硝化反硝化资料
硝化与反硝化
3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。
上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
硝化与反硝化
污水深度处理的硝化与反硝化(2007-08-12 10:48:15)转载▼标签:环保、污水处理污水深度处理的硝化与反硝化一。
硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。
硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度 t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。
57克O2消耗7。
14克碱度(擦C a Co3计)生成0。
17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。
硝化反硝化
硝化反硝化一、硝化反应在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:二、反硝化反应在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。
反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。
反硝化反应方程式为:NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH-三、短程硝化反硝化短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。
短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。
影响因素:1、pH硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。
当pH降到5.5以下,硝化反应几乎停止。
反硝化细菌最适宜的pH值为7.0~7.5之间。
考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。
2、溶解氧(DO)硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。
反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。
反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。
3、温度生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。
亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。
硝化反应与反硝化反应原理
硝化反应与反硝化反应原理
硝化反应和反硝化反应是地球上氮循环中重要的过程。
在硝化反应中,氨被氧化成亚硝酸和硝酸,这些化合物可以被植物吸收并转化为蛋白质。
反硝化反应是硝化反应的相反过程,它发生在有机物分解的缺氧环境中,硝酸和亚硝酸被还原为氮气和氮氧化物,释放出能量。
硝化和反硝化反应的原理是基于微生物的代谢作用,其中参与的微生物包括氨氧化细菌、硝化细菌、反硝化细菌等。
这些微生物将氨、亚硝酸和硝酸等化合物作为能源来源,并将其转化为其他形式的氮化合物,从而使氮在生物圈中循环。
在硝化反应中,氨被氧化成亚硝酸和硝酸,这些产物可以进一步转化为硝酸盐。
反硝化反应则是硝酸盐被还原成氮气和氮氧化物,这些产物被释放到大气中。
硝化和反硝化反应对环境有重要影响。
硝酸盐的过度积累会导致水体富营养化,引起藻类大量繁殖,造成水体缺氧和死亡。
反硝化反应产生的氧化亚氮和氧化氮则会对臭氧层产生负面影响。
因此,科学家们需要深入了解这些过程,以便更好地保护环境。
- 1 -。
硝化反硝化
A、硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。
他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。
硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。
其相应的反应式为:亚硝化反应方程式:55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3硝化反应方程式:400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O硝化过程总反应式:NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。
在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。
B、反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。
反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。
当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和OH-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。
污水处理中的硝化与反硝化过程
污水处理厂的硝化与反硝化应用
污水处理厂是硝化与反硝化过程的重要应用场所,通过硝化反应将有机 氮转化为硝酸盐,再通过反硝化反应将硝酸盐转化为氮气,从而达到去 除氮污染物的目的。
硝化反应通常在好氧条件下进行,由硝化细菌将氨氮氧化成硝酸盐;反 硝化反应则在缺氧条件下进行,由反硝化细菌将硝酸盐还原成氮气。
THANKS
THANK YOU FOR YOUR WATCHING
硝化反应的微生物学基础
硝化细菌是一类好氧性细菌,能够将氨氮氧化成硝酸盐。
硝化细菌主要包括亚硝化Байду номын сангаас菌和硝化细菌两类,分别负责亚硝化和硝化两个阶段 。
硝化反应的影响因素
溶解氧
硝化反应是好氧反应,充足的溶解氧是保证硝化 反应顺利进行的关键。
pH值
硝化细菌适宜的pH值范围为7.5-8.5。
ABCD
温度
硝化细菌对温度较为敏感,适宜的温度范围为 20-30℃。
应对气候变化
资源回收利用
探索污水处理过程中资源的回收利用,如能源、肥 料等,提高污水处理的经济效益和社会效益。
随着气候变化加剧,污水处理系统需应对极 端天气和自然灾害的挑战,保障硝化与反硝 化过程的稳定运行。
国际合作与交流
加强国际合作与交流,引进先进技术与管理 经验,推动硝化与反硝化技术的创新发展。
害。
城市污水处理中的硝化与反硝化应用
城市污水中的氮污染物主要来源于生活污水和部分工业废水,硝化与反硝化过程在 城市污水处理中具有重要作用。
城市污水处理厂通常采用生物反应器进行硝化与反硝化反应,通过合理控制反应条 件,提高脱氮效率。
城市污水处理中的硝化与反硝化应用可以有效降低水体中氮污染物含量,改善城市 水环境质量。
硝化反应和反硝化反应
一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3-0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3-需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。
硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。
当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。
b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。
最适合PH为8.0-8.4。
碱度维持在70mg/L以上。
碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。
15℃以下时,硝化反应速度急剧下降;5℃时完全停止。
d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。
e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。
因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。
总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。
硝化与反硝化
3C5H7O2N+19H2O 式中C5H7O2N为反硝化微生物的化学组成。
反硝化还原和微生物合成的总反应式为: NO3-+1.08CH3OH+H+―――→ 0.065C5H7O2N+0.47N2+0.76CO2+ 2.44H2O 从以上的过程可知,约 96%的NO3--N经异化 过程还原,4%经同化过程合成微生物。
日出东方 希望中国
硝化与反硝化
(公用工程污水车间)
生物脱氮除磷技术
一、 废水中氮的处理技术
(一)概述
废水中氮的存在形式 有机氮 氨氮 亚硝酸氮 硝酸氮
生活污水中,主要含有有机氮和氨氮。
当污水中的有机物被生物降解氧化时,其 中的有机氮被转化为氨氮。
经活性污泥法处理的污水有相当数量的 氨氮排入水体,可导致水体富营养化。 水体若为水源,将增加给水处理的难度 和成本。
(三)生物脱氮工艺
1、三段生物脱氮工艺
2、Bardenpho生物脱氮工艺
3、A/O生物脱氮工艺
4、SBR工艺 5、氧化沟工艺
(四)物理化学脱氮技术
1、空气吹脱法脱氮工艺 2、折点氯氧化法脱氮工艺
谢谢大家
下降
下降
硝化菌的泥龄
硝化菌的生长世代周期较长,为了保证硝化作 用的进行,泥龄应取大于硝化菌最小世代时间两 倍以上。
溶解氧
硝化反应对溶解氧有较高的要求,处理 系统中的溶
硝化菌受PH值的影响很敏感,适宜的 PH值7-8。 在废水中保持足够的碱度,以调节PH值 的变化。
(2)反硝化反应
定义 反硝化反应是指在无氧条件下,反硝 化菌将硝酸盐氮(NO3-)和亚硝酸盐氮(
NO2-)还原为氮气的过程。
6NO3-+2CH3OH―――→6NO2-+2CO2+4H2O
污水处理技术之关于硝化反硝化的碳源、碱度的计算
污水处理技术之关于硝化反硝化的碳源、碱度的计算一、硝化细菌硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。
他包括两个基本反应步骤:由亚硝酸菌(N i t r o s o m o n a s s p)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(N i t ro b a c t e r s p)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用C O2、C O32-、H C O3-等做为碳源,通过N H3、N H4+、或N O2-的氧化还原反应获得能量。
硝化反应过程需要在好氧(A e ro bi c或O x i c)条件下进行,并以氧做为电子受体,氮元素做为电子供体。
其相应的反应式为:亚硝化反应方程式:55N H4++76O2+109H C O3→C5H7O2N﹢54N O2-+57H2O+104H2C O3硝化反应方程式:400N O2-+195O2+N H4-+4H2C O3+H C O3-→C5H7O2N+400N O3-+3H2O硝化过程总反应式:N H4-+1.83O2+1.98H C O3→0.021C5H7O2N+0.98N O3-+1.04H2O+1.884H2C O3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以C a C O3计)碱度。
在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子N H4-→羟胺N H2O H→硝酰基N O H→亚硝酸盐N O2-→硝酸盐N O3-。
二、反硝化细菌反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。
反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。
当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和O H-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。
同步硝化反硝化原理
同步硝化反硝化原理
硝化是指将氨氮氧化为亚硝酸盐和硝酸盐的过程,而反硝化是指将亚硝酸盐和硝酸盐还原为氮气气体的过程。
同步硝化反硝化是指同时进行硝化和反硝化的过程。
该过程常应用于废水处理厂等环境中,以去除废水中的氨氮。
在同步硝化反硝化过程中,首先是硝化反应。
硝化反应是由硝化细菌完成的,其中亚硝化细菌将氨氮氧化成亚硝酸盐,然后亚硝化细菌再将亚硝酸盐氧化为硝酸盐。
硝化过程需要较高的氧气供应,因此通常在好氧条件下进行。
接下来是反硝化反应。
反硝化反应是由反硝化细菌完成的,其中反硝化细菌将硝酸盐和亚硝酸盐还原为氮气气体。
反硝化过程是在缺氧条件下进行的,因此需要提供适量的碳源,并控制氧含量较低。
在同步硝化反硝化过程中,硝化和反硝化两种反应是同时进行的。
这种同步操作使得废水中的氨氮能够被迅速转化为氮气气体,从而实现废水的脱氮。
同步硝化反硝化技术具有高效、省能、无需药剂等优点,因此在废水处理领域得到广泛应用。
硝化反应与反硝化反应原理
硝化反应与反硝化反应原理硝化反应与反硝化反应是生态系统中氮循环的重要环节。
硝化反应是指将氨和铵离子转化为亚硝酸和硝酸盐的化学反应。
而反硝化反应则是将硝酸盐还原为气体态的氮,释放到大气中的化学反应。
这两种反应是氮循环在生态系统中不可或缺的环节。
硝化反应是由硝化细菌完成的。
首先,氨通过生物膜才可以进入到硝化细菌的细胞内。
目前已知的硝化细菌有两种:硝化氨氧化细菌和硝化亚硝酸氧化细菌。
前者将氨(NH3)氧化为亚硝酸(NO2-);后者将亚硝酸进一步氧化为硝酸盐(NO3-),这个过程是通过一种叫硝化酶的酶来完成的。
硝化反应在土壤和水田都会发生。
在农业生产中,土壤中增加化肥的使用,硝化反应对土壤肥力有着很大的影响。
因为硝酸盐在土壤中很容易被淋走,这会导致土壤中的氮元素流失。
此外,硝酸盐还会被植物吸收,但过多的吸收会导致植物生长,从而影响农作物的产量和质量。
反硝化反应是一个与生态系统中的微生物有关的过程,由一组还原细菌完成。
在气体态的氮缺乏的条件下,通过还原硝酸盐来释放氮气。
这种反应通常在水中或土壤中发生,微生物通过吸收和代谢硝酸盐、亚硝酸盐等物质来获得自主产生的能量,同时还可以还原硝酸盐为氮气,并释放到环境中。
反硝化反应在生态系统中,起到了重要的作用,它可以释放出大量的氮气,在一定程度上可以改善水体的气体浓度,使水体的呼吸更加顺畅。
同时,这个过程也会为氮的循环提供必要的不同形态的氮营养素。
综上所述,硝化反应与反硝化反应是生态系统中的重要过程。
硝化反应将氨或铵离子转化为亚硝酸和硝酸盐,反硝化反应则释放出大量的氮气。
它们促进了生态系统中氮循环的进行和维持生态平衡的重要作用。
污水处理干货:硝化-反硝化工艺
污水处理干货:硝化-反硝化工艺随着环保政策的日趋严格,对氮磷的严格要求日益突出,我们如果依旧以去除有机物的思路设计污水处理站,将导致污水处理站难以挖掘生化工艺的潜力,总氮去除效率跟不上,导致后期的重复建设,同时没能充分利用原有污水处理站的有机物营养,而致使投资运行成本提高。
掌握更深度的污水处理知识,对提升环保技能水平、降低投资与运行成本至关重要。
一、硝化与反硝化基础知识废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
1、硝化与反硝化(一)硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
反应过程如下:亚硝酸盐菌(8-36h)NH4++3/2O2→NO2-+2H++H2O-△E E=278。
42KJ第二步亚硝酸盐转化为硝酸盐:酸盐菌(12-59h)NO-+1/2O2 →NO3--△E △E=278。
42KJ这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。
上诉两式合起来写成:NH4++2O2 →NO3-+2H++H2O-△E △E=351KJNH4++1。
83O2+1。
98HCO3-→0。
02C5H7O2N+0。
98 NO3-+1。
04 H2O+1。
88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4。
57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7。
lg。
(3)水中BOD不宜过高,20mg/L以下,否则会使增值速率较大的异氧细菌迅速增殖,使自养型的硝化细菌受到排挤,难以形成优势菌种,使硝化反应难以进行。
(1)pH值当pH值为8。
0~8。
4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH 值在7。
5以上;(2)温度温度高时,硝化速度快。
反硝化硝化
一、氮的去除废水中的氮以有机氮、氨氮、亚硝酸氮和硝酸氮四种形式存在。
1. 化学法除氮(1) 吹脱法:废水中,NH 3与NH 4+以如下的平衡状态共存:-++↔+OH NH O H NH 423这一平衡受pH 的影响,pH 为10.5~11.5时,因废水中的氮呈饱和状态而逸出,所以吹脱法常需加石灰。
吹脱过程包括将废水的pH 提高至10.5~11.5,然后曝气,这一过程在吹脱塔中进行。
(2) 折点加氯法:含氨氮的水加氯时,有下列反应:-+++↔+Cl H HOCl O H Cl 22O H H Cl NH HOCl NH 224++↔+++O 2H H NHCl 2HOCl NH 224++↔+++O 3H H NCl 3HOCl NH 234++↔+++O 3H 3Cl 5H N 3HOCl 2NH 224+++↑↔+-++通过适当的控制,可完全去除水中的氨氮。
为减少氯的投加量,常与生物硝化联用,先硝化再除微量的残留氨氮。
(3) 离子交换法:常用天然的离子交换剂,如沸石等。
与合成树脂相比,天然离子交换剂价格便宜且可用石灰再生。
2. 生物法脱氮(1) 生物脱氮机理同化作用去除的氮依运行条件和水质而定,如果微生物细胞中氮含量以12.5%计算,同化氮去除占原污水BOD 的2%~5%,氮去除率在8%~20%。
生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N 2和N x O 气体的过程。
其中包括硝化和反硝化两个反应过程。
氨化反应:新鲜污水中,含氮化合物主要是以有机氮,如蛋白质、尿素、胺类化合物、硝基化合物以及氨基酸等形式存在的,此外也含有少数的氨态氮如NH 3及NH 4+等。
微生物分解有机氮化合物产生氨的过程称为氨化作用,很多细菌、真菌和放线菌都能分解蛋白质及其含氮衍生物,其中分解能力强并释放出氨的微生物称为氨化微生物,在氨化微生物的作用下,有机氮化合物分解、转化为氨态氮,以氨基酸为例:322NH RCOHCOOH O H COOH RCHNH +→+3222NH CO RCOCOOH O COOH RCHNH ++→+硝化反应:硝化反应是在好氧条件下,将NH4+转化为NO 2-和NO 3-的过程。
硝化反应和反硝化反应原理
硝化反应和反硝化反应原理
硝化反应是向有机物分子中引入硝基的反应过程。
脂肪族化合物硝化时有氧化-断键副反应,工业上很少采用。
硝基甲烷、硝基乙烷、1-和2-硝基丙烷四种硝基烷烃气相法生产过程,是30年代美国商品溶剂公司开发的。
迄今该法仍是制取硝基烷烃的主要工业方法。
此外,硝化也泛指氮的氧化物的形成过程。
反硝化,也称脱氮作用,是指细菌将硝酸盐中的氮通过一系列中间产物还原为氮气的生物化学过程。
参与这一过程的细菌统称为反硝化菌。
反硝化菌在无氧条件下,通过将硝酸盐作为电子受体完成呼吸作用(respiration)以获得能量。
这一过程是硝酸盐呼吸(nitraterespiration)的两种途径之一,另一种途径是是硝酸异化还原成铵盐(DNRA)。
硝化主要方法
硝化过程在液相中进行,通常采用釜式反应器。
根据硝化剂和介质的不同,可采用搪瓷釜、钢釜、铸铁釜或不锈钢釜。
用混酸硝化时为了尽快地移去反应热以保持适宜的反应温度,除利用夹套冷却外,还在釜内安装冷却蛇管。
产量小的硝化过程大多采用间歇操作。
产量大的硝化过程可连续操作,采用釜式连续硝化反应器或环型连续硝化反应器,实行多台串联完成硝化反应。
环型连续硝化反应器的优点是传热面积大,搅拌良好,生产能力大,副产的多硝基物和硝基酚少。
硝化方法主要有:稀硝酸硝化、浓硝酸硝化、在浓硫酸中用硝酸硝化、在有机溶剂中用硝酸硝化和非均相混酸硝化等。
硝化反应和反硝化反应
一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2 NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3- 0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2 NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3- 需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。
硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。
当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。
b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。
最适合PH为8.0-8.4。
碱度维持在70mg/L以上。
碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。
15℃以下时,硝化反应速度急剧下降;5℃时完全停止。
d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为 0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。
e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。
因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。
总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。
硝化作用及反硝化作用
硝化作用及反硝化作用
硝化作用(nitrification)氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。
氨转化为硝酸的氧化必须有O2参与,通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。
硝化细菌,先是亚硝化细菌将铵根(NH4+)氧化为亚硝酸根(N02-);然后硝化细菌再将亚硝酸根氧化为硝酸根(N03-)。
硝化作用所产生的硝酸盐(NO3-),因其自身的负电性而不容易被固定在正离子交换点(主要是腐殖质)多于负离子的土壤中。
反硝化作用,是指在厌氧条件下,微生物将硝酸盐及亚硝酸盐还原为气态氮化物和氮气的过程。
是活性氮以氮气形式返回大气的主要生物过程。
反硝化作用不仅在土壤中进行,还可在江河湖泊和海洋中进行。
发生反硝化作用的条件是:①反硝化微生物;②合适的电子供体,如有机碳化物、还原态硫
化物;③厌氧条件;④氮的氧化物。
土壤中已知能进行反硝化作用的微生物种类有24个属性。
绝大多数反硝化细菌是异养型细菌,亦有少数自养型细菌如反硝化硫杆菌。
影响反硝化作用的因素包括:①氧的供应,当氧的供应受到限制时发生反硝化作用;②碳的供应,如土壤有机质、根分泌物等;③硝酸盐的供应;④pH,在酸性土壤中,反硝化作用受到抑制。
硝化反硝化除氮原理
硝化反硝化除氮原理
硝化反硝化是一种常用的除氮方法,它通过微生物的作用将废水中的氨氮转化为硝酸盐氮,并将硝酸盐氮进一步还原为氮气,从而达到除氮的目的。
硝化反应是指通过硝化细菌,将废水中的氨氮氧化为亚硝酸盐氮,然后继续氧化为硝酸盐氮的过程。
在这个过程中,氨氮首先被硝化细菌转化为亚硝酸盐氮,其中产生了一定量的氧气。
然后,亚硝酸盐氮进一步被亚硝化细菌氧化为硝酸盐氮。
这个过程需要耗费一定的氧气。
而反硝化是指将硝酸盐氮还原为氮气的过程。
反硝化通常是在缺氧环境下进行,通过反硝化细菌将硝酸盐氮还原为亚硝酸盐氮,然后再进一步还原为亚氮酸盐氮,最终由亚氮酸盐氮生成氮气。
硝化反硝化除氮过程中,硝化细菌和反硝化细菌起着关键作用。
硝化细菌主要分解废水中的氨氮,将其氧化为硝酸盐氮;而反硝化细菌则负责将硝酸盐氮还原为氮气。
总的来说,硝化反硝化除氮原理是通过微生物的作用将氨氮氧化为硝酸盐氮,并将硝酸盐氮还原为氮气,达到除去废水中氮污染物的目的。
硝化反硝化资料
硝化与硝化反应4.1生物脱氮的过程和条件A、废水当中的氮分为有机氮和氨氮即硝酸与亚硝酸盐氮,氮的脱除经过以下三步反应(1)氨化反应。
在氨化菌的作用下,有机氮化合物分解,转化为氨氮。
(2)硝化反应。
在亚硝化与硝化菌的作用下,氨氮进一步分解氧化为亚硝酸与硝酸盐氮。
(3)反硝化反应。
在反硝化菌的作用下,少部分亚硝酸与硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态〔70~75%〕。
B、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH 值为8.0~8.4。
(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。
(3)适宜温度20~30℃。
(4)硝化菌在反应器中的停留时间必须大于最小世代时间。
(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以与络合阳离子。
(6)硝化过程NH3-N 耗于异化氧化和同化的经典公式NH4++1.83O2 +1.98HCO3- 0.98NO3-+0.021C5 H7NO2+1.88H2CO3+1.04H2 O因此表明,去除1gNH3-N 约:耗去4.33gO2;生成0.15g 细胞干物质;减少7.14g 碱度;耗去0.08g 无机碳。
C、反硝化反应的适宜条件:(1)最适宜的PH 值为6.5~7.5。
PH 高于8 或低于6,反硝化速率将大为降低。
(2)反硝化菌需要缺氧、好氧〔合成酶系统〕条件交替存在,系统DO≤0.5mg/l(3)最适宜温度为20~40℃,低于15℃,反硝化反应速率降低。
(4)BOD/TN≥3~5。
反硝化菌是异氧兼性厌氧菌,可作为其碳源的有机物较多。
(5)反硝化过程NO3-+1.08CH3 OH+0.24H2CO3→0.06C5H7NO2 +0.47N2+1.68H2O+HCO3-因此表明:每1gNO3--N 被硝化,消耗3.7gCOD,2.47g甲醇产生0.45g 新细胞产生3.57g 碱度对于一般城镇污水,没有试验资料时,前置反硝化系统利用原污水碳源作为--N/(gMLVSS·d);电子供体时,在20℃情况下,反硝化速率可取0.03~0.06gNO3对于没有外来碳源的后置反硝化系统,反硝化速率可取0.01~--N/(gMLVSS·d)0.03gNO3最近在需找硝化反硝化之类的资料,主要是想弄清,在实际运行过程中,碱和甲醇的投加量应该怎样来参考投加。
硝化与反硝化池
硝化与反硝化池 Hessen was revised in January 2021■反硝化池反硝化池主要是去除废水中的氨氮,同时降解废水中其他的污染物质。
反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。
微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。
许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。
另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。
能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。
大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:C 6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。
可进行以下反应:5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4■硝化池这里的硝化主要是指生化处理工艺段的好养段,将氨氮氧化成亚硝酸氮或者硝态氮的过程。
由于污水氨氮较高。
该反应历程为:亚硝化反应(2-6)硝化反应(2-7)总反应式(2-8)亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。
硝酸菌有硝酸杆菌属、硝酸球菌属。
亚硝酸菌和硝酸菌统称为硝化菌。
发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。
假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:亚硝化反应(2-9)硝化反应(2-10)工艺中采用了两段硝化工艺设施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硝化与硝化反应
4.1生物脱氮的过程和条件
A、废水当中的氮分为有机氮和氨氮即硝酸及亚硝酸盐氮,氮的脱除经过以下三步反应
(1)氨化反应。
在氨化菌的作用下,有机氮化合物分解,转化为氨氮。
(2)硝化反应。
在亚硝化及硝化菌的作用下,氨氮进一步分解氧化为亚硝酸及硝酸盐氮。
(3)反硝化反应。
在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。
B、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:
(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH 值为8.0~8.4。
(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。
(3)适宜温度20~30℃。
(4)硝化菌在反应器中的停留时间必须大于最小世代时间。
(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。
(6)硝化过程NH3-N 耗于异化氧化和同化的经典公式
NH4++1.83O2 +1.98HCO3- 0.98NO3-+0.021C5 H7NO2+1.88H2CO3+1.04H2 O
因此表明,去除1gNH3-N 约:
耗去4.33gO2;
生成0.15g 细胞干物质;
减少7.14g 碱度;
耗去0.08g 无机碳。
C、反硝化反应的适宜条件:
(1)最适宜的PH 值为6.5~7.5。
PH 高于8 或低于6,反硝化速率将大为降低。
(2)反硝化菌需要缺氧、好氧(合成酶系统)条件交替存在,系统DO≤0.5mg/l
(3)最适宜温度为20~40℃,低于15℃,反硝化反应速率降低。
(4)BOD/TN≥3~5。
反硝化菌是异氧兼性厌氧菌,可作为其碳源的有机物较多。
(5)反硝化过程
NO3-+1.08CH3 OH+0.24H2CO3→0.06C5H7NO2 +0.47N2+1.68H2O+HCO3-
因此表明:每1gNO3--N 被硝化,
消耗3.7gCOD,2.47g甲醇
产生0.45g 新细胞
产生3.57g 碱度
对于一般城镇污水,没有试验资料时,前置反硝化系统利用原污水碳源作为
--N/(gMLVSS·d);电子供体时,在20℃情况下,反硝化速率可取0.03~0.06gNO
3
对于没有外来碳源的后置反硝化系统,反硝化速率可取0.01~--N/(gMLVSS·d)
0.03gNO
3
最近在需找硝化反硝化之类的资料,主要是想弄清,在实际运行过程中,碱和甲醇的投加量应该怎样来参考投加。
在网上搜到一篇资料,有一些地方看不明白,恳请大家的指点!比如资料上说的物料横算,1g氨氮消耗的氧气和纯碱根本不是这个多,我算了下,消耗的氧气是3.25。
HCO3-是6.17。
再有,总硝化反应的方程式两边HCO3-怎么不能抵消?
不知道大家还有没有更好的资料
资料如下:
硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。
他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能
自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。
硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。
其相应的反应式为:
亚硝化反应方程式:
55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3
硝化反应方程式:
400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O
硝化过程总反应式:
NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3
通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。
在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。
B、反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。
反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。
当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和OH-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。
从NO3-还原为N2的过程如下:
NO3-→NO2-→NO→N2O→N2
反硝化过程中,反硝化菌需要有机碳源(如碳水化合物、醇类、有机酸类)作为电子供体,利用NO3-中的氧进行缺氧呼吸。
其反应过程可以简单用下式表示:
NO3-+4H(电子供体有机物)→ 1/2N2+H2O+2OH-
NO2-+3H(电子供体有机物)→ 1/2N2+H2O+OH-
污水中含碳有机物做为反硝化反应过程中的电子供体。
由上式可知,每转化1gNO2-为N2时,需有机物(以BOD表示)1.71g;每转化1gNO3-为N2时,需有机物(以BOD表示)2.86g。
同时产生3.57g重碳酸盐碱度(以CaCO3计)。
如果污水中含有溶解氧,为使反硝化完全,所需碳源有机物(以BOD表示)用下式计算:C=2.86Ni+1.71N0+DO0
其中:
C为反硝化过程有机物需要量(以BOD表示),mg/l;
Ni为初始硝酸盐氮浓度(mg/l)
N0为初始亚硝酸盐氮浓度(mg/l)
DO0为初始溶解氧浓度(mg/l)
如果污水中碳源有机物浓度不足时,应补充投加易于生物降解的碳源有机物(甲醇、乙醇或糖类)。
以甲醇为例,则
NO3-+1.08CH3OH+0.24H2CO3→0.056C5H7O2N+0.47N2↑+1.68H2O+HCO3-
如果水中有NO2-,则会发生下述反应:
NO2-+0.67CH3OH+0.53H2CO3→0.04C5H7O2N+0.48N2↑+1.23H2O+HCO3-
由上式可见,每还原1gNO2-和1gNO3-分别需要消耗甲醇1.53g和2.47g。
当水中有溶解氧存在时,氧消耗甲醇的反应式为:
O2+0.93CH3OH+0.056NO3-→0.056C5H7O2N+1.64H2O+0.056HCO3-+0.59H2CO3
综上所述,可得反硝化过程需要有机碳源(甲醇)的投加量公式为:
Cm=2.47Ni+1.53N0+DO0
其中:
Cm为反硝化过程中需要的甲醇浓度(mg/l)
其余符号同上
综上所述,硝化反应每氧化1g氨氮耗氧4.57g,消耗碱度7.14g,表现为PH值下降,在反硝化过程中,去除硝酸盐氮的同时去除碳源,这部分碳源折合DO2.6g,另外,反硝化过程中补偿碱度3.57g。
每氧化1gNH3要消耗4.33gO2、7.14g碱度(以CaCO3计)和0.08g 无机碳。
合成0.15g新细胞。
在反硝化反应中,每利用1gNO3-反硝化,消耗2.47g甲醇,产生0.45g 新细胞和3.57g碱度
(1)硝化过程NH3-N 耗于异化氧化和同化的经典公式:
NH
4++1.87O
2
+1.982HCO
3
— 0.982NO
3
-+0.021C
5
H
7
NO
2
+1.881H
2
CO
3
+1.044H
2
O
计算表明,去除1gNH
3
-N 约:
耗去4.27g O
2
;
生成0.1695g 细胞干物质;减少7.14g 碱度;
耗去0.09g无机碳。
(2)反硝化过程
NO
3-+1.08CH
3
OH+0.24H
2
CO
3
→0.056C
5
H
7
O
2
N+0.47N
2
↑+1.68H
2
O+HCO
3
-
如果水中有NO2-,则会发生下述反应:
NO
2-+0.67CH
3
OH+0.53H
2
CO
3
→0.04C
5
H
7
O
2
N+0.48N
2
↑+1.23H
2
O+HCO
3
-
由上式可见,每还原1gNO
2-和1gNO
3
-分别需要消耗甲醇1.53g和2.47g
每还原1gNO3产生0.45g 新细胞,产生3.57g 碱度。