CPU控制的键盘扫描实验
实验五 键盘扫描实验 实验报告
键盘扫描实验实验报告一、实验目的1. 掌握线反转法键盘扫描原理。
2. 了解单片机的输入和输出过程,理解单片机的数据采集过程。
二、实验内容单片机外接4x4键盘,通过线反转法判断按下的键,并在数码管上显示按键对应的数字。
第一行从左到右分别是开关K0, K1, K2, K3,第二行从左到右分别是K4, K5, K6, K7以此类推。
当按下Kn时,在数码管上显示数字n。
三、实验原理线翻转法:先对行(R0-R3)置0,对列(R4-R7)置1。
当有键被按下时,会把按键所在的列的电位从1变0,记录下位置;然后再将行列翻转,记录下按下键的所在行,两数进行或运算,就可以得到一个唯一表示按下键的数字。
例如:假定R0-R7分别与单片机的P2.0-P2.7相连。
先把R4-R7置1,R0-R3置0(通过指令MOV P2, #0F0H实现)。
当键K5被按下时,R5电位被拉低为低电平。
此时,P2口表示的数为:1101 0000(0xD0);然后再置R4-R7为0,R0-R3为1,此时,R1电位被拉低为低电平,此时,P2口表示的数为:0000 1101(0x0D)。
将两数相与取反,得到:0010 0010。
四、实验过程1. 连接好单片机及其外围设备电路2. 编写汇编程序ORG LJMP KeyLJMP K7: CJNE R2, #82H, K8ORG 0100H MOV P0, #0F8H Init: CLR P1.3 LJMP KeyMOV P0, #0C0H K8: CJNE R2, #14H, K9 Key: MOV P2, #0F0H MOV P0, #080HMOV A, P2 LJMP KeyMOV R1, A K9: CJNE R2, #24H, K10MOV P2, #0FH MOV P0, #090HMOV A, P2 LJMP KeyORL A, R1 K10: CJNE R2, #44H, K11CPL A MOV P0, #088HMOV R2, A LJMP KeyJNZ KeyPro K11: CJNE R2, #84H, K12LJMP Key MOV P0, #083H KeyPro: CJNE R2, #11H, K1 LJMP KeyMOV P0, #0C0H K12: CJNE R2, #18H, K13LJMP Key MOV P0, #0C6H K1: CJNE R2, #21H, K2 LJMP KeyMOV P0, #0F9H K13: CJNE R2, #28H, K14LJMP Key MOV P0, #0A1H K2: CJNE R2, #41H, K3 LJMP KeyMOV P0, #0A4H K14: CJNE R2, #48H, K15LJMP Key MOV P0, #086H K3: CJNE R2, #81H, K4 LJMP KeyMOV P0, #0B0H K15: CJNE R2, #88H, K16LJMP Key MOV P0, #08EH K4: CJNE R2, #12H, K5 LJMP KeyMOV P0, #099H K16: LJMP KeyLJMP Key ENDK5: CJNE R2, #22H, K6MOV P0, #092HLJMP KeyK6: CJNE R2, #42H, K7MOV P0, #082H五、实验结果1. 当按下开关Kn时,数码管能够显示对应的数字。
实验八 键盘扫描实验
实验八键盘扫描实验一、实验目的1. 掌握中断键盘扫描编程方法。
2. 掌握LED动态显示方法。
二、实验原理及实验内容1. 实验原理无论是单片机控制系统还是单片机测量系统,都需要一个人机对话装置,这种人机对话装置通常采用键盘和显示器。
键盘是单片机应用系统中人机对话常用的输入装置,而显示器是单片机应用系统人机对话中的常用输出装置。
键盘是由若干个按键开关组成,键的多少根据单片机应用系统的用途而定。
键盘由许多键组成,而每个键相当于一个机械开关触点,当键按下时,触点闭合,当键松开时,触点断开。
单片机接收到按键的触点信号后作相应的功能处理。
因此对于单片机系统来说键盘接口信号是输入信号。
单片机的键盘接口分为独立式和矩阵式。
独立式键盘的每个按键都有一个信号线与单片机电路相连,所有按键有一个公共地或公共正端,每个键相互独立互不影响。
如图7-7所示,当按下键1时,无论其它键是否按下,键1的信号线就由1变0;当松开键1时,无论其它键是否按下,键1的信号线就由0变1。
矩阵式键盘的按键触点接于由行、列母线构成的矩阵电路的交叉处,每当一个按键按下时通过该键将相应的行、列母线连通。
若在行、列母线中把行母线逐行置0(一种扫描方式),那么列母线就用来作信号输入线。
矩阵式键盘原理图如图7-8所示。
图7-7 独立式按键原理图图7-8 矩阵式按键原理图针对以上两大类键盘工作方式,单片机又有三种键盘扫描方式:查询方式;定时扫描方式和中断扫描方式。
查询方式是指在程序中用一段专门的扫描和读按键程序不停查询有无按键按下,确定键值。
这种方式电路简单,但需要占用单片机的机器时间。
定时扫描方式是指利用单片机内的定时器来产生定时中断,然后在定时中断的服务程序中扫描,检查有无按键按下,确定键值。
这种方式的电路也比较简单,不占用单片机的机器时间,但需要占用一个定时器,同时定时的时间不能过长,否则可能检测不到相应得按键。
中断扫描方式是指当有键按下时由相应的硬件电路产生中断信号,单片机在中断服务程序中扫描,检查有无按键按下,确定键值。
键盘扫描程序实验报告
一、实验目的1. 理解键盘扫描的基本原理。
2. 掌握使用C语言进行键盘扫描程序设计。
3. 学习键盘矩阵扫描的编程方法。
4. 提高单片机应用系统的编程能力。
二、实验原理键盘扫描是指通过检测键盘矩阵的行列状态,判断按键是否被按下,并获取按键的值。
常见的键盘扫描方法有独立键盘扫描和矩阵键盘扫描。
独立键盘扫描是将每个按键连接到单片机的独立引脚上,通过读取引脚状态来判断按键是否被按下。
矩阵键盘扫描是将多个按键排列成矩阵形式,通过扫描行列线来判断按键是否被按下。
这种方法可以大大减少引脚数量,降低成本。
本实验采用矩阵键盘扫描方法,使用单片机的并行口进行行列扫描。
三、实验设备1. 单片机开发板(如51单片机开发板)2. 键盘(4x4矩阵键盘)3. 连接线4. 调试软件(如Keil)四、实验步骤1. 连接键盘和单片机:将键盘的行列线分别连接到单片机的并行口引脚上。
2. 编写键盘扫描程序:(1)初始化并行口:将并行口设置为输入模式。
(2)编写行列扫描函数:逐行扫描行列线,判断按键是否被按下。
(3)获取按键值:根据行列状态,确定按键值。
(4)主函数:调用行列扫描函数,读取按键值,并根据按键值执行相应的操作。
3. 调试程序:将程序下载到单片机,观察键盘扫描效果。
五、实验程序```c#include <reg51.h>#define ROW P2#define COL P3void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 123; j++);}void scan_key() {unsigned char key_val = 0xFF;ROW = 0xFF; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值}void main() {while (1) {scan_key();if (key_val != 0xFF) {// 执行按键对应的操作}}}```六、实验结果与分析1. 实验结果:程序下载到单片机后,按键按下时,单片机能够正确读取按键值。
实验二 键盘扫描实验
实验二键盘扫描实验一、实验目的 熟悉 VHDL 的语法和编译排错,重点掌握组合逻辑中显示译码器的设计。
附加学习 键盘和数码管显示控制。
二、实验内容 1. 设计一个 BCD 码到 LED 的七段译码器,非 BCD 值时仅 G 段亮(输出为“—” ) 。
2. 下载验证键盘显示实验。
3. 改写程序,将学号的数据固定地显示在 1-8 位数码管上。
4. 将 F 键功能改为换向键,即可以控制数字滚动显示的方向。
三、实验步骤 1. 用文本输入法,在键盘显示程序的译码部分,分别用三种语法填写 BCD 到 LED 的译 码器。
三种语法为 When else、With select、Case,建议使用模板。
每一种都需编 译通过提交程序。
2. 选一种语法,编译,绑定引脚,下载验证结果。
3. 改写程序,将 0--7 的数据固定地显示在 1-8 位数码管上。
编译、下载验证结果。
4. 将 F 键功能改为换向键,即可以控制数字滚动显示的方向。
编译、下载验证结果。
四、实验硬件图图 1 4x4 键盘图 2 数码管动态显示原理框图一种推荐的适配卡连线如下表所示: 输 信 号 CLK1 入 对应芯片引 入 名 端子名 端 子 名 PIN_A20 10HZ 功 能 时钟 输 信 号 出 名 对应芯片 引 入 功 端 子 名 端子名 PIN_C1 PIN_B1 PIN_C3 PIN_E5 PIN_B3 PIN_B4 PIN_A16 PIN_C17 PIN_A17 PIN_A18 PIN_A7 PIN_A8 PIN_A9 PIN_A10 C D E F G H C1 C2 C3 C4 R1 R2 R3 R4 键盘行 能 段选 段选 段选 段选 段选 段选 键盘列LED_SEG[2] LED_SEG[3] LED_SEG[4]LED_BIT[0] PIN_G4 LED_BIT[1] PIN_E3 LED_BIT[2] PIN_D2 LED_BIT[3] PIN_C2 LED_BIT[4] PIN_B2 LED_BIT[5] PIN_C4 LED_BIT[6] PIN_E6 LED_BIT[7] PIN_A3 LED_SEG[0] PIN_G3 LED_SEG[1] PIN_E4BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 A B位选 1 位选 2 位选 3 位选 4 位选 5 位选 6 位选 7 位选 8 段选 段选LED_SEG[5] LED_SEG[6] LED_SEG[7] KEYCOL[0] KEYCOL[1] KEYCOL[2] KEYCOL[3] KEYROW[1] KEYROW[2] KEYROW[3] KEYROW[4]五、实验文件(需要填写译码部分) KEYSCAN 时钟扫描程序 文件名:KEYSCAN.VHD library IEEE; use IEEE.std_logic_1164.all; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity KEYSCAN is port ( CLK1: in STD_LOGIC; KEYROW1,KEYROW2,KEYROW3,KEYROW4: in STD_LOGIC;--键盘行接口 KEYCOL: out STD_LOGIC_VECTOR (3 DOWNTO 0);--键盘列接口 LED_BIT: out STD_LOGIC_VECTOR (7 DOWNTO 0); --LED 位选接口 LED_SEG: out STD_LOGIC_VECTOR (7 DOWNTO 0)); --LED 段选接口 end KEYSCAN; architecture KEYSCAN_ARCH of KEYSCAN is SIGNAL SEG : STD_LOGIC_VECTOR (6 DOWNTO 0);--LED 段选 SIGNAL BIT : STD_LOGIC_VECTOR (2 DOWNTO 0);--LED 位选 SIGNAL NUM : STD_LOGIC_VECTOR (3 DOWNTO 0);--显示数字 SIGNAL COUNT : STD_LOGIC_VECTOR (4 DOWNTO 0);--计数脉冲 SIGNAL COUNT0 : STD_LOGIC; --计数脉冲最低位 LSB SIGNAL COL: STD_LOGIC_VECTOR (1 DOWNTO 0); --键盘列begin --计数器模块 PROCESS (CLK1) BEGIN IF CLK1'event AND CLK1 = '1' THEN COUNT <= COUNT+1; END IF; END PROCESS; --计数器模块 --键盘模块 COL <=COUNT(3 DOWNTO 2); KEYCOL <= "1110" WHEN COL = 0 ELSE "1101" WHEN COL = 1 ELSE "1011" WHEN COL = 2 ELSE "0111" WHEN COL = 3 ELSE "1111"; COUNT0 <= COUNT(0); PROCESS (count0,COUNT,KEYIN1,KEYIN2) BEGIN IF COUNT0'event and (COUNT0 = '1')THEN --分四行扫描 IF (KEYROW1 = '0') and (COUNT(1) = '0') THEN NUM(3 DOWNTO 2)<= "00"; NUM(1 DOWNTO 0) <= COUNT(3 DOWNTO 2); --COUNT(1 DOWNTO 0)只起分频延时的作用 ELSIF (KEYROW2 = '0') and (COUNT(1) = '0') THEN NUM(3 DOWNTO 2)<= "01"; NUM(1 DOWNTO 0) <= COUNT(3 DOWNTO 2); ELSIF (KEYROW3 = '0') and (COUNT(1) = '0') THEN NUM(3 DOWNTO 2)<= "10"; NUM(1 DOWNTO 0) <= COUNT(3 DOWNTO 2); ELSIF (KEYROW4 = '0') and (COUNT(1) = '0') THEN NUM(3 DOWNTO 2)<= "11"; NUM(1 DOWNTO 0) <= COUNT(3 DOWNTO 2); END IF; END IF; END PROCESS; --键盘模块--显示模块 BIT <= COUNT(4 DOWNTO 2); --位选扫描信号 LED_BIT <= "11111110" WHEN BIT = 0 ELSE "11111101" WHEN BIT = 1 ELSE "11111011" WHEN BIT = 2 ELSE "11110111" WHEN BIT = 3 ELSE "11101111" WHEN BIT = 4 ELSE "11011111" WHEN BIT = 5 ELSE "10111111" WHEN BIT = 6 ELSE "01111111" WHEN BIT = 7 ELSE "11111111"; --译码部分请填写完整 --pgfedcba --参考码表 0-f 十六进制 --3FH 06H 5BH 4FH --6FH 77H 7CH 39H --参考码表 0-f 二进制 --0111111 0000110 1011011 --1111111 1101111 1110111--位选扫描信号译码66H 6DH 7DH 07H 5EH 79H 71H 1001111 11111007FH1100110 1101101 1111101 0000111 0111001 1011110 1111001 1110001--译码部分完,输出到 LED 段选,同时选通位选端 LED_SEG(6 DOWNTO 0)<=SEG; LED_SEG(7) <= '0'; --显示模块 end KEYSCAN_ARCH; 六、实验注意事项 程序较大,结合电路理解很费时间,应事先预习。
微机原理键盘扫描及显示设计实验
一、 实验名称:键盘扫描及显示设计实验 二、 实验目的1. 学习按键扫描的原理及电路接法; 2 .掌握利用8255完成按键扫描及显示。
三、 实验内容及步骤1.实验内容编写程序完成按键扫描功能,并将读到的按键值依次显示在数码管上。
实验机的按 键及显示模块电路如图 1所示。
按图2连线。
Γ≡≡If *—I〔01S冥Pπ图1键盘及显示电路2. 实验步骤 (1) 按图1接线;(2) 键入:CheCk 命令,记录分配的I/O 空间; (3) 利用查出的地址编写程序,然后编译链接; (4) 运行程序,观察数码管显示是否正确。
四、流程图22LZjXD2汽XDrXXDir d √I IWirI ⅝IOR A .■[QYO Λ :07 PBfl D⅛ PBl般唯* C4PB3PBl •皿 PBi 71 PB6 DO E55PB7FA.Q AlPAJAO 吨!PA5 I WR PCo 7 RD PCI ∙÷ CS PΩ I PCI图2实验连线>Cχ⅛ 7H *J J XXXXt- ⅛r√ *JJ <⅛i YYYY开始五、源程序是KeySCa n. asm;键盘扫描及数码管显示实验 根据CHECKE 置信息修改下列符号值 *******************的A 口地址的B 口地址 的C 口地址 的控制寄存器地址STACKI SEGMENT STACKDW 256 DUP(?) STACKI ENDS DATA SEGMENT DTABLE3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H DATA ENDS ; 键值表,0〜F 对应的7段数码管的段位值CODE SEGMENTASSUME CS:CODE,DS:DATASTART: MOV AX,DATAMOV DS,AX MOV SI,3000H ; 建立缓冲区,存放要显示的键值 MOV AL,00H ;先初始化键值为 0MOV [SI],AL MOV [SI+1],AL MOV [SI+2],AL MOV [SI+3],AL MOV DI,3003H初始化8255工作方式方式0, A 口、B 口输出,C 口低4位输入・ *************** IoYo EQU 9800H 片选IOYO 对应的端口始地址 MY8255_ _A EQU IOY0+00H*4 ;8255 MY8255__B EQU IOY0+01H*4 ;8255MY8255__C EQU IOY0+02H*4 ;8255 DBMOV DX,MY8255_MODE MOV AL,81H;・***************************************************************** MY8255_MODE EQU IOY0+03H*4 ;8255OUT DX,AL BEGIN:CALL DIS ; CALL CLEAR ; CALL CCSCAN ; 显示刷新清屏扫描按键JNZ GETKEY1 ; 有键按下则跳置GETKEY1MOV AH,1 ; INT 16HJZ BEGIN ; QUIT: 判断PC键盘是否有按键按下无按键则跳回继续循环,有则退出MOV AX,4C00H ;INT 21H返回到DOSGETKEY1:CALL DIS ;CALL DALLYCALL DALLYCALL CCSCAN ;JNZ GETKEY2 ; JMPBEGIN ; 显示刷新再次扫描按键有键按下则跳置GETKEY2 否则跳回开始继续循环GETKEY2:MOV CH,0FEHMOV CL,00H ;COLUM:设置当前检测的是第几列MOV AL,CH ; MOV DX,MY8255_AOUT DX,ALMOV DX,MY8255_C ;IN AL,DX 选取一列,将X1〜X4中一个置O读Y1〜Y4,用于判断是哪一行按键闭合L1:TEST AL,O1H ; JNZ L2 ; MOV AL,OOH ;JMP KCODE 是否为第1 行不是则继续判断设置第1 行第1 列的对应的键值L2:TEST AL,O2H ; JNZ L3 ; 是否为第2 行不是则继续判断MOV AL,04HJMP KCODEL3:TEST AL,04H JNZ L4MOV AL,08HJMP KCODEL4:TEST AL,08H JNZ NEXTMOV AL,0CHKCODE:ADD AL,CLCALL PUTBUFPUSH AX KON:CALL DISCALL CLEARCALL CCSCANJNZ KON POPAXNEXT:INC CL MOVAL,CH TESTAL,08H JZKERRROL AL,1 MOVCH,AL JMPCOLUM KERR:JMP BEGIN 设置第2 行第1 列的对应的键值是否为第3 行不是则继续判断设置第3 行第1 列的对应的键值是否为第4 行不是则继续判断设置第4 行第1 列的对应的键值将第1 列的值加上当前列数,确定按键值保存按键值显示刷新清屏扫描按键,判断按键是否弹起未弹起则继续循环等待弹起当前检测的列数递增检测是否扫描到第4 列是则跳回到开始处没检测到第4 列则准备检测下一列CCSCAN PROC NEAR MOV AL,00HMOV DX,MY8255_AOUT DX,AL 扫描是否有按键闭合子程序将4列全选通,X1〜X4置OMOV DX,MY8255_CIN AL,DXNOT ALAND AL,0FH RET CCSCAN ENDPCLEAR PROC NEARMOV DX,MY8255_BMOV AL,00H OUTDX,AL清除数码管显示子程序段位置0 即可清除数码管显示RET CLEAR ENDPDIS PROC NEAR ; PUSH AX ;MOV SI,3000HMOV DL,0F7HMOV AL,DLAGAIN:显示键值子程序以缓冲区存放的键值为键值表偏移找到键值并显示PUSH DXMOV DX,MY8255_A OUT DX,AL ;MOV AL,[SI] ; MOV BX,OFFSET DTABLE AND AX,00FFHADD BX,AXMOV AL,[BX] ; MOV DX,MY8255_BOUT DX,AL ;CALL DALLY INC SI ; POP DXMOV AL,DLTEST AL,01H ;JZ OUT1 ;ROR AL,1MOV DL,ALJMP AGAIN ; OUT1: 设置X1〜X4,选通一个数码管取出缓冲区中存放键值将键值作为偏移和键值基地址相加得到相应的键值写入数码管A〜Dp取下一个键值判断是否显示完?显示完,返回未显示完,跳回继续POP AXRET DIS ENDP 读Y1〜Y4取出Y1〜Y4的反值PUTBUF PROC NEAR ; 保存键值子程序MOV SI,DIMOV [SI],ALDEC DICMP DI,2FFFHJNZ GOBACKMOV DI,3003HGOBACK: RETPUTBUF ENDPDALLY PROC NEAR ; 软件延时子程序PUSH CXMOV CX,00FFHD1: MOV AX,00FFHD2: DEC AXJNZ D2LOOP D1POP CXRETDALLY ENDPCODE ENDSEND START六、体会和感想通过这次的实验我了解到自己还有很多的不足,比如做实验的速度很慢,效率很低,思维不集中导致最后老师验收的时候没有来的及交,对书本的了解不是很透彻,也因此我决定下次实验的时候一定要好好地去思考,尽量在课外把实验看懂!。
单片机实验--键盘扫描
实验4 键盘实验一、实验目的:1.掌握8255A编程原理。
2.了解键盘电路的工作原理。
3.掌握键盘接口电路的编程方法。
二、实验设备:CPU挂箱、8031CPU模块三、实验原理:1.识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如所读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
本实验例程采用的是行反转法。
行反转法识别键闭合时,要将行线接一并行口,先让它工作于输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口往各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上的输入值,那么,在闭合键所在的行线上的值必定为0。
这样,当一个键被按下时,必定可以读得一对唯一的行线值和列线值。
2.程序设计时,要学会灵活地对8255A的各端口进行方式设置。
3.程序设计时,可将各键对应的键值(行线值、列线值)放在一个表中,将要显示的0~F字符放在另一个表中,通过查表来确定按下的是哪一个键并正确显示出来。
实验题目利用实验箱上的8255A可编程并行接口芯片和矩阵键盘,编写程序,做到在键盘上每按一个数字键(0~F),用发光二极管将该代码显示出来。
四、实验步骤:将键盘RL10~RL17接8255A的PB0~PB7;KA10~KA12接8255A的PA0~PA2;PC0~PC7接发光二极管的L1~L8;8255A芯片的片选信号8255CS接CS0。
五、实验电路:六、程序框图7.程序清单八、附:8251/8255扩展模块该模块由8251可编程串行口电路和8255可编程并行口电路两部分组成,其电源、数据总线、地址总线和片选信号均由接口挂箱上的接口插座提供。
一、8251可编程串行口电路(1)8251可编程串行接口芯片引脚及功能8251A是通用同步/异步收发器USART,适合作异步起止式数据格式和同步面向字符数据格式的接口,其功能很强。
单片机实验--键盘扫描
实验4 键盘实验一、实验目的:1.掌握8255A编程原理。
2.了解键盘电路的工作原理。
3.掌握键盘接口电路的编程方法。
二、实验设备:CPU挂箱、8031CPU模块三、实验原理:1.识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如所读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
本实验例程采用的是行反转法。
行反转法识别键闭合时,要将行线接一并行口,先让它工作于输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口往各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上的输入值,那么,在闭合键所在的行线上的值必定为0。
这样,当一个键被按下时,必定可以读得一对唯一的行线值和列线值。
2.程序设计时,要学会灵活地对8255A的各端口进行方式设置。
3.程序设计时,可将各键对应的键值(行线值、列线值)放在一个表中,将要显示的0~F字符放在另一个表中,通过查表来确定按下的是哪一个键并正确显示出来。
实验题目利用实验箱上的8255A可编程并行接口芯片和矩阵键盘,编写程序,做到在键盘上每按一个数字键(0~F),用发光二极管将该代码显示出来。
四、实验步骤:将键盘RL10~RL17接8255A的PB0~PB7;KA10~KA12接8255A的PA0~PA2;PC0~PC7接发光二极管的L1~L8;8255A芯片的片选信号8255CS接CS0。
五、实验电路:六、程序框图7.程序清单八、附:8251/8255扩展模块该模块由8251可编程串行口电路和8255可编程并行口电路两部分组成,其电源、数据总线、地址总线和片选信号均由接口挂箱上的接口插座提供。
一、8251可编程串行口电路(1)8251可编程串行接口芯片引脚及功能8251A是通用同步/异步收发器USART,适合作异步起止式数据格式和同步面向字符数据格式的接口,其功能很强。
键盘扫描显示实验报告
一、实验目的1. 理解键盘扫描的基本原理,掌握键盘扫描的方法。
2. 掌握数码管显示的基本原理,实现键盘扫描信息的实时显示。
3. 熟悉8255并行接口芯片在键盘扫描和数码管显示中的应用。
二、实验原理1. 键盘扫描原理:键盘扫描是指通过硬件电路对键盘按键进行检测,并将按键信息转换为可识别的数字信号的过程。
本实验采用行列式键盘,通过扫描键盘的行线和列线,判断按键是否被按下。
2. 数码管显示原理:数码管是一种用来显示数字和字符的显示器,由多个发光二极管(LED)组成。
本实验采用七段数码管,通过控制各个段(A、B、C、D、E、F、G)的亮灭,显示相应的数字或字符。
3. 8255并行接口芯片:8255是一款通用的并行接口芯片,具有三个8位并行I/O口(PA、PB、PC),可用于键盘扫描和数码管显示的控制。
三、实验设备1. 实验平台:PC机、8255并行接口芯片、行列式键盘、七段数码管、面包板、导线等。
2. 软件环境:汇编语言编程软件、仿真软件等。
四、实验步骤1. 硬件连接:将8255并行接口芯片、行列式键盘、七段数码管连接到实验平台上,按照电路图进行连线。
2. 编写程序:使用汇编语言编写键盘扫描和数码管显示的程序。
(1)初始化8255并行接口芯片:设置PA口为输出端口,PB口为输出端口,PC口为输入端口。
(2)扫描键盘:通过PC口读取键盘的行线状态,判断是否有按键被按下。
若检测到按键被按下,读取对应的列线状态,确定按键的位置。
(3)数码管显示:根据按键的位置,控制数码管的段(A、B、C、D、E、F、G)的亮灭,显示相应的数字。
3. 仿真调试:使用仿真软件对程序进行调试,确保程序能够正确扫描键盘和显示数字。
五、实验结果与分析1. 实验结果:成功实现了键盘扫描和数码管显示的功能。
当按下键盘上的任意按键时,数码管上会显示对应的数字。
2. 分析:(1)键盘扫描部分:通过读取PC口的行线状态,判断是否有按键被按下。
当检测到按键被按下时,读取PB口的列线状态,确定按键的位置。
实验五 键盘扫描实验 实验报告
实验五键盘扫描实验实验报告一、实验目的本次实验的主要目的是深入了解键盘扫描的工作原理,掌握键盘扫描的编程实现方法,以及提高对硬件接口和软件编程的综合应用能力。
二、实验设备1、计算机一台2、实验开发板一套3、下载线一根4、键盘一个三、实验原理键盘扫描的基本原理是通过逐行或逐列扫描键盘矩阵,检测按键的按下和释放状态。
常见的键盘扫描方式有行列式扫描和编码式扫描。
在行列式扫描中,将键盘的行线和列线分别连接到微控制器的输入输出端口。
通过依次将行线设置为低电平,同时读取列线的状态,来判断是否有按键按下。
如果在某一行被设置为低电平时,对应的列线检测到低电平,则表示该行和该列交叉处的按键被按下。
编码式扫描则是利用专门的编码芯片对键盘进行扫描和编码,微控制器只需读取编码芯片输出的按键编码即可确定按键的状态。
四、实验步骤1、硬件连接将实验开发板与计算机通过下载线连接好。
将键盘连接到实验开发板的相应接口。
2、软件编程选择合适的编程语言和开发环境,如 C 语言和 Keil 开发环境。
定义键盘的行线和列线所对应的端口。
编写扫描函数,实现键盘扫描的逻辑。
在主函数中调用扫描函数,并根据返回的按键值进行相应的处理,如显示按键字符或执行特定的操作。
3、编译下载对编写好的程序进行编译,检查是否有语法错误。
将编译生成的可执行文件下载到实验开发板中。
4、实验测试按下键盘上的不同按键,观察实验开发板上的显示或输出结果是否正确。
检查是否能够准确检测到按键的按下和释放,以及是否存在按键抖动等问题。
五、实验结果与分析1、实验结果在实验过程中,成功实现了对键盘的扫描,并能够准确检测到按键的按下。
按下不同的按键时,实验开发板能够正确显示相应的按键字符或执行预定的操作。
2、结果分析对于按键的准确检测,说明编写的扫描函数逻辑正确,能够有效地识别键盘矩阵中的按键状态变化。
在检测到按键按下时,没有出现误判或漏判的情况,表明行线和列线的设置以及读取操作正常。
单片机键盘扫描实验
《单片机原理及应用》实验报告实验名称:键盘扫描一、实验目的:1、掌握键盘和显示器的接口方法和编程方法。
2、掌握键盘扫描和LED八段码显示器的工作原理。
二、实验内容:利用实验系统提供的键盘扫描电路和显示电路,做一个扫描键盘和数码显示实验,把按键输入的键码在六位数码管上显示出来。
1、按原来的源程序进行运行调试,要成功。
2、初始显示为自己学号的低6位3、将左边开始第3位数码管的显示跟随按键输入变化而变化。
4、在3的基础上让显示值和键码值相等。
5、若只用键盘中的列扫描,而不使用行扫描,会有什么结果产生?三、程序框图及电路连接图四、源程序清单(注释部分请手写)1、显示自己学号的低6位,显示值为680127,键码值分别为082H,080H,0C0H,0F9H,0A4H,0F8H。
OUTBIT equ 0ffddhOUTSEG equ 0ffdchIN equ 0ffdehLedBuf equ 60horg 0Start:mov sp,#40hmov LedBuf+0,#082hmov LedBuf+1,#080hmov LedBuf+2,#0c0hmov LedBuf+3,#0f9hmov LedBuf+4,#0a4hmov LedBuf+5,#0f8hMLoop:call DisplayLEDcall ScanKeyjb acc.5,MLoopjb acc.4,MLoopanl a,#00001111bmov dptr, #keytable (2)movc a, @a+dptrmov dptr,#LedMapmovc a,@a+dptrmov LedBuf+5,a (1)sjmp MLoopDelay:mov r7,#0DelayLoop:djnz r7,DelayLoopdjnz r6,DelayLoopretDisplayLED:mov r0,#LedBufmov r1,#6mov r2,#20hLoop:mov dptr,#OUTBITmov a,#0movx @dptr,amov a,@r0mov dptr,#OUTSEGmovx @dptr,amov dptr,#OUTBITmov a,r2movx @dptr,amov r6,#1call Delaymov a,r2rr amov r2,ainc r0djnz r1,LoopretScanKey:setb RS1mov r2,#0fehmov r3,#08hmov r0,#00hLoopS: mov r1,#Low(OUTBIT)mov a,r2movx @r1,arl amov r2,ainc r1movx a,@r1cpl aanl a,#0fhjnz Scan (3)inc r0djnz r3,LoopSReTKey3:mov a,#20hTKey3: mov r2,aclr amov r1,#Low(OUTBIT)movx @r1,amov a,r2clr RS1retScan1: mov a, r0sjmp TKey3Scan:cpl ajb acc.0,TKey0mov a,#00hsjmp EndLoopTKey0: jb acc.1,TKey1mov a,#08hsjmp EndLoopTKey1: jb acc.2,TKey2mov a,#10hsjmp EndLoopTKey2: jb acc.3,ReTKey3mov a,#18hEndLoop:add a,r0sjmp TKey3LedMap:db 0c0h,0f9h,0a4h,0b0h,099h,092h,082h,0f8hdb 080h,090h,088h,083h,0c6h,0a1h,086h,08eh KeyTable:db 07h,04h,08h,05h,09h,06h,0ah,0bhdb 01h,00h,02h,0fh,03h,0eh,0ch,0dhend2、在原有的程序上修改:把(1)处的mov LedBuf+5,a改为mov LedBuf+2,a3、在2的基础上让显示值和键码值相等:把(2)处的mov dptr, #keytable改为mov dptr, # LedMap 然后把后两行删除4、只用键盘中的列扫描,而不使用行扫描把(3)处的jnz Scan改为jnz Scan1。
实验五 键盘扫描
实验五键盘扫描实验一、实验目的:1、掌握Exynos 4412处理器与键盘扫描的电路原理。
2、掌握linux驱动对Exynos 4412 GPIO、外部中断的控制原理及使用方法。
二、实验设备:友善之臂4412开发板、学生自带笔记本、USB转串口线、电源、网线。
三、实验地点及时间地点:A2-303a时间:教学周第九周四、实验内容:1、在ARM开发板上面,在驱动程序中利用linux定义的GPIO X3口编写对应管脚中断控制程序,内核定时器及键盘扫描程序,并进行测试验证所学内容。
2、在ARM开发板上面,使用上面驱动程序,编写应用程序完成按下1-4键点亮4个对应LED灯;释放1-4键关闭4个对应LED灯,并进行测试验证。
五、实验原理:1、GPIO端口原理申请分配GPIO:if(gpio_request(EXYNOS4X12_GPM4(0), "LED")),通过查看该port 保存的记录标志是否为NULL来判断。
gpio_desc[ARCH_NR_GPIOS]数值记录了每个io pin的情况.配置GPIO用途:s3c_gpio_cfgpin(led_gpios[i], S3C_GPIO_OUTPUT);输出output电平/读取input电平-- gpio基本使用:比如输出一个高电平:gpio_set_value(EXYNOS4X12_GPM4(0), 1);或者是得到输入的值:gpio_get_value(EXYNOS4X12_GPM3(0))中断设置:irq = gpio_to_irq(buttons[i].gpio);err = request_irq(irq, button_interrupt, IRQ_TYPE_EDGE_BOTH,buttons[i].name, (void *)&buttons[i]);定时器的另外一种用法:setup_timer(&buttons[i].timer, tiny4412_buttons_timer,(unsigned long)&buttons[i]); //初始化定时器mod_timer(&bdata->timer, jiffies + msecs_to_jiffies(40)); //设置初值并启动2、键盘电路原理图从上述原理图可以清楚地看出,通过将若某个按键被按下GPX3[2]、GPX3[3]、GPX3[4]、GPX3[5]管脚的输入电平由高变低(按下)再由低变高(释放)就可以引起中断的发生。
实验八 键盘扫描显示实验
实验八键盘扫描显示实验一、实验目的1、了解普通4×4键盘扫描的原理。
2、进一步加深七段码管显示过程的理解。
二、硬件要求1、4×4键盘阵列。
2、FPGA主芯片EP1K30TC144-3。
3、可变时钟源。
4、七段码显示区。
三、实验原理本实验主要完成的实验是完成4×4键盘扫描的,然后获取其键值,并对其进行编码,从而进行按键的识别,并将相应的按键值进行显示。
键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出4行为高电平,然后输出4列为低电平,在读入输出的4行的值,通常高电平会被低电平拉低,如果读入的4行均为高电平,那么肯定没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。
同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。
获取到行值和列值以后,组合成一个8位的数据,根据实现不同的编码在对每个按键进行匹配,找到键值后在7段码管显示。
四、实验内容及步骤本实验内容是完成4×4键盘的扫描,然后将正确的键值进行显示,实验步骤如下:1、编写键盘扫描和显示的VHDL代码。
2、用MaxPlusII对其进行编译仿真。
3、在仿真确定无误后,选择芯片ACEX1K EP1K30TC144-3。
4、给芯片进行管脚绑定,在此进行编译。
5、根据自己绑定的管脚,在实验箱上对键盘接口、显示接口和FPGA之间进行正确连线。
6、给目标板下载代码,在4×4键盘输入键值,观看实验结果。
五、实验连线如果是调用的本书提供的VHDL代码,则实验连线如下:Clk:FPGA工作时钟信号,大约位5KHz至50KHz即可。
Kr[0:3]:分别接4×4键盘部分的R1、R2、R3和R4。
单片机按键实验报告
单片机按键实验报告篇一:单片机按键扫描实验报告键盘扫描一.实验目的(1)掌握矩阵键盘接口电路和键盘扫描编程方法。
(2)掌握按键值处理与显示电路设计。
二.实验任务(1)设计4*4键盘,编写各个键的特征码和对应的键值(0~F);(2)编程扫描按键,将按键对应的数字值使用数码管显示出来。
三.实验电路及连线方法1.采用动态显示连线方法:电路由2 片74LS573,1 个六字一体的共阴数码管组成。
由U15 输出段选码,U16 做位选码,与单片机的采用I/O 口连接方式,短路片J22 连接P2.0,J23 连接P2.3,做输出信号锁存。
(实际电路连接是d7-d6-d5-d4-d3-d2-d1-d0?h-c-d-e-g-b-a-f)。
PW12 是电源端。
2.键盘电路连线方法:电路由16 个按键组成,用P1 口扩展4×4 行列式键盘。
J20 是键盘连接端,连接到P1 口。
J21 是行列键盘、独立键盘选择端,当J21 的短路片连接2-3脚时,构成4×4 行列式键盘;当J21 的短路片连接2-1 脚时,可形成3×4 行列式键盘,4 个独立式按键S4、S8、S12、S16,这4 个独立按键分别连接P1.4~P1.7;其他12 个键3×4 行列式键盘。
PW15 是电源端。
四.编程思路1.采用反转法识别按键的闭合。
2.采用动态显示将键值显示出来。
五.算法流程图六.资源分配1.用P1口进行查找按键2.用R3做键值指针3.用R1做动态显示为选码指针。
4.R5为延时指针。
七.程序设计KPIN:ORG MOV MOV ANL MOV 0000H P1,#0F0H A,P1 A,#0F0H B,AMOVP1,#0FHMOVA,P1ANLA,#0FHORLA,BCJNE A,#0FFH,KPIN1AJMP EXITKPIN1: MOVB,AMOVDPTR,#TABKPMOVR3,#0KPIN2: MOVA,R3MOVC A,@A+DPTRCJNE A,B,KPIN3MOVA,R3LOOP: MOVR1,#0FEH;键盘动态显示 LOOP1: MOVA,R3ANLA,#0FHMOV DPTR,#TABMOVC A,@A+DPTRCLRP2.0CLRP2.1MOVP0,ASETB P2.0NOPCLRP2.0LOOP2: MOVA,R1;位选码MOVP0,ASETB P2.1MOVR5,#250LOOP3: DJNZ R5,LOOP3CLRP2.1SJMP LOOPKPIN3: INCR3CJNE A,#0FFH,KPIN2EXIT: RETTABKP: DB0EEH,0DEH,0BEH,7EH,0EDH,0DDH,0BDH,7DH,0EBHDB 0DBH,0BBH,7BH,0E7H,0D7H,0B7H,77H,67H,0FFHTAB: DB77H,44H,3EH,6EH,4DH,6BH,7BH,46H,7FH,6FH,5FHDB 79H,33H,7CH,3BH,1BHEND八.调试出现的问题及解决问题1:程序正常运行,但按键显示出现乱码解决:动态显示笔形码错误,并改正。
实验四键盘扫描及显示设计实验报告
实验四键盘扫描及显⽰设计实验报告实验四键盘扫描及显⽰设计实验报告⼀、实验要求1. 复习⾏列矩阵式键盘的⼯作原理及编程⽅法。
2. 复习七段数码管的显⽰原理。
3. 复习单⽚机控制数码管显⽰的⽅法。
⼆、实验设备1.PC 机⼀台2.TD-NMC+教学实验系统三、实验⽬的1. 进⼀步熟悉单⽚机仿真实验软件 Keil C51 调试硬件的⽅法。
2. 了解⾏列矩阵式键盘扫描与数码管显⽰的基本原理。
3. 熟悉获取⾏列矩阵式键盘按键值的算法。
4. 掌握数码管显⽰的编码⽅法。
5. 掌握数码管动态显⽰的编程⽅法。
四、实验内容根据TD-NMC+实验平台的单元电路,构建⼀个硬件系统,并编写实验程序实现如下功能:1.扫描键盘输⼊,并将扫描结果送数码管显⽰。
2.键盘采⽤ 4×4 键盘,每个数码管显⽰值可为 0~F 共 16 个数。
实验具体内容如下:将键盘进⾏编号,记作 0~F,当按下其中⼀个按键时,将该按键对应的编号在⼀个数码管上显⽰出来,当再按下⼀个按键时,便将这个按键的编号在下⼀个数码管上显⽰出来,数码管上可以显⽰最近 4 次按下的按键编号。
五、实验单元电路及连线矩阵键盘及数码管显⽰单元图1 键盘及数码管单元电路实验连线图2实验连线图六、实验说明1. 由于机械触点的弹性作⽤,⼀个按键开关在闭合时不会马上稳定地接通,在断开时也不会⼀下⼦断开。
因⽽在闭合及断开的瞬间均伴随有⼀连串的抖动。
抖动时间的长短由按键的机械特性决定,⼀般为 5~10ms。
这是⼀个很重要的时间参数,在很多场合都要⽤到。
键抖动会引起⼀次按键被误读多次。
为了确保 CPU 对键的⼀次闭合仅做⼀次处理,必须去除键抖动。
在键闭合稳定时,读取键的状态,并且必须判别;在键释放稳定后,再作处理。
按键的抖动,可⽤硬件或软件两种⽅法消除。
2. 为了减少键盘与单⽚机接⼝时所占⽤ I/O 线的数⽬,在键数较多时,通常都将键盘排列成⾏列矩阵形式。
3. 从数码管显⽰⽅式看,数码管分为静态显⽰和动态显⽰两种⽅式。
4 4键盘扫描实验
4*4键盘扫描实验目的:1. 熟悉51系列单片机矩形4*4键盘扫描的工作原理。
2. 掌握4*4键盘扫描的编程方法。
实验原理:键盘实际上是由排列成矩阵形式的一系列按键开关组成的,它是单片机系统中最常用的人机联系的一种输入设备。
用户通过键盘可以向CPU输入数据、地址和命令。
键盘按其结构形式可分为编码式键盘和非编码式键盘两大类。
编码式键盘是由其内部硬件逻辑电路自动产生被按键的编码。
这种键盘使用方便,但价格较贵。
4×4表示有4根行线和4根列线,在每根行线和列线的交叉点上均分布1个单触点按键,共有16个按键。
行扫描法所谓行扫描法,就是通过行线发出低电平信号,如果该行线所连接的键没有按下的话,则列线所连接的输出端口得到的是全“1”信号;如果有键按下的话,则得到的是非全“1”信号。
列扫描法所谓列扫描法,就是通过列线发出低电平信号,如果该列线所连接的键没有按下的话,则列线所连接的输出端口得到的是全“1”信号;如果有键按下的话,则得到的是非全“1”信号。
实验内容:1.编写一程序,4*4键盘扫描#include"reg51.h"#define uchar unsigned char#define uint unsigned intuchar keyno;uchar disp[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c,0x39,0x5e,0x79,0x71}; uchar lieno;void delay1ms(uchar i){uchar j;while(i--)for(j=0;j<110;j++);}void main(){uchar tem;P0=0xff;while(1){P1=0x0f;if(P1!=0x0f)delay1ms(5);if(P1!=0x0f)tem=P1^0x0f;switch (tem){case 0x01:lieno=0;break;case 0x02:lieno=4;break;case 0x04:lieno=8;break;case 0x08:lieno=12;break;default :lieno=16;}P1=0xf0;tem=(P1>>4)^0x0f;switch (tem){case 0x01:keyno=lieno;break;case 0x02:keyno=lieno+1;break;case 0x04:keyno=lieno+2;break;case 0x08:keyno=lieno+3;}P0=disp[keyno];delay1ms(10);}}。
硬件实验七 键盘扫描显示实验
硬件实验七 键盘扫描显示实验
一、实验要求
在上一个实验的基础上,利用实验仪提供的键盘扫描电路和显示电路,做一个扫描键盘和数码显示实验,把按键输入的键码在六位数码管上显示出来。
实验程序可分成三个模块。
①键输入模块:扫描键盘、读取一次键盘并将键值存入键值缓冲单元。
②显示模块:将显示单元的内容在显示器上动态显示。
③主程序:调用键输入模块和显示模块。
二、实验目的
1、掌握键盘和显示器的接口方法和编程方法。
2、掌握键盘扫描和LED 八段码显示器的工作原理。
三、实验电路及连线
这里只是键盘草图,详细原理参见图1
四、实验说明
本实验仪提供了一个6×4的小键盘,向列扫描码地址(0X002H)逐列输出低电平,然后从行码地址(0X001H)读回。
如果有键按下,则相应行的值应为低,如果无键按下,由于上拉的作用,行码为高。
这样就可以通过输出的列码和读取的行码来判断按下的是什么键。
在判断有键按下后,要有一定的延时,防止键盘抖动。
地址中的X 是由KEY/LED CS 决定,参见地址译码。
做键盘和LED 实验时,需将KEY/LED CS 接到相应的地址译码上。
以便用相应的地址来访问。
例如将KEY/LED CS 信号接CS0上,则列扫描地址为08002H ,行码地址为08001H 。
列扫描码还可以分时用作LED 的位选通信号。
读回行码 (0X001H)
列码
(0X002H)
数据总线
五、实验框图。
【单片机实验七】键盘扫描及显示设计实验
程序及注解见附件CLEAR: MOV DPTR, #B_8255 ;清屏 MOV A,#00H MOVX @DPTR,A RET DIS: PUSH ACC ;显示子程序 PUSH 00H PUSH 03H MOV R0,#50H ;显示缓冲首地址 MOV R3,#0DFH ;显示扫描值AGAIN: MOV A,#0FFH ;关闭显示 MOV DPTR,#A_8255 MOVX @DPTR,A MOV A,@R0 MOV DPTR,#DSEGS ;数码管段表地址 MOVC A,@A+DPTR ;查表 MOV DPTR,#B_8255 ;送段显示 MOVX @DPTR,A MOV A,R3 MOV DPTR,#A_8255 MOVX @DPTR,A ACALL DL1MS INC R0 ;显示缓冲加1 MOV A,R3 JNB ACC.0,OUT ;扫描结束否 RR A ;向右移一位 MOV R3,A AJMP AGAIN OUT: POP 03H POP 00H POP ACC RET ;数码管段显示值DSEGS: DB 03FH, 06H,05BH,04FH,066H,06DH,07DH, 07H DB 07FH,06FH,077H,07CH,039H,05EH,079H,071H DL1MS: MOV R7,#01H DL0: MOV R6,#080H DL1: DJNZ R6,DL1 DJNZ R7,DL0 RET PUTBUF: PUSH 00H ;保存键值到缓冲RAM 中 PUSH ACC MOV A,R5 MOV R0,A POP ACC MOV @R0,A DEC R5 CJNE R5,#04FH,GOBACK MOV R5,#55H ;重置缓冲地址GOBACK: POP 00H RET END ;==============================================================; 文件名称: KeyScan.Asm; 功能描述: 8255扩展IO, 完成键盘及数码管显示实验.; 按下按键, 数码管显示相应键值.;==============================================================A_8255 EQU 7F00H ;8255端口定义B_8255 EQU 7F01HC_8255 EQU 7F02HCON_8255 EQU 7F03HORG 0000HLJMP MAINORG 0100HMAIN: MOV 50H,#00H ;键值缓冲清0MOV 51H,#00HMOV 52H,#00HMOV 53H,#00HMOV 54H,#00HMOV 55H,#00HMOV R5, #55HMOV A, #81H MOV DPTR, #CON_8255 ;8255控制端口MOVX @DPTR, A ;写入控制字BEGIN: LCALL DIS ;调用显示子程序LCALL CLEAR ;清屏LCALL CCSCAN ;调用键扫子程序JNZ INK1 ;判是否有键按下LJMP BEGININK1: LCALL DISLCALL DL1MS ;消除按键抖动LCALL DL1MSLCALL CLEARLCALL CCSCANJNZ INK2AJMP BEGININK2: MOV R2,#0FEHMOV R4,#00H ;从第0列开始扫描COLUM: MOV DPTR,#A_8255MOV A,R2MOVX @DPTR,A ;写入列扫描值MOV DPTR, #C_8255MOVX A,@DPTRJB ACC.0,LINE1 ;判第0行的值MOV A,#00H ;第0行AJMP KCODELINE1: JB ACC.1,LINE2MOV A,#04H ;第1行AJMP KCODELINE2: JB ACC.2,LINE3MOV A,#08H ;第2行AJMP KCODELINE3: JB ACC.3,NEXTMOV A, #0CH ;第3行KCODE: ADD A,R4 ;得到键值ACALL PUTBUFPUSH ACCKON: ACALL DISACALL CLEARACALL CCSCANJNZ KONPOP ACCNEXT: INC R4MOV A,R2JNB ACC.4,KERRRL AMOV R2,AAJMP COLUMKERR: AJMP BEGINCCSCAN: MOV DPTR,#A_8255 ;按键扫描MOV A,#00HMOVX @DPTR,AMOV DPTR,#C_8255MOVX A,@DPTRCPL A ;取反ANL A,#0FHRET。
键盘扫描输入实验
4.1键盘扫描输入实验4.1.1 实验目的1.学习复杂数字系统的设计方法;2.掌握矩阵式键盘输入列阵的设计方法。
4.1.2 实验设备PC微机一台,TD-EDA试验箱一台,SOPC开发板一块。
4.103 实验内容在电子,控制,信息处理等各种系统中,操作人员经常需要想系统输入数据和命令,以实现人机通信。
实现人机通信最常用的输入设备是键盘。
在EDA技术的综合应用设计中,常用的键盘输入电路独立式键盘输入电路、矩阵式键盘输入电路和“虚拟式”键盘输入电路。
所谓矩阵是键盘输入电路,就是将水平键盘扫描线和垂直输入译码线信号的不同组合编码转换成一个特定的输入信号值或输入信号编码,利用这种行列矩阵结构的键盘,只需N 个行线和M个列线即可组成NXM按键,矩阵式键盘输入电路的优点是需要键数太多时,可以节省I/O口线;缺点是编程相对困难。
本实验使用TD-EDA实验系统的键盘单元设计一个4x4的矩阵键盘的扫描译码电路。
此设计包括键盘扫描模块和扫描码锁存模块,原理如图4-1-1。
每按下键盘列阵的一个按键立即在七段数码管上显示相应的数据。
4.1.1 实验步骤1. 运行Quartus II 软件,分别建立新工程,选择File->New菜单,创建VHDL描述语言设计文件,分别编写JPSCAN.VHD、REG.VHD.2.扫描码锁存模块REG的VHDL源程序如下;--输入锁存器VHDL源程序:REGVHDLLIBRARY IEEE;USB IEEE.STD-LOGIC-1164.ALL;ENTITY REG ISPORT ( RCLK : IN STD-LOGIC; --扫描时钟YXD : IN STD-LOGIC-VECTOR(3 DOWNTO 0); --Y 列消抖输入DATA : IN STD-LOGIC-VECTOR(7 DOWNTO 0); --输入数据LED : OUT STD-LOGIC- VECTOR(7 DOWNTO 0)); --锁存数据输出END ENTITY REG;ARCHITECTURE BEHV OF REG ISSIGNAL RST : STD-LOGIC; --锁存器复位清零SIGNAL OLDDATA : STD-LOGIC- VECTOR(7 DOWNTO 0); --锁存器旧数据SIGNAL NEWDATA : STD-LOGIC- VECTOR(7 DOWNTO 0); --锁存器新数据BEGINPROCESS(RCLK)BEGINIF RCLK’EVENT AND RCLK=’1’THENRST<=YXD(3)AND YXD(2)AND YXD(1))AND YXD(0); --判断是否有按键END IF;END PROCESS;PROCESS(RST) ISBEGINIF(RST=‘1’)THEN --RST=1没有按键按下NEWDATA<=OLDDATA;ELSEOLDDATA<=DATA; --RST=0有按键按下打入新据END IF;LED<=NEWDATA;END PORCESS;END ARCHIECTUBE BEHV;3. 键盘扫描模块JPSCAN的VHDL源程序如下;--键盘扫描电路的VHDL源程序;JPSCAN.VHDLIBRARY IEEE;USB IEEE-STD-LOGIC-1164-ALL;USB IEEE-STD-LOGIC-ARITH-ALL;USB IEEE-STD-LOGIC-UNSIGNED-ALL;ENTITY JPSCAN ISPORT(SCLK : IN STD-LOGIC --系统时钟:1KHZ YLINE : IN STD-LOGIC-VECTOR(4 DOWN 1); --Y列按键输入RCLK : OUT STD-LOGIC; --X行键盘扫描时钟YXD : OUT STD-LOGIC-VECTOR(3 DOWN 0); --Y列消抖输出DATA : OUT STD-LOGIC-VECTOR(7 DOWN 0); --数字输出XROW : OUT STD-LOGIC-VECTOR(4 DOWN 1); --X行键盘扫描END ENTITY JPSCAN;ARCHITECTURE BEHV OF JPSCAN ISCOMPONENT JPXD IS --控制电路工作时钟:512HzSIGNAL KEY-SCAN:STD-LOGIC-VECTOR(1 DOWNTO 0); --键盘扫描时钟信号--“00-01-10-11”SIGNAL CLK-JPXD : STD-LOGIC; --去抖电路工作时钟SIGNAL Y-XD : STD-LOGIC-VECTOR(3 DOWNTO 0); --键盘列输入去抖后的寄存器SIGNAL X-SCAN : STD-LOGIC-VECTOR(3 DOWNTO 0) --键盘行扫描输出寄存器--1110-1101-1011-0111 SIGNAL VALUE : STD-LOGIC-VECTOR(7 DOWNTO 0); --按键译码数值寄存器BEGINDATA<=VALUE;COUNTER:BLOCK IS --信息扫描发生器SIGNAL Q :STD-LOGIC-VECTOR(6 DOWNTO 0); --计数器实现分频BEGINPROCESS(SCLK)ISBEGINIF SCLK’EVENT AND SCLK=’THENQ<=Q+1;END IF;CLK<=Q(0); --控制电路工作时钟:512Hz,系统时钟的二分频CLK-JPXD<=Q(2); --去抖时钟信号,大约128HzKEY-SCAN<=Q(6 DOWNTO 5); --产生键盘扫描信号00-01-10-11,大约16Hz END PROCESS;X-SCAN<=”1110”WHEN KEY-SCAN=”00”ELSE”1101”WHEN KEY-SCAN=”01”ELSE”1011”WHEN KEY-SCAN=”10”ELSE”0111”WHEN KEY-SCAN=”11”ELSE“1111”XROW(4 DOWNTO 1)<=X-SCAN(3 DOWNTO 0); --X行扫描END BLOCK COUNTER;JPXDMK:BLOCK IS --键盘去抖模块BEGINU1:JPXD PORT MAP(D-IN=>YLINE(1),D-OUT=>Y-XD(0),CLK=>CLK-JPXD);U2:JPXD PORT MAP(D-IN=>YLINE(2),D-OUT=>Y-XD(1),CLK=>CLK-JPXD);U3:JPXD PORT MAP(D-IN=>YLINE(3),D-OUT=>Y-XD(2),CLK=>CLK-JPXD);U4:JPXD PORT MAP(D-IN=>YLINE(4),D-OUT=>Y-XD(3),CLK=>CLK-JPXD);YXD(3 DOWNTO 0)<=Y-XD(3 DOWNTO 0);RCLK<=CLK; --键盘扫描时钟等于控制电路工作时钟:512Hz END BLOCK JPXDMK;KEY-DECODER : BLOCK IS --键盘译码模块SIGNAL Z:STD-LOGIC-VECTOR(5 DOWNTO 0);BEGINPORCESS(CLK)BEGINZ<=KEY-SCAN&Y-XD;IF CLK’EVENT AND CLK=’1’THENCASE Z ISWHEN”001110”=>VALUE<=”00111111”; --0WHEN”011110”=>VALUE<=”00000110”; --1WHEN”101110”=>VALUE<=”01011011”; --2WHEN”111110”=>VALUE<=”01001111”; --3WHEN”001101”=>VALUE<=”01100110”; --4WHEN”011101”=>VALUE<=”01101101”; --5WHEN”101101”=>VALUE<=”01111101”; --6WHEN”111101”=>VALUE<=”00000111”; --7WHEN”001001”=>VALUE<=”01111111”; --8WHEN”011011”=>VALUE<=”01101111”; --9WHEN”101011”=>VALUE<=”01110111”; --AWHEN”111011”=>VALUE<=”01111100”; --BWHEN”000111”=>VALUE<=”00111001”; --CWHEN”010111”=>VALUE<=”01011110”; --DWHEN”100111”=>VALUE<=”01111001”; --EWHEN”110111”=>VALUE<=”01110001”; --FWHEN OTHERS => VALUS<=”00000000”; --OTHER END CASE;END IF;END PROCESS;END BLOCK KEY-DECODER;END ARCHITECTURE BEHV;4. 上述程序中键盘消抖模块JPXD的VHDL源程序如下:--键盘输入消抖电路的VHDL源程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CPU键盘扫描实验
电路图如下:
要求按下s1键时,p3口的8位LED正向流水点亮;按下s2键时,p3口的8位LED反向流水点亮;按下s3键时,p3口的8位LED 熄灭;按下s4键时,p3口的8位LED闪烁。
程序代码:
#include<reg51.h>
unsigned char tab[ ]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //段码表
sbit S1=P1^4; //将S1位定义为P1.4引脚
sbit S2=P1^5; //将S2位定义为P1.5引脚
sbit S3=P1^6; //将S3位定义为P1.6引脚
sbit S4=P1^7; //将S4位定义为P1.7引脚
/*流水灯延时*/
void delay0()
{
unsigned char i,j;
for(i=0;i<250;i++)
for(j=0;j<250;j++)
;
}
/*软件消抖延时*/
void delay1()
{
unsigned char i,j;
for(i=0;i<100;i++)
for(j=0;j<100;j++)
;
}
/*正转*/
void zheng()
{
int i;
for(i=0;i<8;i++)
{P3=tab[i];
delay0();}
}
/*反转*/
void fan()
{
int i;
for(i=7;i>=0;i--)
{P3=tab[i];
delay0();}
}
/*关闭*/
void close()
{
P3=0xff;
}
/*闪烁*/
void shan()
{
P3=0xff;
delay0();
P3=0x00;
delay0();
}
void main()
{
int key=0;
while(1)
{
P1=0xf0;
if((P1&0xf0)!=0xf0)
{
delay1();
if((P1&0xf0)!=0xf0)
{
if(S1==0)
key=1;
if(S2==0)
key=2;
if(S3==0)
key=3;
if(S4==0)
key=4;
}
}
switch(key)
{
case 1: zheng();
break;
case 2: fan();
break;
case 3: close();
break;
case 4: shan();
break;
}
}
}
说明:在s1键按下后,LED正向流水亮;要想反向亮,按s2键时按下时间长一点。
下面介绍一个用951中定时器扫描中断的方法。
实验电路图同上,用定时器T1每1ms扫描一次键盘,这样便可以很好地实现键盘控制功能。
代码如下:
#include<reg51.h>
unsigned char tab[ ]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //段码表sbit S1=P1^4; //将S1位定义为P1.4引脚
sbit S2=P1^5; //将S2位定义为P1.5引脚
sbit S3=P1^6; //将S3位定义为P1.6引脚
sbit S4=P1^7; //将S4位定义为P1.7引脚
unsigned char key=0;
/*流水灯延时*/
void delay0()
{
unsigned char i,j;
for(i=0;i<250;i++)
for(j=0;j<250;j++)
;
}
/*软件消抖延时*/
void delay1()
{
unsigned char i,j;
for(i=0;i<100;i++)
for(j=0;j<100;j++)
;
}
/*正转*/
void zheng()
{
int i;
for(i=0;i<8;i++)
{P3=tab[i];
delay0();}
}
/*反转*/
void fan()
{
int i;
for(i=7;i>=0;i--)
{P3=tab[i];
delay0();}
}
/*关闭*/
void close()
{
P3=0xff;
}
/*闪烁*/
void shan()
{
P3=0xff;
delay0();
P3=0x00;
delay0();
}
void main()
{
TMOD=0x10; //定时器1工作与状态1
EA=1; //开总中断
ET1=1; //开定时器1中断
TH1=(65536-1000)/256; //每1毫秒扫描一次
TL1=(65536-1000)%256;
TR1=1; //启动定时器1
while(1)
{
switch(key)
{
case 1: zheng();
break;
case 2: fan();
break;
case 3: close();
break;
case 4: shan();
break;
}
}
}
void int1() interrupt 3 using 0
{
P1=0xf0;
TR1=0;
if((P1&0xf0)!=0xf0) //判断是否有按键按下{
delay1(); //用软件延时消抖
if((P1&0xf0)!=0xf0) //再判断
{
if(S1==0)
key=1;
if(S2==0)
key=2;
if(S3==0)
key=3;
if(S4==0)
key=4;
}
}
TH1=(65536-1000)/256;
TL1=(65536-1000)%256;
TR1=1;
}。