《幂的运算》提高练习题-(培优)
《幂的运算》提高练习题-(培优)
《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2).A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题(共2小题,每小题5分,满分10分)6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2=_________.7、若2m=5,2n=6,则2m+2n=_________.三、解答题(共17小题,满分70分)8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式_________.15、比较下列一组数的大小.8131,2741,96116、如果a2+a=0(a≠0),求a2005+a2004+12的值.17、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412 (3)0。
《第8章幂的运算》提高练习题含答案(word版可编辑修改)
B.1 个 C.2 个
D.3 个
例 1.3 例 2. x a y a 例 3.8 例 4.m=2,n=3 例 5.10 例 6.8 例 7.10abc 例 8. 8131 27 41 961 例 9.12 例 10.1 练习题: 1. D 2. B 3. 0 4. 180 5. C 6. 128 7. 0 8. C
1
《第 8 章幂的运算》提高练习题含答案(word 版可编辑修改)
第 8 章 幂的运算 提高练习题
例题: 例1. 已知 3x(x n 5) 3x n1 45 ,求 x 的值.
例2. 若1+2+3+…+n=a,求代数式(x n y)(x n1 y 2 )(x n2 y 3 )(x 2 y n1 )(xy n ) 的值.
例3. 已知2x+5y-3=0,求 4x 32y 的值.
例4. 已知 25m 2 10n 57 24 ,求 m、n.
例5. 已知 a x 5, a x y 25, 求a x a y 的值.
例6. 若 x m2n 16, x n 2, 求x mn 的值.
例7. 已知10a 3,10b 5,10c 7, 试把 105 写成底数是 10 的幂的形式. 例8. 比较下列一组数的大小. 8131,2741,961
《第 8 章幂的运算》提高练习题含答案(word 版可编辑修改)
《第 8 章幂的运算》提高练习题含答案(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我 们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《第 8 章幂的运算》 提高练习题含答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚 的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步, 以下为《第 8 章幂的运算》提高练习题含答案(word 版可编辑修改)的全部内容。
幂的运算_培优测试卷(含答案)
幂的运算培优测试卷(时间:90分钟总分:100分)一、填空题(每空2分,共22分)1.计算:a2·a3=_______;2x5·x-2=_______;-(-3a)2=_______.2.(ab)4÷(ab)3=_______.3.a n-1·(a n+1)2=_______.4.(-3-2)8×(-27)6=_______.5.2(x3)2·x3-(3x3)3+(5x)2·x7=_______.6.若3x+2=n,则用含n的代数式表示3x为_______.7.(1)20÷(-1)-2=_______.3(2)(-2)101+2×(-2)100=_______.8.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000 t,把3 120 000用科学记数法表示为_______.二、选择题(每题2分,共22分)9.计算(a3)2的结果是( )A.a6B.a9C.a5D.a810.下列运算正确的是( )A.a·a2=a2B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a511.计算4m ·8n 的结果是 ( )A .32m +nB .32m -nC .4m +2nD .22m +3n12.计算(125)-4×513的结果为 ( )A .2B .125C .5D . 12513.下列各式中,正确的是 ( )A .(-x 3)3=-x 27B .[(x 2)2]2=x 6C .-(-x 2)6=x 12D .(-x 2)7=-x 1414.等式-a n =(-a)n (a ≠0)成立的条件是( )A .n 是偶数B .n 是奇数C .n 是正整数D .n 是整数15.a 、b 互为相反数且都不为0,n 为正整数,则下列各组中的两个数一定互为相反数的一组是( )A .a n -1与b n -1B .a 2n 与b 2nC .a 2n +1与b 2n +1D .a 2n -1与-b 2n -116.已知a ≠0,b ≠0,有以下五个算式:①a m .a -m ÷b n =b -n ;②a m ÷bm =m a b ⎛⎫ ⎪⎝⎭;③(a 2b 3)m =(a m )2·(bm)3;④(a +b)m +1-a ·(a +b)m =b ·(a +b)m ;⑤(a m +b n )2=a 2m +b 2n ,其中正确的有 ( )A .2个B .3个C .4个D .5个17.下列各式中与(-x)-1相等的是 ( )A .xB .-xC .1xD .-1x 18.计算(-3)2m +1+3·(-3)2m 的结果是( )A .32m +1B .-32m +1C .0D .119.下列各式中,正确的是 ( )A .3x -2=213xB .x -5+x -6=x -11C .(-3)-2=6D .x -m =11m m x x ⎛⎫= ⎪⎝⎭(x ≠0,m 为正整数)三、解答题(共56分)20.计算题.(每小题2分,共14分)(1)a n ·a n +5÷a 7;(2)(a -b)2(a -b)n (b -a)5;(3)10-2×100×(-105)+102÷10-1÷(-10)0;(4)(-a 4)3-(-a 2)4+(-a 2)6-a ·(-a)3·(-a 2)4;(5)(a -b)5m (b -a)2m ÷(b -a)7m (m 为偶数,a ≠b);(6)()()0332013422---+÷-;(7)()()10201213.14312π-⎛⎫---+-- ⎪⎝⎭;21.(4分)已知2x =5,2x -4y =516,求2013y 的值.22.(4分)已知x =-3,y =13,求x 2·x 2n ·(y n +1)2的值.23.(4分)已知a>0且a ≠1,b ≠1,(a x .a y )10=a 20,(b 2x ·b y )3=b 9.求(x +y)3+(4x +2y)4的值.24.(5分)已知3×9m×27m=321,求m的值.25.(4分)已知x=-5,y=1,求x2·x2n·(y n)2的值.526.(5分)当x是最小质数的倒数时,求(-x)2·x-x(-x)2+x2·(-x2)+1的值.27.(5分)已知272=a6=9b,求2a2+2ab的值.28.(5分)已知空气的密度是1.239 kg/m3,现在有一塑料袋装满了空气,其体积约为3500 cm3.这一袋空气的质量约是多少千克?(结果用科学记数法表示)29.(6分)天安门广场位于北京的正中心,南北长880 m,东西宽500 m,总面积44万平方米,可同时容纳100万人集会,是目前世界上最大的城市广场.(1)用科学记数法表示天安门广场的面积;(2)若用边长为50 cm的正方形地砖铺满天安门广场,需要多少块砖?(用科学记数法表示)参考答案一、1.a 5 2x 3 -9a 2 2.ab 3.a 3n +1 4.9 5.0 6.9n 7.(1) 19 (2)08.3.12×106二、9.A 10.C 11.D 12.C 13.D 14.B 15.C 16.C 17.D 18.C19.D三、20.(1)a 2n -2 (2)-(a -b)n +7 (3)0 (4)a 12-a 8 (5)1 (6)0 (7)1 21.201322.原式=(xy)2n +2=1 23.1304 24.m =4 25.25 26.151627.当a =3,b =3时,原式=36;当a =-3,b =3时,原式=0. 28.4.3365×10-3 kg 29.(1)4.4×105m 2 (2)1.76×106块。
第八章《幂的运算》培优训练卷(含答案)
第八章《幂的运算》培优训练卷班级___________ 姓名___________ 学号____________ 分数____________一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52aB .62aC .53aD .63a2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2aB .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m+3n的值是( )A .8B .12C .24D .325.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .a b c <<D .b c a >>二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦ 浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦ 阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷18.(2021·广东高州·七年级期末)计算: (1)﹣12021+(13)﹣2+(π﹣3.14)0;(2)(6a 3b 2﹣4a 2b )÷2ab .19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求: (1)m n a -的值; (2)32m n a -的值.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍? (2)喷气式飞机声音的强度是汽车声音的强度的多少倍?21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求: (1)求1*2;(2)若2*(1)81x +=,求x 的值.22.(2021·福建永春·八年级期中)规定两个非零数a ,b 之间的一种新运算,如果a m =b ,那么a ∧b =m .例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0. (1)根据上述规定填空:2∧32= ;﹣3∧81= . (2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.23.(2021·山西·太原市外国语学校七年级阶段练习)若a *b =c ,则a c =b .例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x ,则x = . (2)记5*2=a ,5*6=b ,5*18=c ,求a ,b ,c 之间的数量关系.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log Na =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2(1)填空:66log = ,16log = ; (2)如果(2)2log m -=3,求m 的值.26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题. (1)已知10m =6,10n =2,求10m ﹣n 的值; (2)如果a +3b =4,求3a ×27b 的值; (3)已知8×2m ÷16m =215,求m 的值.27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=① 则22021202222222S =++⋅⋅⋅++② ②-①得,2022221S S S -==-. 请仿照小明的方法解决以下问题: (1)220222++⋅⋅⋅+=______; (2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52a B .62a C .53a D .63a【答案】B 【分析】根据同底数幂的乘法运算法则求解即可. 【详解】 解:562=2a a a ⋅. 故选:B . 【点睛】此题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法运算法则.同底数幂相乘,底数不变,指数相加.2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2a B .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -【答案】C 【分析】根据各项的底数分析判断即可 【详解】A . ()2a -的底数是a -,2a 的底数是a ,故该选项不符合题意;B . 2a -的底数是a ,()3a -的底数是a -,故该选项不符合题意; C . 5x -与5x 的底数都是x ,故该选项符合题意;D . ()3-a b 的底数是()a b -,()3b a -的底数是()b a -,故该选项不符合题意;故选C 【点睛】本题考查了同底数幂的形式,理解幂的定义是解题的关键.把n 个相同的因数a 相乘的积记作n a ,其中a 叫做底数,n 叫做指数.3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =【分析】根据合并同类项,同底数幂的除法,积的乘方,幂的乘方依次计算判断即可得. 【详解】解:A 、22a a +,不是同类项,不能化简,选项错误; B 、624a a a ÷=,选项错误; C 、()3328a a =,选项错误; D 、()4312a a =,选项正确; 故选:D . 【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方,幂的乘方,熟练掌握各运算法则是解题的关键.4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m +3n的值是( )A .8B .12C .24D .32【答案】D 【分析】根据同底数幂的乘法的逆运算,以及幂的乘方的逆运算进行求解即可. 【详解】解:∵4m a =,2n a =,∴()()33334232m n m n m n a a a a a +=⋅=⋅=⨯=,故选D . 【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,解题的关键在于能够熟练掌握相关计算法则.5.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000011=71.110-⨯, 故选B . 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A 【分析】根据幂的乘方的逆运算可直接进行排除选项. 【详解】解:∵781a =,927b =,139c =,∴()742833a ==,()932733b ==,()1322633c ==,∴a b c >>; 故选A . 【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键. 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______. 【答案】14【分析】根据负整数指数幂的运算法则计算即可.解:2211224-==, 故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________. 【答案】9x 【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可. 【详解】 ∵36x x ⋅=9x , 故答案为:9x . 【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.【答案】1- 【分析】由积的乘方的逆运算进行计算,即可得到答案. 【详解】 解:20212021202120212525()(1)15252⎛⎫⎛⎫-⨯=-⨯=-=- ⎪⎪⎝⎭⎝⎭;故答案为:1-. 【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算. 10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 【答案】24 【分析】利用同底数幂的乘法的逆运算即可求解.解:4,6m n a a ==, 又4624m n m n a a a +=⋅=⨯=, 故答案是:24. 【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 【答案】3x ≠ 【分析】任何不为零的数的零次幂都等于零,根据定义解答. 【详解】解:∵0(3)1x -=, ∴3x ≠, 故答案为:3x ≠. 【点睛】此题考查了零指数幂定义,熟记定义是解题的关键.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.【答案】-1 【分析】根据幂的乘方公式以及同底数幂的乘法公式的逆运用,即可求解. 【详解】解:∵9a ∙27b ÷81c =9,∴(32)a ∙(33)b ÷(34)c =9,即:32a ∙33b ÷34c =32,∴2a +3b -4c =2,即: a +32b -2c =1,∴2c ﹣a ﹣32b =-1,故答案是:-1. 【点睛】本题主要考查幂的乘方公式以及同底数幂的乘法公式,熟练掌握幂的乘方公式以及同底数幂的乘法公式的逆运用是解题的关键.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________. 【答案】200 【分析】把所求式子化为含a 2n 的形式,再代入即可求值; 【详解】解:32222322()8()()8()1000800200n n n n a a a a --=-=-= 故答案为:200 【点睛】本题考查代数式求值,解题的关键是熟练掌握积的乘方、幂的乘方公式逆用.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)【答案】()1201(2)36-⎛⎫-<<- ⎪⎝⎭【分析】根据负整数指数幂,零次幂,有理数的乘方分别计算,再比较大小即可. 【详解】()()1021=62=1,396-⎛⎫--= ⎪⎝⎭,,169<< ∴()1201(2)36-⎛⎫-<<- ⎪⎝⎭故答案为:()1201(2)36-⎛⎫-<<- ⎪⎝⎭.【点睛】本题考查了负整数指数幂,零次幂,有理数的乘方,掌握负整数指数幂,零次幂,有理数的乘方是解题的关键.15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.【答案】32【分析】根据题意可得出算式2334x y ⋅=,根据同底数幂的乘法得出234x y +=,求出2422316(3)x y y x ++==,根据题意得出所求的代数式是2(981)x y ⋅,再根据幂的乘方和积的乘方进行计算,最后求出答案即可.【详解】解:根据题意得:2334x y ⋅=,所以234x y +=,即2423416x y +==,所以2(981)x y ⋅242[(3)(3)]x y =⨯⋅242(33)x y =⨯⋅222(33)x y =⨯⋅224=⨯32=,故答案为:32.【点睛】本题考查了有理数的混合运算和整式的混合运算,解题的关键是能灵活运用整式的运算法则进行计算.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________. 账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码【答案】yang 8888【分析】根据题中wifi 密码规律确定出所求即可.【详解】解:阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦阳88888888x y z yang ⊕= 故答案为:yang 8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤)17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷【答案】8b【分析】幂的混合运算,先做乘方,然后做乘除.【详解】解:2222342()()a b a b a ----⋅÷22668a b a b a ---=⋅÷888a b a --=÷8b =.【点睛】本题考查了整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.18.(2021·广东高州·七年级期末)计算:(1)﹣12021+(13)﹣2+(π﹣3.14)0; (2)(6a 3b 2﹣4a 2b )÷2ab .【答案】(1)9;(2)232a b a -【分析】(1)根据有理数的乘方,负整指数幂,零次幂进行计算即可;(2)直接根据多项式除以单项式的法则计算即可.【详解】(1)(1)﹣12021+(13)﹣2+(π﹣3.14)0 191=-++9=;(2)(6a 3b 2﹣4a 2b )÷2ab3226242a b ab a b ab =÷-÷232a b a =-【点睛】本题考查了有理数的乘方,负整指数幂,零次幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求:(1)m n a -的值; (2)32m n a -的值.【答案】(1)35;(2)2725. 【分析】(1)根据同底数幂的除法法则的逆运算解题;(2)根据同底数幂的除法法则的逆运算、幂的乘方法则的逆运算解题.【详解】解:(1)∵3m a =,5n a =, ∴3355m n m n a a a -=÷÷==; (2)∵3m a =,5n a =, ∴32323232()527(352)m n m n m n a a a a a -====÷÷÷. 【点睛】本题考查幂的运算,涉及同底数幂的除法的逆运算、幂的乘方的逆运算等知识,是重要考点,掌握相关知识是解题关键.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?【答案】(1) 105;(2) 105.【分析】(1)由题意直接根据同底数幂的除法运算法则进行计算即可得出答案;(2)根据题意利用同底数幂的除法运算法则进行计算即可得出答案.【详解】解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.【点睛】本题主要考查的是同底数幂的除法的应用,熟练掌握同底数幂的除法法则是解题的关键. 21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求:(1)求1*2;(2)若2*(1)81x +=,求x 的值.【答案】(1)27;(2)1x =【分析】(1)根据规定即可完成;(2)根据规定及幂的运算,可得关于x 的方程,解方程即可.【详解】(1)33a b a b *=⨯,1212333927∴*=⨯=⨯=;(2)2(1)81x *+=,214333x +∴⨯=,3433x +∴=则34x +=,解得:1x =.本题是新定义运算问题,考查了同底数幂的运算,解方程等知识,理解新定义运算是解题的关键.22.(2021·福建永春·八年级期中)规定两个非零数a,b之间的一种新运算,如果a m=b,那么a∧b=m.例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0.(1)根据上述规定填空:2∧32=;﹣3∧81=.(2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.【答案】(1)5,4;(2)说明见解析.【分析】(1)结合新定义运算及有理数的乘方运算法则分析计算;(2)结合新定义运算及同底数幂的乘法运算法则进行分析说明.【详解】解:(1)∵25=32,∴2∧32=5,∵(−3)4=81,∴−3∧81=4,故答案为:5;4;(2)设8∧9=a,8∧10=b,8∧90=c,∴8a=9,8b=10,8c=90∴8a×8b=8a+b=9×10=90=8c,∴a+b=c,即8∧9+8∧10=8∧90.【点睛】本题考查新定义运算,掌握有理数乘方运算法则,同底数幂的乘方运算法则是解题关键.23.(2021·山西·太原市外国语学校七年级阶段练习)若a*b=c,则a c=b.例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x,则x=.(2)记5*2=a,5*6=b,5*18=c,求a,b,c之间的数量关系.【答案】(1)﹣3;(2)2b=a+c.(1)根据定义和负整数指数幂公式即可解答;(2)根据定义得5a =2,5b =6,5c =18,发现62=2×18,从而得到a ,b ,c 之间的关系.【详解】解:(1)根据题意得:3311551255x -===, ∴x =﹣3.故答案为:﹣3;(2)根据题意得:5a =2,5b =6,5c =18,∴52b =(5b )2=62=36,5a ×5c =2×18=36,∴52b =5a ×5c =5a +c ,∴2b =a +c .【点睛】本题考查了负整数指数幂,同底数幂的乘法,幂的乘方,会逆用幂的运算法则是解题的关键.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.【答案】(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0, ∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log N a =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2 (1)填空:66log = ,16log = ;(2)如果(2)2log m -=3,求m 的值.【答案】(1)1,0;(2)m =10.【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵1066,61==,∴66log =1,16log =0,故答案为:1,0;(2)∵(2)2log m -=3,∴32=m ﹣2,解得:m =10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键. 26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题.(1)已知10m =6,10n =2,求10m ﹣n 的值;(2)如果a +3b =4,求3a ×27b 的值;(3)已知8×2m ÷16m =215,求m 的值.【答案】(1)3;(2)81;(3)4m =-【分析】(1)根据同底数幂的除法逆用可直接进行求解;(2)根据同底数幂的乘法的逆用可直接进行求解;(3)根据同底数幂的乘除法可直接进行求解.【详解】解:(1)∵10m =6,10n =2,∴101010623m n m n -=÷=÷=;(2)∵a +3b =4,∴334327333381a b a b a b +⨯=⋅===;(3)∵8×2m ÷16m =215,∴31534422222m m m m +-==⨯÷∴3315m -=,解得:4m =-.【点睛】本题主要考查同底数幂的乘除运算,熟练掌握同底数幂的乘除运算是解题的关键. 27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)【答案】(1)221−2;(2)2-5012;(3)101223-;(4)()121n a a a +--+11n na a +- 【分析】(1)根据阅读材料可得:设s =220222++⋅⋅⋅+①,则2s =22+23+…+220+221②,②−①即可得结果;(2)设s =2501111222+++⋅⋅⋅+①,12s =2505111112222++⋅⋅⋅++②,②−①即可得结果; (3)设s =()()()2100222-+-+⋅⋅⋅+-①,-2s =()()()23101222-+-+⋅⋅⋅+-②,②−①即可得结果;(4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②−①得as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,同理:求得-2314n a a a a ++--⋅⋅⋅-,进而即可求解.【详解】解:根据阅读材料可知:(1)设s =220222++⋅⋅⋅+①,2s =22+23+…+220+221②,②−①得,2s −s =s =221−2;故答案为:221−2;(2)设s =2501111222+++⋅⋅⋅+①, 12s =2505111112222++⋅⋅⋅++②, ②−①得,12s −s =-12s =5112-1, ∴s =2-5012, 故答案为:2-5012; (3)设s =()()()2100222-+-+⋅⋅⋅+-①-2s =()()()23101222-+-+⋅⋅⋅+-②②−①得,-2s −s =-3s =()1012-+2 ∴s =101223-; (4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②-①得:as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,设m =-a -234n a a a a --⋅⋅⋅-+③,am =-2314n a a a a ++--⋅⋅⋅-④,④-③得:am -m =a -1n a +,∴m =11n a a a +--, ∴as -s =11n a a a +--+1n na +, ∴s =()121n a a a +--+11n na a +-. 【点睛】本题考查了规律型−实数的运算,解决本题的关键是理解阅读材料进行计算。
幂的运算提高练习题
幂的运算和等边三角形提高练习题(1)一幂的运算典型例题例1.已知2x +5y -3=0,求y x 324•的值例2已知472510225•=••n m ,求m 、n .例3已知y x y x x a a a a +==+求,25,5的值. 若n m n n m x x x ++==求,2,162的值.例4已知,710,510,310===c b a 试把105写成底数是10的幂的形式例5比较下列一组数的大小.61413192781,,例6已知723921=-+n n ,求n 的值.例7计算:a n ﹣5(a n+1b 3m ﹣2)2+(a n ﹣1b m ﹣2)3(﹣b 3m+2)例8已知:2x =4y+1,27y =3x ﹣1,求x ﹣y 的值.例9计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )5巩固练习1.计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.9922.当n 是正整数时,下列等式成立的有( )(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-= A.4个 B.3个 C.2个 D.1个3、下列等正式中确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个4.若 b 、a 互为倒数,则 20042003b a ⨯= .5.如果 ()mn n m a a =- 成立,则( )A 、m 是偶数,n 是奇数B 、m 、n 都是奇数C 、m 是奇数,n 是偶数D 、n 是偶数6.计算:2332)()(a a -+-= .7.若52=m ,62=n ,则n m 22+= .8、若(-5a m+1b 2n-1)(2a n b m )=-10a 4b 4,则m-n 的值为______9、已知a x =21,b k =-31,求31 (a 2)x ÷(b 3)k 的值10、已知2m =5 , 2n =7,求 24m+2n 的值。
幂的运算提高练习题 培优资料
精品文档《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)10099所得的结果是(2))1、计算(﹣2)+(﹣9999D2、2 B、﹣2 C、A、﹣22、当m是正整数时,下列等式成立的有()2mm22m2m2mm22m2).﹣a ;(4;(3)a)=(﹣(1)aa=(a)a;(2)a)=(a=()A、4个B、3个C、2个D、1个3、下列运算正确的是()2363y=3x﹣y)9x B、(﹣A、2x+3y=5xy333 y﹣y)C﹣=x、D、(x4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()12n+12n2n1nn2n2n2n+1﹣﹣与﹣b B、aD与b C、a、与bA 、aa与b)5、下列等式中正确的个数是(655455106310520 +2.);?a=a;③﹣a④2?(﹣a)①a=2+a=a=a;②(﹣a)?(﹣a 个个D、3 、0个B、1个C、2 A 分)二、填空题(共2小题,每小题5分,满分10222333 =a)_________+(﹣a).6、计算:x?x(﹣=_________;m+2nmn_________=5,2.=6,则27、若2= 分)小题,满分70三、解答题(共17n+1n xx)+5=3x的值.+45,求8、已知3x(n2n32n11nn2﹣﹣﹣)…(xyx9、若1+2+3+…+n=a,求代数式((y)x)的值.(y()xxy)yyx 2x+5y=310、已知,求4的值.?324nm7 m.11、已知25?2?10、=5?2n,求yx+yxx aaa12、已知=5,=25,求+a的值.精品文档.精品文档m+2nnm+n的值.=2,求、若xx=16,x13aβγ=7,试把105写成底数是10的幂的形式_________14、已知10,=310 =5,10.31416192715、比较下列一组数的大小.81,,220052004+12的值.),求a16、如果a+a+a=0(a≠0n+12n=72,求n﹣3的值.17、已知9nm3915m+n的值.)b,求=a218、若(abbn5n+13m22n1m233m+2﹣﹣﹣﹣)b)+(a)、计算:19a (abb(﹣nn x﹣ay时,求n=3a的值.、若20x=3ay=,,当﹣a=2,xy+1yx1﹣,求x﹣27、已知:212=4,=3y的值.精品文档.精品文档m+32m5)﹣a?(ba)a?(﹣b)、计算:22(a﹣b)(?b﹣m+1n+22n12n53﹣,则求m+nb的值.b )23、若(a=ab()a24、用简便方法计算:22 1212×4×4)(﹣(2)2)0.25)(1(322330.53()×25×0.125 )2(×])([)4(精品文档.精品文档答案与评分标准一、选择题(共5小题,每小题4分,满分20分)10099所得的结果是())2)+(﹣21、计算(﹣99B2、﹣2 A、﹣99D、2 C、2考点:有理数的乘方。
第8章《幂的运算》复习课练习【培优题】(解析版)(苏科版,第8章幂的运算)
第8章《幂的运算》复习课练习【培优题】(满分100分 时间:40分钟) 班级 姓名 得分【知识点回顾】1、同底数幂相乘,底数不变,指数相加;即:n m a a a n m n m ,(+=⋅是正整数)2、幂的乘方,底数不变,指数相乘;即:n m a a mn n m ,()(=是正整数)3、积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘;即:n m b a ab nn n ,()(=是正整数) 4、同底数幂相除,底数不变,指数相减;即:n m n m a a a a n m n m ,;,0(>≠=÷-是正整数) 5、任何不等于0的数的0次幂等于1;即:)0(10≠=a a6、任何不等于0的数的n -(n 是正整数)次幂,等于这个数的n 次幂的倒数;即:n a aa n n ,0(1≠=-是正整数) 7、科学计数法:把一个正数写成n a 10⨯的形式,其中,101<≤n n 是整数;类似的:一个负数也可以用科学计数法表示; 【课时练习】一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1. 下面是一名学生所做的4道练习题:①−22=4②a 3+a 3=a 6③4m −4=14m4④(xy 2)3=x 3y 6,他做对的个数( )A. 1B. 2C. 3D. 4【答案】A 【解析】 【分析】本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,幂的乘方与积的乘方,是基础题,熟记各性质是解题的关键.根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,幂的乘方与积的乘方的性质对各小题分析判断即可得解.【解答】解:①−22=−4,故本小题错误;②a3+a3=2a3,故本小题错误;③4m−4=4,故本小题错误;m4④(xy2)3=x3y6,故本小题正确;综上所述,做对的个数是1.故选:A.2.已知a、b、c是自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】本题考查了同底数幂乘法以及分解质因数,熟练掌握同底数幂乘法以及分解质因数是解题关键,把2a×3b×4c变形,再把192分解成26×3,最后分类讨论即可.【解答】解:2a×3b×4c=2a×3b×22c=2a+2c×3b,192=26×3,∵a、b、c是自然数,∴b=1,a+2c=6,当a=0时,a+2c=6,c=3,则a+b+c=0+1+3=4,当a=1时,a+2c=6,c=2.5(舍去),当a=2时,a+2c=6,c=2,则a+b+c=2+1+2=5,当a=3时,a+2c=6,c=1.5(舍去),当a=4时,a+2c=6,c=1,则a+b+c=4+1+1=6,当a=5时,a+2c=6,c=0.5(舍去),当a=6时,a+2c=6,c=0,则a+b+c=6+1+0=7,∴a+b+c的取值不可能是8.故选D.3.比较355,444,533的大小正确是()A. 355<444<533B. 444<355<533C. 444<533<355D. 5533<355<444【答案】D【解析】【分析】本题主要考查了幂的乘方和积的乘方的应用.先根据幂的乘方法则把四个式子转化为指数相同的式子,再根据底数的大小比较即可.【解答】解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∵125<243<256.∴533<355<444.故选D.4.已知x2n=3,求(x3n)2−3(x2)2n的结果()A. 1B. −1C. 0D. 2【答案】C【解析】【分析】本题考查幂的乘方与积的乘方,整体代入法求代数式的值,解题的关键是根据幂的运算法则对原式进行变形.把原式变形后进行整体代入即可求值.【解答】解:(x3n)2−3(x2)2n=(x2n)3−3(x2n)2=33−3⋅32=27−27=0.故选C.5.若a=999999,b=119990,则下列结论正确是()A. a<bB. a=bC. a>bD. ab=1【答案】B【解析】【分析】此题考查积的乘方和同底数幂的乘法及除法的运算,灵活运用法则是解题的关键.根据积的乘方法则首先把999变形为119×99,999变形为990×99,然后根据同底数幂的除法法则计算即可得到结论.【解答】解:∵a=999999=(11×9)9990+9=119×99990×99=119990,∴a=b.故选B.6.定义一种新运算∫ab n⋅x n−1dx=a n−b n,例如∫kn2xdx=k2−n2.若∫m5m−x−2dx=−2,则m=()A. −2B. −25C. 2 D. 25【答案】B 【解析】 【分析】本题考查了新定义问题,根据题意,进行求解即可. 【解答】 解:由题意得: m −1−(5m)−1=−2,1m−15m=−2,5−1=−10m , m =−25. 故选:B .二、填空题:(本题共4小题,每小题5分,共20分) 7. −22017×(−0.5)2018= .【答案】−12 【解析】 【分析】此题主要考查了积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n =a n b n (n 是正整数).首先把(−0.5)2018=(−12)2017×(−12),然后再利用积的乘方进行计算即可. 【解答】解:原式=−22017×(−0.5)2018, =−22017×(−12)2017×(−12), =[−2×(−12)]2017×(−12), =1×(−12), =−12. 故答案为−12.8.已知4x=10,25y=10,则(x−2)(y−2)+3(xy−1)的值为______________.【答案】1【解析】【分析】本题考查了幂的乘方和积的乘方的逆运算,掌握幂的乘方和积的乘方的法则是解决问题的关键.【解答】解:∵4x=10,25y=10,∴4xy=10y,25xy=10x,4xy×25xy=10y×10x,(4×25)xy=10x+y,∴102xy=10x+y,∴2xy=x+y,(x−2)(y−2)+3(xy−1)=4xy−2×2xy+1=1.故答案为1.9.阅读材料:①1的任何次幂都等于1;②−1的奇数次幂都等于−1;③−1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.根据以上材料探索可得,使等式(2x+3)x+2018=1成立的x的值为______________.【答案】−1,−2,−2018【解析】【分析】本题主要考查零指数幂,有理数的乘方.根据1的乘方,−1的乘方,非零的零次幂,可得答案.【解答】解:①当2x+3=1时,解得:x=−1,此时x+2018=2017,则(2x+3)x+2018=12017=1,所以x=1;②当2x+3=−1时,解得:x=−2,此时x+2018=2016,则(2x+3)x+2018=(−1)2016=1,所以x=−2;③当x+2018=0时,x=−2018,此时2x+3=−4039,则(2x+3)x+2018=(−4039)0=1,所以x=−2018.综上所述,当x=−1,或x=−2,或x=−2018时,代数式(2x+3)2018的值为1.故答案为:−1或−2或−2018.)2÷273=2a×3b,则a+b=.10.若(−6)4×8−1×(19【答案】−8【解析】【分析】此题考查了幂的乘方与积的乘方,同底数幂的乘除,可先将已知化简,对照后得到a与b的值,代入a+b可求得代数式的值.【解答】)2÷273=24×34×2−3×3−4÷39解:∵(−6)4×8−1×(19=2×3−9=2a×3b即a=1,b=−9,∴a+b=1−9=−8.故答案为−8.三、解答题:(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.已知:x=3m−2,y=5+9m,用含x的代数式表示y.【答案】解:∵x=3m−2,∴x+2=3m,∴y=5+9m=5+(3m)2=5+(x+2)2=5+x2+4x+4=x2+4x+9.【解析】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.幂的乘方运算法则将原式变形进而得出答案.12.设x为正整数,且满足3x+1⋅2x−3x⋅2x+1=36,求(x x−1)2的值.【答案】解:∵3x+1⋅2x−3x⋅2x+1=36,∴3×3x·2x−3x·2x×2=36,即3×6x−2×6x=36,∴6x=36,解得x=2,∴(x x−1)2=(22−1)2=22=4.【解析】本题主要考查同底数幂的乘法法则与积的乘方法则,逆用同底数幂的乘法法则、积的乘方进行计算是解题的关键.逆用同底数幂的乘法法则将指数相加转化为同底数幂乘法,然后逆用积的乘方法则得到3×6x−2×6x=36,进而得到6x=36,根据乘方的意义求出x的值,即可作答.13.阅读:为了求1+2+22+23+⋯+21000的值,令S=1+2+22+23+⋯+21000,则2S=2+22+23+24+⋯+21001,因此2S−S=________,所以1+2+22+23+⋯+21000=________.应用:仿照以上推理计算出1+6+62+63+⋯+62019的值.【答案】解:21001−1;21001−1;应用:令S=1+6+62+63+⋯+62019,则6S=6+62+63+64+⋯+62020,因此6S−S=62020−1,,所以S=62020−15∴1+6+62+63+⋯+62019=62020−1.5【解析】【分析】此题考查了同底数幂的乘法,弄清题中的推理,利用错位相减法,消掉相关值,是解题的关键.学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.依照题目中类似推理,找出其中规律,利用错位相减法求解本题.6S与S之间的差就是s 的值,即可得到结果.【解答】解:阅读:2S−S=21001−1,所以1+2+22+23+⋯+21000=21001−1,故答案为21001−1;21001−1;应用:见答案.14.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=______;log216=______;log264=______.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=______(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m⋅a n=a m+n以及对数的定义证明(3)中的结论.【答案】(1)2;4;6;(2)由题意可得,4×16=64,log24、log216、log264之间满足的关系式是log24+log216=log264;(3)log a MN;(4)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m+n,∴log a MN=m+n,∴log a M+log a N=log a MN.【解析】【分析】本题考查同底数幂的乘法、新定义,解题的关键是明确题意,找出所求问题需要的条件.(1)根据题意可以得到题目中所求式子的值;(2)根据题目中的式子可以求得它们之间的关系;(3)根据题意可以猜想出相应的结论;(4)根据同底数幂的乘法和对数的性质可以解答本题.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6,故答案为:2;4;6;(2)见答案;(3)猜想的结论是:log a M+log a N=log a MN,故答案为:log a MN;(4)见答案.。
幂的运算提升练习题
幂的运算提升练习题幂的运算是数学中常见且重要的一种运算方式。
它通常以"底数的指数次幂"的形式出现。
幂运算可以帮助我们解决很多实际问题,例如计算复利、处理大数运算等等。
本文将通过一些练习题来提升我们的幂运算能力。
问题一:计算幂的值1. 计算 2的3次幂。
2. 计算 (-3)的2次幂。
3. 计算 5的0次幂。
4. 计算 0的5次幂。
5. 计算 (-2)的4次幂。
问题二:幂运算的性质1. 如果一个数的指数为0,则结果是多少?2. 如果一个数的指数为负数,则结果是多少?3. 如果一个数的底数为1,则结果是多少?4. 任何数的0次幂为多少?问题三:幂运算的乘法和除法1. 计算 2的3次幂乘以2的2次幂。
2. 计算 4的3次幂除以4的2次幂。
3. 计算 3的4次幂乘以3的负2次幂。
4. 计算 6的负3次幂除以6的负4次幂。
问题四:幂运算的加法和减法1. 计算 2的3次幂加上3的2次幂。
2. 计算 4的3次幂减去2的4次幂。
3. 计算 5的负2次幂加上3的负3次幂。
4. 计算 6的4次幂减去2的负3次幂。
问题五:幂运算的混合运算1. 计算 2的3次幂乘以3的2次幂再除以2的3次幂。
2. 计算 4的2次幂加上3的3次幂再乘以2的负2次幂。
3. 计算 5的2次幂减去3的负2次幂再乘以4的3次幂。
4. 计算 6的负2次幂加上2的负3次幂再除以3的负4次幂。
通过解答以上问题,可以提升我们的幂运算能力,并加深对幂运算性质的理解。
幂运算在数学中扮演着重要的角色,熟练掌握幂运算对于进一步学习和应用数学知识都具有重要意义。
幂的运算不仅仅是纯粹的算术运算,更是逻辑思维和问题解决能力的锻炼。
通过解决这些练习题,我们可以培养抽象思维和逻辑推理能力,提高数学素养。
同时,幂的运算能够帮助我们更好地理解数学概念和解决实际问题,例如计算利息、处理大数运算等等,对于学习和应用数学知识都具有重要意义。
在解答问题的过程中,我们可以运用一些技巧,例如利用指数的乘法和除法规则、运用负指数的性质等等。
(完整版)《幂的运算》练习题及答案
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
(完整版)《幂的运算》习题精选及答案
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,96115、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
幂的运算 提高培优练习题
幂的运算提高培优练习题幂的运算提高培优练题例题:例1.已知 $3x(x+5)=3x^{n+1}+45$,求 $x$ 的值。
例2.若 $1+2+3+。
+n=a$,求代数式值。
例3.已知 $2x+5y-3=0$,求 $4x\cdot 32y$ 的值。
例4.已知 $25m\cdot 2\cdot 10n=57\cdot 24$,求 $m$、$n$。
例5.已知 $ax=5$,$ax+y=25$,求 $ax+ay$ 的值。
例6.若 $xm+2n=16$,$xn=2$,求 $xm+n$ 的值。
例7.已知 $10a=3$,$10b=5$,$10c=7$,试把 $105$ 写成底数是 $10$ 的幂的形式。
例8.比较下列一组数的大小:$8131$,$2741$,$961$。
例9.如果 $a^2+a=0$($a\neq 0$),求$a^{2009}+a^{2008}+12$ 的值。
例10.已知 $9n+1-32n=72$,求 $n$ 的值。
练:1.计算 $(-2)^{100}+(-2)^{99}$ 所得的结果是()A。
$-2$ B。
$2$ C。
$-299$ D。
$299$2.当 $n$ 是正整数时,下列等式成立的有()(1)$a^{2m}=(a^m)^2$(2)$a^{2m}=(a^2)^m$(3)$a^{2m}=(-a^m)^2$ A。
4个 B。
3个 C。
2个 D。
1个3.计算:$(-a^2)^3+(-a^3)^2$。
4.若 $2^m=5$,$2^n=6$,则 $2^{m+n}=$。
5.下列运算正确的是()A。
$2x+3y=5xy$ B。
$(-3x^2y)^3=-9x^6y^3$ C。
$4x^3y^2\cdot (-xy^2)=-2x^4y^4$ D。
$(x-y)^3=x^3-y^3$6.若 $(anbmb)^3=a^9b^{15}$,求 $2m+n$ 的值。
7.计算:$an-5(an+1b^{3m-2})^2+(an-1b^{m-2})^3(-b^{3m+2})a^{2m}=(-a^2)^m$。
幂的运算提高练习题
幂的运算提高练习题1、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A.a n与b n B.a2n与b2n C.a2n+1与b2n+1D.a2n-1与-b2n-12、若n为正整数,则()[]()111812-⋅--⋅nn的值 ( )A.一定是0B.一定是偶数C.不一定是整数D.是整数但不一定是偶数3、如果等式()1122=-+aa,则a的值为_____4、设x=3m,y=27m+2,用x的代数式表示y是__________.5、已知x=2m+1,y=3+4m,用x的代数式表示y是___ _____.6、1083与1442的大小关系是.7、约定,如,那么=8、数N=2 12×5 9是位数。
9、若, ,则的值为10、如果9 m+3×27 m+1÷3 4m+7=81,则m的值为__________.a n+1b3m-2)2+(a n-1b m-2)3(-b3m+2)12、计算:(a-b)m+3•(b-a)2•(a-b)m•(b-a)513、若,则求m +n 的值。
14、已知:2x =4y+1,27y =3x-1,求x-y 的值。
15、已知: 8·22m -1·23m =217.求m 的值。
16、若2x+5y —3=0,求4x -1·32y 的值。
17、已知:()1242=--xx ,求x 的值。
18、求012200420052006222222------ 的值。
3521221))(b a b a b a n n n m =-++(19、有人说:当n为正整数时,1n都等于1,(-1)n也等于1,你同意吗?20、你能求出满足(n-3)n =(n-3)2n-2的正整数n吗?21、已知2 a=3,2 b=6,2 c=12,那么a,b,c是否满足a+ c=2 b的关系?请说明理由。
22、已知:2a·27b·37c=1998,其中a,b,c是自然数,求(a-b-c)2004的值。
幂的运算大题提升训练
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【北师大版】专题1.8幂的运算大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.【分析】各小题直接利用同底数幂的乘法运算法则计算,再合并同类项得出答案.【解答】解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.2.计算:(1)(﹣x)4•(﹣x)6;(2)﹣a3•a;(3)(﹣m)2•m3;(4)﹣x•x2•x3.【分析】各小题直接利用同底数幂的除法运算法则计算得出答案.【解答】解:(1)(﹣x)4•(﹣x)6=x4•x6=x10;(2)﹣a3•a=﹣a4;(3)(﹣m)2•m3=m2•m3=m5;(4)﹣x•x2•x3=﹣x1+2+3=﹣x6.3.计算:(1)a3•(﹣a)5•a12;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数);(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数);(4)(x﹣y)5•(y﹣x)3•(x﹣y).【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(1)a3•(﹣a)5•a12=﹣a20;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数)=y6n+2;(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数)=﹣23n+3;(4)(x﹣y)5•(y﹣x)3•(x﹣y)=﹣(x﹣y)5•(x﹣y)3•(x﹣y)=﹣(x﹣y)9.4.计算:(1)(p﹣q)5•(q﹣p)2;(2)(s﹣t)m•(s﹣t)m+n•(t﹣s)(m、n是正整数);(3)x n•x n+1+x2n•x(n是正整数).【分析】(1)(2)根据同底数幂的乘法法则解答即可.(3)先根据同底数幂的乘法法则化简,再合并同类项即可.【解答】解:(1)原式=(p﹣q)5•(p﹣q)2=(p﹣q)7;(2)原式=﹣(s﹣t)m+m+n+1=﹣(s﹣t)2m+n+1;(3)原式=x2n+1+x2n+1=2x2n+1.5.计算:(1)(x2y)3;(2)(﹣m3n)2;(3)(﹣2a2b3)4.【分析】根据幂的乘方与积的乘方法则计算便可.【解答】解:(1)(x2y)3=x2×3y3=x6y3;(2)(﹣m3n)2=+m3×2n2=m6n2;(3)(﹣2a2b3)4=+16a2×4b3×4=16a8b12.6.(2022秋•西陵区校级期中)计算:(1)a•a2•a3﹣a6;(2)m•m7﹣(2m4)2.【分析】(1)根据整式的加减运算以及乘法运算即可求出答案.(2)根据整式的加减运算、乘法运算以及积的乘方运算即可求出答案.【解答】解:(1)原式=a6﹣a6=0.(2)原式=m8﹣4m8=﹣3m8.7.幂的运算(1)(﹣2ab)3.(2)(x2y3)4+(﹣2x4y)2y10.【分析】(1)积的乘方,等于每个因式乘方的积,据此计算即可;(2)先根据积的乘方以及同底数幂的乘法法则化简,再合并同类项即可.【解答】解:(1)(﹣2ab)3=(﹣2)3a3b3=﹣8a3b3;(2)(x2y3)4+(﹣2x4y)2y10=x8y12+4x8y2•y10=x8y12+4x8y12=5x8y12.8.用简便方法计算:(1)(−43)2018×(﹣0.75)2019;(2)2018n×(24036)n+1.【分析】(1)根据把每一个因式分别乘方,再把所得的幂相乘解答即可;(2)根据把每一个因式分别乘方,再把所得的幂相乘解答即可.【解答】解:(1)(−43)2018×(−0.75)2019={−43×(−34)]2018×(−34)=−3 4;(2)2018n×(24036)n+1=2018n×(12018)n+1=(2018×12018)n×12018=1 2018.9.计算:(1)23×22+2×24;(2)x5•x3﹣x4•x4+x7•x+x2•x6;(3)(﹣x)9•x5•(﹣x)5•(﹣x)3.【分析】(1)(2)根据同底数幂的乘法法则计算,同底数幂相乘,底数不变,指数相加;(3)根据积的乘方运算法则以及同底数幂的乘法法则计算,积的乘方,等于每个因式乘方的积.【解答】解:(1)原式=25+25=2×25=26=64;(2)原式=x8﹣x8+x8+x8=2x8;(3)原式=﹣x9•x5•(﹣x5)•(﹣x3)=﹣x9•x5•x5•x3=﹣x22.10.计算:(1)(﹣a)2•a3;(2)x n•x n+1+x2n•x(n是正整数);(3)﹣a2•a4+(a2)3.【分析】(1)根据幂的乘方和同底数幂的乘法可以解答本题;(2)根据同底数幂的乘法和合并同类项即可解答本题;(3)根据幂的乘方和同底数幂的乘法可以解答本题.【解答】解:(1)(﹣a)2•a3=a2•a3=a5;(2)x n•x n+1+x2n•x(n是正整数)=x2n+1+x2n+1=2x2n+1;(3)﹣a2•a4+(a2)3=﹣a6+a6=0.11.(2022春•会宁县期末)根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.【分析】(1)先根据同底数幂乘法的逆运算将a3m+2n变形为a3m•a2n,根据已知条件,再分别将a3m=(a m)3,a2n=(a n)2,最后代入计算即可;(2)将已知等式的左边化为3的幂的形式,则对应指数相等,可列关于m的方程,解出即可.【解答】解:(1)a3m+2n=(a m)3•(a n)2=23×52=200;(2)∵3×9m×27m=321,∴3×32m×33m=321,31+5m=321,∴1+5m=21,m=4.12.(2022秋•江北区校级期中)(1)若10x=3,10y=2,求代数式103x+4y的值.(2)已知:3m+2n﹣6=0,求8m•4n的值.【分析】(1)直接利用同底数幂的乘法运算法则将原式变形求出答案;(2)直接利用同底数幂的乘法运算法则将原式变形求出答案.【解答】解:(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.13.(2021春•龙岗区校级月考)已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.【分析】(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.【解答】解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.14.(2021春•高州市期中)(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x14.【分析】(1)由a3m+2n=a3m•a2n=(a m)3•(a n)2,即可求得答案;(2)由x14=(x3)3•x5,即可求得答案.【解答】解:(1)∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=72;(2)∵x3=m,x5=n,∴x14=(x3)3•x5=m3n.15.(2020秋•海珠区校级期中)计算题:(1)若a2=5,b4=10,求(ab2)2;(2)已知a m=4,a n=4,求a m+n的值.【分析】(1)直接利用积的乘方运算法则将原式变形进而得出答案;(2)直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)∵a2=5,b4=10,∴(ab2)2=a2•b4=5×10=50;(2)∵a m=4,a n=4,∴a m+n=a m•a n=4×4=16.16.(2020秋•大石桥市期中)完成下列各题.(1)已知(9a)2=38,求a的值;(2)已知a m=3,a n=4,求a2m+n的值为多少.【分析】(1)结合幂的乘方与积的乘方的概念和运算法则进行求解即可;(2)根据同底数幂的乘法法则进行计算即可.【解答】解:(1)∵(9a)2=38,∴(32a)2=38,∴4a=8,a=2;(2)∵a m=3,a n=4,∴a2m+n=a2m•a n=(a m)2•a n=32•4=36.17.(2020春•高新区期中)(1)已知4x=2x+3,求x的值;(2)若a2n=3,b n=14,求(﹣ab)2n.【分析】根据幂的乘方与积的乘方运算法则解答即可.【解答】解:(1)∵4x=22x=2x+3,∴2x=x+3,∴x=3;(2)∵a2n=3,b n=1 4,∴(﹣ab)2n=(ab)2n=a2n•b2n=a2n•(b n)2=3×(14)2=3×116=316.18.(2022春•金湖县校级月考)已知a x=3,a y=2,分别求:①a x+y的值;②a3x﹣2y的值.【分析】①根据同底数幂的乘法底数不变指数相加,可得答案;②根据同底数幂的除法,可得要求的形式,再根据幂的乘方,可得答案.【解答】解:①a x+y=a x×a y==3×2=6;②a3x﹣2y=a3x÷a2y=(a x)3÷(a y)2=33÷22=27 4.19.(2022•天津模拟)(1)已知a m=2,a n=3,求①a m+n的值;②a3m﹣2n的值(2)已知2×8x×16=223,求x的值.【分析】(1)根据同底数幂的乘法法则和除法法则求解即可;(2)把各个数字化为以2为底数的形式,按照同底数幂的乘法法则,求解即可.【解答】解:(1)①a m+n=a m•a n=2×3=6;②a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2=23÷32=8 9;(2)∵2×8x×16=223∴2×(23)x×24=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.20.(2020•贵阳模拟)小松学习了“同底数幂的除法”后做这样一道题:若(2x﹣1)2x+1=1,求x的值.小松解答过程如下:解:∵1的任何次幂为1,∴2x﹣1=1,即x=1,故(2x﹣1)2x+1=13=1,∴x=1.老师说小松考虑问题不全面,聪明的你能帮助小松解决这个问题吗?请把他的解答补充完整.【分析】分别利用零指数幂的性质和有理数的乘方运算分别讨论得出答案.【解答】解:(2x﹣1)2x+1=1,分三种情况:①当2x﹣1=1时,x=1,此时(2x﹣1)2x+1=13=1,符合题意;②当2x+1=0,x=−1 2,此时(2x﹣1)2x+1=(﹣2)0=1,符合题意;③当x=0时,原式=(﹣1)1=﹣1,不合题意.综上所述:x=1或x=−1 2.21.(2022春•南海区校级月考)已知a m=2,a n=5、求下列各式的值:(1)a m+n;(2)(2a m)2;(3)a3m﹣2n.【分析】(1)根据同底数幂的乘法法则即可求解;(2)根据幂的乘方与积的乘方法则即可求解;(3)根据同底数幂的除法法则即可求解.【解答】解:(1)∵a m=2,a n=5,∴a m+n=a m•a n=2×5=10;(2)∵a m=2,∴(2a m)2=4×(a m)2=4×22=4×4=16;(3)∵a m=2,a n=5,∴a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2=23÷52=8÷25=8 25.22.(2021秋•巴林左旗期末)(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.【分析】(1)把代数式化为同底数幂的除法,再进行计算即可;(2)先求出a3x与a2y的值,再进行计算即可;(3)先把题中(x2)2n化为(x2n)2,再把x2n=4代入进行计算即可.【解答】解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=−8 9;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.23.(2022秋•永春县期中)(1)若2x=3,2y=5,则2x+y= 15 .(2)已知a x=5,a x+y=25,求a x+a y的值.(2)已知x2a+b•x3a﹣b•x a=x12,求﹣a100+2101的值.【分析】(1)根据同底数幂的乘法法则解决此题.(2)根据同底数幂的乘法法则解决此题.(3)根据同底数幂的乘法法则解决此题.【解答】解:(1)∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.(2)∵a x=5,∴a x+y=a x•a y=5a y=25.∴a y=5.∴a x+a y=5+5=10.(3)∵x2a+b•x3a﹣b•x a=x12,∴x6a=x12.∴6a=12.∴a=2.∴﹣a100+2101=﹣2100+2101=﹣2100+2×2100=2100.24.(2022春•泰山区校级月考)计算下列各式:(1)(﹣x)3•(﹣x)2﹣m3•m2•(﹣m)3;(2)已知2x=3,2y=4,求2x+y的值.【分析】(1)根据同底数幂计算法则进行计算即可;(2)先将2x+y转化为2x•2y,然后将2x=3,2y=4代入即可得出答案.【解答】解:(1)原式=﹣x3•x2﹣m5•(﹣m3)=﹣x5+m8;(2)∵2x=3,2y=4,∴2x+y=2x•2y=3×4=12.25.(2022春•贾汪区校级月考)规定a*b=3a×3b,求:(1)求1*2;(2)若2*(x+1)=81,求x的值.【分析】(1)根据所规定的运算进行作答即可;(2)根据所规定的运算进行作答即可.【解答】解:(1)∵a*b=3a×3b,∴1*2=31×32=3×9=27;(2)∵2*(x+1)=81,∴32×3x+1=34,则2+x+1=4,解得:x=1.26.(2021秋•曲阜市期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)= 3 ,(﹣2,4)= 2 ,(﹣2,1)= 0 ;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56).【分析】(1)根据新定义运算结合有理数乘方运算法则进行分析求解;(2)根据新定义运算,结合同底数幂的乘法运算法则进行分析计算.【解答】解:(1)∵53=125,(﹣2)2=4,(﹣2)0=1,∴(5,125)=3,(﹣2,4)=2,(﹣2,1)=0,故答案为:3、2、0;(2)设(4,7)=x,(4,8)=y,∴4x=7,4y=8,∴4x•4y=7×8=56,∵4x•4y=4x+y,∴4x+y=56,∴(4,56)=x+y,即(4,7)+(4,8)=(4,56).∴等式成立.27.(2022秋•海淀区校级期中)在学习平方根的过程中,同学们总结出:在a x=N中,已知底数a和指数x,求幂N的运算是乘方运算;已知幂N和指数x,求底数a的运算是开方运算,小明提出一个问题:“如果已知底数a 和幂N ,求指数x 是否也对应着一种运算呢?”老师首先肯定了小明善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小明课后借助网络查到了对数的定义:如果N =a x (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数(log arithm ),记作:x =log a N ,其中,a 叫做对数的底数,N 叫做真数.小明根据对数的定义,尝试进行了下列探究:(1)∵21=2,∴log 22=1;∵22=4,∴log 24=2;∵23=8,∴log 28=3;∵24=16,∴log 216= 4 ;计算:log 232= 5 ;(2)计算后小明观察(1)中各个对数的真数和对数的值,发现一些对数之间有关系,例如:log 24+log 28= log 232 ;(用对数表示结果)(3)于是他猜想:log a M +log a N = log a MN (a >0且a ≠1,M >0,N >0),请你将小明的探究过程补充完整,并证明他的猜想.(4)根据之前的探究,直接写出log a M ﹣log a N = M N .【分析】(1)根据对数与乘方之间的关系求解可得结论;(2)利用对数的定义求解可得结论;(3)根据所得结论进行推导可得结论;(4)根据之前的探究,可得log a M ﹣log a N =M N.【解答】解:(1)∵24=16,∴log 216=4;∵25=32,∴log 232=5;故答案为:4,5;(2)log 24+log 28=2+3=5=log 232,故答案为:log 232;(3)log a M +log a N =log a MN ,验证:设log a M =x ,log a N =y ,则a x =M ,a y =N ,∴a x ▪a y =a x +y =MN ,∴lo g a a x +y =log a MN =x +y ,∴log a MN =log a M +log a N ,故答案为:log a MN ;(4)根据之前的探究,可得log a M﹣log a N=M N .故答案为:M N .28.(2022秋•鲤城区校级期中)我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)= 125 ;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).【分析】(1)①根据新的运算,再将相应的值代入运算即可;②根据新的运算,再将相应的值代入运算即可;(2)结合新的运算,利用同底数幂的乘法的法则进行运算即可.【解答】解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=5×5×5=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f (a +a )=f (a )•f (a )=3×3=31+1=32,f (3a )=f (a +a +a )=f (a )•f (a )•f (a )=3×3×3=31+1+1=33,…,f (10a )=310,∴f (a )•f (2a )•f (3a )•…•f (10a )=3×32×33×…×310=31+2+3+…+10=355.29.(2022春•定远县校级期末)对数的定义:一般地,若a x =N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:x =log a N ,比如指数式24=16可转化为4=log 216,对数式2=log 525互转化为52=25.我们根据对数的定义可得对数的一个性质:log a (M •N )=log a M +log a N (a >0,a ≠1,M >0,N >0)解决以下问题:(1)将指数43=64转化为对数式 3=log 464 ;(2)试说明lo g a M N=lo g a M−lo g a N (a >0,a ≠1,M >0,N >0);(3)拓展运用:计算log 32+log 36﹣log 34= 1 .【分析】(1)根据对数的定义转化即可;(2)设设log a M =m ,log a N =n ,转化成指数式M =a m ,N =a n ,根据同底数幂除法的运算法则可得M N=a m ÷a n =a m ﹣n ,再转化成对数形式即可;(3)根据对数的定义计算即可.【解答】解:(1)指数43=64转化为对数式3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m÷a n=a m﹣n,∴m﹣n=lo g a M N∴lo g a MN=log a M﹣log a N;(3)log32+log36﹣log34=log32×6÷4=log33=1.故答案为:1.30.(2022春•兴化市校级月考)定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m =D(n).(1)根据D数的定义,填空:D(2)= 1 ,D(16)= 4 .(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D(qp)=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(30),D(2512)的值(用含a、b、c的代数式表示).【分析】本题属于阅读题,根据给出的定义进行运算或化简.【解答】解:(1)∵21=2,∴D(2)=1,∵24=16,∴D(16)=4,故答案为:1,4;(2)①∵D(a)=1,∴D(a3)=D(a•a•a)=D(a)+D(a)+D(a)=3;②∵D(2)=1,D(3)=2a﹣b,D(5)=a+c,∴D(30)=D(2×3×5)=D(2)+D(3)+D(5)=1+2a﹣b+a+c=3a﹣b+c+1,∴D(25 12)=D(25)﹣D(12)=2D(5)﹣2D(2)﹣D(3)=2(a+c)﹣2×1﹣(2a﹣b)=b+2c﹣2.。
八年级数学上册 幂的运算培优训练
幂的运算培优训练一、同底数幂的乘法及其推广例1、计算:(1)x·(-x2)·(-x)2·(-x3)·(-x)3 (2)(a-b)2·(b-a)3【变式】规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.二、幂的乘方与积的乘方(1)计算:(-m3)2•m5(2)计算:-82018×(-0.125)2018(3)已知a m=6,a n=2,求a2m+3n的值.【变式】若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.三、同底数幂的除法例3:(1)a 6÷a 2;(2)(-a )5÷(-a )2(3)(x -y )10÷(y -x )5÷(x -y );【变式】若33×9m +4÷272m -1的值为729,求m 的值.例4: 2-1-(-23)-2+(32)0【拓展应用】(1)若3x =4,3y =6,求92x -y +27x -y 的值.(2)若26=a 2=4b ,求a +b 值.(3)比较大小:2333和4222.【能力提升】1. 下列计算正确的是( )A .a •a 2=a 3B .a +a 2=a 3C .a 3•a 3=a 9D .a 3+a 3=a 62. 计算(53)2017×(-0.6)2018的结果是( )A .-53B .53C .-0.6D .0.63.若2(3x -6)-2+(x -3)o 有意义,则x 的取值范围是( )A .x >3;B .x <2 ;C .x ≠3或x ≠2;D .x ≠3且x ≠2.4. 若a m =5,a n =6,则a m +n = .5. 计算:(-0.25)2019×42018= .6. 汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为___________________7. 已知(a m )n =a 6,(a m )2÷a n =a 3(1)求mn 和2m -n 的值;(2)求4m 2+n 2的值.8. 化简求值:(2x -y )13÷[(2x -y )3]2÷[(y -2x )2]3,其中x =2,y =-1.9. 已知常数a 、b 满足3a •3b =27,且(5a )2•(5b )2÷(125a )b =1,求a 2+b 2的值.10. 已知5a =2b =10,求1a +1b 的值.幂的运算【能力提升】答案:1. 下列计算正确的是( )A .a •a 2=a 3B .a +a 2=a 3C .a 3•a 3=a 9D .a 3+a 3=a 6 解:A .a •a 2=a 3,此选项正确;B .a 与a 2不是同类项,不能合并,此选项错误;C .a 3•a 3=a 6,此选项错误;D .a 3+a 3=2a 3,此选项错误;故选:A .2. 计算(53)2017×(-0.6)2018的结果是( )A .-53B .53C .-0.6D .0.6 解:(53)2017×(-0.6)2018=(53)2017×(-35)2018=(53)2017×(35)2017×35=35=0.6.故选:D .3.若2(3x -6)-2+(x -3)o 有意义,则x 的取值范围是() A .x >3; B .x <2 ; C .x ≠3或x ≠2;D .x ≠3且x ≠2.解:同时满足3x -6≠0,x -3≠0故选:D .4. 若a m =5,a n =6,则a m +n = .解:∵a m =5,a n =6,∴a m +n =a m •a n =5×6=30.5. 计算:(-0.25)2019×42018= .解:(-0.25)2019×42018=(-0.25)2018×42018×(-0.25)=(-0.25×4)2018×(-0.25)=-0.25.6. 汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为___________________解:0.013=1.3×10-2.7. 已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m-n的值;(2)求4m2+n2的值.解:(1)∵(a m)n=a6,(a m)2÷a n=a3,∴a mn=a6,a2m-n=a3,则mn=6,2m-n=3;(2)当mn=6、2m-n=3时,4m2+n2=(2m-n)2+4mn=32+4×6=9+24=33.8. 化简求值:(2x-y)13÷[(2x-y)3]2÷[(y-2x)2]3,其中x=2,y=-1.解:原式=(2x-y)13÷(2x-y)6÷ (y-2x)6=(2x-y)13÷(2x-y)6÷ (2x-y)6=2x-y当x=2,y=-1时,原式=5.9. 已知常数a、b满足3a•3b=27,且(5a)2•(5b)2÷(125a)b=1,求a2+b2的值.解:∵3a•3b=27,∴3a+b=33,∴a+b=3,∵(5a)2•(5b)2÷(125a)b=52a+2b÷53ab=1,∴2a+2b=3ab,∴2(a+b)=3ab=6,∴ab=2,∴a2+b2=(a+b)2-2ab=32-4=5.10. 已知5a=2b=10,求1a+1b的值.解:∵5a=2b=10,∴(5a)b=10b,(2b)a=10a,∴5ab=10b,2ab=10a,∴5ab•2ab=10b•10a,∴10ab=10a+b,∴ab=a+b,∴1a+1b=a+bab=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2).A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题(共2小题,每小题5分,满分10分)6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2=_________.7、若2m=5,2n=6,则2m+2n=_________.三、解答题(共17小题,满分70分)8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式_________.15、比较下列一组数的大小.8131,2741,96116、如果a2+a=0(a≠0),求a2005+a2004+12的值.17、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412 (3)0.52×25×0.125 (4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
分析:本题考查有理数的乘方运算,(﹣2)100表示100个(﹣2)的乘积,所以(﹣2)100=(﹣2)99×(﹣2).解答:解:(﹣2)100+(﹣2)99=(﹣2)99[(﹣2)+1]=299.故选C.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个考点:幂的乘方与积的乘方。
分析:根据幂的乘方的运算法则计算即可,同时要注意m的奇偶性.解答:解:根据幂的乘方的运算法则可判断(1)(2)都正确;因为负数的偶数次方是正数,所以(3)a2m=(﹣a m)2正确;(4)a2m=(﹣a2)m只有m为偶数时才正确,当m为奇数时不正确;所以(1)(2)(3)正确.故选B.点评:本题主要考查幂的乘方的性质,需要注意负数的奇数次幂是负数,偶数次幂是正数.3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、D、(x﹣y)3=x3﹣y3考点:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式。
分析:根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可.解答:解:A、2x与3y不是同类项,不能合并,故本选项错误;B、应为(﹣3x2y)3=﹣27x6y3,故本选项错误;C、,正确;D、应为(x﹣y)3=x3﹣3x2y+3xy2﹣y3,故本选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法则;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣1考点:有理数的乘方;相反数。
分析:两数互为相反数,和为0,所以a+b=0.本题只要把选项中的两个数相加,看和是否为0,若为0,则两数必定互为相反数.解答:解:依题意,得a+b=0,即a=﹣b.A中,n为奇数,a n+b n=0;n为偶数,a n+b n=2a n,错误;B中,a2n+b2n=2a2n,错误;C中,a2n+1+b2n+1=0,正确;D中,a2n﹣1﹣b2n﹣1=2a2n﹣1,错误.故选C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次幂相等,奇次幂互为相反数.5、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个考点:幂的乘方与积的乘方;整式的加减;同底数幂的乘法。
分析:①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算.解答:解:①∵a5+a5=2a5;,故①的答案不正确;②∵(﹣a)6•(﹣a)3=(﹣a)9=﹣a9,故②的答案不正确;③∵﹣a4•(﹣a)5=a9;,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选B.点评:本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识,注意指数的变化.二、填空题(共2小题,每小题5分,满分10分)6、计算:x2•x3=x5;(﹣a2)3+(﹣a3)2=0.考点:幂的乘方与积的乘方;同底数幂的乘法。
分析:第一小题根据同底数幂的乘法法则计算即可;第二小题利用幂的乘方公式即可解决问题.解答:解:x2•x3=x5;(﹣a2)3+(﹣a3)2=﹣a6+a6=0.点评:此题主要考查了同底数幂的乘法和幂的乘方法则,利用两个法则容易求出结果.7、若2m=5,2n=6,则2m+2n=180.考点:幂的乘方与积的乘方。
分析:先逆用同底数幂的乘法法则把2m+2n=化成2m•2n•2n的形式,再把2m=5,2n=6代入计算即可.解答:解:∴2m=5,2n=6,∴2m+2n=2m•(2n)2=5×62=180.点评:本题考查的是同底数幂的乘法法则的逆运算,比较简单.三、解答题(共17小题,满分0分)8、已知3x(x n+5)=3x n+1+45,求x的值.考点:同底数幂的乘法。
专题:计算题。
分析:先化简,再按同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:3x1+n+15x=3x n+1+45,∴15x=45,∴x=3.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.考点:同底数幂的乘法。
专题:计算题。
分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:原式=x n y•x n﹣1y2•x n﹣2y3…x2y n﹣1•xy n=(x n•x n﹣1•x n﹣2•…•x2•x)•(y•y2•y3•…•y n﹣1•y n)=x a y a.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.10、已知2x+5y=3,求4x•32y的值.考点:幂的乘方与积的乘方;同底数幂的乘法。
分析:根据同底数幂相乘和幂的乘方的逆运算计算.解答:解:∵2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.点评:本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.11、已知25m•2•10n=57•24,求m、n.考点:幂的乘方与积的乘方;同底数幂的乘法。
专题:计算题。
分析:先把原式化简成5的指数幂和2的指数幂,然后利用等量关系列出方程组,在求解即可.解答:解:原式=52m•2•2n•5n=52m+n•21+n=57•24,∴,解得m=2,n=3.点评:本题考查了幂的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键.12、已知a x=5,a x+y=25,求a x+a y的值.考点:同底数幂的乘法。
专题:计算题。
分析:由a x+y=25,得a x•a y=25,从而求得a y,相加即可.解答:解:∵a x+y=25,∴a x•a y=25,∵a x=5,∴a y,=5,∴a x+a y=5+5=10.点评:本题考查同底数幂的乘法的性质,熟练掌握性质的逆用是解题的关键.13、若x m+2n=16,x n=2,求x m+n的值.考点:同底数幂的除法。
专题:计算题。
分析:根据同底数幂的除法,底数不变指数相减得出x m+2n÷x n=x m+n=16÷2=8.解答:解:x m+2n÷x n=x m+n=16÷2=8,∴x m+n的值为8.点评:本题考查同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式10α+β+γ.考点:同底数幂的乘法。
分析:把105进行分解因数,转化为3和5和7的积的形式,然后用10a、10β、10γ表示出来.解答:解:105=3×5×7,而3=10a,5=10β,7γ=10,∴105=10γ•10β•10α=10α+β+γ;故应填10α+β+γ.点评:正确利用分解因数,根据同底数的幂的乘法的运算性质的逆用是解题的关键.15、比较下列一组数的大小.8131,2741,961考点:幂的乘方与积的乘方。