101010⊕=⨯=(2)相等,理由如下:∵()10101010a b c a b c a b c ++⊕⊕=⨯⨯=()∵()10101010a b c a b ca b c ++⊕⊕=⨯⨯=() ∵()a b c ⊕⊕=()a b c ⊕⊕【点睛】此题考查了同底数幂的乘法.此题比较简单,注意同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.23.(2019·莆田第十五中学七年级月考)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log N a =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2 (1)填空:66log = ,16log = ;(2)如果(2)2log m -=3,求m 的值.【答案】(1)1,0;(2)m =10.【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵1066,61==,∵66log =1,16log =0,故答案为:1,0;(2)∵(2)2log m -=3,∵32=m ﹣2,解得:m =10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键.24.(2021·沭阳县修远中学七年级月考)(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )(2)请用字母表示第n 个等式,并验证你的发现.(3)利用(2)中你的发现,求20+21+22+23+…+22016+22017的值.【答案】(1)0,1,2;(2)证明见解析;(3)201821-【详解】试题分析:(1)根据0次幂的意义和乘方的意义进行计算即可;(2)观察各等式得到2的相邻两个非负整数幂的差等于其中较小的2的非负整数幂,即2n -2n -1=2n -1(n 为正整数);(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左边与左边相加,右边与右边相加即可求解.试题解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,故答案为0,1,2;(2)观察可得:2n -2n -1=2n -1(n 为正整数),证明如下:2n -2n -1=2×2n -1-2n -1=2n -1×(2-1)=2n -1;(3)∵21-20=20,22-21=21,23-22=22,…22018-22017=22017,∵22018-20=20+21+22+23+…+22016+22017,∵20+21+22+23+…+22016+22017的值为22018-1.25.(2020·兴化市陈堡初级中学七年级月考)我们知道,根据乘方的意义:2a a a =⋅,3a a a a =⋅⋅. (1)计算:23a a ⋅=________,34a a ⋅=________;(2)通过以上计算你能否发现规律,得到n m a a ⋅的结果;(3)计算:23410a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅.【答案】(1)5a ,7a ;(2)m nm n a a a +⋅=;(3)55a【分析】(1)根据有理数乘方的意义解答;(2)根据(1)的计算结果可得出运算规律:同底数幂相乘,底数a 不变,把指数把m 、n 相加即可; (3)根据(2)的规律进行计算即可得解.【详解】解:(1)235a a a a a a a a ⋅=⋅⋅⋅⋅=, 347a a a a a a a a a a ⋅=⋅⋅⋅⋅⋅⋅=,故答案是:5a ,7a ;(2)n m a a ⋅可以看做m n +个a 相乘,∵m n m n a a a +⋅=;(3)2341012341055a a a a a a a ++++⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅==.【点睛】本题考查了有理数的乘方以及数式规律问题,明确有理数乘方的意义,得出规律是解题的关键.26.(2020·浙江杭州市·七年级期末)阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题:①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯【答案】①1,1;②n n a b ,n n n a b c ;③-132. 【分析】①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】 ①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∵100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∵100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1; ②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∵100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∵201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键. 27.(2021·全国七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)xa N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题:(1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .【答案】(1)53log 125=;(2)见解析;(3)2【分析】(1)根据题意可以把指数式53=125写成对数式;(2)先设log a M =x ,log a N =y ,根据对数的定义可表示为指数式为:M =a x ,N =a y ,计算M N 的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a (M •N )=log a M +log a N 和log log -log aa a M M N N=的逆用,将所求式子表示为:log 3(2×18÷4),计算可得结论.【详解】(1)∵一般地,若a x =N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:记作:x =log a N . ∵3=log 5125,故答案为:3=log 5125;(2)证明:设log a M x =,log a N y =∵x M a =,y N a =, ∵xx y y M a a N a-==, 由对数的定义得log a M x y N=- 又∵log log a a x y M N -=-, ∵log log log (0,1,0,0)a a a M M N a a M N N=->≠>> (3)333log 2log 18-log 4+= log 3(2×18÷4)= log 39=2.故答案为:2.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.。

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。

本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。

一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。

通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。

总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。

《第8章幂的运算》巩固能力提升训练2(附答案)2021年暑假复习七年级数学苏科版下册

《第8章幂的运算》巩固能力提升训练2(附答案)2021年暑假复习七年级数学苏科版下册

2021年苏科版七年级数学下册《第8章幂的运算》暑假复习巩固能力提升训练2(附答案)1.若a m=3,a n=5,则a m+n的值是()A.B.C.8D.152.在研制新冠肺炎疫苗中,某细菌的直径大小为0.000000072毫米,用科学记数法表示这一数字为()A.7.2×10﹣7B.7.2×10﹣8C.7.2×10﹣9D.0.72×10﹣93.下列计算中,正确的是()A.m2•m3=m6B.(m3)2=m5C.m+m2=2m3D.﹣m3+3m3=2m34.计算(﹣a)2•a4的结果是()A.a6B.﹣a6C.a8D.﹣a85.已知10a=20,100b=50,则a+b+的值是()A.2B.C.3D.6.计算32019×()2021的结果是()A.﹣9B.﹣1C.2D.﹣7.已知10a=5,10b=2,则103a+2b﹣1的值为()A.18B.50C.119D.1288.若(a m b n)2=a8b6,那么m2﹣2n的值是()A.10B.52C.20D.329.如果等式(x﹣3)x+3=1成立,则使得等式成立的x的值有几个()A.1个B.2个C.3个D.4个10.下列各式:①﹣(﹣a3)4=a12②(﹣a n)2=(﹣a2)n③(﹣a﹣b)3=(a+b)3④(a﹣b)4=(﹣a+b)4其中正确的个数是()A.1B.2C.3D.411.若2x﹣2=a,则2x=(用含a的代数式表示).12.3﹣2+(﹣2021)0=.13.若x a=2,x b=16,则=.14.若(a﹣2)a+1=1,则a=.15.已知,则(a+3b﹣1)3的值为.16.计算:已知10x=20,10y=50﹣1,求4x÷22y=.17.若2m=3,32n=5,则210n﹣3m=.18.已知2×2m÷22n=210,则4n﹣2m+1=.19.若y=3n+1+3n,x=3n﹣1+3n﹣2,其中n>2且n为整数,则x与y之间的数量关系为.20.已知x2n=3,则(x3n)2﹣(x2)2n的值为.21.求值:(1)已知42x=23x﹣1,求x的值.(2)已知a2n=3,a3m=5,求a6n﹣9m的值.(3)已知3•2x+2x+1=40,求x的值.22.计算:(1).(2)0.252020×42021×(﹣8)100×0.5300.(3)(m﹣1)3•(1﹣m)4+(1﹣m)5•(m﹣1)2.(4)(﹣a2)2•a5+a10÷a﹣(﹣2a3)3.23.(1)已知3×9m×27m=311,求m的值.(2)已知2a=3,4b=5,8c=5,求8a+c﹣2b的值.24.若a m=a n(a>0,a≠1,m、n都是正整数),则m=n,利用上面结论解决下面的问题:(1)如果2x•23=32,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)若x=5m﹣2,y=3﹣25m,用含x的代数式表示y.25.规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.参考答案1.解:因为a m=3,a n=5,所以a m•a n=3×5,所以a m+n=15,故选:D.2.解:0.000000072=7.2×10﹣8.故选:B.3.解:A.m2•m3=m5,故本选项不符合题意;B.(m3)2=m6,故本选项不符合题意;C.m和m2不能合并,故本选项不符合题意;D.﹣m3+3m3=2m3,故本选项符合题意;故选:D.4.解:原式=a2•a4=a6,故选:A.5.解:∵10a×100b=10a×102b=10a+2b=20×50=1000=103,∴a+2b=3,∴原式=(a+2b+3)=×(3+3)=3,故选:C.6.解:32019•()2021====.故选:D.7.解:∵10a=5,10b=2,∴103a+2b﹣1=103a×102b÷10=(10a)3×(10b)2÷10=53×22÷10=50.故选:B.8.解:∵(a m b n)2=a2m b2n,∴a2m b2n=a8b6.∴2m=8,2n=6.∴m=4,n=3.∴m2﹣2n=16﹣6=10.故选:A.9.解:∵等式(x﹣3)x+3=1成立,∴x+3=0或x﹣3=1或x﹣3=﹣1且x+3为偶数,解得:x=﹣3,x=4,x=2(舍去),故使得等式成立的x的值有2个.故选:B.10.解:①根据幂的乘方可得﹣(﹣a3)4=﹣a12,所以①错误,不符合题意;②根据幂的乘方可得(﹣a n)2=a2n,当n为偶数时,(﹣a2)n=a2n,当n为奇数时,(﹣a2)n=﹣a2n,所以②错误,不符合题意;③(﹣a﹣b)3=﹣(a+b)3,所以③错误,不符合题意;④(a﹣b)4=(﹣a+b)4,所以④正确,符合题意.故选:A.11.解:∵2x﹣2=2x÷22,2x﹣2=a,∴2x÷4=a,∴2x=4a.故答案为:4a.12.解:原式=+1=+1=,故答案为:.13.解:∵x a=2,∴(x a)4=24=16,又x b=16,∴(x a)4=x b,∴4a=b,∴=4.故答案为:4.14.解:①当a﹣2=1时,a=3.②当a+1=0且a﹣2≠0时,a=﹣1.③当a﹣2=﹣1 a+1=2时,a=1a的值为3或﹣1或1.15.解:∵8b=(23)b=23b=,2a=5,∴2a+3b=2a•23b=5×==2﹣1,∴a+3b=﹣1,∴原式=(﹣1﹣1)3=(﹣2)3=﹣8.故答案为:﹣8.16.解:∵10x=20,10y=50﹣1,∴10x÷10y=20÷50﹣1,即10x﹣y=1000=103,∴x﹣y=3,∴4x÷22y=4x﹣y=43=64,故答案为:64.17.解:∵32n=(25)n=25n=5,2m=3,∴210n﹣3m=210n÷23m=(25n)2÷(2m)3=52÷33=,故答案为:.18.解:∵2×2m÷22n=21+m﹣2n=210,∴1+m﹣2n=10,∴m﹣2n=9,∴﹣2(m﹣2n)=﹣18,即4n﹣2m=﹣18,∴4n﹣2m+1=﹣17.故答案为:﹣17.19.解:∵y=3n+1+3n=9(3n﹣1+3n﹣2),x=3n﹣1+3n﹣2,∴9x=y.故答案为:9x=y.20.解:原式=x6n﹣x4n=(x2n)3﹣(x2n)2=33﹣32=27﹣9=18.故答案为:18.21.解:(1)∵42x=23x﹣1,∴24x=23x﹣1,∴4x=3x﹣1,∴x=﹣1;(2)∵a2n=3,a3m=5,∴a6n﹣9m=a6n÷a9m=(a2n)3÷(a3m)3=33÷53=;(3)∵3•2x+2x+1=40,∴3•2x+2•2x=40,∴5•2x=40,∴2x=8,∴x=3.22.解:(1)原式=9+1﹣5=5;(2)原式===1×4×(﹣1)300=4×1=4;(3)原式=(m﹣1)7﹣(m﹣1)7=0;(4)原式=a4•a5+a9+8a9=a9+a9+8a9=10a9.23.解:(1)∵3×9m×27m=3×32m×33m=311,∴31+2m+3m=311,∴1+2m+3m=11,解得:m=2;(2)∵2a=3,4b=5,8c=5,∴2a=3,4b=22b=5,8c=23c=5,∴8a+c﹣2b=23(a+c﹣2b)=23a×23c÷26b=(2a)3×23c÷(22b)3=33×5÷53=.24.解:(1)∵2x•23=32,∴2x+3=25,∴x+3=5,∴x=2;(2)∵2÷8x•16x=25,∴2÷23x•24x=25,∴21﹣3x+4x=25,∴1+x=5,∴x=4;(3)∵x=5m﹣2,∴5m=x+2,∵y=3﹣25m,∴y=3﹣(5m)2,∴y=3﹣(x+2)2=﹣x2﹣4x﹣1.25.解:(1)①因为53=125,所以(5,125)=3;因为(﹣2)5=﹣32,所以(﹣2,﹣32)=5;②由新定义的运算可得,x﹣4=,因为(±2)﹣4==,所以x=±2,故答案为:①3,5;②±2;(2)因为(4,5)=a,(4,6)=b,(4,30)=c,所以4a=5,4b=6,4c=30,因为5×6=30,所以4a•4b=4c,所以a+b=c.。

七年级数学 专题训练 幂的运算

七年级数学 专题训练 幂的运算

专题训练(一)幂的运算▶类型一运用法则1.下列运算结果正确的是()A.a2+a3=a5B.(a4)3=a12C.a2·a3=a6D.(-a2)4=-a82.已知x m=4,x n=8,m,n都是整数,那么x2m-n等于()A.2B.1C.0D.123.计算:(1)-(-2ab3)2=;-a2·(-a3)=.(2)若5a=12.5,5b=110,则3a÷3b=.(3)已知x a-3=2,x b+4=5,x c+1=10,则a,b,c三者之间的数量关系是.4.计算:(1)a2·a4-a8÷a2+(3a3)2;(2)m7·m5+(-m3)4-(-2m4)3.5.计算:231-⎪⎭⎫⎝⎛-+4×(-1)2022-|-23|+(π-5)0.▶类型二整体思想6.计算:(x-y)2·(y-x)等于()A.(x-y)3B.(x-y)2C.-(x-y)3D.(x+y)37.与(a-b)3·[(b-a)3]2相等的是()A.(a-b)8B.-(b-a)8C.(a-b)9D.(b-a)98.已知x2m=2,求(2x3m)2-(3x m)2的值.9.已知x,y满足x-3y+3=0,求3x÷27y的值.▶类型三逆向变换10.(-0.125)2021×(-8)2022等于()A.8B.-8C.1D.以上答案都不对11.已知a m=9,a n=2,a p=6,则a m+n-p的值为()A.3B.4C.5D.1712.若3×9m×27m=321,则m的值为.13.如果a=233,b=322,c=411,那么a,b,c三数的大小关系为.14.已知:a m+n=6,a m=2,求:(1)a n的值;(2)a2n+3m的值.▶类型四分类讨论15.已知(x-1)x+6=1,求x的值.▶类型五综合运用16.一个长方形的长是4.2×104cm,宽是2×104cm,求这个长方形的面积.17.阅读材料:求1+2+22+23+24+…+22022的值.解:设S=1+2+22+23+24+…+22021+22022,①将等式两边同时乘2,得2S=2+22+23+24+25+…+22022+22023,②用②式减去①式,得2S-S=22023-1,即S=22023-1,所以1+2+22+23+24+…+22022=22023-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).。

七年级幂的运算100道

七年级幂的运算100道

七年级幂的运算100道1. 计算 $2^3$。

2. 计算 $5^2$。

3. 计算 $(-3)^4$。

4. 计算 $(-2)^3$。

5. 计算 $10^0$。

6. 计算 $4^2$。

7. 计算 $(-5)^3$。

8. 计算 $3^4$。

9. 计算 $(-4)^2$。

10. 计算 $2^5$。

11. 计算 $(-6)^2$。

12. 计算 $7^3$。

13. 计算 $(-2)^4$。

14. 计算 $3^2$。

15. 计算 $(-8)^3$。

16. 计算 $5^4$。

18. 计算 $4^3$。

19. 计算 $(-7)^4$。

20. 计算 $2^6$。

21. 计算 $(-5)^2$。

22. 计算 $6^3$。

23. 计算 $(-2)^5$。

24. 计算 $8^2$。

25. 计算 $(-4)^3$。

26. 计算 $3^5$。

27. 计算 $(-6)^4$。

28. 计算 $9^2$。

29. 计算 $(-3)^3$。

30. 计算 $5^5$。

31. 计算 $(-7)^2$。

32. 计算 $2^7$。

33. 计算 $(-4)^4$。

35. 计算 $(-8)^3$。

36. 计算 $3^6$。

37. 计算 $(-5)^4$。

38. 计算 $7^2$。

39. 计算 $(-2)^6$。

40. 计算 $4^5$。

41. 计算 $(-6)^2$。

42. 计算 $8^3$。

43. 计算 $(-3)^5$。

44. 计算 $5^6$。

45. 计算 $(-7)^3$。

46. 计算 $2^8$。

47. 计算 $(-4)^2$。

48. 计算 $6^4$。

49. 计算 $(-8)^2$。

50. 计算 $3^7$。

52. 计算 $7^4$。

53. 计算 $(-2)^7$。

54. 计算 $4^6$。

55. 计算 $(-6)^3$。

56. 计算 $8^4$。

57. 计算 $(-3)^6$。

58. 计算 $5^7$。

59. 计算 $(-7)^5$。

《幂的运算》提高练习测试题-(培优)

《幂的运算》提高练习测试题-(培优)

《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()、4、a互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反①a5+a6.6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题(共17小题,满分70分)8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、17、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.﹣,当21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.2()答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣21的(1.C、2个D、1个考点:幂的乘方与积的乘方。

分析:根据幂的乘方的运算法则计算即可,同时要注意m的奇偶性.解答:解:根据幂的乘方的运算法则可判断(1)(2)都正确;因为负数的偶数次方是正数,所以(3)a2m=(﹣a m)2正确;(4)a2m=(﹣a2)m只有m为偶数时才正确,当m为奇数时不正确;所以(1)(2)(3)正确.故选B.点评:本题主要考查幂的乘方的性质,需要注意负数的奇数次幂是负数,偶数次幂是正数.、:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式。

幂的运算【单元提升卷】2022-2023学年七年级数学下学期核心考点

幂的运算【单元提升卷】2022-2023学年七年级数学下学期核心考点

第8章 幂的运算【单元提升卷】考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、单选题1. 如果()099,a =-()10.1b -=-,253c -⎛⎫=- ⎪⎝⎭,那么,,a b c 三数的大小为( )A. a b c >> B. a c b >> C. c a b >> D. c b a >>2. 给出下列四个算式:3227()()a a a --=- ,326()a a -=-,3342()a a a -÷=,633()()a a a -÷-=-,其中正确的有( )A. 1个B. 2个C. 3个D. 4个3. 把实数36.1210-⨯用小数表示为()A. 0.0612B. 6120C. 0.00612D. 6120004. 已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b 之值的叙述何者正确?( )A. 比1大B. 介于0、1之间C. 介于﹣1、0之间D. 比﹣1小5. 若A 为一个数,且5642711A =⨯⨯,则下列选项所表示的数是A 的因数的是( )A. 425⨯B. 73711⨯C. 4442711⨯⨯D. 6662711⨯⨯6. 计算2113()n n x x x -+ 的结果为( )A. 33n x + B. 63n x + C. 12n x D. 66n x +7. 计算()233a a ⋅的结果是( )A. 8a B. 9a C. 11a D. 18a 8. 下列运算正确的是( )A. 2m m m =B. ()33mn mn =C. ()326m m =D. 623m m m ÷= 9. 若3915()m n a b a b =,则,m n 的值分别为( )A. 9,5B. 3,5C. 5,3D. 6,1210. 已知5x =3,5y =2,则52x ﹣3y =( )A. 34 B. 1 C. 23 D. 98二、填空题11. 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅有0.00000000034米,将数据0.00000000034用科学记数法表示为_____________.12. 计算:(3x 2y )2=__.13. 计算1(1)2π--︒+=______.14. 当n 为奇数时,22()()n n a a -+-=________.15. 计算(-10)2+(-10)0+10-2×(-102)的结果是__________.16. 计算:(-m 2)3÷(-m 2)=________,(m 4·m 3)÷(m 2·m 4)=________.17. 计算:0.25×55=________;0.252019×(-4)2018=________.18. 在255,344,433,522这四个幂中,数值最大的一个是________.三、解答题19. 计算:(1)-102n ×100×(-10)2n -1;(2)[(-a )·(-b )2·a 2b 3c ]2;(3)(x 3)2÷x 2÷x -x 3÷(-x )4·(-x 4);(4)(-9)3×32()3-×31(3;(5)x n +1·x n -1·x ÷x m ;(6)a 2·a 3-(-a 2)3-2a ·(a 2)3-2[(a 3)3÷a 3].20. 用简便方法计算:(1)21(2)4×42;(2)(-0.25)12×413.21. 计算:(1)(-2)3+3×(-2)-21()4-;(2)5-11()3-+|-3|-(π-3)0.22. 已知10m =4,10n =5,求103m +2n 的值.23. 若82a +3×8b -2=810,求2a +b 的值.24. 已知a 3m =3,b 3n =2,求(a 2m )3+(b n )3-a 2m ·b n ·a 4m ·b 2n 的值.25. 阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).26. 阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,……我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,-10,20,……的第4项是_____________;(2)如果一列数a 1,a 2,a 3,……是等比数列,且公比是q ,那么根据上述规定有21a q a =,32a q a =,43a q a =,……因此,可以得到a 2=1a q ,23211a a q a q q a q ==⋅=,234311a a q a q q a q ==⋅=,……则a n =____________;(用含a 1与q 的代数式表示)(3)一个等比数列的第2项是6,第3项是-18,求它的第1项和第4项.第8章 幂的运算【单元提升卷】考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、单选题【1题答案】【答案】B【解析】【分析】分别计算出a 、b 、c 的值,然后比较有理数的大小即可.【详解】因为20159(99)1,(0.1)10,325a b c --⎛⎫=-==-=-=-= ⎪⎝⎭,所以a>c>b .故选B .【点睛】考查了负整数指数幂及零指数幂的知识,属于基础题,解答本题的关键是掌握负整数指数幂的运算法则.【2题答案】【答案】B【解析】【分析】直接利用幂的乘方运算法则以及同底数幂的乘法、除法运算法则分别计算得出答案.【详解】()()232347·a a a a a --=-=-;正确()236a a -=-;不正确,应该为:6a ()3342a a a -÷=;不正确,应该为:-5a ()()633a a a -÷-=-,正确故选B .【点睛】此题主要考查了幂的乘方运算、同底数幂的乘法、除法运算等知识,正确掌握运算法则是解题关键.【3题答案】【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【4题答案】【答案】B【解析】【分析】由科学记数法还原a 、b 两数,相减计算结果可得答案.【详解】∵a=3.1×10﹣4,b=5.2×10﹣8,∴a=0.00031、b=0.000000052,则a ﹣b=0.000309948,故选B .【点睛】本题主要考查科学记数法﹣表示较小的数,用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【5题答案】【答案】C【解析】【分析】根据所含的因数必须在原数里面存在的,且某一个数的次数要小于原数的次数将原式提取因式,即可得到答案.【详解】56444422711271127A =⨯⨯=⨯⨯⨯⨯所以,A 的因数中有4442711⨯⨯故选:C .【点睛】本题主要考查了同底数幂的乘法的逆用和幂的乘方、因数的求法,熟练掌握运算法则是解题的关键.【6题答案】【答案】D【解析】【分析】根据同底数幂相乘,底数不变,指数相加,再根据幂的乘方,底数不变,指数相乘求解即可.【详解】解: ()3211n nx x x -+⋅⋅=2113223()()n n n x x +-+++==66n x +.故选D .【点睛】本题考查了同底幂相乘,幂的乘方,解决此题的关键是熟练运用这些法则.【7题答案】【答案】B【解析】【分析】根据幂的乘方的性质和同底数幂的乘法计算即可.【详解】解:()233·a a =36·a a =9a 故选B.【点睛】本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.【8题答案】【答案】C【解析】【详解】A .同底数幂的乘法,底数不变指数相加,故A 不符合题意;B .积的乘方等于乘方的积,故B 不符合题意;C .幂的乘方底数不变指数相乘,故C 符合题意;D.同底数幂的除法,底数不变指数相减,故D不符合题意,故选:C.【点睛】本题主要考查了幂的乘方,同底数幂乘法和除法等知识,熟记公式是解答本题的关键.【9题答案】【答案】B【解析】【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n 即可.【详解】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.【10题答案】【答案】D【解析】【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【详解】∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y=2359=58xy.故选D.【点睛】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.二、填空题【11题答案】【答案】3.4×10-10【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000034=3.4×10-10.故答案为:3.4×10-10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【12题答案】【答案】9x 4y 2【解析】【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【详解】解:(3x 2y )2=32x 4y 2=9x 4y 2.故答案为∶ 9x 4y 2【13题答案】【答案】32.【解析】【详解】试题分析:原式=112+=32.故答案为32.考点:1.负整数指数幂;2.零指数幂.【14题答案】【答案】0【解析】【分析】根据幂的乘方以及积的乘方进行计算即可得出结果.【详解】解:∵n 为奇数,∴2222222()()(1)(1)0n n n n n n n a a a a a a -+-=-⨯+-⨯=-+=,故答案为:0.【点睛】本题考查了幂的乘方以及积的乘方,熟练掌握运算法则是解本题的关键.【15题答案】【答案】100【解析】【分析】分别根据零指数幂及负整数幂的计算法则、数的乘方法则计算出各数,再根据有理数混合运算的法则进行计算即可.【详解】原式=100+1-1100×100=101-1=100.故答案为:100.【点睛】本题考查的是负整数指数幂,熟知0指数幂及负整数幂的计算法则、数的乘方法则是解答此题的关键.【16题答案】【答案】①. m 4; ②. m 【解析】【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【详解】(-m 2)3÷(-m 2)=(-m 6)÷(-m 2)=m 4;(m 4·m 3)÷(m 2·m 4)= m 7÷m 6=m .故答案为m 4;m .【点睛】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.【17题答案】【答案】①. 1 ②. 0.25【解析】【分析】直接利用积的乘方运算法则将原式变形求出答案即可.【详解】5550.25(0.25)1⨯=⨯= ;[]2018201920180.25(4)0.25(4)0.250.25⨯-=⨯-⨯=【点睛】本题考查了积的乘方的逆运算,解题的关键是熟练掌握运算法则.【18题答案】【答案】344【解析】【分析】首先将各数化为指数一样数字,进而比较底数得出即可.【详解】∵255=(25)11,344=(34)11,433=(43)11,522=(52)11,则25=32,34=81,43=64,52=25,∴这四个数中,数值最大的一个是:344.故答案为344.【点睛】本题考查了幂的乘方,将各数化为指数相同的数字是解题关的键.三、解答题【19题答案】【答案】(1) 104n+1;(2) a6b10c2;(3) 2x3;(4) 8;(5) x2n-m+1;(6)-2a7-a6+a5.【解析】【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,分别计算即可.【详解】(1)-102n×100×(-10)2n-1,=-102n•102•(-102n-1),=102n+2+2n-1,=104n+1;(2)[(-a)(-b)2•a2b3c]2,=[(-a)b2•a2b3c]2,=(-a3b5c)2,=a6b10c2;(3)(x3)2÷x2÷x-x3÷(-x)4•(-x4),=x6÷x2÷x+x3÷x-1•x4,=x3+x3,=2x3;(4)(−9)3×(−23)3×(13)3,=[(-9)×(-23)×13]3,=23,=8.(5)x n+1·x n-1·x÷x m,= x2n+1÷x m,= x2n-m+1;(6)a2·a3-(-a2)3-2a·(a2)3-2[(a3)3÷a3].=a5+a6-2a7-2a6,=-2a7-a6+a5.【点睛】本题主要考查同底数的幂的乘法,幂的乘方的性质,积的乘方的性质,同底数幂的除法,熟练掌握运算性质并灵活运用是解题的关键.【20题答案】【答案】(1)81;(2) 4.【解析】【分析】根据幂的乘方法则:底数不变指数相乘,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘去做.【详解】(1)原式=2294×42=(94×4)2=92=81;(2)原式=(-14)12×413=(-14×4)12×4=(-1)12×4=1×4=4.【点睛】本题考查幂的乘方,底数不变指数相乘,以及积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【21题答案】【答案】(1)-30;(2) 4.【解析】【分析】按照实数的混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:(1)原式=-8+(-6)-16=-30.(2)原式=5-3+3-1=4.【点睛】本题考查的是实数的运算,零指数幂,负整数指数幂.【22题答案】【解析】【分析】由10m=4,10n=5,根据103m+2n=(10m)3•(10n)2即可求得答案.【详解】∵10m=4,10n=5,∴103m+2n=x3m+2n=(10m)3•(10n)2=(4)3×(5)2=1600.【点睛】此题考查了幂的乘方与同底数幂的乘法的性质.此题难度不大,注意掌握指数的变化是解此题的关键.【23题答案】【答案】9【解析】【分析】根据同底数幂的乘法,底数不变指数相加,可得a、b的关系,根据a、b 的关系,可得答案.【详解】82a+3•8b-2=810,82a+3+b-2=810,∴(2a+3)+(b-2)=10,2a+b+3-2=10,2a+b=9.【点睛】本题考查了同底数幂的乘法,底数不变指数相加是解题关键.【24题答案】【答案】-7【解析】【分析】根据整式的运算法则即可求出答案.【详解】当a3m=3,b3n=2时,原式=(a3m)2+(b3n)-a6m b3n=(a3m)2+(b3n)-(a3m)2b3n=9+2-9×2=11-18=-7【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【答案】(1)211﹣1(2)1+3+32+33+34+…+3n=131 2n+-.【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=131 2n+-,则1+3+32+33+34+…+3n=131 2n+-.视频【26题答案】【答案】(1)-40;(2) a1q n-1;(3)第1项是-2,第4项是54【解析】【分析】(1),根据题意可得等比数列5,-10,20,…中,从第2项起,每一项与它前一项的比都等于-2;由此即可得到第4项的数;(2),观察数据a2、a3、a4、…的特点,找到规律,即可得到a n的表达式;(3),设公比为x,根据等比数列公比的定义可得出x的值,然后根据a n的表达式即可求得第1项和第4项.【详解】解(1)∵--10÷5=-2,20×(-2)=-40,所以第4项是-40 ;故答案为:-40;(2)通过观察发现,第n 项是首项a 1乘以公比q 的(n -1)次方,即:11n n a a q -=.故答案为:11n n a a q -=;(3)-18÷6=-3,所以它的第1项6÷(-3)=-2;第4项-18×(-3)=54.【点睛】此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,应用发现的规律解决问题.分析数据获取信息是必须掌握的数学能力,如本题观察数据a 2、a 3、a 4、…的特点可得a n =a 1q n -1.。

幂的运算练习题及答案

幂的运算练习题及答案

《幂的运算》提咼练习题一、选择题1计算(-2) 100+ (- 2) 99所得的结果是( )A、- 299B、- 2C、299D、22、当m是正整数时,下列等式成立的有( )(1) a2m= (a m) 2; (2) a2m= (a2) m; (3) a2m= (-a m) 2;2m / 2、m(4) a = (- a ).A、4个B、3个C、2个D、1个3、下列运算正确的是( )A、2x+3y=5xyB、(- 3x2y) 3= - 9x6y3.321 2、n 4 44x y • ( -^xy ) = -2x yC、/D、(x-、3 3 3y) =x - y 各组中一定互为相反数的是( )n n 2n 2nA、a 与bB、a 与b2n+1 2n+1 2n -1 2n -1C、a 与bD、a 与-b5、下列等式中正确的个数是( )①a5+a5=a10;②(-a) 6? (- a) 3?a=a10;③-a4?(-④ 25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2?x3= _______ ; (—a2)3+ (- a3) 2= __7、若2m=5 , 2n=6,贝U 2m+2n= _______ .三、解答题、5 20a) =a ;4、a与b互为相反数,且都不等于 0, n为正整数,则下列9、若 1+2+3+ …+n=a ,求代数式(x n y) (x n1y2) (x n 2y3)…(x2y n1) (xy n)的值. 12、已知 a x=5 , a x+y=25,求 a x+a y的值.m+2n n m+n13、若 x =16 , x =2,求 x 的值.10、已知 2x+5y=3,求 4x?32y的值.14、比较下列一组数的大小. 8131, 2741, 961 11、已知25m210n=57?24,求m、n.n - 5 / n+1 3m - 2、 2 / n -1. m - 2、 319、计算:a (a b ,15、如果 a 2+a=0 (a^ 0),求 a 2005+a 2004+12 的值.1 2n -1 n 尹 20、若 x=3a , y=- ,当 a=2, n=3 时,求 的值.16、已知 9n+1 - 32n =72,求 n的值. 21、已知:2=^1,27=3 1,求 x-y 的值. 18、若(a n b m b) 3=a 9b 15,求 2m+n 的值./ n+i.3m - 2、 2 / n T.m - 2、 3 , . 3m+2 (ab ) + (a b ) (-b n a x- ay22、计算: (a-b) m+3? (b - a) 2? (a- b) m? (b - a)23、若(a m+1b n+2) (a2n- 1b2n) =a5b3,则求 m+n 的值.12 12(2) (- 0.25) X 424、用简便方法计算:1(1) (2 b 2X42(3) 0.52X 25 X 0.125。

幂的运算 提高培优练习题

幂的运算 提高培优练习题

幂的运算提高培优练习题幂的运算提高培优练题例题:例1.已知 $3x(x+5)=3x^{n+1}+45$,求 $x$ 的值。

例2.若 $1+2+3+。

+n=a$,求代数式值。

例3.已知 $2x+5y-3=0$,求 $4x\cdot 32y$ 的值。

例4.已知 $25m\cdot 2\cdot 10n=57\cdot 24$,求 $m$、$n$。

例5.已知 $ax=5$,$ax+y=25$,求 $ax+ay$ 的值。

例6.若 $xm+2n=16$,$xn=2$,求 $xm+n$ 的值。

例7.已知 $10a=3$,$10b=5$,$10c=7$,试把 $105$ 写成底数是 $10$ 的幂的形式。

例8.比较下列一组数的大小:$8131$,$2741$,$961$。

例9.如果 $a^2+a=0$($a\neq 0$),求$a^{2009}+a^{2008}+12$ 的值。

例10.已知 $9n+1-32n=72$,求 $n$ 的值。

练:1.计算 $(-2)^{100}+(-2)^{99}$ 所得的结果是()A。

$-2$ B。

$2$ C。

$-299$ D。

$299$2.当 $n$ 是正整数时,下列等式成立的有()(1)$a^{2m}=(a^m)^2$(2)$a^{2m}=(a^2)^m$(3)$a^{2m}=(-a^m)^2$ A。

4个 B。

3个 C。

2个 D。

1个3.计算:$(-a^2)^3+(-a^3)^2$。

4.若 $2^m=5$,$2^n=6$,则 $2^{m+n}=$。

5.下列运算正确的是()A。

$2x+3y=5xy$ B。

$(-3x^2y)^3=-9x^6y^3$ C。

$4x^3y^2\cdot (-xy^2)=-2x^4y^4$ D。

$(x-y)^3=x^3-y^3$6.若 $(anbmb)^3=a^9b^{15}$,求 $2m+n$ 的值。

7.计算:$an-5(an+1b^{3m-2})^2+(an-1b^{m-2})^3(-b^{3m+2})a^{2m}=(-a^2)^m$。

初一(七年级)数学幂的运算精品习题

初一(七年级)数学幂的运算精品习题

第二节 幂的学习与加强训练例1、计算2)3)(1(x 5)2)(2(b - 4)2)(3(xy - n a )3)(4(2 523))(5(b a例2、 计算:1010)41(4)1(⨯ 11109)75.0()98()211)(2(⨯⨯(3)x 2·x 4+(x 3)2; (4)(a 3)3·(a 4)3.例3、地球可以近似地求作球体,如果用r v ⋅分别代表球的体积和半径,那么34=v пr 3,地球的半径大约为3106⨯千米,它的体积大约是多少立方千米?你能计算出太阳的体积大约是多少立方千米吗?(太阳的半径大约是地球的半径的100倍)(写出完整答案)。

习题11.计算:224)3)(1(y x - []43)()2(n m -- 213)())(3(+⋅m m a a(4)28×28 (5)52×53 (6)102×105 (7)a 3·a 3(8)32÷32= (9)103÷103= (10)a m ÷a n =( )(a ≠0) 2. 计算: 72708)125.0)(1(⨯ ][][23)()()2(n m y x y x +⋅+的值求已知26851520,64)3(z y x z y x = 的值求已知n m n m 232,42,32)4(+==3.下面计算中,正确的是( )A.a 2n ÷a n =a 2B.a 2n ÷a 2=a nC.(xy )5÷xy 3=(xy )2D.x 10÷(x 4÷x 2)=x 8. 4.(2×3-12÷2)0等于( )A.0B.1C.12D.无意义5.若x 2m +1÷x 2=x 5,则m 的值为 ( ) A.0 B.1 C.2 D.36.(a 2)4÷a 3÷a 等于( )A.a 5B.a 4C.a 3D.a 27.若32x +1=1,则x = ;若3x =271,则x = .8.x m +n ÷x n =x 3,则m = .9.填空:(1)( )·28=216 (2)( )·53=55 (3)( )·105=107 (4)( )·a 3=a 610 下列计算:(1)a n ·a n =2a n ; (2) a 6+a 6=a 12; (3) c ·c 5=c 5 ; (4) 3b 3·4b 4=12b 12 ; (5) (3xy 3)2=6x 2y 6 中正确的个数为 ( ) A . 0 B . 1 C . 2 D . 3 11 若2m =3,2n =4,则23m-2n 等于 ( ) A .1B .89C .827 D .1627 12、一个长方体形储货仓长为4×103㎝,宽为3×103㎝,高为5×102㎝,求这个货仓的体积。

1-3-3专题一 幂的运算提高题2022-2023学年北师大版七年级下册

1-3-3专题一 幂的运算提高题2022-2023学年北师大版七年级下册

解:
32b=(3b)2=102=100
3a+c=3a·3c=4×25=100 ∵32b=3a+c ∴2b=a+c
补充练习
4. a=833,b=1625,c=3219,试比较a,b,c的大小.
解:∵a=833=(23)33=299,b=1625=(24)25=2100 , c=3219=(25)19=295 ,
=27×23+(–8)×22
=27×8+(–8)×4
转化 整体思想
=184
类型二 代数式求值
例4 已知2x+y–3=0,求16x×4y的值.
解:16x×4y =(42)x×4y =42x×4y =42x+y
∵2x+y–3=0 ∴2x+y=3
∴原式=23=8
转化为同底数 整体思想
类型三:比较幂的大小
= –4
类型一 简便运算
an·bn = (ab)n
amn =(am)n
例1 计算 (–0.25)2021×42021 变式2 (–0.25)1011×22022
解:原式 = (– 0.25×4 )2021 =(–1)2021 = –1
原式=(–0.25)1011×22×1011
=(–0.25)1011×(22)1011 = (– 0.25)1011×41011
= (– 0.25×4 )1011
= –1
类型一 简便运算
变式3 (-0.25)1009×22022
解:原式= (-0.25)1009×(22)1011 = (-0.25)1009×41011 = (-0.25)1009×41009×42 = (-0.25×4)1009×42 = –16

(苏科版)七年级数学下册期末复习提升训练 幂的运算 【含答案】

(苏科版)七年级数学下册期末复习提升训练 幂的运算 【含答案】

(苏科版)七年级数学下册期末复习提升训练 幂的运算一、选择题1、下列运算中属于同底数幂相乘的是( )A .(﹣a )2•a 2B .﹣a 2•(﹣a )3C .﹣x 2•x 5D .(a ﹣b )2•(b ﹣a )32、计算的结果是( ).33(2)a -A . B . C . D .66a -96a -68a -98a -3、若,则的值为( )320a b +-=248a b ⨯A .B .C .D .524232224、若a n +1•a m +n =a 6,且m ﹣2n =1,求m n 的值为( ).B.-D.-A.1 B.-1C.3D.-35、计算:( )()202020190.254⨯-=A .B .C .1D .44-1-6、如果3x =m ,3y =n ,那么3x ﹣y 等于( )A .m +nB .m ﹣nC .mnD .nm7、若,其中为整数,则与的数量关系为( )122n n x +=+2322n n y ++=+n x y A .B .C .D .4x y =4y x =12x y =12y x=8、设a =255,b =333,c =422,则a 、b 、c 的大小关系是( )A .c <a <bB .a <b <cC .b <c <aD .c <b <a9、若(1﹣x )1﹣3x =1,则x 的取值有( )个.A .0B .1C .2D .310、若a ≠0,化简下列各式,正确的个数有( )(1)a 0•a •a 5=a 5;(2)(a 2)3=a 6;(3)(﹣2a 4)3=﹣6a 12;(4)a ÷a ﹣2=a 3;(5)a 6+a 6=2a 12;(6)2﹣2÷25×28=32;(7)a 2•(﹣a )7•a 11=﹣a 20A .1个B .2个C .3个D .4个二、填空题11、无意义,则x 的取值为 ________.()0x 7+12、若,则=__________.21,2n n a b ==()232-na b 13、若3m =2,3n =4,则3m +n =__________;14、已知,则的值为_________.340m n +-=28m n ⋅15、若,则____.2211392781n n ++⨯÷=n =16、若,则=_____.293,2x x y a a -==y a 17、若a x =3,a y =2,则a 3x ﹣2y 的值为 .18、已知2a =5,2b =10.2c =50,那么a 、b 、c 之间满足的等量关系是________.19、若,则x 的值为()3211x x +-=20、今年上半年,新冠病毒席卷全世界.已知某种病毒的直径为21.7微米(1毫米=1000微米),用科学记数法表示这种病毒的直径为 米.三、解答题21、计算:(1) (2)()()24576332x x x x x ⋅+⋅-+2324251(3)()()2a b a b -⋅-⋅-22、计算:(1)(y 2)3÷y 6•y (2)y 4+(y 2)4÷y 4﹣(﹣y 2)223、(1)计算:.()()1020*******π-⎛⎫--+-+- ⎪⎝⎭(2)计算:()2014×1.52012×(﹣1)20143224、(1)已知3×9m ÷27m =316,求m 的值.(2)若2x +5y ﹣3=0,求4x •32y 的值.(3)若n 为正整数,且x 2n =4,求(3x 3n )2﹣4(x 2)2n 的值.25、(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值26、一般地,若(且),则n 叫做以a 为底b 的对数,记为,即na b =0a >1,0a b ≠>log a b .log a b n =譬如:,则4叫做以3为底81的对数,记为(即=4).4381=3log 813log 81(1)计算以下各对数的值: , , .2log 4=2log 16=2log 64=(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的2log 42log 162log 64等量关系式;(3)由(2)猜想一般性的结论: .(且),并根log log a a M N +=0a >1,0a M ≠>,0N >据幂的运算法则:以及对数的含义证明你的猜想.M N M N a a a +⋅=(苏科版)七年级数学下册期末复习提升训练 幂的运算一、选择题1、下列运算中属于同底数幂相乘的是( )A .(﹣a )2•a 2B .﹣a 2•(﹣a )3C .﹣x 2•x 5D .(a ﹣b )2•(b ﹣a )3C【分析】根据同底数幂的意义,只需底数相同就可以用,以此判断即可A 、底数-a 和a 不是同底数,故此选项错误;B 、底数a 和-a 不是同底数,故此选项错误;C 、底数都是x ,故此选项正确;D 、底数a-b 和b-a 不是同底数,故此选项错误,故选:C .2、计算的结果是( ).33(2)a -A . B . C .D .66a -96a -68a -98a -D 积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.3、若,则的值为( )320a b +-=248a b ⨯A .B .C .D .52423222B【分析】直接利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:,,.故选:.320a b +-= 32a b ∴+=2262(3)4482222a b a b a b +∴⨯=⨯==B4、若a n +1•a m +n =a 6,且m ﹣2n =1,求m n 的值为( ).B.-D.-A.1 B.-1C.3D.-3C【分析】根据a n +1•a m +n =a 6,可得m +2n =5,然后与m ﹣2n =1联立,解方程组即可.解:由题意得,a n +1•a m +n =a m +2n +1=a 6,则m +2n =5,∵,∴,故m n =3.2521m n m n +=⎧⎨-=⎩31m n =⎧⎨=⎩5、计算:( )()202020190.254⨯-=A .B .C .1D .44-1-D 【分析】由同底数幂相乘的逆运算,积的乘方的运算法则进行计算,即可得到答案.【详解】解:;故选:D .()20202019201920202019110.254()4(4)4444⨯-=⨯=⨯⨯=6、如果3x =m ,3y =n ,那么3x ﹣y 等于( )A .m +nB .m ﹣nC .mnD .nm【分析】根据同底数幂相除,底数不变,指数相减,整理后再根据指数相等列出方程求解即可.∵3x =m ,3y =n ,∴3x ﹣y =3x ÷3y=,nm 故选:D .7、若,其中为整数,则与的数量关系为( )122n n x +=+2322n n y ++=+n x y A .B .C .D .4x y =4y x=12x y =12y x =【分析】先将y 变形为,进而可得答案.()21222n n +⨯+【详解】解:因为,()2122231222222222n n n n n n y ++++=⋅+=++⋅⨯=122n n x +=+所以.故选:B .224y x x =⋅=8、设a =255,b =333,c =422,则a 、b 、c 的大小关系是( )A .c <a <bB .a <b <cC .b <c <aD .c <b <aD【分析】直接利用指数幂的性质结合幂的乘方运算法则将原式变形进而得出答案.∵a =255=(25)11=3211,b =333=(33)11=2711,c =422=(42)11=1611,∴c <b <a .故选:D .9、若(1﹣x )1﹣3x =1,则x 的取值有( )个.A .0B .1C .2D .3【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.解:∵(1﹣x )1﹣3x =1,∴当1﹣3x =0时,原式=()0=1,32当x =0时,原式=11=1,故x 的取值有2个.故选:C .10、若a ≠0,化简下列各式,正确的个数有( )(1)a 0•a •a 5=a 5;(2)(a 2)3=a 6;(3)(﹣2a 4)3=﹣6a 12;(4)a ÷a ﹣2=a 3;(5)a 6+a 6=2a 12;(6)2﹣2÷25×28=32;(7)a 2•(﹣a )7•a 11=﹣a 20A .1个B .2个C .3个D .4个【分析】分别根据零整数指数幂的定义,同底数幂的乘除法法则,幂的乘方与积的乘方运算法则,合并同类项法则以及负整数指数幂的定义逐一判断即可.解:a 0•a •a 5=a 6,故(1)错误;(a 2)3=a 6,故(2)正确;(﹣2a 4)3=﹣8a 12,故(3)错误;a ÷a ﹣2=a 3,故(4)正确;a 6+a 6=2a 6,故(5)错误;2﹣2÷25×28=2,故(6)错误;a 2•(﹣a )7•a 11=﹣a 20,故(7)正确,所以正确的个数为3个.故选:C .二、填空题11、无意义,则x 的取值为 ________.()0x 7+7x =-【分析】根据底数不为0的数的0次幂是1,可得底数不为0,可得答案.【详解】解:由题意得,解得,故.70x +=7x =-7x =-12、若,则=__________.21,2n n a b==()232-n a b 4【分析】先将写成含有和的代数式表示,然后再代入求值即可.()232-na b n a nb 解:.故答案为4.()()()664232222-124n n n n n a b a b a b ===⨯=13、若3m =2,3n =4,则3m +n =__________;8【分析】利用同底数幂的乘法法则运算即可.解:∵3m =2,3n =4,∴3m +n =3m ×3n =2×4=8,故8.14、已知,则的值为_________.340m n +-=28m n⋅【分析】用n 表示出m ,得,将m 代入到即可求解.43m n =-28m n ⋅【详解】解:∵,∴,.340m n +-=43m n =-34334222216282m n n n m n -===∴⋅= 故1615、若,则____.2211392781n n ++⨯÷=n =3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解: , ,2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=2423343333n n ++⨯÷=,,,.故3242(33)433n n ++-+=1433n +=14n +=3n =16、若,则=_____.293,2x x y a a -==y a 2【分析】直接利用同底数除法的逆用、幂的乘方运算法则将原式变形进而得出答案.【详解】∵,,∴,3x a =292x y a -=22()x y x y a a a -=÷29(3)2y a =÷=∴.故2.2y a =17、若a x =3,a y =2,则a 3x ﹣2y 的值为 .【分析】先根据同底数幂的除法进行变形,再根据幂的乘方进行变形,再代入求出即可.∵a x =3,a y =2,∴a 3x ﹣2y =a 3x ÷a 2y=(a x )3÷(a y )2=33÷22=,427故.42718、已知2a =5,2b =10.2c =50,那么a 、b 、c 之间满足的等量关系是________.a+b=c【分析】根据同底数幂乘法法则:同底数幂相乘,底数不变,指数相加,即可得到a 、b 、c 之间的关系;解:∵2a =5,2b =10,∴,22251050a b a b +⨯==⨯=又∵=50=,∴a+b=c .故a+b=c .2c 22a b ⨯19、若,则x 的值为()3211x x +-=-2; 1【详解】情况1: 解得:x =-2; 情况2:解得:x =1;21030x x -≠⎧⎨+=⎩211x -=情况3:解得:x =0;x +3=3(奇数),故不符合条件211x -=-故-2; 120、今年上半年,新冠病毒席卷全世界.已知某种病毒的直径为21.7微米(1毫米=1000微米),用科学记数法表示这种病毒的直径为 米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.解:21.7微米÷=2.17×10﹣5米;故2.17×10﹣5.三、解答题21、计算:(1) (2)()()24576332x x x x x ⋅+⋅-+2324251(3)()()2a b a b -⋅-⋅-(1)4;(2)12x 14132716a b 【分析】(1)先算幂的乘方、同底数幂相乘、再算加减;(2)先算积的乘方再算同底数幂乘法;解:(1) ===4()()24576332x x x x x ⋅+⋅-+1266122x x x x +⋅+1212122x x x ++12x (2)==2324251(3)()()2a b a b -⋅-⋅-63810127()16a b a b -⋅⋅-14132716a b 22、计算:(1)(y 2)3÷y 6•y (2)y 4+(y 2)4÷y 4﹣(﹣y 2)2【分析】(1)先根据幂的乘方法则化简,再根据同底数幂的乘除法法则计算即可;(2)先根据幂的乘方与积的乘方法则化简,再根据同底数幂的除法化简,然后合并同类项即可.解:(1)(y 2)3÷y 6•y =y 6÷y 6•y =y ;(2)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4.23、(1)计算:.()()1020*******π-⎛⎫--+-+- ⎪⎝⎭7【分析】原式利用负整数指数幂法则、零指数幂法则、绝对值的代数意义及乘方的意义计算即可得到结果.【详解】解:.()()10202013314π-⎛⎫--+-+- ⎪⎝⎭4131=-++7=(2)计算:()2014×1.52012×(﹣1)201432【分析】根据幂的乘方和积的乘方计算即可.解:()2014×1.52012×(﹣1)20143224、(1)已知3×9m ÷27m =316,求m 的值.(2)若2x +5y ﹣3=0,求4x •32y 的值.(3)若n 为正整数,且x 2n =4,求(3x 3n )2﹣4(x 2)2n 的值.【分析】(1)根据同底数幂乘、除法的运算法则进行计算即可;(2)根据同底数幂乘法的运算法则进行计算即可;(3)根据同底数幂乘法、积的乘方、幂的乘方的运算法则进行计算即可.【详解】解:(1)∵3×9m ÷27m =316,∴31+2m ﹣3m =316,∴1﹣m =16,∴m =﹣15;(2)∵2x +5y ﹣3=0,∴2x +5y =3,∴4x •32y =22x +5y =23=8;(3)∵x 2n =4,∴x n =2,∴(3x 3n )2﹣4(x 2)2n =9x 6n ﹣4x 4n =9×26﹣4×24=24×25=29.25、(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值【分析】(1)根据幂的乘方以及同底数幂的乘法法则解答即可;(2)根据幂的乘方以及同底数幂的乘法法则解答即可.解:(1)∵4a +3b =3,∴92a •27b =34a •33b =33=27;(2)∵3×9m ×27m =3×32m ×33m =31+2m +3m =321,∴1+2m +3m =21,解得m =4.26、一般地,若(且),则n 叫做以a 为底b 的对数,记为,即na b =0a >1,0a b ≠>log a b .log a b n =譬如:,则4叫做以3为底81的对数,记为(即=4).4381=3log 813log 81(1)计算以下各对数的值: , , .2log 4=2log 16=2log 64=(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的2log 42log 162log 64等量关系式;(3)由(2)猜想一般性的结论: .(且),并根log log a a M N +=0a >1,0a M ≠>,0N >据幂的运算法则:以及对数的含义证明你的猜想.M N M N a a a +⋅=(1)2,4,6;(2)+=;(3)猜想:,证明见2log 42log 162log 64log log a a M N +=log ()a MN 解析.【分析】(1)根据材料中给出的运算,数值就是乘方运算的指数;(2)由(1)可以得出;(3)根据(2)可以写出,根据材料中的定义证明即可.(1),(2)2log 42=2log 164=,2log 646=222log 4log 16log 64+=(3)猜想: 证明:设,,则,log log log ()a a a M N MN +=1log a M b =2log a N b =1ba M =,2b a N =故可得,,即.1212•b b b b MN a a a +==12log ()a b b MN +=log log log ()a a a M N MN +=。

幂的运算培优训练题

幂的运算培优训练题

幂的运算提高练习题例题:例1. 已知453)5(31+=++n n xx x ,求x 的值.例2. 若1+2+3+…+n =a ,求代数式))(())()(123221n n n n n xy y x y x y x y x --- (的值.例3. 已知2x +5y -3=0,求y x 324∙的值.例4. 已知472510225∙=∙∙n m ,求m 、n .例5. 已知y x y x x a a aa +==+求,25,5的值.例6. 若n m n n m x x x++==求,2,162的值.例7. 已知,710,510,310===cb a 试把105写成底数是10的幂的形式.例8. 比较下列一组数的大小. 61413192781,,例9. 如果的值求12),0(020*******++≠=+a aa a a .例10.已知723921=-+n n ,求n 的值.例11、计算:a n ﹣5(a n+1b 3m ﹣2)2+(a n ﹣1b m ﹣2)3(﹣b 3m+2)12、若x=3a n ,y=﹣,当a=2,n=3时,求a n x ﹣ay 的值.13、已知:2x =4y+1,27y =3x ﹣1,求x ﹣y 的值.14、计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )515、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求m+n 的值.练习:1、计算(﹣2)100+(﹣2)99所得的结果是( )A 、﹣299B 、﹣2C 、299D 、22、当m 是正整数时,下列等式成立的有( )(1)a 2m =(a m )2;(2)a 2m =(a 2)m ;(3)a 2m =(﹣a m )2(4)a 2m =(﹣a 2)m .A 、4个B 、3个C 、2个D 、1个3、下列运算正确的是( )A 、2x+3y=5xyB 、(﹣3x 2y )3=﹣9x 6y 3C 、D 、(x ﹣y )3=x 3﹣y 34、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6.计算:2332)()(a a -+-= .7.若52=m ,62=n ,则n m 22+= .6.若的值求n m m n b a b b a +=2,)(1593.9.10.11.12.11.计算:12.若3521221))(b a b a b a n n n m =-++(,则求m +n 的值.13.用简便方法计算:14.下列等式中正确的个数是( )(1)、已知32x+1·4x =1512-9x ·4x+1,求x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 幂的运算 提高练习题
一、 系统梳理知识:
幂的运算:1、同底数幂的乘法 ; 2、幂的乘方 ; 3、积的乘方

4、同底数幂的除法:(1)零指数幂 ;
(2)负整数指数幂。

请你用字母表示以上运算法则。

你认为本章的学习中应该注意哪些问题?
二、例题精选:
例1. 已知453)5(31
+=++n n
x x x ,求x 的值.
例2. 若1+2+3+…+n =a ,求代数式
))(())()(123221
n n n n n xy y x y x y x y x --- (的值.
例3. 已知2x +5y -3=0,求432x y
⋅的值.
例4. 已知74
2521052m n ⋅⋅=⋅,求m 、n .
例5. 已知y x y
x x
a a a a +==+求,25,5的值.
例6. 若n m n n
m x x x ++==求,2,162的值.
例7. 比较下列一组数的大小.(1)61
41
31
92781,,
(2)99
99909911,99
X Y == .
例8. 如果22009
20080(0),12a a a a a +=≠++求的值.
例9.已知723921
=-+n n ,求n 的值.
练习:
1.计算99
10022)
()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992 2.当n 是正整数时,下列等式成立的有( )
(1)22)(m m
a a
= (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=
A.4个 B.3个 C.2个 D.1个 3.下列等式中正确的个数是( )
①5510
a a a += ②7
3
10
()()a a a -⋅-= ③4
5
20
()a a a -⋅-= ④556222+=
A .0个
B .1个
C .2个
D .3个 4.下列运算正确的是( )
A .xy y x 532=+
B .3
6
3
2
9)3(y x y x -=- C .442
2
3
2)2
1(4y x xy y x -=-
⋅ D .333)(y x y x -=- 5.a 与b 互为相反数且都不为0,n 为正整数,则下列各组中的两个数互为相反数的一组是( ) A .n a 与n
b B .2n
a 与2n
b C .21
n a
-与21
n b
- D .21
n a
-与21
n b
--
6.计算:2
33
2)()(a a -+-= . 7.若52
=m
,62=n ,则n m 22+= .
8.如果等式2
(21)
1a a +-=,则a 的值为 。

9.若的值求n
m m
n
b a b b a +=2,)(15
93

10.计算:5
132212332()()()n n m n m m a a b a b b -+---++-
11.若3n x a =,21
12
n y a -=-,当a=2,n=3时,求n a x ay -的值.
12.若124x y +=,1
273y x -=,求x y -的值.
13.计算:3
25()()()()m m a b b a a b b a +-⋅-⋅-⋅-
14.若
3521221
))(b a b a b a n n n m =-++(,则求m +n 的值.
15.用简便方法计算:(1)22
1(2)44
⨯ (2)1212
(0.25)4-⨯
(3)2
5
0.520.125⨯⨯ (4)32531()(2)2⎡⎤⨯⎢⎥⎣⎦ (5)()
()
2009
2008
2009
2 1.513⎛⎫
⨯⨯- ⎪
⎝⎭
16.已知x 满足22x+3-22x+1=48,求x 的值。

17.已知b
a 289
3
==,求⎪⎭⎫ ⎝
⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-b a b b a b a 2512515122
2的值。

18.阅读下列一段话,并解决后面的问题.观察下面一列数:l ,2,4,8,…我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比. (1)等比数列5,一15,45,…的第4项是_______;
(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,那么根据上述规定有
2
1
a q a =
32a q a =,43
a
q a =,…所以a 2=a 1q,a 3=a 2q=a 1q ·q=a 1q 2,a 4=a 3q=a 1q 2·q=a 1q 3, … 则a n =______;(用a 1与q 的代数式表示)
(3)一个等比数列的第2项是10,第3项是20,求它的第1项和第10项.
19.你能比较两个数20102011和20112010的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n
的大小(n ≥1且n 为整数):然后从分析n=1,n=2,n=3……这些简单的情形入手,从中发现规律,经过归纳、总结,最后猜想出结论.
(1)通过计算,比较下列各组数的大小(在横线处填上“>”、“=”或“<”): ①12_________21;②23_________32;③34________43;④45_________54; ⑤56_________65;⑥67_________76;⑦78________87…… (2)由第(1)小题的结果归纳、猜想n n+1与(n+1)n 的大小关系.
(3)根据第(2)小题得到的一般结论,可以得到20102011_________20112010(填“>”、“=”或“<”).
20.(1)观察下列各式: ①104÷103=104-
3=101; ②104÷102=104-2=102; ③104÷101=104-1=103; ④104÷100=104-0=104; 由此可以猜想:
⑤104÷10-
1=__________=__________; ⑥104÷10-2=__________=__________; (2)由上述式子可知,使等式a m ÷a n =a m
-n
成立的m 、n 除了可以是正整数外,还可以是_____________.
(3)利用(2)中所得的结论计算:①22÷2-
8;②x n ÷x -
n .
21.观察、分析、猜想并对猜想的正确性予以说明.
1×2×3×4+l =52 , 2×3×4×5+1=112 , 3×4×5×6+1=192 4×5×6×7+1=292 n(n+1)(n+2)(n+3)+1=__________(n 为整数).
22.先阅读下面材料,再解答问题.
一般地,n 个相同的因数a 相乘:n a a 个
…a 记为a n ,如23=8,此时,3叫做以2为底8的对数,记为log 28(即
log 28=3);一般地,若a n =b(a >0且a ≠l ,b >0),则n 叫做以a 为底b 的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).
(1)计算以下各对数的值:log 24=_________,log 216=________,log 264=_________.
(2)观察(1)中三个数4、16、64之间满足怎样的关系式?log 24、log 216、log 264之间又满足怎样的关系式? (3)由(2)的结果,你能归纳出一个一般性的结论吗?
log a M+log a N=_________(a >0且a ≠1,M >0,N >0).
根据幂的运算法则:a m ·a n =a m+n 以及对数的含义说明上述结论.
参考答案
例1.3 例2.a
a
y x 例3.8
例4.m=2,n=3 例5.10 例6.8
例7.(1)6141
31
92781>> (2)X=Y
例8.12 例9.1 练习题: 1. D 2. B 3. C 4. C 5. C
6. 0
7. 180
8. -2或1
9. 128 10. 0 11. 224 12. 3
13. 10
2)+--
m b a (
14.
3
14 15. (1)81 (2)1 (3)1 (4)92 (5)23
- 16. 32
x =
17. -64
18. (1)一135 (2)a l ·q n-1 (3)第一项是5,第十项是2560; 19. (1)①< ②< ③> ④> ⑤> ⑥> ⑦>
(2)当n=1、2时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n (3)>。

相关文档
最新文档