中北大学线性代数(练习册)答案
线性代数练习册-答案
第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式 (1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b1221122112211221a a a b b a b b (4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b2.计算下列三阶行列式(1)10312126231-=--;(2)11121322233233a a a a a a a 112233112332a a a a a a 1122332332a a a a a(3)a c bba cc b a3333a b c abc3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t 112217t(3)()()()12322524212n n n n ---当n 为偶数时,2nk ,排列为143425212221223412k k k k k kk k --+++-1122(1)(1)t k k k (1)(2)21k k 22(1)1313142n kkkkk kn其中11(1)(1)k k 为1434252122k k k k --+的逆序数;k 为21k与它前面数构成的逆序数;(1)(2)21k k为23,25,,2(21)k k kk 与它们前面数构成的逆序数的和;113131k k k k 为2k ,22,24,,2k k与它们前面数构成的逆序数的和. 当n 为奇数时,21nk ,排列为142345212223225412k k k k k kk k ++++++1122t k k(1)21k k 2213323432n kkkkk kn其中1122k k 为1423452122k k k k +++的逆序数;(1)21k k 为23,25,,2(21)k kkk 与它们前面数构成的逆序数的和;3323k k k k 为2,22,,2k k与它们前面数构成的逆序数的和.4.确定,i j ,使6元排列2316i j 为奇排列. 解:4,5ij,()()23162431655t i j t ==为奇排列.5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424(2)00000000000a c db (1342)(1)abcd abcd7. 求1230312()123122x x f x x xx-=的展开式中4x 和3x 的系数.4x 的系数为6;含3x 的项只有(4231)(1)(3)3t x x x ,所以3x 的系数为(4231)(1)3(3)119t行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D(2)123123123111a a a a a a a a a +++;解:2312323231(1)1111a a D a a a a a a a 各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a 123(1)a a a(3)41232013201116011601110111031023500r r D213314116116(1)111027350818r r r 20(4)21120111011161126111211221110100c c D3141101100(1)26126116221223c c .(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ 32212D D D D D 4322342.证明:(1)011=++++=cb adb a dcd a c b d c b aD 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c Dabcd c d a b c d dabcda 1111(2)33()ax by ay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy ++++++=++++. 证明:左式12axayazbybzbxay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bz az bx ax by ay bz=+++++++=+++++++311r br xy zx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax by ay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzxy ←−→←−→==-,所以33()ax by ay bzaz bxx y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab b b b a b bbb a bb b b a ...........................; 各行加到第一行后提取公因式有:111...1...(1).....................nba b bD an b b b a bb b b a211111 (10)0 0(1)00...0 000...n r br r br a b an b ab a b1(1)n a n b ab(2)12121212n na n a n D n a ++=+12(0)n a a a ≠.211212111212121211210012000nn nr r n r r r nr r a a nna na a a n a a aa a a a a a a -----+++++--==--1112221211n n n n i i a na ia a a a a a a a =⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------=克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax abcx bx bc abc cx ax ;解:002350ba D cb abc ca,212023500ab a D bc c ba bc a22200350b ab D bc b ab c c a ,220250ba ab Dc bc abc c123,,x a x b x c(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D,(1)1且3时0D ,该齐次线性方程组只有零解。
《线性代数》课后习题答案
《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
线性代数练习册附答案
第1章 矩阵 习 题1. 写出下列从变量x , y 到变量x 1, y 1的线性变换的系数矩阵: (1)⎩⎨⎧==011y x x ; (2) ⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A TB .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换 32133212311542322yy y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E . 当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的. (1) 若A 2= O ,则A = O .(2) 若A 2= A ,则A = O 或A = E . .7. 设方阵A 满足A 2-3A -2E =O ,证明A 及A -2E 都可逆,并用A 分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A--⎛⎫⎪=-⎪⎪-⎝⎭, 利用初等行变换求A-1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B) P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ). (A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆. 5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A TB ,求C n.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1.第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4. 证明: 3232a cb a b a ac b a b a a c b a=++++++.5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------ (2) yxy x x yx y y x yx +++(3) 0111101111011110(4) 1222123312111x x x x x x(5)nn a a a D +++=11111111121,其中021≠n a a a .7.设n阶矩阵A的伴随矩阵为A*,证明: |A*|=|A|n-1,(n ≥2).8. 设A,B都是三阶矩阵,A*为A的伴随矩阵,且|A|=2,|B|=1,计算 |-2A*B-1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1.复习题二1.设A , B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*= B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是31矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |.4.设A , B 都是n 阶方阵,试证:AB E E A B E-=.第3章向量空间习题1. 设α1=(1,-1,1)T, α2=(0,1,2)T, α3=(2,1,3)T,计算3α1-2α2+α3.2. 设α1=(2,5,1,3)T, α2=(10,1,5,10)T, α3=(4,1,-1,1)T,且3(α1- x)+2(α2+x)=5(α3+x) ,求向量x.3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T, α2=(2,-6,-2)T, α3=(5,4,1)T;(2) β1=(2,3,0)T, β2=(-1,4,0)T, β3=(0,0,2)T .4. 设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5. 设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6. 求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示.7. 设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8. 设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.9. 设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11. 已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值.12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14. 已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β,求由基α1, α2, α3到基β1, β2, β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B : β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r .3.设有三个n维向量组A:α1, α2, α3;B:α1, α2, α3,α4;C:α1, α2, α3,α5.若A组和C组都线性无关,而B组线性相关,证明向量组α1, α2, α3,α4-α5线性无关.4.设向量组A: α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T和B:β1=(-1,1,0)T,β2=(1,1,1)T,β3=(0,1,-1)TR的基;(1) 证明:A组和B组都是三维向量空间3(2) 求由A组基到B组基的过渡矩阵;(3) 已知向量α在B组基下的坐标为(1,2,-1)T,求α在A组基下的坐标.第4章 线性方程组习 题1. 写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 43212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-026 83054202108432143214321x x x x x x x x x x x x 的一个基础解系.6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8. 设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?9. 设η*是非齐次线性方程组AX=b的一个解,ξ1, ξ2,…, ξn-r是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn-r线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn-r线性无关.复习题四1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a = .2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为 .3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a ,b 为何值时,(1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3,α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax= β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章矩阵的特征值和特征向量习题1.已知向量α1=(1,-1,1)T,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A, B都是n阶正交矩阵,证明AB也是正交矩阵.3. 设A是n阶正交矩阵,且|A|=-1,证明:-1是A的一个特征值.4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1) A是A *的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A *的特征值.9.设三阶实对称矩阵A的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p1=(1,1,1)T,求矩阵A.复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 .2.已知3阶矩阵A , A -E , E +2A 都不可逆,则行列式|A +E |= .3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足 .4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+,α2,则A 的非零特征值为 .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9.第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3. 已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值范围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A TA ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n . 2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3. 3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式 *2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式 E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题: 6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1.三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵.。
(完整)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
线性代数 课后作业及参考答案
《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
线代练习册参考答案
第一章 行列式练习一一、填空题 1.()1!n - 2.()()12121n n n λλλ-- 3. 26,2x -4. (8,3)5.12213344a a a a -6. 2- 二、选择题1.(D)2.(B)3.(C)更正:1112n nq p q p p qa a a 改为1122n n q p q p q p a a a三、解答题1.1x =2.4-3. x a x b ==或4. 2014!5.112ln 3sin 4cos 2525C θθθ+++ 练习二一、填空题1.16-2.()()33x a x a +- 3. 1204. 27 二、选择题 1.(B)2.(D) 三、解答题1.(1)500-(2)160(3)02. (1)9-(2)3-(3)1练习三一、填空题1.62.0,0a b ==3. 124. 2 二、选择题1.(D)2. (D)更正: (D)222--改为3.(B)4. (A)5. (D) 三、解答题1.270-2.1n +3. 64. 12341,2,3,1x x x x ====-第一章复习自测题一、选择题1.(C)2. (D)3.(C)4. (B) (D)5. (A)6. (D)7.(B) 二、填空题1.122460002.53. 1a =更正:去掉b =4. 245. 2014-! 三、解答题1.(1)7-(2)()()()()a b c b a c a c b ++---2.()221n a a --3.略第二章 矩阵及其运算练习一一、填空题1.24210;121363-⎛⎫ ⎪- ⎪ ⎪-⎝⎭2.8212⎛⎫⎪⎪ ⎪⎝⎭3.112233122221321231212333222x x x x x a a a a x x x a a x +++++4. 72- 二、选择题1.(B)2.(D)3.(A)4.(C)5.(A)三、解答题1.1602.86,1441810310⎛⎫⎪- ⎪ ⎪⎝⎭3. 146561717173,5139181651122-⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 4. 112125224336-⎛⎫⎪- ⎪ ⎪-⎝⎭5.略 练习二一、填空题1.8,6a b ==2.33140416513-⎛⎫⎪- ⎪ ⎪--⎝⎭,更正:222()4AB A B A ==改为 3. 04. 1 5. cos sin sin cos θθθθ⎛⎫⎪-⎝⎭6. 100122010345⎛⎫⎪⎪ ⎪⎝⎭二、选择题1.(D)更正:最后一选项改为(D)2.(A)3.(B)4.(C) 三、解答题1.3476814234-⎛⎫⎪-- ⎪ ⎪-⎝⎭2. 1122212221n n n n ++⎛⎫-- ⎪--⎝⎭ 3.102427-4.略5.()()1111;(2)324A A E A E A E --=-+=-- 练习三一、填空题1.4更正:*A A B =+=改为2.03. 64.100-5.(1)3mn mab - 6. 100010003100051007⎛⎫ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,10007100051003100⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭二、计算题1.020024001320013320057-⎛⎫ ⎪-- ⎪⎪-- ⎪--⎝⎭,,2.4411644643400252550430005252510,120000222001122O A A A O -⎛⎫- ⎪⎪⎛⎫ ⎪⎪--⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪-⎝⎭, 第二章复习自测题一、填空题1.36924612310,⎛⎫⎪ ⎪ ⎪⎝⎭2.3412⎛⎫⎪⎝⎭3. 1005011023A ⎛⎫ ⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭4. 10010110553211052⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭5.26. 22350035a a b b ⎛⎫-+ ⎪-+⎝⎭7. 68.21(3)2A A E -+ 二、选择题1.(C)2. (D)3.(A)4. (C)5. (B)6. (B)7.(C)8.(B) 三、解答题1.1123212331236312491016x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩2.123503x x x =⎧⎪=⎨⎪=⎩ 3.321⎛⎫⎪ ⎪ ⎪⎝⎭4.27312732683684⎛⎫ ⎪--⎝⎭5.201030102⎛⎫ ⎪ ⎪ ⎪⎝⎭6.100020011223400252543002525⎛⎫⎪ ⎪⎪-⎪ ⎪ ⎪⎪⎪⎪-⎝⎭第三章矩阵的初等变换与线性方程组练习一 一、填空题1.123123123c c c b b b a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭2.212322111312313332b b b b b b b b b ⎛⎫⎪ ⎪ ⎪⎝⎭二、选择题1.(B)2.(A)3.(B)4.(D)1.(1)100001000012⎛⎫ ⎪ ⎪ ⎪-⎝⎭(2)10202011030001400000-⎛⎫⎪- ⎪⎪ ⎪⎝⎭2.当||0A k =≠时,A 可逆且1100010111A k k -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦3. 11111444411111444411114444411114444A A -⎡⎤⎢⎥⎢⎥--⎢⎥==⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦4. 033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭5.001010100-⎛⎫⎪-⎪ ⎪-⎝⎭ 练习二 一、填空题1.02.33. 14. 25. 3二、选择题1.(D)2.(B)3.(A)4.(B)三、解答题1.秩是2,32721=--是一个最高阶非零子式2. (1)当1k =时,()1R A =;(2)当2k =-且1k ≠时,()2R A =; (3)当1k ≠且2k ≠-时,()3R A =.练习三1.(B)2.(C)3.(D)4.(B)二、填空题1.1-2.n3. 1238315x x x =-⎧⎪=-⎨⎪=⎩三、计算题1.12123421100001x x k k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(k 1,k 2为任意常数).2.211210x y k z --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(k 为任意常数). 3.提示:在第二个方程组中求一组特解. 令34211,1,1,0x x x x ==-==解得. 将该组特解代入第一个方程组中得: 1,4,4a b c ===.更正:第一个方程组中12342x ax x x +++=改为12341x ax x x +++=4.(1)当1m ≠-时, 方程组有惟一解; (2)当1,1,m k =-≠时方程组无解; (3)当1,1,m k =-=时方程组有无穷多解.通解为: 37110710x k ⎛⎫- ⎪-⎛⎫ ⎪⎪ ⎪=+ ⎪ ⎪⎪ ⎪⎝⎭⎪ ⎪⎝⎭第三章复习自测题一、填空题1.32.3-3. 2314113-⎛⎫⎪-⎝⎭4. 11n -- 5.1 二、选择题1.(D)2. (D)3.(B)4. (C)5. (B)三、解答题1.3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭2.秩为3,0755********-=≠是一个最高阶非零子式.3.720335203322233⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭4.2t ≠-无解2t =-且8p =-时, 121234411221100010x x c c x x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (12,c c 为常数)2t =-且8p ≠-时,123411210010x x c x x --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(c 为常数)5.(1)方程组()I 通解为: 21415201x k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭(2)将2450-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭代入方程组()II 得2,4,6m n t ===第四章 向量组的线性相关性练 习 一一、C D A B A二、1、3≠t 2、无关 三、线性相关 练 习 二一、D A D C B 二、1、 3 ,531,,ααα2、 6=k , 21,αα3、21r r = 三、12,a a 四、123,,ααα 422αα=练 习 三 一、C C B二、1、)(,)0,0,1()1,1,1(31R k k TT ∈+2、13、(2,1,0,1)Tk -- 4、n r -三、 基础解系 133(,,1,0)22T ξ=,237(,,0,1)44T ξ-= 四、 基础解系 ξ1=(-9, 1, 7, 0)T , ξ2=(1, -1, 0, 2)T特解 η=(1, -2, 0, 0)T复 习 自 测 题一、B B D D D 二、1、22、 相关3、(1111)T4、1三、1012101212100111210013a b a b ⎛⎫⎛⎫ ⎪ ⎪-→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当1-=a 且3≠b 时,方程组无解 当1-≠a 时,方程组有唯一解当1-=a 且3=b 时,方程组有无穷多解.四、向量组的秩为3,124,,ααα是一个最大线性无关组,并且312ααα=-+,51242αααα=-++. 五、基础解系为: 4534,121001ξξ--==⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭,六、方程组的通解为: 2111011191212011311040150--=++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭x x c c x x (12,c c 为任意常数) 七、略第五章相似矩阵及二次型练 习 一 一、D C C二、1、 1或-12、12n λλλ ,12n λλλ+++3、 -15 ,94、()T1,0,12-=α,T⎪⎭⎫ ⎝⎛--=21,1,213α5、 -1 三、⎪⎪⎭⎫ ⎝⎛==11111a b ,⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b , ⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . 四、25五、(1)10λ=,22λ=,33λ=,112121p -⎛⎫⎪⎪-⎪= ⎪ ⎪⎪ ⎪⎝⎭,2110p -⎛⎫ ⎪= ⎪⎪⎝⎭,3111p ⎛⎫ ⎪= ⎪ ⎪⎝⎭ (2)1232λλλ===,1120p ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2001p ⎛⎫ ⎪= ⎪ ⎪⎝⎭六、02321a ,b ,c ,λ==-== 练 习 二 一、A AB二、555555156656650112001102212111102011122121110001011222A P P -⎛⎫⎛⎫--+--⎛⎫⎛⎫⎪ ⎪⎪ ⎪=Λ=--=-+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭三、01000P ⎛⎫⎪⎪⎪=⎪⎪,且1100010005P AP --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦四、11/1/,1/p ⎛ = ⎝211,0p ⎛⎫ =- ⎪⎝⎭311,2p ⎛⎫ ⎪= ⎪ -⎝ 令123(,,)P p p p =,则1800020002P AP -⎛⎫⎪= ⎪ ⎪⎝⎭五、1(2)01(2)102021(2)01(2)nn n n ⎛⎫+--- ⎪ ⎪⎪--+-⎝⎭练 习 三一、 C C C C D 二、1、可逆2、大于零3、 1,0三、1232/32/31/32/3,1/3,2/31/32/32/3p p p -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令123(,,)P p p p =,则所用线性变换的矩阵为P ,且令x Py =,则22212325f y y y =-++。
中北大学线性代数(练习册)答案
中北大学线性代数作业(练习册)答案本答案供软件学院南校区和中北大学信息商务学院的同学使用 第一章 行列式第一节 二阶、三阶行列式一、1. -2; 2. )(a b ab -; 3. 1; 4. 1ln ln a b -二、1.18; 2.; 3. 0; 4. 0 三、A A A A 四、1231,2,3x x x ===第二节 n 阶行列式的定义及性质一、1. -29,29; 2. 0; 3. 3m ; 4. 0.二、1. 2000; 2.4abcdef ;3.160;4.8;5.63;6.120. 三、11212(1)n n n a a a b b b ++- 四、1.123,1x x ==;2. 1232,2,2x x x ===-.五、略 六、0第四节 克拉默法则一、1. 3,1x y ==-2. 12310,,12==-=x x x二、1. 当2-=λ或1=λ时,方程组有非零解;2. 当2-=λ或1-=λ时,方程组有非零解.三、1)(2++=x x x f . 综合练习题一一、1. 3k ≠且1k ≠-; 2. 3; 3.23645()a a a a a --二、C C C C三1.-25; 2.222()()x y x y xy +--+;3.1;4.1abcd ad ab cd ++++;5.54x ; 6.(1)nkk k a =-∑.四、1.122,x x == 2.00x y ==或者五、1. 28- 2. 0 六、略。
七、1.1≠λ且3≠λ; 2.3λ=或1λ=。
第二章 矩阵第一节 矩阵的定义及其运算一、1. -32; 2. BA AB =;3.⎪⎪⎭⎫ ⎝⎛2412498 二、DCDDC 三、1.(1)101111100,240021111X Y -⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭;2.(1) 13145-⎛⎫⎪-⎝⎭;(2) ()10;(3)⎪⎪⎪⎭⎫ ⎝⎛369246123; (4)2212131223522x x x x x x x x -+++. 3.⎪⎪⎭⎫ ⎝⎛=0000AB ,⎪⎪⎭⎫ ⎝⎛--=1020510BA ,⎪⎪⎭⎫ ⎝⎛=00002A .第二节 逆矩阵一、1.4, 4,4,14; 2. 113二、CDDC 三、1.(1) ⎪⎪⎭⎫ ⎝⎛--=-12351A ; (2) 不可逆;(3) 112100100100n a a A a -⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 2. 100200611A ⎛⎫⎪= ⎪ ⎪--⎝⎭, 5A =A .3. 1=B .4. X =⎪⎪⎭⎫⎝⎛4321.5. *1()A -=) 10061031002⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. 6. 11(2)(3)4A I I A -+=-. 第三节 初等变换与初等矩阵一、1. ⎪⎪⎪⎭⎫ ⎝⎛010100001,⎪⎪⎪⎪⎭⎫ ⎝⎛100010001k ,⎪⎪⎪⎭⎫⎝⎛-10001001k;2.111221111--⎛⎫⎪ ⎪ ⎪-⎝⎭. 二、BBC三、1.(1) 211532421⎛⎫ ⎪⎪ ⎪---⎝⎭;(2)11240101113621610--⎛⎫⎪-⎪ ⎪-- ⎪--⎝⎭; (3)12002500120033110033-⎛⎫⎪- ⎪ ⎪ ⎪⎪⎪-⎪⎝⎭2.96210721283B -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭.第五节 矩阵的秩一、1. ≥,< ; 2. 1; 3. 1. 二、DADDA三、1.(1) 秩为3;(2)秩为2;(3)秩为4(4)2x =-时,秩为2;1x =时,秩为1;1,2x x ≠≠-且时,秩为3.2. 2=a . 综合练习题二 一、1.1627-; 2. 3; 3.3-. 二、BCCCBBB 三、×√√×√√×√四、1.1001()010100A I -⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦; 2.()2R AB =; 3.300020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.五、10100510501A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.第三章 向量第一节 向量的概念及其运算一、(1)()15,10,13T--(2)()0,0,0.二、()()2,4,TTαβ=-=---三、()2,4,9α=-.四、1.123422βαααα=-++-;2.123400βαααα=-++⋅+⋅. 五、β可以由向量组123,,ααα线性表示,且12351114βααα=-+-.第二节 线性相关与线性无关一、1. 线性无关,两个向量的对应分量不成比例;2. 线性相关,包含零向量的向量组必定线性相关;3. 线性无关,2111110112--≠-; 4. 线性相关, 4个3维向量必线性相关. 二、 1.(√) 2.(√) 3.(×) 4.(√) 5.(√)6.(×)7.(√). 三、1. 283-2. 1lm ≠3. >4. 相5. 惟一. 四、证明:(略). 五、不一定线性相关, 例如:()()()()11221,13,74,40,0αβαβ=-=⎧⎧⎪⎪⎨⎨=-=⎪⎪⎩⎩, 但是1122,αβαβ++线性无关.第三节 向量组的秩一、1. 相; 无 2. 12r r = 3. =. 二、1. B 2. B 3. A . 三、1. 1234,,,αααα的秩为4;2. 0,1a a ≠≠且时,123,,ααα的秩为3;0a =时,123,,ααα的秩为2;1a =时,123,,ααα的秩为1;四、 1. 123,,ααα的秩为2,123,,ααα线性相关;2. 123,,γγγ的秩为3,123,,γγγ线性无关; 五、1. 123,,ααα本身为其一个极大线性无关组;2. 12,αα为123,,ααα的一个极大线性无关组,且31213510ααα=+. 六、 1. 9k =;2. 123,,ααα为1234,,,αααα的一个极大线性无关组,且41233αααα=+-. 七、证明:(略).八、证明:(略).九、证明:(略).第四节 向量空间一、因为1V 满足加法和数乘的封闭性,所以1V 是向量空间;因为2V 不满足加法的封闭性,所以2V 不是向量空间. 二、(1,1,1). 三、B .四、1. 111110102--⎛⎫⎪- ⎪ ⎪⎝⎭; 2. 1231114,3,1342--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭βββ.五、 1. βα,化为单位向量为1(1,1,1)2T --2,2,1)T ; 2. βα,正交. 六、12,,ααα正交化为:()11,0,1,1β=-,2221,1,,333β⎛⎫=- ⎪⎝⎭,31334,,,5555⎛⎫=- ⎪⎝⎭β第四章 线性方程组第一节 利用矩阵的初等变换解线性方程组一.(1)2-;(2)1-. 二.(1)C ;(2)A .三.(1)(0,1,0)T; (2)无解;(3)12348,3,62,x x k x k x k =-=+=+=,其中k 为任意常数.四.(1)2λ=-;(2)1-2λλ≠≠且; (3)1231212=1,(,,)(1,,)T T x x x k k k k λ=--,其中12,k k 为任意常数.第二节齐次线性方程组解的结构一. CC ADBDCB.二. (1)(2,1,1)T ξ=-;(2)1(1,1,0,0)T ξ=-,2(1,0,3,1)T ξ=--.三. 123111112100023010001x k k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中123,,k k k 为任意常数.第三节非齐次线性方程组解的结构一. C DB.二. (1)127523342133001100x k k ⎛⎫⎛⎫- ⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭, 其中12,k k 为任意常数. (2)1231611523226010000100001x k k k -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,k k k 为任意常数.三. 当1k =-时,方程组无解;当1k ≠-且4k ≠时,方程组有惟一解;当4k =时,方程组有无穷多组解,其通解为034101x c -⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中c 为任意常数.第五章 矩阵的特征值与矩阵的对角化第一节 矩阵的特征值与特征向量一、1. 3; 2. 11, ,24-1;, 2 , 4k k k -;3,6,11;8, 4 , 2-- 3.01或; 4. 23-,; 5. 6; 6. 3-;7. 0; 8. 211,, 二、CCBD三、1. 特征值:23023λλλ===1,, 对应的全部特征向量:1231111,1,1201k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2. 特征值:23211λλλ==-=1,, 对应的全部特征向量:12311121,1,01112k k k ⎛⎫- ⎪-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪-⎝⎭四、特征值:||A (三重);任何三维非零列向量都是B 的特征向量.五、1a =- 六、提示:两边同取行列式七、提示:用反证法八、(1)12322βξξξ=-+;(2)12132223223223n n n n n n n A β+++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭第二节 相似矩阵与矩阵的对角化一、1. 24; 2. 1; 3. 6 二、BBA 三、1. 不可对角化;2.123111(,,)101012P ξξξ-⎛⎫ ⎪⎪ ⎪⎝⎭==,1224P AP --⎛⎫⎪- ⎪ ⎪⎝⎭= 3.不可对角化四、题目有问题,P 不可逆,待查. 五、(1)56a ,b ==;(2)111102013C --⎛⎫ ⎪= ⎪ ⎪-⎝⎭六、02x ,y ==*七、提示:1k =,不可对角化第三节 实对称矩阵的对角化一、1.线性相关,正交; 2. 3 二、12133412,535203P P AP -⎛ -⎛⎫ ⎪==⎪ ⎪ ⎝⎭ ⎪⎪⎝⎭三、0,2,2 四、0110A -⎛⎫= ⎪⎝⎭五、(1)0,0αβ==;(2)00100P ⎛= ⎪ ⎪ ⎝六、提示:123=4,1λλλ==,A 可对角化,设相似变换矩阵为P ,则1411kk A P P -⎛⎫ ⎪=⎪ ⎪⎝⎭*七、提示:(1)特征多项式相同⇒有相同的特征值12,,,n λλλ ⇒A ,B 都与12(,,,)n diag λλλ 相似(再利用相似的传递性)(2)一般矩阵不具有此结论,如1110,0101A I ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭两者特征多项式均为2(1)λ-,但两者不相似.第六章 二次型第一节 二次型及其矩阵一、√ √ × × 二、1.112312323110110110,(,,)(,,)110000000x f x x x x x x x x --⎛⎫⎛⎫⎛⎫⎪ ⎪⎪-=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2.1121221111,(,)(,)1111x f x x x x x --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭3.222123112132233(,,)48223f x x x x x x x x x x x x =+++-+ 4.012103,3231-⎛⎫⎪⎪ ⎪-⎝⎭; 5. 2三、1.112312323120(,,)(,,)240,2001x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪-⎝⎭⎝⎭2. 11212222(,)(,),221x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭3. 222(,,)(,,)260,3204x f x y z x y z y z ⎛⎫⎛⎫⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭第二节 化二次型为标准形一、1.2221232f y y y =++;1123223332x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩;2. 2221239f y y y =+-;11232233315221()2x =y y y x =y -y x y ⎧-+⎪⎪⎪⎨⎪=⎪⎪⎩ 3.2221232f =y y +5y -;11232233322x y y y x y y x y ++⎧⎪=+⎨⎪=⎩= 4.22212324f z z z =-+;112233116114001x z x z x z --⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭二、1. 11223310000x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝,22212325f y y y =++2.1122330x yx y x y ⎫⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,213f y =三、0a b ==第三节 二次型的规范形与惯性定律 第四节 正定二次型一、1. 2;2. t 二、AACDD三、1122331030011x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪ ⎪ ⎪⎝⎭,222123f y y y =-++,正惯性指数为2,负惯性指数为1四、1. 负定; 2. 正定 五 1.405a -<< ; 2. 2a > 六、4t >。
线性代数课后习题答案 (4)
线性代数课后习题答案习题 1问题描述已知线性方程组:2x + y - 3z = 73x - 2y + 6z = -55x + 3y + 4z = 12求解该线性方程组。
解答利用矩阵运算,将线性方程组表示成矩阵形式:[A] [X] = [B]其中, - [A] 是系数矩阵,表示为:2 1 -33 -2 65 3 4•[X] 是未知数矩阵,表示为:xyz•[B] 是常数矩阵,表示为:7-512根据线性方程组的求解公式,我们可以使用矩阵的逆来求解未知数矩阵 [X]:[X] = [A]^{-1} [B]首先,计算系数矩阵 [A] 的逆矩阵 [A]^{-1}。
我们可以使用伴随矩阵的方法来求解逆矩阵。
计算伴随矩阵的步骤如下: 1. 计算矩阵的代数余子式 2. 将代数余子式按矩阵位置组成矩阵 3. 对矩阵进行转置根据以上方法,我们可以计算系数矩阵 [A] 的伴随矩阵 [AdjA]:2 1 -33 -2 65 3 4计算伴随矩阵的逆矩阵 [AdjA]^{-1},我们可以使用伴随矩阵的行列式的倒数来计算:[AdjA]^{-1} = \\frac{1}{det([A])} [AdjA]其中,det([A]) 表示矩阵 [A] 的行列式。
根据矩阵的行列式公式,我们可以计算 det([A]) 的值:det([A]) = 2(-2*4 - 6*3) - 1(3*4 - 6*5) - 3(3*3 - 5*(-2))= -56 + 3 + 39= -14因此,[AdjA]^{-1} = -\\frac{1}{14} [AdjA]= -\\frac{1}{14} \\begin{bmatrix}-40 & -3 & 15 \\\\-29 & 6 & 2 \\\\14 & 3 & -2 \\\\\\end{bmatrix}= \\begin{bmatrix}\\frac{20}{7} & \\frac{3}{14} & -\\frac{15}{14} \\\\\\frac{29}{7} & -\\frac{3}{7} & -\\frac{1}{7} \\\\-\\frac{7}{14} & -\\frac{3}{14} & \\frac{1}{7} \\\\\\end{bmatrix}接下来,我们可以根据逆矩阵[AdjA]^{-1} 和常数矩阵[B] 计算未知数矩阵[X]:[X] = [AdjA]^{-1} [B]= \\begin{bmatrix}\\frac{20}{7} & \\frac{3}{14} & -\\frac{15}{14} \\\\\\frac{29}{7} & -\\frac{3}{7} & -\\frac{1}{7} \\\\-\\frac{7}{14} & -\\frac{3}{14} & \\frac{1}{7} \\\\\\end{bmatrix} \\begin{bmatrix}7 \\\\-5 \\\\12 \\\\\\end{bmatrix}= \\begin{bmatrix}18 \\\\-3 \\\\5 \\\\\\end{bmatrix}因此,线性方程组的解为:x = 18,y = -3,z = 5。
中北大学高等数学(下)习题册答案
1. 第五章向量代数与空间解析几何5.2向量及其线性运算 r 1 r 2 r 2r不存 在 e a -i - j -k 3. 3 3 3ox 轴 :<34 ;o y 轴阳 ;oz 轴: uuu ruuu (1)P rj ;AB 1; ⑵i ; ⑶ AB r dur°A B 2( 1,1方向角:一 2 3 3 ‘45.3数量积 向量积 *混合积 2 : 26 3(1) J — (2)—3 3 2(1) a b 3 ; a b (5,1,7); 11b 5a 7c 2. 4. 2; 5. ⑷1. 5 2u 3v 5. x y 2z 46.x z2 05.5空间直线及其方程1.x 3 y 2z 1421x 1 2tx 1y 1 z 1 ,丄2.——;y 1 t213z 1 3t35 2 23.J3 3,34.x3 y 2 z 13915.6 曲面及其方程4. 2x 3y z 6 0 1. (1)球面 (2)椭圆抛物面 (3)椭球面(2) 18 ;(10,2,14)(3) 238 ;(4) 5 r 3(5) (5,1,7) (6) 0 3. 24.405. B (18,17, 17)2. 5.4平面及其方程1. 3x 7 y 5z 4 02. x 3y 2z 03. x 26y 3z 3 0 或 x 26y 3z 30 .(4)单叶双曲面 (5)双曲抛物面22. yz 2 5x3. z 22 2y z2c4.(略)5.7空间曲线及其方程1.x 8cost,y 4-2 si nt,z4 2 si nt21 2 2 1 22x 4(y -) 1 2x 4(z 一)12. 2 2z 0y 0y z 1(0 y 1) x 03. H : x 2 2x C: zy 2 1 012 •见课件13.提示:从第一条直线上的点 1, 1,0到第二 2 2 4. 5x 3y 综合练习题五1.C C A D C2. 1 .192 3•提示:先证明 AB与再证条直线上任意点2 t, 12t,1 t 的距离为d ,取d 的最小值即为两条平行直线之间的距离14.直线方程为x 33 y 12第六章多元函数微分学6.1多元函数的基本概念与B 夹角的.2 4. x 1.( 1)x 2 1y 2 1 4x .(2)2y2x y 2 15. 1, y 24; x 2z(3) x1 2 2y1,3J x2. xy 2y 26.提示: 设所求平面方程为5y z 2 0,3. (1) D :定出 2。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
大学线性代数练习试题及标准答案
大学线性代数练习试题及答案————————————————————————————————作者:————————————————————————————————日期:23第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a a a a 11122122=m ,aa a a 13112321=n ,则行列式aa a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( )A. –6B. 6C. 2D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( )4A.秩(A )<nB.秩(A )=n -1C.A=0D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>3 12.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数课后习题答案第1――5章习题详解(优选.)
xx .. ..第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4xx .. .. (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b axx .. ..(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++xx .. ..=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=xx .. ..同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n nn n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解xx .. ..(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得xx .. ..nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a Dxx .. ..即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221xx .. ..nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=xx .. ..112035122412111512-----=D 811507312032701151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=xx .. ..51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.xx .. ..10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.xx .. ..第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.xx .. ..解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.xx .. ..(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x xxx .. ..322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.xx .. ..6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k .解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察xx .. ..⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:xx .. ..⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;xx .. ..解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知xx .. ..⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121xx .. ..⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为xx .. ..⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,xx .. ..或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.xx .. ..解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;xx .. ..若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1xx .. ..=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,xx .. ..而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .xx .. ..26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠.xx .. ..28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.xx .. ..(2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.xx .. ..解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201xx .. ..33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线性代数习题册(答案)
线性代数习题册答案第一章 行列式 练习 一 班级 学号1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ (3421)= 5 ; (2)τ (135642)= 6 ;(3)τ (13⋯ (2n-1)(2n ) ⋯42) = 2+4+6+ ⋯ +(2 n-2)= n (n-1). 2.由数字 1 到 9 组成的排列 1274i56j9 为偶排列,则 i= 8 、 j= 3 3.在四阶行列式中,项 a 12a 23a 34a 41 的符号为 负 .= - 3 + 3 +2= (2 )( 1)21 2 21) 2 1 2 = - 1+2 2 15.计算下列行列式:- 8)+(- 8 )-(- 4 )或 -(- 4)―(- 4) = - 511 2) 111 13+1+ 1-(- )-(- )―(- )00 4. 0 421练习班级学号31.已知 3阶行列式det(a ij ) =1,则行列式det( a ij )= -1 . ( 1)3 111 1 1 2.234 = 24 9 161 a b c(1) a 1 b c a b 1 cx y x y (2) y x y xx y x y 1 0 110 0r1 r,rr30 1 1c3 c1 0 1 1a b 1c a b 1c111 a b cb1c0 1 21 0 3,则A41 A421 1 02 5 4113.已知 D=1 1用 1, 1,1,1 替换第4 行4.计算下列行列2 1 5 1 13 0 60 2 1 21 4 7 61 2 1 40 1 2 11 0 1 3 0 1 3 15.计算下列n 阶行列式:每行都加到第一行,并提公因式。
)(2 ) 21M13MLLM11ML1 1 n1a1 b a2 a3 L a n(3 ) a1 a2 b a3 L a n M M M M Ma1 a2 a3 L a n b练习班级学号x3 1x1 x21.设线性方程组x1 x2 x3 1 有惟一解,则满足的条件是什么?x1 x2 x3 11, 0, 1x1 x2 x3 x4 5x1 2x2 x3 4x4 22. 求解线性方程组12x1 3x2 x3 5x4 23x1 x2 2x3 11x4 0x1 x2 x3 03.已知齐次线性方程组x1 x2 x30 有非零解,求的值。
《线性代数》习题集(含答案)
《线性代数》习题集(含答案)第一章【1】填空题(1) 二阶行列式2a abbb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1,; B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-∙。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
线性代数练习册答案
线性代数练习册答案
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线性代数练习册答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线性代数练习册答案的全部内容。
线性代数练习册答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中北大学线性代数作业(练习册)答案本答案供软件学院南校区和中北大学信息商务学院的同学使用 第一章 行列式第一节 二阶、三阶行列式一、1. -2; 2. )(a b ab -; 3. 1;4. 1ln ln a b -二、; 2.; 3. 0; 4. 0 三、A A A A 四、1231,2,3x x x ===第二节 n 阶行列式的定义及性质一、1. -29,29; 2. 0; 3. 3m ; 4. 0. 二、1.2000;2.4abcdef ; ; ; ; . 三、11212(1)n n n a a a b b b ++-四、1.123,1x x ==;2. 1232,2,2x x x ===-.五、略 六、0第四节 克拉默法则一、1. 3,1x y ==-2. 12310,,12==-=x x x二、1. 当2-=λ或1=λ时,方程组有非零解;2. 当2-=λ或1-=λ时,方程组有非零解.三、1)(2++=x x x f . 综合练习题一一、1. 3k ≠且1k ≠-; 2. 3;3.23645()a a a a a -- 二、C C C C三; 2.222()()x y x y xy +--+;; 4.1abcd ad ab cd ++++;5.54x ; 6.(1)nkk k a =-∑.四、1.122,0x x == 2. 00x y ==或者五、1. 28- 2. 0 六、略。
七、1.1≠λ且3≠λ; 2.3λ=或1λ=。
第二章 矩阵第一节 矩阵的定义及其运算一、1. -32; 2. BA AB =;3. ⎪⎪⎭⎫⎝⎛2412498 二、DCDDC 三、1.(1)101111100,240021111X Y -⎛⎫⎛⎫⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭;2.(1) 13145-⎛⎫⎪-⎝⎭;(2)()10;(3)⎪⎪⎪⎭⎫⎝⎛369246123; (4)2212131223522x x x x x x x x -+++.3. ⎪⎪⎭⎫ ⎝⎛=0000AB ,⎪⎪⎭⎫ ⎝⎛--=1020510BA ,⎪⎪⎭⎫ ⎝⎛=00002A .第二节 逆矩阵一、, 4,4,14; 2. 113二、CDDC 三、1.(1) ⎪⎪⎭⎫ ⎝⎛--=-12351A ; (2) 不可逆; (3) 11210100100n a a A a -⎛⎫⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 2. 100200611A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭, 5A =A . 3.1=B . 4. X =⎪⎪⎭⎫⎝⎛4321. 5. *1()A -=) 10061031002⎛⎫- ⎪⎪⎪- ⎪⎪ ⎪- ⎪⎝⎭. 6. 11(2)(3)4A I I A -+=-. 第三节 初等变换与初等矩阵一、1. ⎪⎪⎪⎭⎫ ⎝⎛010100001,⎪⎪⎪⎪⎭⎫ ⎝⎛100010001k ,⎪⎪⎪⎭⎫⎝⎛-10001001k ;2.111221111--⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 二、BBC三、1.(1) 211532421⎛⎫⎪ ⎪⎪---⎝⎭;(2)11240101113621610--⎛⎫⎪-⎪ ⎪-- ⎪--⎝⎭; (3)12002500120033110033-⎛⎫⎪- ⎪ ⎪ ⎪⎪⎪-⎪⎝⎭2.96210721283B -⎛⎫⎪=- ⎪ ⎪--⎝⎭. 第五节 矩阵的秩一、1. ≥,< ; 2. 1; 3. 1.二、DADDA三、1.(1) 秩为3;(2)秩为2;(3)秩为4 (4)2x =-时,秩为2;1x =时,秩为1;1,2x x ≠≠-且时,秩为3. 2. 2=a . 综合练习题二一、1.1627-; 2. 3; 3.3-.二、BCCCBBB 三、×√√×√√×√四、 1.1001()010100A I -⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦;2.()2R AB =;3.300020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.五、10100510501A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.第三章 向量第一节 向量的概念及其运算一、(1)()15,10,13T--(2)()0,0,0.二、()()2,4,5,1,4,4,1,6,1,0TTαβ=-=---三、()2,4,9α=-.四、1.123422βαααα=-++-;2.123400βαααα=-++⋅+⋅. 五、β可以由向量组123,,ααα线性表示,且12351114βααα=-+-.第二节 线性相关与线性无关一、1. 线性无关,两个向量的对应分量不成比例;2. 线性相关,包含零向量的向量组必定线性相关;3. 线性无关,2111110112--≠-; 4. 线性相关, 4个3维向量必线性相关. 二、 1.(√) 2.(√) 3.(×) 4.(√) 5.(√)6.(×)7.(√).三、1. 283- 2. 1lm ≠ 3. > 4. 相5. 惟一. 四、证明:(略). 五、不一定线性相关, 例如:()()()()11221,13,74,40,0αβαβ=-=⎧⎧⎪⎪⎨⎨=-=⎪⎪⎩⎩, 但是1122,αβαβ++线性无关.第三节 向量组的秩一、1. 相; 无 2. 12r r = 3. =. 二、1. B 2. B 3. A . 三、1. 1234,,,αααα的秩为4;2. 0,1a a ≠≠且时,123,,ααα的秩为3;0a =时,123,,ααα的秩为2; 1a =时,123,,ααα的秩为1;四、 1. 123,,ααα的秩为2,123,,ααα线性相关;2. 123,,γγγ的秩为3,123,,γγγ线性无关; 五、1. 123,,ααα本身为其一个极大线性无关组;2. 12,αα为123,,ααα的一个极大线性无关组,且31213510ααα=+. 六、 1. 9k =;2. 123,,ααα为1234,,,αααα的一个极大线性无关组,且41233αααα=+-. 七、证明:(略).八、证明:(略).九、证明:(略).第四节 向量空间一、因为1V 满足加法和数乘的封闭性,所以1V 是向量空间;因为2V 不满足加法的封闭性,所以2V 不是向量空间.二、(1,1,1). 三、B .四、1. 111110102--⎛⎫⎪- ⎪ ⎪⎝⎭;2. 1231114,3,1342--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭βββ.五、 1. βα,化为单位向量为1(1,1,1,1)2T --2,2,1)T ; 2. βα,正交.六、123,,ααα正交化为:()11,0,1,1β=-,2221,1,,333β⎛⎫=- ⎪⎝⎭,31334,,,5555⎛⎫=- ⎪⎝⎭β第四章 线性方程组第一节 利用矩阵的初等变换解线性方程组一.(1)2-;(2)1-. 二.(1)C ;(2)A .三.(1)(0,1,0)T ; (2)无解;(3)12348,3,62,x x k x k x k =-=+=+=,其中k 为任意常数. 四.(1)2λ=-;(2)1-2λλ≠≠且; (3)1231212=1,(,,)(1,,)T T x x x k k k k λ=--,其中12,k k 为任意常数.第二节齐次线性方程组解的结构一. CCADBDCB.二. (1)(2,1,1)T ξ=-;(2)1(1,1,0,0)Tξ=-,2(1,0,3,1)T ξ=--.三. 123111112100023010001x k k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中123,,k k k 为任意常数.第三节非齐次线性方程组解的结构一. CDB.二. (1)127523342133001100x k k ⎛⎫⎛⎫- ⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭, 其中12,k k 为任意常数. (2)1231611523226010000100001x k k k -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,k k k 为任意常数.三. 当1k =-时,方程组无解;当1k ≠-且4k ≠时,方程组有惟一解;当4k =时,方程组有无穷多组解,其通解为034101x c -⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中c 为任意常数. 第五章 矩阵的特征值与矩阵的对角化第一节 矩阵的特征值与特征向量一、1. 3; 2. 11, ,24-1;, 2 , 4k k k -;3,6,11;8, 4 , 2-- 3.01或; 4. 23-,; 5. 6; 6. 3-; 7. 0; 8. 211,, 二、CCBD三、1. 特征值:23023λλλ===1,, 对应的全部特征向量:1231111,1,1201k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2. 特征值:23211λλλ==-=1,, 对应的全部特征向量:12311121,1,01112k k k ⎛⎫- ⎪-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪-⎝⎭四、特征值:||A (三重);任何三维非零列向量都是B 的特征向量.五、1a =- 六、提示:两边同取行列式七、提示:用反证法 八、(1)12322βξξξ=-+;(2)12132223223223n n n n n n n A β+++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭第二节 相似矩阵与矩阵的对角化一、1. 24; 2. 1; 3. 6 二、BBA 三、1. 不可对角化;2.123111(,,)101012P ξξξ-⎛⎫⎪ ⎪ ⎪⎝⎭==, 1224P AP --⎛⎫⎪- ⎪⎪⎝⎭= 3.不可对角化四、题目有问题,P 不可逆,待查.五、(1)56a ,b ==;(2) 111102013C --⎛⎫⎪= ⎪ ⎪-⎝⎭六、02x ,y ==*七、提示:1k =,不可对角化第三节 实对称矩阵的对角化一、1.线性相关,正交; 2. 3 二、12341,535203P P AP -⎛ -⎛⎫⎪==⎪ ⎪ ⎝⎭ ⎪⎪⎝⎭三、0,2,2 四、0110A -⎛⎫= ⎪⎝⎭五、(1)0,0αβ==;(2)00100P ⎛= ⎪ ⎪ ⎝ 六、提示:123=4,1λλλ==,A 可对角化,设相似变换矩阵为P ,则1411kk A P P -⎛⎫ ⎪=⎪ ⎪⎝⎭*七、提示:(1)特征多项式相同⇒有相同的特征值12,,,n λλλ⇒A ,B 都与12(,,,)n diag λλλ相似(再利用相似的传递性)(2)一般矩阵不具有此结论,如1110,0101A I ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭两者特征多项式均为2(1)λ-,但两者不相似.第六章 二次型第一节 二次型及其矩阵一、√ √ × × 二、1.112312323110110110,(,,)(,,)110000000x f x x x x x x x x --⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪-=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2.1121221111,(,)(,)1111x f x x x x x --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭3.222123112132233(,,)48223f x x x x x x x x x x x x =+++-+ 4.012103,3231-⎛⎫⎪ ⎪ ⎪-⎝⎭; 5. 2 三、1.112312323120(,,)(,,)240,2001x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪-⎝⎭⎝⎭2. 11212222(,)(,),221x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭3.222(,,)(,,)260,3204x f x y z x y z y z ⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭第二节 化二次型为标准形一、1.2221232f y y y =++;1123223332x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩;2. 2221239f y y y =+-;11232233315221()2x =y y y x =y -y x y ⎧-+⎪⎪⎪⎨⎪=⎪⎪⎩ 3.2221232f =y y +5y-;11232233322x y y y x y y x y ++⎧⎪=+⎨⎪=⎩= 4.22212324f z z z =-+;112233116114001x z x z x z --⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 二、1. 11223310000x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝,22212325f y y y =++2.1122330x yx y x y ⎫⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,213f y =三、0a b ==第三节 二次型的规范形与惯性定律第四节 正定二次型一、1. 2;2. t 二、AACDD三、1122331030011x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪ ⎪ ⎪⎝⎭,222123f y y y =-++,正惯性指数为2,负惯性指数为1四、1. 负定; 2. 正定 五 1.405a -<< ; 2. 2a > 六、4t >。