(完整版)七年级下册数学幂的运算练习题
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。
完整版)幂的运算练习题
完整版)幂的运算练习题幂的运算练题(每日一页)基础能力训练】一、同底数幂相乘1.下列语句正确的是()A。
同底数的幂相加,底数不变,指数相乘;B。
同底数的幂相乘,底数合并,指数相加;C。
同底数的幂相乘,指数不变,底数相加;D。
同底数的幂相乘,底数不变,指数相加答案:D2.a4·am·an=()A。
a4m B。
a4(m+n) C。
am+n+4 D。
am+n+4答案:B3.(-x)·(-x)8·(-x)3=()A。
(-x)11 B。
(-x)24 C。
x12 D。
-x12答案:A4.下列运算正确的是()A。
a2·a3=a6 B。
a3+a3=2a6 C。
a3a2=a6 D。
a8-a4=a4答案:C5.a·a3x可以写成()A。
(a3)x+1 B。
(ax)3+1 C。
a3x+1 D。
(ax)2x+1 答案:C6.计算:100×100m-1×100m+1答案:m+17.计算:a5·(-a)2·(-a)3答案:-a108.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)答案:-2(x-y)7二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(am)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.答案:(1)a56;(2)10^5m;(3)a3m;(4)b10m;(5)a1410.下列结论正确的是()A。
幂的乘方,指数不变,底数相乘;B。
幂的乘方,底数不变,指数相加;C。
a的m次幂的n次方等于a的m+n次幂;D。
a的m次幂的n次方等于a的mn次幂答案:B11.下列等式成立的是()A。
(102)3=105 B。
(a2)2=a4 C。
(am)2=am+2 答案:B12.下列计算正确的是()A。
(完整版)幂的运算经典习题
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
七年级数学下册《幂的运算》练习题附答案(苏科版)
七年级数学下册《幂的运算》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.计算a6•a2的结果是( )A.a12B.a8C.a4D.a32.计算:(-x)3·2x的结果是( )A.-2x4;B.-2x3;C.2x4;D.2x3.3.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a64.计算(-2a2)3的结果是( )A.-6a2B.-8a5C.8a5D.-8a65.下列计算正确的是()A.(xy)3=x3yB.(2xy)3=6x3y3C.(-3x2)3=27x5D.(a2b)n=a2n b n6.如果3a=5,3b=10,那么9a﹣b的值为( )A.12B.14C.18D.不能确定7.下列计算中正确的是( )A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x28.已知23×83=2n,则n的值是( )A.18B.8C.7D.129.若x,y均为正整数,且2x+1·4y=128,则x+y的值为( )A.3B.5C.4或5D.3或4或510.计算x5m+3n+1÷(x n)2•(﹣x m)2的结果是( )A.﹣x7m+n+1B.x7m+n+1C.x7m﹣n+1D.x3m+n+1二、填空题11.计算:(﹣x)3•x2= .12.计算:(34)2027×(-43)2028=13.计算:3a·a2+a3=_______.14.计算:[(-x)2] n·[-(x3)n]=______.15.化简:6a6÷3a3= .16.已知2m=a,32n=b,m,n是正整数,则用a,b的式子表示23m﹣10n=_______.三、解答题17.化简:a3•a2•a4+(﹣a)2;18.化简:(2x2)3-x2·x419.化简:(6x2﹣8xy)÷2x.20.化简:(4m2n﹣6m2n2+12mn2﹣2mn)÷2mn.21.已知4x=8,4y=32,求x+y的值.22.已知4×2a×2a+1=29,且2a+b=8,求a b的值.23.若2×8n×16n=222,求n的值.24.“已知a m=4,a m+n=20,求a n的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得:a m+n=a m a n,所以20=4a n,所以a n=5.请利用这样的思考方法解决下列问题:已知a m=3,a n=5,求下列代数的值:(1)a2m+n; (2)a m-3n.25.已知2n= a,5n= b,20n= c,试探究a,b,c之间有什么关系.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】B11.【答案】﹣x5.12.【答案】4 3.13.【答案】4a314.【答案】-x5n;15.【答案】2a3.16.【答案】3 2 a b17.【答案】解:原式=a9+a2;18.【答案】解:原式=7x6;19.【答案】解:原式=2x(3x﹣4y)÷2x=3x﹣4y20.【答案】解:原式=2m﹣3mn+6n﹣1.21.【答案】解:4x·4y=8×32=256=44而4x·4y=4x+y∴x+y=4.22.【答案】解:由题意得,2a+3=9解得:a=3则b=8﹣2a=8﹣6=2a b=9.23.【答案】解:n=324.【答案】解:(1)45;(2)3 125.25.【答案】解:∵20n= (22×5)n= 22n×5n= (2n)2×5n= a2b,且20n= c ∴c= a2b.。
70道幂运算计算题(试题版) -百度版
70道七下数学《幂运算》易错点幂运算计算题(试题版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.2.计算a2•a4+(a3)2﹣32a63.计算:(2x2)4﹣x•x3•x4.4.计算:a3•a4•a+(﹣2a4)2.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.6.化简:a•a5﹣(﹣2a3)2.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.8.计算:(﹣a2)3•(﹣a3)2.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.10.计算:(2x2)3﹣x4•x2.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.14.(﹣x3)2(x2)3+(﹣x3)415.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.16.计算:(2x2)3+x4•x217.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;18.(a3)2•(a4)3+(a2)519.计算:a3•a•a4+(﹣2a4)2+(a2)4.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)621.计算:y3•(﹣y)•(﹣y)5•(﹣y)222.计算:a2⋅a4+(3a3)2﹣10a623.(﹣x)•(﹣x12)•(﹣x3)3.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.25.a2•a4+2a•a5﹣(2a3)2.26.计算:(﹣x)3•x•(﹣x)2.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.28.计算:22m+4m﹣22m+129.计算:(a﹣b)2(b﹣a)4.30.计算:(﹣2x2)3+x2•x431.x2•x5•x+(﹣2x4)2+(x2)433.计算:(﹣x)3x5+(2x4)2.34.计算:﹣(a2)4•(a2)335.计算:(﹣3x3)2﹣x2•x4﹣(x2)336.计算:x•x3+(x2)237.a3•a4•a+(a2)4+(﹣2a4)2.38.计算:a•a3﹣(2a2)2+4a439.计算:(2x2)3﹣x2•x4.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a242.计算:(m4)2+m5•m3+(﹣m)4•m4.43.计算:a+2a+3a+a2•a5+a•a3•a3.44.计算:a5•(﹣a)3+(﹣2a2)4.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.49.计算:(2x)3(﹣5xy2).50.计算:2x4•x2+(﹣3x3)2﹣5x6.51.(﹣a2b)(2ab)3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.54.计算:(2a)2﹣a×3a+a2.55.计算:(﹣2x2)3+2x2•x456.计算:2a3•a+(2a2)2﹣5a457.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.58.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)359.计算:2a2•3a3﹣2a•(﹣a2)2.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x361.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)362.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.63.计算:22017×.64.简便计算:0.1252016×(﹣8)2017.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]66.x2•(﹣x)2•(﹣x)2+(﹣x2)367.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.68.计算:(﹣0.125)2014×82015.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.70.计算0.1259×(﹣8)10+()11×(2)12.70道七下数学《幂运算》易错点幂运算计算题(答案版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.【解答】解:原式=x2•x12=x14.2.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.3.计算:(2x2)4﹣x•x3•x4.【解答】解:原式=16x8﹣x8=15x8.4.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.【解答】解:原式=m6﹣8m6﹣m6=﹣8m6.6.化简:a•a5﹣(﹣2a3)2.【解答】解:a•a5﹣(﹣2a3)2=a6﹣4 a6=﹣3a6.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.【解答】解:(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6=﹣(x﹣y)•(x﹣y)2•(x﹣y)3﹣(x﹣y)6=﹣(x﹣y)6﹣(x﹣y)6=﹣2(x﹣y)6.8.计算:(﹣a2)3•(﹣a3)2.【解答】解:原式=﹣a6•a6=﹣a12.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.【解答】解:原式=m12+m12﹣(﹣8m12)=m12+m12+8m12=10m12.10.计算:(2x2)3﹣x4•x2.【解答】解:(2x2)3﹣x4•x2=8x6﹣x6=7x6.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)【解答】解:(a﹣b)2•(b﹣a)3•(b﹣a)=(b﹣a)2•(b﹣a)3•(b﹣a)=(b﹣a)2+3+1=(b﹣a)6.13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.【解答】解:原式=x12+x6+x12=2x12+x6.14.(﹣x3)2(x2)3+(﹣x3)4【解答】解:原式=x6•x6+x12=x12+x12=2x12.15.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.【解答】解:原式=﹣(a﹣b)6+8(a﹣b)6=﹣7(a﹣b)616.计算:(2x2)3+x4•x2【解答】解:原式=8x6+x6=9x6.17.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;【解答】解:[(a﹣b)3•(a﹣b)]2•(b﹣a)5=(a﹣b)7•[﹣(a﹣b)5]=﹣(a﹣b)12.18.(a3)2•(a4)3+(a2)5【解答】解:原式=a6•a12+a10=a18+a10.19.计算:a3•a•a4+(﹣2a4)2+(a2)4.【解答】解:a3•a•a4+(﹣2a4)2+(a2)4=a8+4a8+a8=6a8.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)6【解答】解:原式=(n﹣m)2×(n﹣m)3×(n﹣m)6=(n﹣m)2+3+6=(n﹣m)11.21.计算:y3•(﹣y)•(﹣y)5•(﹣y)2【解答】解:原式=y3•(﹣y)•(﹣y)5•y2=y3+1+5+2=y11.22.计算:a2⋅a4+(3a3)2﹣10a6【解答】解:原式=a6+9a6﹣10a6=0.23.(﹣x)•(﹣x12)•(﹣x3)3.【解答】解:(﹣x)•(﹣x12)•(﹣x3)3=﹣x22.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.【解答】解:[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.=(a+b)6﹣(a+b)6+2(a+b)8=2(a+b)8.25.a2•a4+2a•a5﹣(2a3)2.【解答】解:a2•a4+2a•a5﹣(2a3)2=a6+2a6﹣4a6=﹣a6.26.计算:(﹣x)3•x•(﹣x)2.【解答】解:(﹣x)3•x•(﹣x)2=﹣x3•x•x2=﹣x6.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.【解答】解:(x2n)2•(x3)2n=(x n)4•(x n)6=24×26=210.28.计算:22m+4m﹣22m+1【解答】解:原式=22m+(22)m﹣2×22m=22m×(1+1﹣2)=0.29.计算:(a﹣b)2(b﹣a)4.【解答】解:原式=(a﹣b)2(a﹣b)4=(a﹣b)6.30.计算:(﹣2x2)3+x2•x4【解答】解:(﹣2x2)3+x2•x4=﹣8x6+x6=﹣7x6.31.x2•x5•x+(﹣2x4)2+(x2)4【解答】解:原式=x8+4x8+x8=6x8.32.计算:2x7•(﹣x3)﹣(﹣x3)2•x4【解答】解:原式=﹣2x10﹣x10=﹣3x10.33.计算:(﹣x)3x5+(2x4)2.【解答】解:原式=﹣x8+4x8=3x8.34.计算:﹣(a2)4•(a2)3【解答】解:﹣(a2)4•(a2)3=﹣a8•a6=﹣a14.35.计算:(﹣3x3)2﹣x2•x4﹣(x2)3【解答】解:原式=9x6﹣x6﹣x6=7x6.36.计算:x•x3+(x2)2【解答】解:原式=x•x3+(x2)2,=x4+x4=2x4.37.a3•a4•a+(a2)4+(﹣2a4)2.【解答】解:原式=a3+4+1+a2×4+4a8,=a8+a8+4a8,=6a8.38.计算:a•a3﹣(2a2)2+4a4【解答】解:原式=a4﹣4a4+4a4=a4.39.计算:(2x2)3﹣x2•x4.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.40.计算:(2a2)3﹣a4•a2﹣(a3)2【解答】解:原式=8a6﹣a6﹣a6=6a6.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a2【解答】解:(2a2)3+(﹣3a3)2+(a2)2•a2=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2=8a6+9a6+a6=(8+9+1)a6=18a6.42.计算:(m4)2+m5•m3+(﹣m)4•m4.【解答】解:(m4)2+m5•m3+(﹣m)4•m4=m4×2+m5+3+m4+4=3m8.43.计算:a+2a+3a+a2•a5+a•a3•a3.【解答】解:原式=(a+2a+3a)+(a7+a7)=6a+2a7.44.计算:a5•(﹣a)3+(﹣2a2)4.【解答】解:a5•(﹣a)3+(﹣2a2)4.=a5•(﹣a3)+16a8=﹣a8+16a8=15a8.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.【解答】解:原式=﹣(a﹣b)6﹣(a﹣b)6+(a+b)6=﹣2(a﹣b)6+(a+b)6.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.【解答】解:a3•a•a5+a4•a2•a3=a9+a9=2a9.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.【解答】解:原式=(x﹣y)3+4+2=(x﹣y)9.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.【解答】解:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3=(﹣2)6•a6﹣(﹣3)2•(a3)2+(﹣1)3•(2a)6=64a6﹣9a6﹣64a6=﹣9a6.49.计算:(2x)3(﹣5xy2).【解答】解:原式=8x3•(﹣5xy2)=﹣40x4y2.50.计算:2x4•x2+(﹣3x3)2﹣5x6.【解答】解:2x4•x2+(﹣3x3)2﹣5x6=2x6+9x6﹣5x6=6x6.51.(﹣a2b)(2ab)3+10a3b4.【解答】解:原式=(﹣a2b)•8a3b3+10a3b4=﹣8a5b3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.【解答】解:a3b2•(﹣b2)2+(﹣2ab2)3=a3b2•b4﹣8a3b6=a3b6﹣8a3b6=﹣7a3b6.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.【解答】解:原式=﹣8x6+9x6+x6=2x6.54.计算:(2a)2﹣a×3a+a2.【解答】解:原式=4a2﹣3a2+a2=2a2.55.计算:(﹣2x2)3+2x2•x4【解答】解:原式=﹣8x6+2x6=﹣6x6.56.计算:2a3•a+(2a2)2﹣5a4【解答】解:原式=2a4+4a4﹣5a4=a4.57.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.【解答】解:原式=a2•16a4﹣9a6﹣8a6=﹣a658.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3【解答】解:(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3=﹣8x6y3﹣9x6y3=﹣17x6y3.59.计算:2a2•3a3﹣2a•(﹣a2)2.【解答】解:2a2•3a3﹣2a•(﹣a2)2.=2a2•3a3﹣2a•a4=6a5﹣2a5=4a5.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.61.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)3【解答】解:原式=9a6•a3﹣4a2•a7﹣125a9=9a9﹣4a7﹣125a9=﹣120a9.62.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.【解答】解:原式=﹣a2•(﹣a3)•(﹣a)+(﹣a6)﹣a6=a6﹣a6﹣a6=﹣a6.63.计算:22017×.【解答】解:22017×.=22017××(﹣)=[2×(﹣)]2017×(﹣)=﹣1×(﹣)=.64.简便计算:0.1252016×(﹣8)2017.【解答】解:0.1252016×(﹣8)2017,=×(﹣8)2016×(﹣8),=(﹣1)2016×(﹣8),=﹣8.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]【解答】解:原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.66.x2•(﹣x)2•(﹣x)2+(﹣x2)3【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.67.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.【解答】解:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.68.计算:(﹣0.125)2014×82015.【解答】解:原式=(﹣0.125×8)2014×8=(﹣1)2014×8=8.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.【解答】解:原式=﹣82015×(﹣0.125)2015×(﹣0.125)+(0.25)3×23×23=﹣[8×(﹣0.125)]2015×(﹣0.125)+(0.25×2×2)3=1×(﹣0.125)+1=0.875.70.计算0.1259×(﹣8)10+()11×(2)12.【解答】解:0.1259×(﹣8)10+()11×(2)12=(﹣0.125×8)9×(﹣8)+(×2)11×2=8+2=10.。
《幂的运算》练习题及答案
《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。
本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。
一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。
通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。
总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。
第8章《幂的运算》(原卷)
2022-2023学年苏科版数学七年级下册易错题真题汇编(提高版)第8章《幂的运算》考试时间:120分钟试卷满分:100分姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•香洲区校级一模)下列运算正确的是()A.2a3+2a3=2a4B.a6÷a3=a2C.(﹣2a2)3=﹣6a6D.a3•a3=a62.(2分)(2023春•广饶县月考)下列算式中,计算正确的有()①10﹣3=0.0001;②(π﹣3.14)0=1;③3a﹣2=;④(﹣x)5÷(﹣x)7=﹣x﹣2.A.1个B.2个C.3个D.4个3.(2分)(2023春•邗江区月考)已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.a+b=c B.ab=cC.a:b:c=1:2:10 D.a2b2=c24.(2分)(2022秋•北京期末)据科学家研究,新型冠状病毒最新变异为奥米克戎,奥米克戎被科学家称为迄今为止“最糟糕的变异毒株”,它的直径虽然只有85nm左右(1nm=10﹣9m),但它在空中存活的时间更长,并且致病率更高.科学研究还表明:佩戴口罩可有效阻断奥米克戎的传播.将85nm用科学记数法表示为()A.85×10﹣9m B.8.5×10﹣10m C.0.85×10﹣8m D.8.5×10﹣8m5.(2分)(2023春•崇川区校级月考)据研究,某种似球形病毒的直径约为120nm(1nm=10﹣9m),用科学记数法表示120nm应为()A.1.2×10﹣9m B.12×10﹣9mC.0.12×10﹣10m D.1.2×10﹣7m6.(2分)(2022秋•晋江市校级期中)计算0.752022×()2023的结果是()A.B.C.0.75 D.﹣0.757.(2分)(2022春•聊城期末)下列运算中,正确的有()A.0.2﹣1×(﹣)=1 B.24+24=25C.﹣(﹣3)2=9 D.(﹣)2022×102021=108.(2分)(2020秋•温江区校级期末)下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个9.(2分)(2021春•福田区校级期中)(﹣0.125)2018×82019等于()A.﹣8 B.8 C.0.125 D.﹣0.12510.(2分)(2019春•港南区期末)计算的结果是()A.B.C.D.评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•吉州区期末)“百炼钢做成了绕指柔”这是习近平总书记对太钢集团自主研发的“手撕钢”的称赞.厚度仅为0.015毫米的“手撕钢”是至今世界上最薄的不锈钢.请问0.015毫米是米.(请用科学记数法表示)12.(2分)(2022春•丹阳市期末)每个生物携带自身基因的载体是生物细胞的DNA,DNA分子的直径为0.0000002cm,用科学记数法表示0.0000002cm为cm.13.(2分)(2022春•北碚区校级期末)“华为”与国内最大的芯片厂家“中芯国际”合作,实现了14纳米中国芯的量产,14纳米即0.000014毫米,则数据0.000014用科学记数法表示为.14.(2分)(2022春•盐湖区期末)计算=.15.(2分)(2022春•西湖区校级期中)下列说法中:①若a m=3,a n=7,则a m+n=10;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若(t﹣2)2t=1,则t=3或t=0;④平移不改变图形的形状和大小;⑤经过一点有且只有一条直线与已知直线平行.其中正确的说法有.(请填入序号)16.(2分)(2022春•东海县期中)计算:(﹣2)2021×()2022=.17.(2分)(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.18.(2分)(2018秋•宜宾期末)已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是.19.(2分)(2019春•东台市期中)314×(﹣)7=.20.(2分)计算(﹣9)3×(﹣)6×(1+)3=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022春•盐都区月考)若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②已知9n+1﹣32n=72,求n的值.22.(6分)(2023春•亭湖区校级月考)小红学习了七年级下册“第八章幂的运算”后,发现幂的运算法则如果反过来写,式子可以表达为:a m+n=a m•a n;a m﹣n=a m÷a n;a mn=(a m)n,可以起到简化计算的作用.(1)在括号里填空:26=22×2();26=28÷2();26=(22)().(2)已知:2m=6,2n=3.①求2m+n的值;②求2m﹣n+1的值.23.(6分)(2022春•西湖区校级期中)计算:(1);(2)x•(﹣x)3﹣(﹣x)2•x2.24.(8分)(2022春•沛县校级月考)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣3,1)=,(﹣2,﹣)=.(2)令(4,6)=a,(4,7)=b,(4,42)=c,试说明下列等式成立的理由:(4,6)+(4,7)=(4,42)25.(8分)(2022春•丹阳市期中)已知10x=a,5x=b,求:(1)50x的值;(2)2x的值;(3)20x的值.(结果用含a、b的代数式表示)26.(8分)(2020•贵阳模拟)小松学习了“同底数幂的除法”后做这样一道题:若(2x﹣1)2x+1=1,求x的值.小松解答过程如下:解:∵1的任何次幂为1,∴2x﹣1=1,即x=1,故(2x﹣1)2x+1=13=1,∴x=1.老师说小松考虑问题不全面,聪明的你能帮助小松解决这个问题吗?请把他的解答补充完整.27.(10分)(2019秋•杭州期中)已知三个互不相等的有理数,既可以表示为1,a,a+b的形式,又可以表示0,,b的形式,试求a2n﹣1•a2n(n≥1的整数)的值.28.(8分)(2020春•吴中区期末)已知关于x、y的方程组(m为常数).(1)计算:x2﹣4y2=(用含m的代数式表示);(2)若(a2)x÷(a y)3=a6(a是常数a≠0),求m的值;(3)若m为正整数,满足0<n≤|x﹣y|的正整数n有且只有8个,求m的值.。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
七年级数学 专题训练 幂的运算
专题训练(一)幂的运算▶类型一运用法则1.下列运算结果正确的是()A.a2+a3=a5B.(a4)3=a12C.a2·a3=a6D.(-a2)4=-a82.已知x m=4,x n=8,m,n都是整数,那么x2m-n等于()A.2B.1C.0D.123.计算:(1)-(-2ab3)2=;-a2·(-a3)=.(2)若5a=12.5,5b=110,则3a÷3b=.(3)已知x a-3=2,x b+4=5,x c+1=10,则a,b,c三者之间的数量关系是.4.计算:(1)a2·a4-a8÷a2+(3a3)2;(2)m7·m5+(-m3)4-(-2m4)3.5.计算:231-⎪⎭⎫⎝⎛-+4×(-1)2022-|-23|+(π-5)0.▶类型二整体思想6.计算:(x-y)2·(y-x)等于()A.(x-y)3B.(x-y)2C.-(x-y)3D.(x+y)37.与(a-b)3·[(b-a)3]2相等的是()A.(a-b)8B.-(b-a)8C.(a-b)9D.(b-a)98.已知x2m=2,求(2x3m)2-(3x m)2的值.9.已知x,y满足x-3y+3=0,求3x÷27y的值.▶类型三逆向变换10.(-0.125)2021×(-8)2022等于()A.8B.-8C.1D.以上答案都不对11.已知a m=9,a n=2,a p=6,则a m+n-p的值为()A.3B.4C.5D.1712.若3×9m×27m=321,则m的值为.13.如果a=233,b=322,c=411,那么a,b,c三数的大小关系为.14.已知:a m+n=6,a m=2,求:(1)a n的值;(2)a2n+3m的值.▶类型四分类讨论15.已知(x-1)x+6=1,求x的值.▶类型五综合运用16.一个长方形的长是4.2×104cm,宽是2×104cm,求这个长方形的面积.17.阅读材料:求1+2+22+23+24+…+22022的值.解:设S=1+2+22+23+24+…+22021+22022,①将等式两边同时乘2,得2S=2+22+23+24+25+…+22022+22023,②用②式减去①式,得2S-S=22023-1,即S=22023-1,所以1+2+22+23+24+…+22022=22023-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).。
(完整版)幂的运算练习及答案
(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。
各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。
(完整版)初一数学下册《幂的运算》单元测试卷
初一数学下册《幂的运算》单元测试卷一、选择题1、下列计算正确的是( )A 、x 2+ x 2=x 4B 、x 3÷x 4=x1 C 、(m 5)5=m 25 D 、x 2y 3=(xy)5 2、81×27可以记为( ) A 、93 B 、36 C 、37 D 、312 3、a 5可以等于( )A 、(-a )2·(-a)3·B 、(-a)·(-a)4C 、(-a 2)·a3 D 、(-a 3)·(-a 2) 4、若a m =6,a n =10,则a m-n 值为( )A 、-4B 、4C 、 53D 、35 5、计算- b 2·(-b 3)2的结果是( ) A 、-b 8 B 、-b 11 C 、b 8D 、b 11 6、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,则2004次操作后右下角的小正方形面积是( )A 、20041 B 、(21)2004 C 、(41)2004 D 、1-(41)2004 7、下列运算正确的是( )A 、x 3+2x 3=3x 6B 、(x 3)3=x 6C 、x 3·x 9=x27 D 、x ÷x 3=x -2 8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )A 、a 4B 、a 5C 、a 6D 、a 79、 (a 2)3÷(-a 2)2=( )A 、- a 2B 、a 2C 、-aD 、a 10、0.000000108这个数,用科学记数法表示,正确的是( )A 、1.08×10-9B 、1.08×10-8C 、1.08×10-7D 、1.08×10-611、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )A 、1B 、-1C 、0D 、1或-112、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2 表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式数是( )A 、8B 、15C 、20D 、30二、填空题(每空3分,共42分) 7、(21)-1= ,(-3)-3= , (π-3)0 ,(-21)100×2101= 。
(完整版)幂的运算练习及答案
初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数 次数 2、多项式2a 2b-35是 次 项式。
各项的系数分别是3、在下列各式53b a +, 3x , π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式 有 多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是( )A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是( )A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为( )A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为( )A 、a<b<c<dB 、a<b<d<cC 、b<a<c<dD 、a<d<b<c6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -⋅-⋅-⋅-(4) 2344()()2()()x x x x x x -⋅-+⋅---⋅四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关, 求y 的值。
幂的乘方专项练习50题(有答案过程)
幂的乘方专项练习50题(有答案过程)(1)[(a+b)²]⁴= (2)-( y⁴) ⁵=(3)(y²ᵃ⁺¹)²(4) [(- 5) ³]⁴-( 5⁴) ³(5) ( a—b) [(a—b) ²]⁵(6)(−a²)⁵a−a¹¹(7)(x⁶)²+x¹⁰x²+2[(−x)³]⁴(8) (一×⁵)²= (一ײ)⁵= ,[(一×)²]⁵=(9) (a⁵)³(10)(aⁿ⁻²)³(11)(4³)³(12 )(—׳)⁵(13)[(一×)²]³(14)[(x—y)³]⁴(15)(a⁴)²(a²)³(16)(16)(a³)²(a)³=;,(17)(x4)5(x5)4¯(18)(a m1)3(a2)1m¯(19)3(×)(×)2(×)=512 #212(20)若 xⁿ3,则x³ⁿ(21 )×?()³(22)(xᵐ)ⁿ?()ᵐ(23 )(y⁴) ⁵-( y⁵)⁴(24)(m³)⁴+m¹⁰m²+m?m³?n⁸(25) [(a-b) "]²[(b- a) ⁿ⁻¹]²(26)若2ᵏ=8³,贝 Uk= r(27)(m³)⁴+m¹⁰m²−m?m³(28) 5( a³) ⁴-13 (a⁶) ²=(29) 7×⁴?⁵x? -X) ⁷+5(x⁴) ⁴-(x³) ²(30) [- x+y) ³]⁶+[- x+y) ⁹]²为正整数) (32)x³?Xⁿ)⁵=X¹³,贝U n= r(34) 若xᵐ−²X=2求x⁹ᵐ(35) 若a²ⁿ=3,求-a³ⁿ)⁴(36) 已知aᵐ=2,aⁿ=3,求a²ᵐ⁺³ⁿ(37) 若644X83=2X,求 x的值。
七年级数学《幂的运算》练习题
七年级数学《幂的运算》练习题知识梳理:1、幂的运算性质:(1)同底数幂的乘法:a m﹒a n=a m+n逆用: a m+n =a m﹒a n(2)同底数幂的除法:a m÷a n=a m-n(a≠0)。
逆用:a m-n = a m÷a n(a≠0)(3)幂的乘方:(a m)n =a mn(底数不变,指数相乘)逆用:a mn =(a m)n (4)积的乘方:(ab)n=a n b n逆用, a n b n =(ab)n(5)零指数幂:a0=1(注意考底数范围a≠0)。
(6)负指数幂a-p=1/a p (底倒,指反)一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、 D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b n B、a2n与b2n C、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、已知2x+5y=3,求4x•32y的值.10、已知25m•2•10n=57•24,求m、n. 11、已知a x=5,a x+y=25,求a x+a y的值.12、若x m+2n=16,x n=2,求x m+n的值.13、比较下列一组数的大小.8131,2741,96114、如果a 2+a=0(a≠0),求a 2005+a 2004+12的值.15、已知9n+1﹣32n =72,求n 的值.16、若(a n b m b )3=a 9b 15,求2m+n 的值. 17、已知:2x =4y+1,27y =3x ﹣1,求x ﹣y 的值.18、计算:a n ﹣5(a n+1b 3m ﹣2)2+(a n ﹣1b m ﹣2)3(﹣b 3m+2)19、计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )520、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求m+n 的值.21、用简便方法计算:(1)(1)(2)2×42 (2)(﹣0.25)12×412 (3)0.52×25×0.125(4)[()2]3×(23)3 (5) )1(1699711111-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛11。
七年级下数学整式:幂的运算
七年级下数学整式:幂的运算练习一.选择题(共7小题)1.下列各式计算正确的是()A.x5+x5=x10B.a6•a4=a24C.(ab4)4=ab16D.a10÷a9=a2.下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x53.计算(﹣a2)3的结果是()A.﹣a6B.a6C.﹣a5D.a54.已知x a=3,x b=5,则x3a﹣2b=()A.52B.C.D.5.若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a6.下列计算正确的是()A.(﹣2a2)2=2a4B.2a3+3a3=5a6C.4a3•2a2=8a5D.12x3÷(4x3)=3x37.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;12二.填空题(共28小题)8.若a m=2,a n=5,则a m+n等于.9.已知2×2m÷22n=210,则4n﹣2m+1=.10.我们知道,同底数幂的除法法则为a m÷a n=a m﹣n(其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:f(m﹣n)=f(m)÷f(n)(其中f(m),f(n)都为正数),请根据这种新运算填空:(1)若f(2)=4,f(3)=8,则f(1)=;(2)若f(2000)=k,f(2)=4,那么f(500)=(用含k的代数式表示,其中k>0).11.(﹣a6b7)÷=.12.计算:()2020×(﹣2)2021结果为.13.若出x+3y=5,则2x×8y=.14.计算:(﹣2)2021•(﹣)2020=.15.若43×83=2x,则x=.16.已知2x=3,2y=5,则22x﹣y﹣1的值是.17.若(x﹣1)x+1=1,则x=.18.计算:(﹣2xy)2=.19.已知3m=4,3n=5,3m﹣n的值为.20.计算:a•a2•(﹣a)3=.21.已知2x=4,2y=12,2z=24,那么x、y、z之间满足的等量关系是.22.已知m=,n=,那么(﹣)m﹣n+5=.23.计算:22016×()2017所得的结果是.24.已知8×2m×16m=211,则m的值为.25.计算:(1)a5•a3•a=,(2)(a5)3÷a6=,(3)(﹣2x2y)3=.26.已知9m+1•5m﹣3=15m﹣3,则m=.27.计算(﹣)2009×(1)2007=.28.若3m=a,3n=b,则用含a和b的式子表示32m+3n﹣1为.29.若2×42n×16n=217,则n=.30.(1)﹣27a9b12=()3;(2)(x﹣y)3÷(y﹣x)2=.31.已知2n=3,6n=12,则9n=.32.若2x﹣y=﹣3,则4x÷2y=.33.如无意义,则(x﹣1)﹣2=.34.已知,,那么2013m﹣n=.35.已知,x+5y﹣6=0,则42x+y•8y﹣x=.参考答案一.选择题(共7小题)1.D;2.B;3.A;4.B;5.B;6.C;7.B;二.填空题(共28小题)8.10;9.﹣17;10.2;;11.﹣3a2b5;12.﹣2;13.32;14.﹣2;15.15;16.;17.﹣1或2;18.4x2y2;19.;20.﹣a6;21.x+y=z+1;22.6;23.;24.;25.a9;a9;﹣8x6y3;26.﹣5;27.;28.;29.2;30.﹣3a3b4;x﹣y;31.16;32.;33.4;34.1;35.64;。
【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)
【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)一、选择题(每题3分,共24分)1.【2021·南京市玄武区二模】计算a 3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 62.计算⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫15-2的结果是( ) A.110 B .-110 C .25 D .-1253.【2022·宿迁】下列运算正确的是( )A .2m -m =1B .m 2·m 3=m 6C .(mn )2=m 2n 2D .(m 3)2=m 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.已知a a -1÷a =a ,则a =( )A .3B .1C .-1D .3或±16.【2022·长沙市校级期中】已知2x -3y =2,则(10x )2÷(10y )3的值为( )A .10 000B .1 000C .10D .1007.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1 B.-1 C .-1或2 D .28.【2022·青岛期中】如图,已知点P 从距原点右侧8个单位的点M 处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从点M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,…,依次这样进行下去,第2 024次跳动后,该点到原点O 的距离为( )A .2-2 024B .2-2 023C .2-2 022D .2-2 021二、填空题(每题3分,共30分)9.【2022·苏州市吴江区期中】计算:(-3xy 3)3=__________.10.【2021·溧阳市期中】若83=25·2m ,则m =________.11.计算:(-5)2 023×⎝ ⎛⎭⎪⎫15 2 024=________.12.【2021·扬州市江都区期中】已知2a ÷4b =8,则a -2b 的值是________.13.【2022·湖北】科学家在实验室中检测出某种病毒的直径约为0.000 000 103m ,该直径用科学记数法表示为______________m.14.若0<x <1,则x -1,x ,x 2的大小关系是____________.15.【2021·盐城市建湖县月考】已知3x +1=6,2y +2=108,则xy 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________.17.梯形的上、下底的长分别是4×103cm 和8×103cm ,高是1.6×104cm ,此梯形的面积是__________.18.我们知道,同底数幂的乘法法则为a m ·a n =a m +n (其中a ≠0,m 、n 为正整数).类似地,我们规定关于任意正整数m 、n 的一种新运算:g (m +n )=g (m )·g (n ),若g (1)=-13,则g (2 023)·g (2 024)=________________. 三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.计算:(1)a3·a2·a+(a2)3; (2)(2m3)3+m10÷m-(m3)3. 20.计算:(1)0.62 023×(-53)2 024; (2)(-2)-2+⎝⎛⎭⎪⎫13-1×(2 023-π)0.21.已知2a=4b(a、b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.【2021·张家港市月考】(1)已知2×8x×16=223,求x的值;(2)已知a m=2,a n=3,求a3m-2n的值.24.某农科所要在一块长为1.2×105cm,宽为2.4×104cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104cm的正方形实验地,这块长方形实验地最多可以培育多少种新品种粮食?25.【2021·宿迁市沭阳县期中】(1)已知10a=5,10b=6,求102a+103b的值;(2)已知9n+1-9n=72,求n的值.26.【2022·盐城市亭湖区校级月考】规定两数a、b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。
在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。
1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。
七年级下册数学幂测试卷
一、选择题(每题3分,共30分)1. 下列各数中,是3的幂的是:A. 9B. 27C. 81D. 2432. (-2)的3次幂是:A. -8B. 8C. -16D. 163. 下列各式中,正确的是:A. 2^3 = 8B. 3^2 = 9C. 5^0 = 1D. 4^1 = 164. 下列各数中,不是整数幂的是:A. 2^4B. 3^3C. 5^0D. 7^25. (-1)的偶数次幂是:A. -1B. 1C. 0D. 无意义6. 下列各式中,计算正确的是:A. 2^3 × 2^2 = 2^5B. 3^4 ÷ 3^2 = 3^6C. 5^2 × 5^3 = 5^5D. 7^1 × 7^0 = 7^17. 下列各数中,不是正整数幂的是:A. 2^3B. 3^2C. 5^0D. -2^28. 下列各式中,计算正确的是:A. 2^3 ÷ 2^2 = 2^1B. 3^4 × 3^2 = 3^6C. 5^2 ÷ 5^3 = 5^1D. 7^1 × 7^0 = 7^19. 下列各数中,是3的负整数次幂的是:A. 1/3B. 1/9C. 1/27D. 1/8110. 下列各式中,计算正确的是:A. 2^3 × 2^2 = 2^5B. 3^4 ÷ 3^2 = 3^6C. 5^2 ÷ 5^3 = 5^1D. 7^1 × 7^0 = 7^1二、填空题(每题3分,共30分)11. (-2)的4次幂是________。
12. 2的3次幂的倒数是________。
13. 5的0次幂是________。
14. 3的-2次幂是________。
15. 7的2次幂的平方是________。
16. 4的3次幂的立方是________。
17. 2的5次幂乘以2的2次幂等于________。
18. 3的-3次幂乘以3的3次幂等于________。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学幂的运算练习题
一选择
1、下列运算,结果正确的是
A.B.
C.D.
2、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是()
A.2 ;B.4;C.8;D.6.
3、若,,则等于( )
A.B.6 C.21 D.20
4、对于非零实数,下列式子运算正确的是()
A.B.
C.D.
5、计算:的结果,正确的是()
A.B.C.D.
6、下列各式计算结果不正确的是( )
A.ab(ab)2=a3b3B.a3b2÷2ab=a2b
C.(2ab2)3=8a3b6D.a3÷a3·a3=a2
二、填空
7、如果,,则= .8、计算:=_______.
9、计算:= .
10、计算: = ,= .
11、在下列各式的括号中填入适当的代数式,使等式成立:
⑴a=();⑵.
12、计算:= ,= .
13、在横线上填入适当的代数式:,.
14、已知:,求的值.
15、计算:(y)+(y)= .16、计算:(x)= .
17、计算:.
三、解答
18、已知,求(1);(2).
19、已知,求的值.
20、解方程:. 21、解方程:;
22、地球上的所有植物每年能提供人类大约大卡的能量,若每人每年要消耗
大卡的植物能量,试问地球能养活多少人?
23、计算:. 24、计算:;
25、计算:26、计算:;
27、计算:.
28、;
29、计算:;
30、计算:;。