太阳能光伏发电外文翻译
太阳能发电英文
Solar energySolar energy, radiant light and heat from the sun, has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar radiation, along with secondary solar-powered resources such as wind and wave power, hydroelectricity and biomass, account for most of the available renewable energy on earth. Only a minuscule fraction of the available solar energy is used.Solar powerSolar power is the generation of electricity from sunlight. This can be direct as with photovoltaics (PV), or indirect as with concentrating solar power (CSP), where the sun's energy is focused to boil water which is then used to provide power. Solar power has the potential to provide over 1,000 times total world energy consumption in 2008, though it provided only 0.02% of the total that year. If it continues to double in use every two to three years, or less, it would become the dominant energy source this century. The largest solar power plants, like the 354 MW SEGS, are concentrating solar thermal plants, but recently multi-megawatt photovoltaic plants have been built. Completed in 2008, the 46 MW Moura photovoltaic power station in Portugal and the 40 MW Waldpolenz Solar Park in Germany are characteristic of the trend toward larger photovoltaic power stations.Much larger ones are proposed, such as the 100 MW Fort Peck Solar Farm, the 550 MW Topaz Solar Farm, and the 600 MW Rancho Cielo Solar Farm.Solar power is amazing. On average, every square meter of Earth's surface receives 164 watts of solar energy. In other words, you could stand a really powerful (150 watt) table lamp on every square meter of Earth's surface and light up the whole planet with the Sun's energy! Or, to put it another way, if we covered just one percent of the Sahara desert with solar panels, we could generate enough electricity to power the whole world. That's the good thing about solar power: there's an awful lot of it—much more than we could ever use.But there's a downside too. The energy the Sun sends out arrives on Earth as a mixture of light and heat. Both of these are incredibly important—the light makes plants grow, providing us with food, while the heat keeps us warm enough to survive—but we can't use either the Sun's light or heat directly to run a television or a car. We have to find some way of converting solar energy into other forms of energy we can use more easily, such as electricity. And that's exactly what solar panels do.Solar cellA solar cell is a device that converts the energy of sunlight directly into electricity by the photovoltaic effect. Sometimes the term solar cell is reserved for devices intended specifically to capture energy from sunlight such as solar panels and solar cells, while the term photovoltaic cell is used when the light source is unspecified. Assemblies of cells are used to make solar panels, solar modules, or photovoltaic arrays. Photovoltaics is the field of technology andresearch related to the application of solar cells in producing electricity for practical use. The energy generated this way is an example of solar energy.History of solar cellsThe development of the solar cell stems from the work of the French physicist Antoine-César Becquerel in 1839. Becquerel discovered the photovoltaic effect while experimenting with a solid electrode in an electrolyte solution; he observed that voltage developed when light fell upon the electrode. About 50 years later, Charles Fritts constructed the first true solar cells using junctions formed by coating the semiconductor selenium with an ultrathin, nearly transparent layer of gold. Fritts's devices were very inefficient, transforming less than 1 percent of the absorbed light into electrical energy.By 1927 another metalÐsemiconductor-junction solar cell, in this case made of copper and the semiconductor copper oxide, had been demonstrated. By the 1930s both the selenium cell and the copper oxide cell were being employed in light-sensitive devices, such as photometers, for use in photography. These early solar cells, however, still had energy-conversion efficiencies of less than 1 percent. This impasse was finally overcome with the development of the silicon solar cell by Russell Ohl in 1941. In 1954, three other American researchers, G.L. Pearson, Daryl Chapin, and Calvin Fuller, demonstrated a silicon solar cell capable of a 6-percent energy-conversion efficiency when used in direct sunlight. By the late 1980s silicon cells, as well as those made of gallium arsenide, with efficiencies of more than 20 percent had been fabricated. In 1989 a concentrator solar cell, a type of device in which sunlight is concentrated onto the cell surface by means of lenses, achieved an efficiency of 37 percent due to the increased intensity of the collected energy. In general, solar cells of widely varying efficiencies and cost are now available.StructureModern solar cells are based on semiconductor physics -- they are basically just P-N junction photodiodes with a very large light-sensitive area. The photovoltaic effect, which causes the cell toconvert light directly into electrical energy, occurs in the three energy-conversion layers.The first of these three layers necessary for energy conversion in a solar cell is the top junction layer (made of N-type semiconductor ). The next layer in the structure is the core of the device; this is the absorber layer (the P-N junction). The last of the energy-conversion layers is the back junction layer (made of P-type semiconductor).As may be seen in the above diagram, there are two additional layers that must be present in a solar cell. These are the electrical contact layers. There must obviously be two such layers to allow electric current to flow out of and into the cell. The electrical contact layer on the face of the cell where light enters is generally present in some grid pattern and is composed of a good conductor such as a metal. The grid pattern does not cover the entire face of the cell since grid materials, though good electrical conductors, are generally not transparent to light. Hence, the grid pattern must be widely spaced toallow light to enter the solar cell but not to the extent that the electrical contact layer will have difficulty collecting the current produced by the cell. The back electrical contact layer has no such diametrically opposed restrictions. It need simply function as an electrical contact and thus covers the entire back surface of the cell structure. Because the back layer must be a very good electrical conductor, it is always made of metal.How do solar cells workA solar cell is a sandwich of n-type silicon (blue) and p-type silicon (red).1.When sunlight shines on the cell, photons (light particles)bombard the upper surface.2.The photons (yellow blobs) carry their energy down through thecell.3.The photons give up their energy to electrons (green blobs) inthe lower, p-type layer.4.The electrons use this energy to jump across the barrier into theupper, n-type layer and escape out into the circuit.5.Flowing around the circuit, the electrons make the lamp lightup.Solar Power - Advantages and Disadvantages Solar Power AdvantagesThere are many advantages of solar energy. Just consider the advantages of solar energy over that of oil:· Solar energy is a renewable resource. Although we cannot utilize the power of the sun at night or on stormy, cloudy days, etc., we can count on the sun being there the next day, ready to give us more energy and light. As long as we have the sun, we can have solar energy (and on the day that we no longer have the sun, you can believe that we will no longer have ourselves, either).· Oil, on the other hand, is not renewable. Once it is gone, it is gone. Yes, we may find another source to tap, but that source may run out, as well.· Solar cells are totally silent. They can extract energy from the sun without making a peep. Now imagine the noise that the giant machines used to drill for and pump oil make!· Solar energy is non-polluting. Of all advantages of solar energy over that of oil, this is, perhaps, the most important. The burning of oil releases carbon dioxide and other greenhouse gases and carcinogens into the air.·Solar cells require very little maintenance (they have no moving parts that will need to be fixed), and they last a long time.· Although solar panels or solar lights, etc., may be expensive to buy at the onset, you can save money in the long run. After all, you do not have to pay for energy from the sun. On the other hand, all of us are aware of the rising cost of oil.· Solar powered lights and other solar powered products are also very easy to install. You do not even need to worry about wires.Here are the disadvantages of solar energy:•The initial cost is the main disadvantage of installing a solar energy system, largely because of the high cost of thesemi-conducting materials used in building one.•The cost of solar energy is also high compared tonon-renewable utility-supplied electricity. As energy shortages are becoming more common, solar energy is becoming moreprice-competitive.•Solar panels require quite a large area for installation to achievea good level of efficiency.•The efficiency of the system also relies on the location of the sun, although this problem can be overcome with the installation of certain components.•The production of solar energy is influenced by the presence of clouds or pollution in the air.•Similarly, no solar energy will be produced during nighttime although a battery backup system and/or net metering willsolve this problem.Development, deployment and economicsBeginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).Between 1970 and 1983 photovoltaic installations grew rapidly, but falling oil prices in the early 1980s moderated the growth of PV from 1984 to 1996.Photovoltaic production growth has averaged 40% per year since 2000 and installed capacity reached 10.6 GW at the end of 2007,and 14.73 GW in 2008.Since 2006 it has beeneconomical for investors to install photovoltaics for free in return for a long term power purchase agreement. 50% of commercial systems were installed in this manner in 2007 and it is expected that 90% will by 2009. Nellis Air Force Base is receiving photoelectric power for about 2.2 ¢/kWh and grid power for 9 ¢/kWh.Commercial concentrating solar thermal power (CSP) plants were first developed in the 1980s. CSP plants such as SEGS project in the United States have a levelized energy cost (LEC) of 12–14 ¢/kWh.The 11 MW PS10 power tower in Spain, completed in late 2005, is Europe's first commercial CSP system, and a total capacity of 300 MW is expected to be installed in the same area by 2013.In August 2009, First Solar announced plans to build a 2 GW photovoltaic system in Ordos City, Inner Mongolia, China in four phases consisting of 30 MW in 2010, 970 MW in 2014, and another 1000 MW by 2019. As of June 9, 2009, there is a new solar thermal power station being built in the Banaskantha district in North Gujarat. Once completed, it will be the world's largest.。
太阳能发电外文翻译文献
太阳能发电外文翻译文献(文档含中英文对照即英文原文和中文翻译)Design of a Lead-Acid Battery Charging and Protecting IC in Photovoltaic SystemZENG De-you,LING Chao-dong,LI Guo-gang1.IntroductionSolar energy as an inexhaustible, inexhaustible source of energy more and more attention. Solar power has become popular in many countries and regions, solar lighting has also been put into use in many cities in China. As a key part of the solar lighting, battery charging and protection is particularly important. Sealed maintenance-free lead-acid battery has a sealed, leak-free, pollution-free, maintenance-free, low-cost, reliable power supply during the entire life of the battery voltage is stable and no maintenance, the need for uninterrupted for the various typesof has wide application in power electronic equipment, and portable instrumentation. Appropriate float voltage, in normal use (to prevent over-discharge, overcharge, over-current), maintenance-free lead-acid battery float life of up to 12 ~ 16 years float voltage deviation of 5% shorten the life of 1/2. Thus, the charge has a major impact on this type of battery life. Photovoltaic, battery does not need regular maintenance, the correct charge and reasonable protection, can effectively extend battery life. Charging and protection IC is the separation of the occupied area and the peripheral circuit complexity. Currently, the market has not yet real, charged with the protection function is integrated on a single chip. For this problem, design a set of battery charging and protection functions in one IC is very necessary.2.System design and considerationsThe system mainly includes two parts: the battery charger module and the protection module. Of great significance for the battery as standby power use of the occasion, It can ensure that the external power supply to the battery-powered, but also in the battery overcharge, over-current and an external power supply is disconnected the battery is to put the state to provide protection, the charge and protection rolled into one to make the circuit to simplify and reduce valuable product waste of resources. Figure 1 is a specific application of this Ic in the photovoltaic power generation system, but also the source of this design.Figure1 Photovoltaic circuit system block diagramMaintenance-free lead-acid battery life is usually the cycle life and float life factors affecting the life of the battery charge rate, discharge rate, and float voltage. Some manufacturers said that if the overcharge protection circuit, the charging rate can be achieved even more than 2C (C is the rated capacity of the battery), battery manufacturers recommend charging rate of C/20 ~ C/3. Battery voltage and temperature, the temperature is increased by 1 °C, single cell battery voltage drops 4 mV , negative temperature coefficient of -4 mV / ° C means that the battery float voltage. Ordinary charger for the best working condition at 25 °C; charge less than the ambient temperature of 0 °C; at 45 °C may shorten the battery life due to severe overcharge. To make the battery to extend the working life, have a certain solar battery array Charge controllercontroller Dischargecontroller DC load accumulatorunderstanding and analysis of the working status of the battery, in order to achieve the purpose of protection of the battery. Battery, there are four states: normal state, over-current state over the state of charge, over discharge state. However, due to the impact of the different discharge current over-capacity and lifetime of the battery is not the same, so the battery over discharge current detection should be treated separately. When the battery is charging the state a long time, would severely reduce the capacity of the battery and shorten battery life. When the battery is the time of discharge status exceeds the allotted time, the battery, the battery voltage is too low may not be able to recharge, making the battery life is lower. Based on the above, the charge on the life of maintenance-free lead-acid batteries have a significant impact, while the battery is always in good working condition, battery protection circuit must be able to detect the normal working condition of the battery and make the action the battery can never normal working state back to normal operation, in order to achieve the protection of the battery.3.Units modular design3.1The charging moduleChip, charging module block diagram shown in Figure 2. The circuitry includes current limiting, current sensing comparator, reference voltage source, under-voltage detection circuit, voltage sampling circuit and logic control circuit.Figure2 Charging module block diagramdriverV oltage amplifierV oltage sampling comparatorStart amplifierState level control Charging indicator Logicalmodule Undervoltage detection circuitR- powerCurrent sampling comparator Limitingamplifier Power indicatorThe module contains a stand-alone limiting amplifier and voltage control circuit, it can control off-chip drive, 20 ~30 mA, provided by the drive output current can directly drive an external series of adjustment tube, so as to adjust the charger output voltage and current . V oltage and current detection comparator detects the battery charge status, and control the state of the input signal of the logic circuit. When the battery voltage or current is too low, the charge to start the comparator control the charging. Appliances into the trickle charge state when the cut-off of the drive, the comparator can output about 20 mA into the trickle charge current. Thus, when the battery short-circuit or reverse, the charger can only charge a small current, to avoid damage to the battery charging current is too large. This module constitutes a charging circuit charging process is divided into two charging status: high-current constant-current charge state, high-voltage charge status and low-voltage constant voltage floating state. The charging process from the constant current charging status, the constant charging current of the charger output in this state. And the charger continuously monitors the voltage across the battery pack, the battery power has been restored to 70% to 90% of the released capacity when the battery voltage reaches the switching voltage to charge conversion voltage Vsam charger moves to the state of charge. In this state, the charger output voltage is increased to overcharge pressure V oc is due to the charger output voltage remains constant, so the charging current is a continuous decline. Current down to charge and suspend the current Ioct, the battery capacity has reached 100% of rated capacity, the charger output voltage drops to a lower float voltage VF.3.2 Protection ModuleChip block diagram of the internal protection circuit shown in Figure 3. The circuit includes control logic circuit, sampling circuit, overcharge detection circuit, over-discharge detection comparator, overcurrent detection comparator, load short-circuit detection circuit, level-shifting circuit and reference circuit (BGR).Figure3 Block diagram of battery protectionThis module constitutes a protection circuit shown in Figure 4. Under the chip supply voltage within the normal scope of work, and the VM pin voltage at the overcurrent detection voltage, the battery is in normal operation, the charge and discharge control of the chip high power end of the CO and DO are level, when the chip is in normal working mode. Larger when the battery discharge current will cause voltage rise of the VM pin at the VM pin voltage at above the current detection voltage Viov, then the battery is the current status, if this state to maintain the tiov overcurrent delay time, the chip ban on battery discharge, then the charge to control the end of CO is high, the discharge control side DO is low, the chip is in the current mode, general in order to play on the battery safer and more reasonable protection, the chip will battery over-discharge current to take over the discharge current delay time protection. The general rule is that the over-discharge current is larger, over the shorter the discharge current delay time. Above Overcharge detection voltage, the chip supply voltage (Vdd> Vcu), the battery is in overcharge state, this state is to maintain the corresponding overcharge delay time tcu chip will be prohibited from charging the battery, then discharge control end DO is high, and charging control terminal CO is low, the chip is in charging mode. When the supply voltage of the chip under the overdischarge detection voltage (Vdd <Vdl,), then the battery is discharged state, this state remains the overdischarge delay time tdl chip will be prohibited to discharge the battery at this time The charge control side CO is high, while the discharge control terminal DO is low, the chip is in discharge mode. Sampling circuitOver discharge detection comparatorControl logic circuit Level conversion circuit Overcharge detection comparator Over-current detection comparator2 Over-current detection comparator1Over-current detection circuitLoad short detection circuitFigure4 Protection circuit application schematic diagram4.Circuit DesignTwo charge protection module structure diagram, the circuit can be divided into four parts: the power detection circuit (under-voltage detection circuit), part of the bias circuit (sampling circuit, the reference circuit and bias circuit), the comparator (including the overcharge detection /overdischarge detection comparator, over-current detection and load short-circuit detection circuit) and the logic control part.This paper describes the under-voltage detection circuit (Figure 5), and gives the bandgap reference circuit (Figure 6).Figure5 Under-voltage detection circuitProtectionmoduleBiasing circuit Reference circuit Bleeder circuit difference amplifier Output circuitAmplifierAmplifierFigure6 A reference power supply circuit diagramBattery charging, voltage stability is particularly important, undervoltage, overvoltage protection is essential, therefore integrated overvoltage, undervoltage protection circuit inside the chip, to improve power supply reliability and security. And protection circuit design should be simple, practical, here designed a CMOS process, the undervoltage protection circuit, this simple circuit structure, process and easy to implement and can be used as high-voltage power integrated circuits and other power protection circuit.Undervoltage protection circuit schematic shown in Figure 5, a total of five components: the bias circuit, reference voltage, the voltage divider circuit, differential amplifier, the output circuit. The circuit supply voltage is 10V; the M0, M1, M2, R0 is the offset portion of the circuit to provide bias to the post-stage circuit, the resistance, Ro, determine the circuit's operating point, the M0, M1, M2 form a current mirror; R1 M14 is the feedback loop of the undervoltage signal; the rest of the M3, M4 and M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, composed of four amplification comparator; M15, DO, a reference voltage, the comparator input with the inverting input is fixed (V+), partial pressure of the resistance R1, R2, R3, the input to the inverting input of the comparator, when the normal working of the power supply voltage, the inverting terminal of the voltage detection is lost to the inverting terminal voltage of the comparator is greater than V+. Comparator output is low, M14 cutoff, feedback circuit does not work; undervoltage occurs, the voltage divider of R1, R2, R3, reaction is more sensitive, lost to the inverting input voltage is less than V when the resistor divider, the comparator the output voltage is high, this signal will be M14 open, the voltage across R into M at both ends of the saturation voltage close to 0V, thereby further driving down the R1> R2, the partial pressure of the output voltage, the formation of the undervoltage positive feedback. Output, undervoltage lockout, and plays a protective role.5. Simulation results and analysisThe design of the circuit in CSMC 0.6 μm in digital CMOS process simulation and analysis of the circuit. In the overall simulation of the circuit, the main observation is that the protection module on the battery charge and discharge process by monitoring Vdd potential and Vm potential leaving chip CO side and DO-side changes accordingly. The simulation waveform diagram shown in Figure 7, the overall protection module with the battery voltage changes from the usual mode conversion into overcharge mode, and then return to normal working mode, and then into the discharge mode, and finally back to normal working mode. As the design in the early stages of the various parameters to be optimized, but to provide a preliminary simulation results.Figure7 Overvoltage and under-voltage protection circuit simulation waveform6.ConclusionDesigned a set of battery charging and protection functions in one IC. This design not only can reduce the product, they can reduce the peripheral circuit components. The circuit uses the low-power design. This project is underway to design optimization stage, a complete simulation can not meet the requirements, but also need to optimize the design of each module circuit.光伏系统中蓄电池的充电保护IC电路设计曾德友,凌朝东,李国刚1.引言太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。
太阳能行业专业术语中英文对照汇总
太阳能行业专业术语中英文对照汇总1. 太阳能发电系统 Solar Power Generation System2. 光伏板 Photovoltaic Panel3. 太阳能电池 Solar Cell4. 太阳辐射 Solar Radiation5. 光伏效率 Photovoltaic Efficiency6. 光伏薄膜 Photovoltaic Film7. 太阳能阵列 Solar Array8. 阳光能够转换的源能量 Potential Energy Converted by Sunlight9. 太阳能热发电 Solar Thermal Power Generation10. 光伏发电 Photovoltaic Power Generation11. 太阳能板 Solar Panel12. 逆变器 Inverter13. 太阳能光伏发电系统 Solar Photovoltaic Power Generation System14. 太阳能热水系统 Solar Water Heating System15. 太阳能电池组 Solar Battery Pack16. 漏电保护器 Leakage Protector17. 太阳能光伏电池组 Solar Photovoltaic Battery Pack18. 太阳能光伏电动车 Solar Photovoltaic Electric Vehicle19. 太阳能光伏发电机组 Solar Photovoltaic Power Generation Unit20. 太阳能发电塔 Solar Power Generation Tower21. 太阳能发电站 Solar Power Generation Plant22. 太阳能光伏逆变器 Solar Photovoltaic Inverter23. 太阳能电池板 Solar Cell Panel24. 太阳能电力系统 Solar Power System25. 碳排放 Carbon Emissions26. 绿色能源 Green Energy27. 可再生能源 Renewable Energy28. 太阳集热器 Solar Collector29. 太阳能集热器箱体 Solar Collector Box30. 太阳能热发电站 Solar Thermal Power Plant31. 太阳能发电设备 Solar Power Generation Equipment32. 光伏组件 Photovoltaic Module33. 太阳能光伏组件 Solar Photovoltaic Module34. 太阳能发电功率 Solar Power Generation Capacity35. 太阳能发电效益 Solar Power Generation Efficiency36. 太阳能热发电效率 Solar Thermal Power Generation Efficiency37. 太阳能供暖系统 Solar Heating System38. 太阳能温水器 Solar Water Heater39. 太阳能光伏装置 Solar Photovoltaic Device40. 太阳能热力系统 Solar Thermal System41. 太阳能电池片 Solar Cell Wafer42. 太阳能热发电板 Solar Thermal Power Generation Board43. 太阳能热发电效益 Solar Thermal Power Generation Benefit44. 太阳能热发电塔式反应器 Solar Thermal Power Generation Tower Reactor45. 光伏面板 Photovoltaic Panel46. 太阳能光伏面板 Solar Photovoltaic Panel47. 太阳能热板 Solar Thermal Plate48. 太阳能直驱泵 Solar Direct Drive Pump49. 太阳能冷水机组 Solar Cooling Unit50. 太阳能蓄电系统 Solar Battery Charging System。
光伏行业常用英文单词
光伏行业常用英文单词在光伏行业中,英语单词是必备的工具,具备一定的英文词汇能力对于从事光伏行业的人士来说至关重要。
本文将介绍光伏行业中常用的英文单词以及它们的中文意义,希望能帮助读者更好地理解和运用这些术语。
1. Solar energy - 太阳能Solar energy refers to the energy derived from the sun's radiation. It is the primary source of power in the solar industry, driving the generation of electricity through solar panels.2. Photovoltaic (PV) - 光伏的Photovoltaic, often abbreviated as PV, is the technology used to convert sunlight directly into electricity. It involves the use of solar cells or modules to capture and convert solar energy.3. Solar panel - 太阳能电池板A solar panel is a device that consists of multiple solar cells connected together. It converts sunlight into electricity through the photovoltaic effect.4. Solar cell - 太阳能电池A solar cell, also known as a photovoltaic cell, is the basic building block of a solar panel. It converts sunlight into electricity by absorbing photons and releasing electrons.5. Solar module - 太阳能模块A solar module, also referred to as a solar panel module, is a packaged assembly of interconnected solar cells. It provides a larger surface area for capturing sunlight and generating electricity.6. Solar farm - 太阳能发电场A solar farm is a large-scale installation of solar panels or modules. It is designed to generate significant amounts of electricity for commercial or utility-scale applications.7. Inverter - 逆变器An inverter is a device used in photovoltaic systems to convert the direct current (DC) produced by solar panels into alternating current (AC) for use in electrical grids or appliances.8. Net metering - 净计量Net metering is a billing arrangement that allows solar energy system owners to receive credit for the excess electricity they generate and feed back into the grid. It promotes the integration of solar power into existing electrical grids.9. Feed-in tariff - 上网电价A feed-in tariff is a policy mechanism that promotes renewable energy generation by providing financial incentives for the production of electricity from renewable sources, such as solar power.10. Solar irradiance - 太阳辐照度Solar irradiance refers to the power per unit area received from the sun in the form of electromagnetic radiation. It is a key parameter in evaluating the potential energy output of solar panels.11. Off-grid - 脱网Off-grid refers to systems or applications that are not connected to the main electrical grid. Off-grid solar systems often rely on batteries to store excess energy for use during periods of low or no sunlight.12. Grid-connected - 并网Grid-connected systems are connected to the main electrical grid and feed excess electricity back into the grid. They allow for both the consumption of solar-generated power and the use of grid power when necessary.13. Photovoltaic efficiency - 光伏效率Photovoltaic efficiency measures how effectively a solar cell or module converts sunlight into electricity. Higher efficiency means a greater conversion rate and more power output.14. Solar thermal - 太阳能热利用Solar thermal refers to the use of solar energy to generate heat. It often involves the use of solar collectors to absorb sunlight and transfer the heat to a fluid, which can then be used for heating or generating electricity.15. Renewable energy - 可再生能源Renewable energy refers to energy sources that can be replenished naturally or essentially indefinitely. Solar energy is considered a renewable energy source, as it relies on the continuous availability of sunlight.以上是光伏行业中常见的英文单词及其中文意义。
太阳能发电-中英文翻译Solarelectricalenergygeneration文献翻译
文献翻译英文原文:Solar electrical energy generationAlong with economical development, society's progress, the people to the energy proposed that more and more high request, seeks for the new energy to become the urgent topic which the current humanity faces. The existing energy mainly has 3 kinds, namely thermal power, water and electricity and nuclear power.The thermal power needs to burn fossil fuels and so on bunker coal, petroleum. On the one hand the fossil fuel reserves limited, the fever are less, is facing the danger which dries up. It is estimated that the world oil resource will have 30 years then to dry up again. On the other hand the combustion fuel will discharge CO2 and the sulfur oxide compound, will therefore cause the greenhouse effect and the acid rain, will worsen the terrestrial environment.The water and electricity must submerge the massive lands, has the possibility to cause the ecological environment to destroy, moreover large reservoir, once collapses, the consequence will be inconceivable. Moreover, country's hydro-electric resources are also limited, moreover must receive the season influence.The nuclear power in the normal condition no doubt is clean, but has the nuclear leakage accidentally, the consequence is similarly fearful. The former Soviet Union Chernobyl Nuclear Power Station accident, has caused 9,000,000 people to receive the varying degree harm, moreover this influence has not terminated.These force the people to seek for the new energy. The new energy must simultaneously meet two conditions: First, the implication rich will not dry up; Second, is safe, is clean, will not threaten the humanity and the destruction environment. At present found the new energy mainly had two kinds:first, solar energy; second, fuel cell. Moreover, the wind power generation may also be the auxiliary new energy. And, the most ideal new energy is greatly positive energy.1. The solar electrical energy generation is the most ideal new energyShines is huge on Earth's solar energy, about 40 minutes shine on Earth's solar energy, then sufficiently supplies global humanity one year energy the expense. It can be said that the solar energy is true inexhaustible, the inexhaustible energy. Moreover the solar electrical energy generation is absolutely clean, does not have the environmental damage. Therefore the solar electrical energy generation is honored asis the ideal energy.Obtains the electric power from the solar energy, must carry on the electro-optical transformation through the greatly positive battery to realize. It completely was formerly different with other power source electricity generation principle, has the following characteristic: ①Non-depletion danger; ②Clean (does not have environmental damage) absolutely; ③It is not distributed the resources the region the limit; ④But is using electricity place nearby generates electricity; ⑤The energy quality is high; ⑥The user easy to accept from the sentiment; ⑦The gain energy expenditure's time is short. The deficiency is:①The illumination energy distribution density is small, namely must take the huge area; ②Obtains the energy with four seasons, the day and nights and cloudy clear and so on meteorological conditions concerns. But generally speaking, the flaw does not cover the fine jade, takes the new energy, the solar energy has the enormous merit, therefore receives various countries the value.Must enable the solar electrical energy generation to achieve the practical level truly; first, must raise the solar energy electro-optic conversion efficiency and reduce its cost; second, must realize the solar electrical energy generation with present's electrical network networking.At present, solar panels mainly has the mono-crystalline silicon, the polycrystalline silicon, the amorphous state silicon three kinds. The mono-crystalline silicon solar cell conversion efficiency is highest, has reached above 20%, but the price is also the most expensive. The amorphous state silicon solar cell conversion efficiency is lowest, but the price is the cheapest, from now on most will be hopeful uses in generally generating electricity will be this kind of battery. Once its big area module electro-optic conversion efficiency achieves 10%, each watt generating set price falls to 1-2 US dollars, then sufficiently compete with present's electricity generation way. It is estimated that at the end of this century it may achieve this level.Certainly, in the special use and the laboratory uses the solar cell efficiency must be much higher, if the US Boeing develops by the gallium arsenic semiconductor with the positive electricity place which too the stibium gallium semiconductor overlaps becomes, the electro-optic conversion efficiency may reach 36%, has caught up with the coal-burning electricity generation efficiency quickly. But because it is too expensive, at present can only be restricted on the satellite uses.2. Solar electrical energy generation applicationAlthough solar electrical energy generation day and nights, clear and rain, season influence, but may carry on scattered, therefore it is suitable for various each household minute to carry on the electricity generation severally, moreover must join in the power supply network, causes each family when the electric power is wealthy may sold it to the Electricity company, when the insufficiency be possible from the Electricity company to buy up. Realizes this point’s technology not to be difficult to solve, the key lies in must have the corresponding legal safeguard. Now the US, Japan and so on developed country has made the corresponding law, guaranteed that carries on the solar electrical energy generation the family benefit, encourages the family to carry on the solar electrical energy generation.Japan has realized the solar electrical energy generation system the same electricity company electrical network's networking in April, 1992, had some families to start to install the solar electrical energy generation equipment. The Japanese Ministry of International Trade and Industry started from 1994 take individual housing as an object, implemented to purchases the solar electrical energy generation equipment's expense to subsidize 2/3 systems. Requests the first year had 1000 households families, when 2000 to have 70,000 households families to install the solar electrical energy generation equipment.According to the Japanese Department concerned estimates in the Japanese 21,000,000 households individual housing, if has 80% to install the solar electrical energy generation equipment, then may satisfy 14% which the national total power needs, if units and so on factory and office building also carry on the solar electrical energy generation with the room, then the solar electrical energy generation will occupy the national electric power 30%-40%. The current hindrance solar electrical energy generation popular most primary factor is the expense is expensive In order to satisfy the general family power requirement 3 kilowatt generating system, needs 6,000,000 to 7,000,000 Japanese Yen, has not included the installment wages. The concerned expert believed that when must fall at least to 1,000,000 to 2,000,000 Japanese Yen, the solar electrical energy generation only then can popularize truly. The key to reduce the expense lie in the solar cell to raise the conversion efficiency and to reduce the cost.Some time ago, the US Texas Instruments Company and SCE Corporation announced that they develop one kind of new solar cell, each unit is the diameter less than 1 millimeter bead, they distribute regularly densely and numerously on the softaluminum foil, looks like many silkworm eggs to cling on the paper is the same. Then distributes in about 50 square centimeters area has 1,700 such units. This kind of new battery's characteristic is, although the conversion efficiency has 8%-10%, but the price is cheap. Moreover aluminum foil bottom bush soft solid, may look like the cloth to fold equally at will, and durable, hangs in toward the sun place then may generate electricity, is convenient. It is said that uses this kind of new solar cell, so long as each watt power capacity equipment 1.5 to 2 US dollars, moreover each round of once electricity's expense might also fall to 14 cents about, definitely may compete with the ordinary power plant. Each family hangs this kind of battery on the roof, the wall toward the sun, every year may obtain 1,000-2,000 degrees electric powers.3. Solar electrical energy generation prospectThe solar electrical energy generation has a more exciting plan. First, Japan proposes creates the century plan. Prepares the desert and the sea area carries on the electricity generation using the ground, and through superconducting cable whole world solar power station connection unification electrical network in order to global. According to reckoning, to 2000, in 2050, in 2100, even if all uses the solar electrical energy generation supplies the whole world energy, the occupying land area is also 651,100 square kilometer, 1,867,900 square kilometer, 8,291,900 square kilometers. 8,291,900 square kilometers only occupy the complete sea area 2.3% or the complete desert area 51.4%, even is the Sahara area 91.5%. Therefore this plan has the possibility to realize.Another one is the space electricity generation plan. As early as in 1980 the NASA and Department of Energy proposed that in the spatial construction solar power station tentative plan, prepares on the synchronous orbit to put one long 10 kilometers, to extend 5 kilometer big plates, above covers entirely the solar cell, like this then may provide 5,000,000 kilowatts electric powers. But this needs to solve to the ground wireless electric transmission question. Already proposed with the micro wave beam, the laser beam and so on each kind of plan. At present although has realized the short distance, the short time, the low power microwave wireless electric transmission with the mockup, but to true practical also has the long distance.Along with our country technology's development, in 2006, China had three enterprises to enter global first ten, symbolizes that China will become one of global new energy science and technology central, in the world the solar energy light bends down widespread application, what caused present to be deficient was raw materialsupply and the price rise, we needed dissemination of technology at the same time, to use the new technology, with the aim of reducing the cost large scale, was this new energy long-term development provides the driving force!The solar energy use mainly divides into several aspects: The family with the small solar energy power plant, the large-scale incorporation power plant, the building integration light bends down the glass curtain wall, the solar energy street light, the scenery supplementary street light, the scenery supplementary power supply system and so on, now main application way for construction integration and scenery supplementary system.The world present had the nearly 200 companies to produce the solar cell, but produces the plants mainly hand in the Japanese business.Recent years the South Korean Tri-star, LG expressed the positive participation's desire, China two sides across the Taiwan Strait are similarly very warm-hearted. It is reported that our country Taiwan in 2008 crystallizes the silicon solar cell productivity to reach 2.2GW, later will expand by every year 1GW productivity in the past and started to produce the thin film solar cell, this year will strengthen vigorously, Taiwan anticipated that “the solar cell great nation” emulated to Europe. in 2010 various countries and the area have above 1GW the productive plan solar cell manufacturer to have Japanese Sharp, German Q-Cells, Scho~Solar, turns 5 prestige RWE Solar, Chinese Suntech Power and so on 5 companies, above other 7 500MW productivity company.Recent years the world solar cell market advanced triumphantly, an excellence, but the rare financial storm brought the economic crisis, was similarly presses in solar cell market on dark clouds, the Major enterprise like Germany Q-Cells achievement declined accordingly, because pre-year the world too positive electricity market also the demand will be this year worn out, the petroleum price dropped, but the competitive power counter-promotion and so on disadvantage factor lowered But at the same time, the people also see the US. After the Obama comes on stage, soon applies the Green New Deal policy, may have 150,000,000,000 US dollar subsidy funds including the among them green energy program, Japan will also carry out the subsidy system to continue to popularize solar cell's application4. Solar cell electricity generation principle:The solar cell is pair of light has the response and can transform the energy of light the electric power the component. Many kinds of materials can produce the lightto bend down the effect, for example: Mono-crystalline silicon, polycrystalline silicon, amorphous silicon, gallium arsenic, selenium indium copper and so on. Their electricity generation principle basic same, presently take crystal as example description light electricity generation process. The P crystalline silicon may result in the N silicon after the doping phosphorus, forms the P-N knot.When light illumination solar cell surface, part of photons by silicon material absorption; The photon energy transfer has given the silicon atom, caused the electron to occur more moved, becomes the free electron to tie the both sides in P-N to gather has formed the potential difference, when exterior key-on, under this voltage's function, will have the electric current to wind through the exterior electric circuit to have certain output. This process's essence is: The photon energy transforms the electrical energy the process.5. Crystalline silicon solar cell's manufacture process:The silicon is on our star preserves one of most abundant quantity materials. Had discovered after the 19th century scientists crystalline silicon semiconductor characteristic, it changed all nearly, even humanity's thought. 20 century's ends, in our life everywhere obviously “silicon” the f orm and the function, the crystalline silicon solar cell is in the recent 15 years forms the industrial production to be quickest. The production process may divide into five steps approximately: a、depuration process.b、pulls good process.c、slice process.d、system battery process.e、and the seal process.6. Solar cell's application:In the 1960s, the scientists already applied the solar cells in the spatial technology-communication satellite power supply, on the century's end, in the human self-introspection's process, bends down unceasingly regarding the light generates electricity this kind so clean and the direct energy form already even more kind, not only in the spatial application, but also gives full play in the numerous domains.For example: The solar energy garden lamp, the solar electrical energy generation household with the system, the stockaded village power supply's independent system, the light bends down the water pump (potable water or irrigation), the correspondence power source, the petroleum oil pipeline cathodic protection, the fiber optic cable communications pumping station power source, in the seawater desalination system, the cities the guidepost, the highway guidepost and so on. Europe and America and so on advanced countries bend down the electricitygeneration the light to merge the city to use electricity the system and the remote border district nature village power supply system integrate the development direction. The solar cell and the building system's union already formed the industrial production tendency.参考译文:太阳能发电随着经济的发展、社会的进步,人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。
太阳能专业词汇中英文版重点词汇
太阳能专业词汇中英文版太阳能电池: solar cell ;solar battery太阳能电池板: solar panel;solar cell panel太阳能热水器: soalr energy water heater;solar water heater;solar hot water heater;solar water collector电加热: electric heating;electrical heating太阳能草坪灯: solar energy lawn light;solar lawn light太阳能路灯: solar energy street lamp;solar street lamp太阳能庭院灯: solar energy courtyard light;solar courtyard light太阳能交通灯: solar energy traffic light;solar energy traffic signal太阳能树脂工艺品: solar energy polyresin crafts;太阳能充电灯: solar energy charging light太阳能空调: solar airconditioning生产设备: production equipment;production facilities保温材料: insulation;thermal-protection material集热管: heat collection电热带保温管: insulation pipe;holding tabe;bubular holder;covered pipe配件: fittings ; fitting生产线:product line测控仪:observe and control水位:waterwater level,water line水温: water temperature ;water temperature光控开关:photoswitch蓄电池: accumulator, secondary, cellstorage, battery,storage cell承压:pressure进水口: infall出水口:osculum,outlet,water outlet,dischatge port,drainage opening,delivery port,water outlet,delivery gate,drain outlet发光二极管:light-emittig diode, LED太阳能供电系统:solar power system控制器:controller;director;control逆变器:inverter;invertor;电线:electrical wire;current lead ;electric line;flex;wire;cord;shoestring;power cord冷阴极灯管:CCFL冷阴极灯:cold cathode lamp节能灯:energy-saving lamp支架:bracket;support;不锈钢:stainless steel反光板:inlluminator铸铝:cast aluminium;aluminum casting;cast aluminum聚光灯/投光灯:spoting light霓虹灯:neon light;neon sign锂电池:lithium cell;lithium power镍镉电池:nickel cadmium cell;nickel-cadmium cell;nickel cadmium battery镍氢电池:nickel hydrogen cell铅酸电池:lead-acid cell;lead-acid battery;灯柱:light staff;lamp post;light staff;lighting column;lighting standard输出电压:output voltage输出电流:current output ;outgoing current ;output current非晶硅:amorphous silicon;non crystallosilicon ;noncrystallosilicon多晶硅:multicrystal silicon; polycrystalline silicon; silicon polycrystal单晶硅:monocrystalline silicon;single crystalline silicon短路电压:short circuit voltage短路电流:shore circuit current ;short circuit current额定功率:nominal power ;normal power ;power rating ;rated horse power ;rated power 硅胶:silica gel环氧树脂:araldite ;epoxide resin ;epoxy resin亮度:brightnesslighteness;lum;luminance;luminosity光强:intensity of light ;lighting intensity ;luminous intensity电压:electric pressure;electric voltage;voltage电流:electric current ;electrical current直流:direct current交流:alternating current ;interflow水箱:water tank;storage cistern;内胆:internal bladder保温层:insulating blanket ;insulating coat ;insulating layer ;insulation course ;thermal barrier ;thermal insulation layer。
太阳能术语中英翻译
一、太阳电池相关词汇太阳电池 solar cell将太阳辐射能直接转换成电能的器件单晶硅太阳电池single crystalline silicon solar cell以单晶硅为基体材料的太阳电池多晶硅太阳电池multi crystalline silicon solar cell以多晶硅为基体材料的太阳电池非晶硅太阳电池amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池。
薄膜太阳能电池Thin-film solar cell用硅、硫化镉、砷化镓等薄膜为基体材料的太阳电池。
这些薄膜通常用辉光放电、化学气相淀积、溅射、真空蒸镀等方法制得。
多结太阳电池 multijunction solar cell由多个p‐n 结形成的太阳电池。
化合物半导体太阳电池 compound semiconductor solar cell用化合物半导体材料制成的太阳电池带硅太阳电池 silicon ribbon solar cell用带状硅制造的太阳电池光电子 photo-electron由光电效应产生的电子。
太阳电池的伏安特性曲线I-V characteristic curve of solar cell受光照的太阳电池,在一定的辐照度和温度以及不同的外电路负载下,流入的电流I 和电池端电压V 的关系曲线。
短路电流 short-circuit current (Isc)在一定的温度和辐照度条件下,光伏发电器在端电压为零时的输出电流。
开路电压 open-circuit voltage (Voc)在一定的温度和辐照度条件下,光伏发电器在空载(开路)情况下的端电压。
最大功率 maximum power (Pm)在太阳电池的伏安特性曲线上,电流电压乘积的最大值。
最大功率点 maximum power point在太阳电池的伏安特性曲线上对应最大功率的点,亦称最佳工作点。
最佳工作点电压 optimum operating voltage (Vn)太阳电池伏安特性曲线上最大功率点所对应的电压。
光伏英语_第一章_____一二节课_3
Photovoltaics(abbreviated PV)is the most direct way to convert solar radiationinto electricity and is based on the photovoltaic effect which was first to observed by Becquerel in 1839. •New words and Expressions: •Photovoltaic[,fəutəuvol'teik] adj.光生伏打的,光伏的。 •是一种将太阳光能转换成电能的技术。 →词根:photo“光的” photoelectric effect 光电效应 分析:which引导的句子作为非限制性定语从句,用以说明
当今,工业生产的电池的转换效率在百分之16到18之间, 然而,组件的效率还会更低一些。
Practically all photovoltaic devices incorporate a PN junction in a semiconductor across which the photovoltage is developed. 实际上,所有的光伏器件都归结为半导体上的PN结,在PN结 两端产生光生电压。
Like in other solids, the electrons in semiconductors can have energie only within certain bands (i.e. ranges of levels of energy) between the
energy of the ground state, corresponding to electrons tightly bound to
光伏相关的英文术语
光伏相关的英文术语Technical words(技术术语) :Photovoltaic power station (光伏电站)Grid-connected PV station(并网光伏电站)Point of common coupling(公共连接点)Point of interconnect of PV power station(光伏电站并网点)Transmission line of PV power station(光伏电站送出线路)Active power of PV station(光伏电站有功功率)Reactive power of PV station(光伏电站无功功率)Active power change(有功功率变化)Low voltage ride through(低电压穿越)Islanding(孤岛现象)Unintentional islanding(非计划性孤岛现象)Intentional islanding (计划性孤岛现象)Anti-islanding(防孤岛)Grid simulator(电网扰动发生装置)Trip time(分闸时间)reconnect(恢复并网)PV power unit(单元发电模块)LVRT test device(低电压穿越能力测试装置)Anti-islanding test device(防孤岛能力测试装置)Current harmonics(电流谐波)Distortion rate(畸变率)Harmonic current(谐波电流)DC component(直流分量)Unbalance factor(不平衡度)Positive-sequence component(正序分量)Negative-sequence component(负序分量)Deviation of frequency(频率偏差)Deviation of supply voltage(电压偏差)Flicker(闪变)由于电压波动引起的人眼对灯光闪烁的主观感觉。
太阳能光伏发电英译汉
Fossil energy and nuclear energy are considered nonrenewable energy types. Nonrenewable energy is obtained from sources at a rate that exceeds the rate at which the sources are replenished. For example, if the biogenic origin of fossil fuels is correct, we could consider fossil fuels renewable over a period of millions of years, but the existing store of fossil fuels is being consumed over a period of centuries. Because we are consuming fossil fuels at a rate that exceeds the rate of replenishment, we consider fossil fuels nonrenewable. Similar comments apply to nuclear fuels such as uranium, as we observe in later chapters. Solar energy is considered a renewable energy for the following reasons.1 Renewable energy is energy obtained from sources at a rate that is less than or equal to the rate at which the source is replenished. In the case of solar energy, we can use only the amount of energy provided by the sun. Because the remaining lifetime of the sun is measured in millions of years, many people consider solar energy an inexhaustible supply of energy. In fact, solar energy from the sun is finite, but should be available for use by many generations of people. Solar energy is therefore considered renewable. Energy sources that are associated with solar energy, such as wind and biomass, are also considered renewable. Solar radiation may be converted to other forms of energy by several conversion processes. Thermal conversion relies on the absorption of solar energy to heat a cool surface. Biological conversion of solar energy relies on photosynthesis. Photovoltaic conversion generates electrical power by the generation of an electrical current as a result of a quantum mechanical process. Wind power and ocean energy conversion rely on atmospheric pressure gradients and oceanic temperature gradients to generate electrical power. In this chapter we focus on thermal conversion.We first discuss the source of available solar energy, and then consider solar energy technology in two of its three forms: passive solar, and active solar. The third form of solar energy, solar electric, is discussed in the next chapter. We end this chapter with a discussion of solar power plants.化石能源和核能被认为是不可再生的能源类型。
太阳能电池中英文对照外文翻译文献
(文档含英文原文和中文翻译)中英文翻译英文原文Historical Review of Solar EnergySolar generally refers to the suns radiation energy. Carried out in the solar interior from H together into a helium the nuclear reaction, kept a huge release of energy, and continue to the space radiation energy, which is solar energy. This solar nuclear fusion reaction inside the can to maintain the hundreds of millions of first time. Solar radiation to space launch 3.8x10 ^ 23kW power of the radiation, of which 20 billionth of the Earths atmosphere to reach. Solar energy reaching the Earths atmosphere, 30% of the atmosphere reflectance, 23% of atmospheric absorption, and the rest to reach the Earths surface.Its power of 80 trillion kW, that is to say a second exposure to the suns energy on Earth is equivalent to five million tons of coal combustion heat release. The average per square meter in the atmosphere outside the area of energy per minute to receiveabout 1367w. A broad sense of the solar energy on earth many sources, such as w ind energy, chemical energy, potential energy of water and so on. The narrow sense is limited to solar radiation of solar light thermal, photovoltaic and photochemical conversion of the directly.At this stage, the worlds solar energy is still the focus of the study of solar energy power plant, but the diversification of the use of the condenser, and the introduction of flat-plate collector and a low boiling point working fluid, the device gradually expanded up to maximum output power 73.64kW, Objective To compare the clear and practical, cost remains high. The construction of a typical device are as follows: 1901, California built a solar-powered pumping devices, the use of truncated cone condenser power: 7.36kW; 1902 ~ 1908 years, built in the United States five sets of double-cycle solar-powered engines, the use of flat-panel collector and a low boiling point working fluid; in 1913,Human use of solar energy has a long history. China more than 2000 years ago, back in the Warring States period, one will find that the use of four steel mirror to focus sunlight ignition; use of solar energy to dry agricultural products. The development of modern, solar energy has become increasingly widespread use, it includes the use of solar energy solar thermal, solar photovoltaic and solar energy use, such as the photochemical use. The use of solar photochemical reaction, a passive use (photo-thermal conversion) and the photoelectric conversion in two ways. A new solar power and renewable sources of energy use.Silicon photovoltaic cells mainly in the absorption of solar light energy emitted by silicon photocell is mainly extracted from the sand by the development of Bell Labs. Solar energy is the internal or the surface of the sun sunspot continuous process of nuclear fusion reactions produce energy. Earths orbit on the average solar radiation intensity for the 1367w / ㎡. Circumference of the Earths equator to 40000km, and thus calculated the Earths energy can be obtained 173000TW. At sea level standard for peak intensity 1kw/m2, a point on the Earths surface 24h of the annual average radiation intensity 0.20kw / ㎡, which is equivalent to have 102000TW energy Human dependence on these energy to survive, including all other forms of renewable energy (except for geothermal energy resources), although the total amount of solar energy resources is the human equivalent of the energy used by ten thousand times, but low energy density of solar energy, and it vary from place to place, from time to time change, the development and utilization of solar energy which is facing a major problem. These features will make solar energy in the integrated energy systemof the role of subject to certain restrictions.The use of solar cells, through the photoelectric conversion to solar energy conversion is included in electricity, the use of solar water heaters, the use of solar heat hot water and use water for power generation, using solar energy for desalination. Now, the use of solar energy is not very popular, the use of solar power costs are h igh there, the problem of low conversion efficiency, but for satellite solar cells to provide energy has been applied.Although the Earths atmosphere solar radiation to the total energy only 22 billionths of a radiation energy, it has been as high as 173,000 TW, that is to say a second exposure to the suns energy on Earth is equivalent to five million tons of coal. Earth wind energy, hydropower, ocean thermal energy, wave energy and tidal energy as well as some comes from the sun; even in the face of the earths fossil fuels (such as coal, oil, natural gas, etc.) that is fundamentally Since ancient times the storage of solar energy down, so by including a broad range of solar energy is very large, he narrow sense is limited to solar radiation of solar light thermal, photovoltaic and photochemical conversion of the directly.Solar energy is the first time, but also renewable energy. It is rich in resources, can use free of charge, and without transportation, without any pollution to the environment. For mankind to create a new life, so that social and human energy into a era of reducing pollution.Solar cells have to respond to a light and convert solar energy to power the device. Photovoltaic effect can produce many kinds of materials, such as: single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, copper indium selenium. They are basically the same principle of power generation is now crystal as an example to describe the process of light generation. P-type crystalline silicon available after phosphorus-doped N-type silicon, the formation of P-N junction.When the surface of solar light, the silicon material to be part of photon absorption; photon energy transfer to the silicon atom, electronic transitions have taken place, as a free-electron concentration in the PN junction formed on both sides of the potential difference, when the external circuit connected when the effects of the voltage, there will be a current flowing through the external circuit have a certain amount of output power. The substance of this process are: photon energy into electrical energy conversion process.Si is our planets abundance of storage materials. Since the 19th century,scientists discovered the properties of crystalline silicon semiconductor, it almo st changed everything, even human thought, end of the 20th century. Our lives can be seen everywhere, silicon figure and role of crystalline silicon solar cells is the formation of the past 15 years the fastest growing industry. Production process can be divided into five steps: a, purification process b, the process of pulling rod c, slicing the process of d, the process of system battery e, the course package.Solar photovoltaicIs a component of photovoltaic panels in the sun exposure will generate direct current power generation devices, from virtually all semiconductor materials (eg silicon) are made of thin photovoltaic cells composed of solid. Because there is no part of activity, and would thus be a long time operation would not lead to any loss. Simple photovoltaic cells for watches and computers to provide energy, and more complex PV systems to provide lighting for the housing and power supply. Photovoltaic panels can be made into components of different shapes, and components can be connected to generate more power. In recent years, the surface of the roof and building will be the use of photovoltaic panels components,Even be used as windows, skylights or sheltered part of devices, which are often called photovoltaic facilities with PV systems in buildings.Solar thermalModern technology solar thermal polymerization sunlight and use its energy produced hot water, steam and electricity. In addition to the use of appropriate technology to collect solar energy, the building can also make use of the su ns light and heat energy is added in the design of appropriate equipment, such as large windows or use of the south can absorb and slowly release the sun heat the building materials .According to records, human use of solar energy has more than 3,000 years of history. To solar energy as an energy and power use, only 300 years of history. The real solar as the near future to add much-needed energy, the basis of the future energy mix is the latest thing. Since the 20th century, 70s, solar technology has made rapid advances, solar energy use with each passing day. Solar energy utilization in modern history from the French engineers in 1615 in the Solomon and Germany Cox invented the worlds first solar-powered engines run. The invention is a use of solar energy heating the air to the expansion and pumping machines acting.In 1615 ~ 1900, between the developed world and more than one solar power plant and a number of other solar energy devices. Almost all of these power plantscollect the sun means the use of condenser, engine power is not, the working fluid is water vapor, which is very expensive, not practical value, the majority of individual studies for manufacturing solar enthusiasts. 100 years of the 20th century, the history of the development of solar energy technology in general can be divided into seven stages.1. The First Stage (1900---1920)In this stage, the research focus of solar energy in the world were still on the solar-powered device which variable photospot method were applied and flat plate heat collector and low boiling point actuating medium were started to use; the capacity of the device was gradually expanded with the max. output power of 73.46kW; device was utilized with the definite end-use and in higher cost.The typical built device included: one set of solar energy pumping device constructed in California of U.S in 1901 which employed truncation taper photospot with the power of 7.36kW; 5 sets of twin-circulated solar-powered engine built in U.S in 1902 to 1908 which employed the flat plate heat collector and low boiling point actuating medium; 1 set of solar energy pump comprised of 5 parabolic mirror in a length of 62.5m, width of 4m built in Cairo of Egypt in which the total light collecting area could reach 1250m2.2. The Second Stage (1920-1965)For these 20 years, the research of solar energy was implementing on the poor stage, which the mandate to participate in the development and the research projects had been widely declined due to the mass utilization of fossil fuels and the second world war (1935---1945) while the s olar energy couldn’t satisfy the urgent demand upon the energy. Therefore, the research and development of solar energy was due to be gradually deserted.3. The Third Stage (1945-1965)For these 20 years after the Second World War, some foresight person has noticed that the petroleum and natural gas resources had been rapidly decreased and called for attention on these issues in order to gradually promote the recovery and development of the solar energy research. Solar energy institutes were setup and academic exchanges and exhibitions were held which raised the research upsurge again on solar energy.In this period, great progress was achieved in the research of solar energy, in particular: the foundation theory of selective paints proposed in the First International Solar Thermal Academic Conference in 1955, which black nickel had been developedas the practical selective paints, contributing to development of high-effective heat collector; the practical silicon solar cells developed by Bell Lab in U.S in 1954 which laid the foundation for large scale utilization of photovoltaic generation.Furthermore, there were still other significant results, including:a. One set of 50kW solar stove was built by French National Research Center in 1952;b. The worldwide prototype ammonia-water absorbing air conditioning system heated by flat plate heat collector with the capacity of 5 tons was built in Florida of U.S in 1960;c. An engine equipped with silicon window was invented in 1961.In this stage, research on foundation theory and foundation material of solar energy was reinforced and academic breakthrough, i.e. selective paints and silicon solar cells were achieved. The flat plate had been well developed and ripe in technologies. Progress had been achieved in the research of solar energy absorbing air conditioners and a batch of pilot solar room was established. Preliminary research was conducted on the engine and tower type solar-powered generation technologies.4. The Fourth Stage (1965---1973)In the stage, the research work on solar energy was standstill due to the reason that the utilization technologies of solar energy had entered into the growing stage which was no ripe in process, heavy in investment and lower in effect. Thus it cannot compete with conventional energy, which resulted in the absence of attention and support from the public, enterprise and government.5. The Fifth Stage (1973---1980)After petroleum played a leading role in the worldwide energy structure, it has been a key factor to control the economic and determine the fatal, development and declining of a country. After the explosion of Middle East War at Oc., 1973, OPEC employed the method of declining the production and increasing the price to support the struggle and safeguard the national benefits which resulted in heavy economic attack for those countries that relied on importing large amount of inexpensive petroleum from the region of Middle East. Thus, some people in the western countries were frightened to call that the energy or petroleum crisis had been launched in the world. This crisis made people realized that the existing energy structure should be completely changed and transition to the future energy structure should be speed up.From that on, many countries, especially the industrialized countries turned their attention towards the support on the research and development of solar energy andother renewable energy technologies. The upsurge of developing and utilizing solar energy had been raised again in the world. In 1973, U.S drew up a government scale sunlight power generation program which the research budget for solar energy were increased in a large amount, and solar energy development bank was to established to facilitate the solar energy products to be commercialized. In 1974, Japan published the sunlight program made by the government, among which the solar energy development projects included solar room, industrial-use solar energy system, solar thermal generation, solar cells production system, scattered and large scale photovoltaic generation system. In order to implement this program, the government of Japan input large amount of manpower, material resources and financial resources.The upsurge on the utilization of solar energy raised in 1970s in the world also impacted on China. Some foresight technicians started to devote to the solar energy industry one after another and positively proposed to the relative department of the government and published books and periodicals to introduce the international trends on the utilization of solar energy. Solar stove was popularized and utilized in countryside; solar water heater was launched in the city; solar cells used in space have started to be applied in the ground. In 1975, the first national solar energy utilization working exchanges conference held in An yang, Henan Province further promoted the development of solar energy industry in China. After this meeting, the solar energy research and promotion had been brought into the government program and awarded support of specialized fund and material. In some universities and institutes, solar energy task team and research departments were established one after another. Solar energy research institutes were also launched in some places. At that time, an upsurge on utilization of solar energy was emerging in China.During this period, research and development of solar energy entered into an unprecedented well-developed stage with the following characteristics:a. Each country enhanced planning on solar energy research. Many countries worked out short term and long-term sunlight program. The utilization of solar energy had been a governmental action with intensive support. The international cooperation was very active which some developing countries had started to participate in the utilization of solar energy.b. The research field was expanding; research work was developed day by day and significant results achieved, for example, CPC, vacuum heat collecting pipe, non-crystal silicon solar cells, water-photolyzed hydrogen production and solar energy thermal power generation.c. The solar energy development program worked out by each country existed the problems that the requirement was too high and urgent and insufficient expectation on difficulty in implementation. They have thought to replace the mineral energy in the short time and to utilize the solar energy in large scale. For example, U.S has once scheduled to build a small size solar energy demonstration satellite power station in 1985 and one set of 5 million kW space solar energy power station in 1995. In fact, this program has been adjusted in later, and the space solar energy power station has not yet been realized.d. Products such as solar water heater and solar cells were started to commercialize. The solar energy sector has been preliminarily established with a small scale and ineffective economic effects.6. The Sixth Stage (1980-1992)The upsurge on utilization of solar energy emerged in 1970s was fallen into a stage of being developed in a low and slow step in 1980s. Many countries in the world declined the research budget for solar energy in successive in a large amount, in particular the U.S.The main reasons resulted in this situation were that the international oil price was corrected in a large range while solar energy product cost was still remaining as before which may be of no competitive capability; no any significant breakthrough on solar energy technologies to increase the efficiency and reduce the cost which led to break down people’s confidence to develop solar energy; increased development on nuclear power which may restrain on a certain degree on the development of solar energy.Influenced on the turndown of solar energy in the worldwide in 1980s, research work in China also declined in a certain degree. Due to the reason that the utilization of solar energy was heavy in investment, ineffective in results, difficult in energy storage and large in land covering, solar energy should be considered as the future energy. Some person even proposed that the technology could be introduced after it would be developed successfully. Only few people supported such viewpoint, but it was very harmful which will result in unfavorable influence on the development of solar energy industry.During this period, although the research budget has been mitigated in a large amount, the research work remained uninterruptedly, among which some projects achieved progress which facilitated people to investigate seriously on the program and goads worked out before and to adjust the research focus so that to strive for greatachievement by less input.7. The Seventh Stage (1992---Until Now)Excessive burning of fossil fuel led to worldwide environmental pollution and ecological destruction, which has been threatened the substance and development of human beings. Under such circumstance, UN held the international environment and development conference in Brazil in 1992. On this meeting, a series of importan t document were published including the Environment and Development Manifesto,Agenda of 21st century and UN Framework Pact on Climate Changing in which the environment and development were brought into the integrated framework, and sustainable model was established. After this conference, each country enhanced the development of clean energy technologies, and developed the solar energy in line with the environmental protection so as to make the utilization of solar energy be well developed.After this conference, Chinese government also turned their attention towards the environment and development and pointed out 10 pieces of tactic and measure definitely to develop and popularize the clean energy including solar energy, wind energy, thermal energy, tidal energy and biomass energy in accordance with the reality; worked out Agenda of 21st century in China and further focused the solar energy projects. In 1995, the State Planning, the State Economic and Trade Commission, the State Ministry of Science and Technology worked out the Outline for Development of New and Renewable Energy from 1996 to 2010, which definitely pointed out the goads, objectives and relative tactic and measure towards the development of new and renewable energy from 1996 to 2010 in China. The publishing and implementation of the document further promoted the development of solar energy industry in China.In 1996, UN held the worldwide solar energy summit conference in Zimbabwe. The Solar Energy and Sustainable Development Manifesto was published after the meeting. Important document, i.e.Worldwide Solar Energy 10-Year Action and Program (1996---2005), International Solar Energy Pact, Worldwide Solar Energy Strategic Planning were discussed during the meeting. This meeting further showed eac h country’s commitment to developing the solar energy. Worldwide joint action was required to extensively utilize the solar energy.After 1992, the worldwide utilization of solar energy has entered into a developing stage with the characteristic that:a. The utilization of solar energy can be consistent to the sustainable development and environment protection, and can be carried out jointly to realize thedevelopment strategy in the world;b. Definite development goals with focus projects and effective measure, which will be favorable to overcome the shortage to ensure the long-term development of solar energy industry;c. In the course of expanding the research of solar energy, attention was paid to convert the academic results into production, develop solar energy industry, speed up the progress to be commercialized, expand the utilization field and scale and increase the economic benefits;d. Active international cooperation in the field of solar energy with expanding scale and obvious effect.In view of the review, the development of solar energy in the 20th century was not so smooth. Generally speaking, low tide period was happened after every high tide period. The low tide period lasted for nearly 45 years. The development of solar energy differed with that of coal, petroleum and nuclear energy in understanding and development period, which could be demonstrated that it was very difficulty to develop the solar energy and it cannot be realized to large scale utilize in the short term. On the other hand, it was showed that the utilization of solar energy was also affected by the supply of mineral energy, politics and war. However, in a word, the solar energy has achieved greatly in academic results in 20th century than in any other century.英文翻译太阳能利用史太阳能一般指太阳光的辐射能量。
Photovoltaic Solar Energy太阳能光伏
Energy from the Sun
Yearly Solar fluxes & Human Energy Consumption • The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) (1018 joules) per year. (70% of incoming sunlight) (1 Joule = energy required to heat one gram of dry, cool air by 1˚ C) • Primary energy use (2005) 487 EJ (0.0126%)
Trend Analysis & Extrapolation
• A Method Everyone Uses • Trend analysis involves the use of any of a variety of techniques based on historical data. • Trend analysis involves several processes. One process is spotting an emerging trend, that is, identifying a change in the world around us. • Now you need to do some analysis to see what the nature of the trend is and what its implications might be. • You could first look at historical data
太阳能光伏术语(中英文对照)
太阳能光伏术语(中英文对照)太阳光伏能源系统名词术语(中英问对照)本标准规定了太阳光伏能源系统得名词术语.其中包括:一般术语,光伏特性与光伏转换术语,结构与系统术语,标定与测试术语以及工艺术语等五部分。
一般术语1、太阳光伏能源系统solar photovoltaic energy system系指利用太阳电池得光生伏特效应,将太阳能直接转换成电能得发电系统。
1.2 大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过得路程,以直射太阳光束从天顶到达海平面所通过得路程得倍数来表示.当大气压力P=1、013巴,天空无云时,海平面处得大气质量为1。
在任何地点,大气质量得值可以从以下公式算出:P 1大气质量=-———X-——-Posinθ其中,P为当地得大气压力,以巴表示。
Po等于1、013巴θ为太阳高度角1.3 太阳电池solar cell通常就是指将太阳光能直接转换成电能得一种器件。
1。
4硅太阳电池siliconsolar cell硅太阳电池就是以硅为基体材料得太阳电池.1.5 单晶硅太阳电池single crystallinesilicon solar cell单晶硅太阳电池就是以单晶硅为基体材料得太阳电池。
1。
6非晶硅太阳电池(a-si太阳电池)amorphoussilicon solar cell用非晶硅材料及其合金制造得太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a-si太阳电池。
1.7多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池就是以多晶硅为基体材料得太阳电池.1。
8 聚光太阳电池组件photovoltaic concentrator module系指组成聚光太阳电池,方阵得中间组合体,由聚光器、太阳电池、散热器、互连引线与壳体等组成.1。
9聚光太阳电池方阵场photo-voltaic concentratorarray field由一系列聚光太阳电池方阵组成得聚光光伏发电系统叫聚光太阳电池方阵场。
太阳能热光伏发电系统研究与仿真外文翻译
太阳能热光伏发电系统研究与仿真外文翻译Introduction1.1 Photovoltaic Energy Conversion1.2 solar Cells and Solar Energy Conversion1.3 solar Cell ApplicationsReferences1.1PHOTOVOLTAIC ENERGY CONVERSIONPhotovoltaic energy conversion is the direct production of electrical energy in the form of current and voltage from electromagnetic (i.e., light,including infrared, visible. and ultraviolet) energy. The basic four steps needed for photovoltaic energy conversion are:1. a light absorption process which causes a transition in a material(the absorber) from ground state to an excited state,2.the conversion of the excited state into (at least) a free negativeand free positive-charge carriers pair, and3. discriminating transport mechanism, which causes the resultingfree negative-charge carriers to move in one direction (to a con-tact that we will call the cathode) and the resulting free positive-charge carriers to move in another direction (to a contact that wewill call the anode).The energetic photogenerated negative-charge carriersarriving, at the cathode result in electrons which travel through an external path (an electric circuit). While traveling this path, they lose their energy doing something useful at an electrical "load," and finally they return to the anode of the cell. At the anode, every one of the returning electrons completes the fourth step of photovoltaic energy conversion, which is closing the circle by4. combining with an arriving positive-charge carrier, thereby returning theabsorber to the ground state.In some materials, the excited state may be a photogenerated free electron-free hole pair. In such a situation, step 1 and step 2 coalesce. In some materials, the excited state may be an exciton, In which case steps 1 and 2 are distinct.A study of the various man-made photovoltaic devices that carry out these four steps is the subject of this text. Our main interest is photovoltaic devices that can efficiently convert the energy in sunlight into usable electrical energy. Such devices are termed solar cells or solar photovoltaic devices. Photovoltaic devices can be designed to be effective for electromagnetic spectra other than sunlight. For example, devices can be designed to convert radiated heat (infrared light) into usable electrical energy. These are termed thermal photovoltaic devices. There are also devices which directly convert light into chemical energy. In these, the photogenerated excited state is used to drive chemical reactions rather than to drive electrons through an electric circuit. One example is the class of devices used for photolysis. While our emphasis is on solar cells for producing electrical energy, photolysis is briefly discussed later in the book .1.2 SOLAR CELLS AND SOLAR ENERGY CONVERSIONThe energy supply for a solar cell is photons coming from the sun .This input is distributed ,in ways that depend on variables like latitude, time of day, and atmospheric conditions ,over different wavelengths .the various distributions that are possible called solar spectra. The product of this light energy input, in the case of a solar cell, is usable electrical energy in the form of current and voltage. Some common "standard" energy supplies from the sun, which are available at or on the earth, are plot- ted against wavelength (λ) in W/㎡/nm spectra in Figure 1.l A. An alternative photons/㎡-s/nm spectrum is seen in Figure 1.1B.The spectra in Figure 1.1A give the power impinging per area(㎡)in a band of wavelengths 1 nm wi de (the bandwitdth ?λ)centered on each wavelength λ. In this figure, the AM0 spectrum is based on ASTM standard E 490FIGURE 1.1 Solar energy spectra.(a): Data expressed in watts per ㎡per nm bandwidth for AMO (from Ref .1 with permission) and for AM l.5G, and AW1.5D spectra(from Ref.2, with permission).(b): The AM l.5G data expressed in terms of impinging photons per second per cm2per 20 nm bandwidth.()d hc λλλλΦ?and is used for satellite applications. The AM1.5G spectrum, based on ASTM standard G173, is for terrestrial applications and includes direct and diffuse light .It integrates to 1000 W/㎡.the AM1.5D spectrum,also based on G173 ,is for terrestrial applications but includes direct light only. It integrates to 888 W/㎡. The spectrum in Figure 1.l B has been obtained from the AM1.5G spectrum of Figure 1.l A by converting power to photons per second per cm2 and by using a bandwidth of 20nm. Photonspectra Φ(λ), exemplified by that in Figure 1.l B, are more convenient for solar cell assessments, because optimally one photon translates into one free electron-free hole pair via steps 1 and 2 of the four steps needed for photovoltaic energy conversion.Standard spectra are needed in solar cell research, development, and marketing because the actual spectrum impinging on a cell in operation can vary due to weather, season, time of day, and location. Having standard spectra allows the experimental solar cell performance of one device to be compared to that of other devices and to be judged fairly, since the cens can be exposed to the same agreed-upon spectrum. The comparisons can be done even in the laboratory since standard distributions can be duplicated using solar simulators.The total power Pin per area impinging on a cell for a given photon spectrum Φ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)外文资料翻译系:电气工程学院专业:电气工程及其自动化专业姓名:刘哲瑄外文出处:University of Technology, Mauritius University of Mauritius B SeetanahAJ Khadaroo学号: 2011316020526 :附件:1.外文资料翻译译文;2.外文原文。
指导教师评语:签名:年月日附件1:外文资料翻译译文太阳能发电技术——光伏发电系统控制器1 太阳能充放电控制器现状1.1太阳能光伏发电太阳能作为新能源有着巨大的优势,所以世界各国都在努力研发新技术进行获取比较成熟的是太阳能光伏发电技术。
太阳能光伏发电现已成为新能源和可再生能源的重要组成部分,也被认为是当前世界最有发展前景的新能源技术。
目前太阳能光伏发电装置已广泛应用于通讯、交通、电力等各个方面。
在进行太阳能光伏发电时,由于一般太阳能极板输出电压不稳定,不能直接将太阳能极板应用于负载,需要将太阳能转变为电能后存储到一定的储能设备中,如铅酸蓄电池。
但只有当太阳能光伏发电系统工作过程中保持蓄电池没有过充电,也没有过放电,才能使蓄电池的使用寿命延长,效率也得以提高,因此必须对工作过程加以研究分析而予以控制,这种情况下太阳能充电控制器应运而生。
1.2充电控制器的作用及现状太阳能充电控制器具备充电控制、过充保护、过放保护、防反接保护及短路保护等一系列功能,解决了这一难题,这样控制器在这个过程中起着枢纽作用,它控制太阳能极板对蓄电池的充电,加快蓄电池的充电速度,延长蓄电池的使用寿命。
同时太阳能充放电控制器还控制蓄电池对负载的供电,保护蓄电池和负载电路,避免蓄电池发生过放现象,由此可见,控制器具有举足轻重的作用。
目前市场上有各种各样的太阳能控制器,但这些控制器主要问题对于蓄电池的保护不够充分,不合适的充放电方式容易导致蓄电池的损坏,使蓄电池的使用寿命降低。
目前,控制器常用的蓄电池充电法包括三种;恒流充电法、阶段充电法和恒压充电法。
但是这些方法由于充电方式单一加上控制策略不够完善,都存在一定的局限性。
另一方面,当蓄电池给负载供电时,由于控制器不能时刻检测蓄电池的电压这样很容易发生蓄电池的过放电,将会导致蓄电池的深度放电,严重影响其寿命。
所以,如何改善太阳充控制器的充放电方式,开发性能优良的充放电控制器,提高其在实际应用中的效率,成为了一个重要的研究方面。
2 控制器类型控制器的基本功能类似于电压调整器,主要用于防止蓄电池被太阳电池方阵过充电和被负载过放电。
控制器主要有四种类型;旁路控制器、串联控制器、多阶控制器和脉冲控制器。
2.1 旁路控制器旁路控制器主要用于小型光伏系统。
当蓄电池充满时,通过旁路蓄电池来防止过充电。
旁路控制器的电路系统监控蓄电池电压,当达到标志着蓄电池充满的予置电平时过充电流将被功率晶体管旁路到电阻器,将多余的额外功率转变为热。
旁路控制器的功率晶体管有带翅的散热器,帮助发散热量。
旁路控制器也可与二极管结合以防止夜间电流从蓄电池流回方阵。
二极管的作用如同一种形式的阀门充电期间允许电流流入蓄电池,在夜间防止蓄电池电流向方阵“回流”或称“反向泄漏”。
旁路控制器设计简单。
价格便宜,为避免周围环境影响,电路系统完全是密封的同时叉要便于为冷却翅提供通风路径。
分流控制的缺点是有限的负载操作能力和有通风要求。
2.2 串联控制器当蓄电池电压达到被称为充电终止点的予置电压值时,串联控制器通过开关切断电流,防止蓄电池过充。
当蓄电池达到充电恢复调整点低端予置电平时,控制器将方阵和蓄电池接通。
合成一体的内置定时器,在充电过程中至蓄电池组放电终止期间,进行恒压充电循环。
串联控制器使用传感器来代替二极管通断电路,以防止夜间的“反向泄漏”。
由于不需要发散热量,串联控制器不安装散热器。
体积小价格便宜的串联控制器,叫“旁路控制器”具有更大的负载操作能力,通常也不要求特殊的通风。
如图1。
图1 串联控制器电路图2.3 多阶控制器多阶控制器依据蓄电池的充电状态,自动设定不同的充电电流。
当蓄电池处于未充满状态时,允许方阵电流全部流进蓄电池。
当蓄电池组接近充满时,控制器消耗掉一些方阵输出功率,以便减少流进蓄电池的电流。
当蓄电池组漫漫接近完全充满时“涓流”充电渐渐停止。
这种充电方式可以延长蓄电池使用寿命。
多阶控制器需耍适当的通风,通常这种控制器设一个继电器开关,防止“反向泄漏”。
2.4 脉冲控制器脉冲控制器以“斩波”方式工作,对蓄电池进行脉冲充电脉冲控制器的核心部件是一个受充电电压调制的“充电脉冲发生器”。
开始充电时脉冲控制器以宽脉冲充电,随着充电电压的上升,充电脉冲宽度逐渐变窄,平均充电电流减小。
当充电电压达到予置电平时,充电脉冲宽度变为零,充电终止。
脉冲控制器充电方法合理,效率高。
3 控制器性能特点3.1 过放电保护使蓄电池避免过度放电,是光伏系统控制器的另一重要功能。
如果不注意,光伏系统的负载能够轻易地耗尽蓄电池的电能。
一般的光伏系统控制器都具有保护循环蓄电池过度放电的功能。
控制器防止蓄电池过放电的措施有:(1)在达到予置的待充电电平时断开负载。
(2)信号灯或蜂鸣器动作报警,显示蓄电池电压过低。
(3)自动接通一个后备电源。
当蓄电池处于低的荷电状态时,启动后备电源,例如柴油发电机向蓄电池组充电。
当蓄电池被充满后,控制器断开后备电源,光伏系统重新开始它的蓄电池充电运行。
3.2 控制器功能选择商品化制造的光伏系统控制器,其功能特点各有不同可根据下列的控制器功能特点进行选择。
(1)温度补偿,依据环境温度调整蓄电池充电电流。
(2)负载断路器,当更换熔断器有困难或不能满足需要时,可以代替负载熔断器。
(3)低电压报警器,当蓄电池荷电状态低于予置电平时,可听到警告声响。
(4)低电压断开,当蓄电池放电至予置电平时自动切断负载。
(5)电压指示器,模拟或数字方式显示蓄电池电压,指示蓄电池的荷电状态。
(6)电流指示器,模拟或数字方式显示太阳电池方阵电流和输出的负载电流。
(7)安培小时计,数字示蓄电池已放电量或剩余电量。
(8)后备充电启动控制,自动启动后备电源,对蓄电池组进行充电。
(9)方阵功率分流调节器,将多余的方阵充电功率旁路到非重要负载,例如电热水器等。
(10)日照监测器,测量可利用的太阳辐射强度。
(11)负载记时器,定时负载用的记时钟,用于需要予置运行时间的负载,例如安全警戒照明灯等。
(12)充电指示,蓄电池达到充满电压时,发光二极管指示灯点亮。
(13)自动均衡充电,定期自动对蓄电池进行均恒充电。
附件2:外文原文SOLAR POWER GENERATION TECHNOLOGY—Photovoltaic power generation system controller B Seetanah A J Khadaro1 solar charging and discharging controller status quo1.1 solar photovoltaic power generationSolar energy as a new energy has a huge advantage, so all countries in the world in efforts to develop new technology to obtain more mature is solar photovoltaic power generation technology. Solar photovoltaic power generation has become an important part of the new energy and renewable energy, is also considered the current of the world's most promising new energy technologies. The current solar photovoltaic power generation device has been widely used in communications, transportation, electricity, and other aspects.In the solar photovoltaic power generation, as a result of general solar plate output voltage is not stable, not directly applying solar energy plate to load, needs to transform solar energy into electrical energy stored in a storage device, such as Lead-acid battery. But only when the solar photovoltaic power generation system in the process of the work, keep the battery charged had no discharge, to extend the service life of the battery, it also increased efficiency, so must be made on the working process of the research analysis and control, in this case the solar charge controller arises at the historic moment.1.2 the effect of charge controller and the present situationSolar charge controller with control charging, overcharge protection, discharge protection, meter, and a series of protection and short circuit protection function, solved this problem, this controller plays a pivotal role in the process, it controls the solar plate of battery charging, speed up the battery charging, prolong the service life of the battery. Solar charge controller but also control the load power supply, battery protect battery and load circuit, avoid battery discharge phenomenon, thus, the controller plays a decisive role.City currently has a variety of solar controller, but the main problem controller to protect the battery enough, inappropriate is easy to cause the damage to the battery charge and discharge way, reduce the service lifeof the battery. At present, the commonly used controller battery charging method includes three types: constant current charging method, phase charging method and constant voltage charging method. But these methods due to the imperfection of the charging ways of a single and control strategy, there are some limitations. On the other hand, when the battery to the load power supply, as the battery voltage detection controller can't time, so it is easy to occur over discharge of battery, will lead to the depth of the battery discharge, seriously affect its life.So, how to improve the solar charge controller to charge and discharge, development of excellent performance of charge and discharge controller, to improve the efficiency in the practical application, has become an important research aspect.2. Types of controllerThe basic function of the controller is similar to the voltage regulator, is mainly used to prevent the battery by solar electricity storage Pool phalanx of charging and been load discharge. Control device mainly has four kinds: the bypass controller, serial controller, controller and multistage pulse controller.2.1 the bypass controllerBypass controller mainly use for small pv system. When the battery is full, through the bypass battery.To prevent over charging. Bypass circuit system to monitor the battery voltage of the controller, when achieved marked the battery is full of in the electricity at ordinary times of charging flow will be power transistor bypass to the resistor, excess extra power into heat. Bypass the controller's power transistor with fin radiator, help radiate heat. Bypass the controller can also be combined with diode, in order to prevent the night electric current to flow from the battery back to square. The role of the diode as a form of valve, lets current flow into the battery during charging, at night to prevent battery electric flow phalanx "return" or said."Reverse leakage". Bypass controller has a simple design. Cheaper price, in order to avoid the environment influence, circuit system is completely sealed, fork at the same time to facilitate ventilation path for cooling fins. Bypass control fault is, the limited load operation ability and ventilation requirements.2.2 serial controlWhen the battery voltage to known as charging termination points in the voltage value, the series controller by switch to cut off the current, toprevent the battery overcharge. When battery charge to restore some low-end adjusted in the electricity at ordinary times, the controller will phalanx and battery connected. Synthesis of one of the built-in timer, in the charging process between Lr and battery discharge termination. Constant voltage charging cycle. Series controller using sensors to replace the diode on-off circuit, to prevent the "reverse leakage" in the night. Because do not need to send the most heat dissipation, not to install the radiator series controller Small volume price cheap series controller, a "bypass controller" has greater load operation ability,is usually not requiredSpecial ventilation.As shown in Figure 1.Figure 1.Series controller circuit diagram2.3 order controllerMore order controller on the basis of the storage battery charging status, automatic setting different charging current. When the battery is in a state of underfill, allowing all square current flow into the battery. Controller when the battery is close to full of consume some square power output, in order to reduce the current flow into the battery. When battery long close to full, gradually stop "trickle charging. This way of charging can extend the service life of the battery. More order controllers need to be comfortable when ventilation. Usually, this set a relay switch controller, prevent the “reverse leakage" of the night.2.4 pulse controllerPulse controller with "chopping" way to work, the core component of pulse charging pulse controller for battery is a charging voltage modulation charging pulse generator. Start charging pulse controller with wide pulse charging, as the charging voltage rise, charging pulse width Narrows gradually, the average charging current decreases. When the charging voltage reaches in the electricity at ordinary times, charging pulse width goes to zero, rechargeable electric terminated. Pulse controller charging methodis reasonable, high efficiency.3 controller performance characteristics3.1 put electricity protectionTo avoid excessive battery discharge, is another important power of the pv system controller. If do not pay attention to, the photovoltaic system load can run out of battery power can easily. General photovoltaic system controller has deep cycle battery protection function of excessive discharge. Controller to prevent the battery discharge measures include:(1)is reached in the charge for electricity at ordinary times, disconnect the load. (2)of a semaphore or buzzer alarm, shows that the battery voltage is too low. (3)through to a backup power supply automatically. When the battery is in a state of low charged, start the backup power supply, such as diesel generator to the battery charging. When when the battery is filled, a continuous controller disconnect back-up power, photovoltaic system restart it electric storage pool charging operation.3.2 the functionCommercialization of pv system controller, its function characteristics are different, can undertake choosing according to the following controller function characteristic. (1) temperature compensation: according to environment temperature to adjust the battery charging current. (2) the load circuit breaker: when if there is any difficulty cannot satisfy the needs or replace the fuse, fuse can substitute for load. (3) low voltage alarm: when the battery charged state is lower than in the electricity at ordinary times, can hear the warning sound. (4) low voltage disconnect: when the battery to discharge in the electricity at ordinary times, cut off the load automatically. (5) the voltage indicator: analog or digital display battery voltage, indicates the charged state of storage battery. (6) current indicator: analog or digital display solar cell phalanx output current and load current. (7) ampere hour meter: digital storage battery is power or battery. (8) backup start charging control: automatically start backup power supply, recharging the battery into the line. (9) square power shunt regulator: excess phalanx charging power to bypass.The important load, such as electric water heater, etc. Rizhao monitor(10):measurement of available solar radiation intensity. (11) load chronograph: load with the clock regularly, line in the shipment time is applied to load, such as security lighting, etc.(12) rechargeable electric instructions: to achieve full of battery voltage, light emitting diode Lights up.(13) automatic equalizing charge: automatically on a regular basis for both constant charging battery.。