实验四--基于simulink的2PSK、2DPSK数字调制与解调的仿真

合集下载

试验四2PSK2DPSK调制与解调试验

试验四2PSK2DPSK调制与解调试验

试验四2PSK2DPSK调制与解调试验实验四 2PSK/2DPSK调制与解调实验⼀、实验⽬的1.掌握绝对码、相对码的概念以及它们之间相互变换的关系和⽅法;2.了解2PSK、2DPSK的调制原理及电路的实现⽅法;3.了解2PSK、2DPSK的解调原理及电路的实现⽅法;4.了解2PSK解调存在的相位含糊问题;⼆、实验内容1.⽤⽰波器观察2PSK/2DPSK调制器信号波形与绝对码⽐较是否符合调制规律;2.⽤⽰波器观察2PSK/2DPSK相⼲解调器各点波形;3.观察相位含糊所产⽣的后果;4.加⼊噪声后,观察误码波形;三、实验仪器1.双踪⽰波器⼀台2.数字调制模块⼀块3.数字解调模块⼀块4.连接线若⼲四、实验预习1、实验箱中2PSK调制器⽤的调制⽅法是什么?2、2PSK调制器可以⽤哪两种⽅法实现?这两种⽅法得到的PSK波形有什么区别?3、画出实验板中2PSK、2DPSK调制原理框图;4、本实验中,基带信号码速率是多少?带宽是多少?⽤数字⽰波器如何测量?说出具体的数据读取⽅法。

5、本实验中,2PSK 信号带宽是多少?⽤数字⽰波器如何测量?说出具体的数据读取⽅法。

6、绝/相、相/绝变换的框图?7、绝/相、相/绝变换电路是怎么实现的。

8、经过绝/相、相/绝变换后得到最终数据输出,输出的波形与原始波形对⽐是否有延迟?为什么?能否采⽤⼀种⽅法可以让波形没有延迟?9、2PSK调制能否⽤⾮相⼲解调⽅法?是否可以只看PSK波形的跳变点的状态来实现信息的判断?举例说明。

10、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的带宽设计多⼤⽐较合适?11、在接收机带通滤波器之后的PSK 波形的跳变点⽆法准确分辨,还能准确解调吗?为什么? 12、相位模糊产⽣的原因和解决⽅法? 13、画出实验板中2PSK 、2DPSK 解调器的原理框图; 14、测试接收端的各点波形,需要与什么波形对⽐,才能⽐较好的进⾏观测?⽰波器的触发源该选哪⼀种信号?为什么?15、解调电路各点信号的时延是怎么产⽣的? 16、码再⽣的⽬的是什么? 17、⽤D 触发器做时钟判决的最佳判决时间应该如何选择?解调出的信码和调制器的绝对码之间的时延是怎么产⽣的?四、实验原理1.2PSK/2DPSK 调制原理2PSK 信号是⽤载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形⽰意图如图3-9-1所⽰。

基于multisim及锁相环的2PSK2ASK2FSK的调制解调电路仿真

基于multisim及锁相环的2PSK2ASK2FSK的调制解调电路仿真

基于multisim及锁相环的2PSK2ASK2FSK的调制解调电路仿真————————————————————————————————作者:————————————————————————————————日期:个人收集整理勿做商业用途LANZHOU UNIVERSITY OF TECHNOLOGY毕业设计题目基于Multisim的锁相环解调系统仿真学生姓名学号专业班级指导教师学院计算机与通信学院答辩日期个人收集整理勿做商业用途基于Multisim的锁相环解调系统仿真PLL Demodulation System Simulation Based on Multisim摘要实现调频波解调的方法有很多,而锁相环鉴频是利用现代锁相环技术来实现鉴频,具有工作稳定,失真小,信噪比高等优点,所以被广泛用在通信电路系统中。

锁相环其原理是通过鉴相检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压,对振荡器输出信号的频率实施控制。

该文首先介绍了锁相环技术发展的现状、方向以及背景,并对PLL的原理进行了阐述。

在以上的基础上,分别设计了2ASK、2PSK、2FSK的调制解调电路,其功能为数字基带信号经过调制输出一个模拟信号,然后用锁相环进行解调,最后采用Multisim软件进行仿真。

在对2ASK、2FSK、2PSK解调时,低通滤波器输出的波形失真比较大,不过最后经过抽样判决电路整形后可以再生数字基带脉冲。

在整个电路设计中,力求要做到电路简单,并完成任务书提到的要求。

关键词:调制;解调; Multisim;锁相环AbstrackThere are many ways to realize frequency wave demodulation,and PLL frequency which has the advantages of stable operation,small distortion,high signal-to-noise ratio and so on is achieved by using modern PLL frequency technology, so it is widely used in communication circuit system. Phase—locked loop through the difference of the phase detection of input signal and the output signal phase,and the detected phase difference signal into output voltage signal, the signal through a low pass filter. After the formation of the voltage control oscillator ,the output signal of the oscillator frequency control.文档为个人收集整理,来源于网络文档为个人收集整理,来源于网络This paper first introduces the present situation, development direction, phase—locked loop technology as well as the background,and the principle of PLL is discussed。

基于Simulink的2PSK调制与解调系统的仿真分析

基于Simulink的2PSK调制与解调系统的仿真分析

基于Simulink的2PSK调制与解调系统的仿真分析
尚丽;孙战里
【期刊名称】《苏州市职业大学学报》
【年(卷),期】2024(35)2
【摘要】分析2PSK调制和解调的原理,采用Matlab环境下的Simulink仿真工具箱实现2PSK调制及解调系统的仿真建模与分析。

仿真实验表明,仿真结果和理论分析内容一致,验证了仿真模型的正确性。

该方法有助于相关研究者直观地理解相移调制与解调系统的组成及工作原理,对实际工程应用也有一定的借鉴作用。

【总页数】5页(P51-54)
【作者】尚丽;孙战里
【作者单位】苏州市职业大学电子信息工程学院;安徽大学电子工程与自动化学院【正文语种】中文
【中图分类】TN911.3;TP391.9
【相关文献】
1.2PSK与2DPSK调制解调系统的仿真设计与分析
2.基于MATLAB/Simulink的2FSK调制解调系统仿真设计
3.基于Simulink的16QAM调制解调系统的设计与仿真
4.基于Simulink的16QAM调制解调系统的设计与仿真
因版权原因,仅展示原文概要,查看原文内容请购买。

2PSK和2DPSK调制解调仿真系统设计解读

2PSK和2DPSK调制解调仿真系统设计解读

西安科技大学移动通信课程设计报告2PSK和2DPSK调制解调仿真系统设计专业:通信工程班级:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:设计时间:审阅教师:西安科技大学通信通信学院目录1.前言 (2)1.1 设计提示 (2)1.2 设计要求 (2)1.3 时间安排 (2)1.4 基本原理与论证 (2)2.2PSK调制解调原理及系统设计 (4)2.1 2PSK基本原理 (4)2.2 2PSK调制原理 (4)2.3 2PSK调制系统设计 (5)2.4 2PSK解调原理 (14)2.5 2PSK解调系统设计 (15)2.6 2PSK系统设计 (17)3.2DPSK调制解调原理及系统设计 (23)3.1 2DPSK的基本原理 (23)3.2 2DPSK调制原理 (23)3.3 2DPSK调制系统设计 (25)3.4 2DPSK解调原理 (31)3.5 2DPSK解调系统设计 (34)3.6 2DPSK系统设计 (39)4. 总结 (42)4.1 各个组员总结 (42)4.2 组长评价 (44)参考文献 (45)1.前言1.1设计提示1.根据2PSK和2DPSK信号的产生与解调方法,利用Matlab/Simulink软件进行系统设计。

2.利用Simulink专业库Communications Blockset中的Modulation模块库所提供的实现数字信号调制解调的模块,完成系统设计,并输出误码率,信道中的噪声为高斯白噪声。

1.2设计要求1.输出已调制信号的波形图及其频谱图;2.将输入的基带信号波形和解调后的数字基带信号波形进行比较;3.由三人按提示一完成系统设计,由两人按提示二完成系统设计;4.设计报告中必须有详细的设计过程,即模块选取、参数设置、图形输出等,由组长签字,评价所有成员在设计组中的作用和表现等。

5.书写及设计方案均用A4纸打印以便统一装订成册,上交电子文本。

2PSK和2DPSK调制解调仿真系统设计解读

2PSK和2DPSK调制解调仿真系统设计解读

西安科技大学移动通信课程设计报告2PSK和2DPSK调制解调仿真系统设计专业:通信工程班级:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:设计时间:审阅教师:西安科技大学通信通信学院目录1.前言 (2)1.1 设计提示 (2)1.2 设计要求 (2)1.3 时间安排 (2)1.4 基本原理与论证 (2)2.2PSK调制解调原理及系统设计 (4)2.1 2PSK基本原理 (4)2.2 2PSK调制原理 (4)2.3 2PSK调制系统设计 (5)2.4 2PSK解调原理 (14)2.5 2PSK解调系统设计 (15)2.6 2PSK系统设计 (17)3.2DPSK调制解调原理及系统设计 (23)3.1 2DPSK的基本原理 (23)3.2 2DPSK调制原理 (23)3.3 2DPSK调制系统设计 (25)3.4 2DPSK解调原理 (31)3.5 2DPSK解调系统设计 (34)3.6 2DPSK系统设计 (39)4. 总结 (42)4.1 各个组员总结 (42)4.2 组长评价 (44)参考文献 (45)1.前言1.1设计提示1.根据2PSK和2DPSK信号的产生与解调方法,利用Matlab/Simulink软件进行系统设计。

2.利用Simulink专业库Communications Blockset中的Modulation模块库所提供的实现数字信号调制解调的模块,完成系统设计,并输出误码率,信道中的噪声为高斯白噪声。

1.2设计要求1.输出已调制信号的波形图及其频谱图;2.将输入的基带信号波形和解调后的数字基带信号波形进行比较;3.由三人按提示一完成系统设计,由两人按提示二完成系统设计;4.设计报告中必须有详细的设计过程,即模块选取、参数设置、图形输出等,由组长签字,评价所有成员在设计组中的作用和表现等。

5.书写及设计方案均用A4纸打印以便统一装订成册,上交电子文本。

2DPSK调制与解调的数字通信系统软件仿真

2DPSK调制与解调的数字通信系统软件仿真
其解调原理是:对2DPSK信号进行相干解调,恢复出相对码,再经码反变换器变换为绝对码从而恢复出发送的二进制数字信息。在解调过程中,由于载波相位模糊性的影响,使得解调出的相对码也可能是“1”和“0”倒置,但经差分译码得到的绝对码不会发生任何倒置的现象,从而解决了载波相位模糊带来的问题。2DPSK的相干解调原理框图如图2-3所示
end
相干解调:
function Demoduled_coSignal=demo2DPSK(coSignalAndNoise,bitRate,Freq_Carrier,n,Num_Unit)
t=linspace(0,7/bitRate,7*Num_Unit);% 7bits 700份
c=sin(2*pi*t*Freq_Carrier);
N= length(s); %样点总数
T= 1/fs*N; %观察时间
f= [-N/2:(N/2-1)]/T; %频率采样点
tmp1= fft(s)/fs;
tmp2= N*ifft(s)/fs;
S(1:N/2)= tmp2(N/2+1: -1:2);
S(N/2+1:N)= tmp1(1:N/2);
P = abs(S).^2./T;
Moduled_coSignal = [Moduled_coSignal,c1];
else
Moduled_coSignal = [Moduled_coSignal,c2];
end
end
figure(9)
[P2,F2]=t2f(Moduled_coSignal,bitRate*N);
plot(F2,P2)
二、实验原理
2DPSK的调制原理
在传输信号中,2PSK信号具有较好的误码率性能。但是,在2PSK信号的载波恢复过程中存在着180度的相位模糊,即恢复的本地载波与所需的相干载波可能同相也可能反相,这种相位关系的不确定性将会造成解调出的数字基带信号与发送出的数字基带信号正好相反,即“1”变为“0”,“0”变为“1”,判决器输出输出数字信号全部出错。为了克服此缺点提出二进制差分相移键控(2DPSK)方式。

基于Matlab的2PSK,2DPSK仿真

基于Matlab的2PSK,2DPSK仿真

摘要:Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境Simulin作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。

本次课程设计是基于M A T LA B 的2P S K和2D P S K仿真,通过系统分析,步骤来完成本次设计任务。

通过课程设计从理论学习的轨道逐步引向实际应用,把理论上熟悉的定性分析、定量计算逐步和工程估算、实验调整等手段结合起来,掌握工程设计的步骤和方法,了解科学实验的程序和实施方法,为以后毕业设计和从事信息处理技术的实际工作打下基础。

关键词:MATLAB;2PSK,2DPSK;仿真目录第1章 MATLAB简介 (1)第2章二进制相移键控 (1)2.1PSK调制原理 (2)2.2PSK解调原理 (3)2.3仿真结果及分析 (4)第3章二进制差分相移键控 (6)3.1DPSK调制原理 (6)3.2DPSK解调原理 (6)3.3仿真结果及分析 (8)第3章总结 (10)附录 (11)参考文献 (20)致谢...................................................... 错误!未定义书签。

第1章 Matlab简介美国Mathworks公司于1967年推出了矩阵实验室“Matrix Laboratory”(缩写为Matlab)这就是Matlab最早的雏形。

开发的最早的目的是帮助学校的老师和学生更好的授课和学习。

Matlab是一种解释性执行语言,具有强大的计算、仿真、绘图等功能。

Simulink是MATLAB中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。

确切的说,Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,连续、离散时间模型,或者是两者的混合。

通信原理课程设计基于MATLAB的2PSK和2FSK调制仿真

通信原理课程设计基于MATLAB的2PSK和2FSK调制仿真

通信原理A课程设计报告题目:基于MATLAB的2PSK和2FSK调制仿真院系:自动化与信息工程学院专业:通信工程班级:学号:姓名:指导教师:职称:讲师2012年12月24日-2012年12月28日一、设计任务编写2PSK和2FSK调制程序,任意给定一组二进制数,计算经过这两种调制方式的输出信号。

程序书写要规范,加必要的注释;经过程序运行的调制信号波形要与理论计算出的波形一致。

分步实施:1 )熟悉2PSK和2FSK调制原理;2 )编写2PSK和2FSK调制程序;3 )画出原信号和调制信号的波形图。

课程设计的最后成果是提交一份实验报告,内容包括:1)2PSK和2FSK调制原理;对给定信号画出理论调制波形;2)程序设计思想,画出流程图;3)源程序代码(需打印);4)测试结果(需打印)和理论计算结果对比是否一致;5)小结。

六、参考文献【1】冯象初,甘小冰. 数值泛函与小波理论西安:西安电子科技大学出版社,2003.5【2】樊昌信,曹丽娜. 通信原理(第六版)北京:国防工业出版社, 2010.6【3】罗建军,扬琦.精讲多练MATLAB(第2版)西安:西安交通大学出版社,2009.7附录:源程序代码clear allclose alli=10; %基带信号码元数j=5000;a=round(rand(1,i)); %产生随机序列t=linspace(0,5,j);f1=4; %2FSK载波1频率 2PSK载波频率f2=8; %2FSK载波2频率fm=i/5; %基带信号频率%%%%%%%%%%产生基带信号st1=t;for n=1:10if a(n)<1;for m=j/i*(n-1)+1:j/i*nst1(m)=0;endelsefor m=j/i*(n-1)+1:j/i*nst1(m)=1;endend如有你有帮助,请购买下载,谢谢!endfigure(1);subplot(311);plot(t,st1);title('基带信号st1');axis([0,5,-1,2]);%%%%%%%%%%基带信号求反st2=t;for n=1:j;if st1(n)>=1;st2(n)=0;elsest2(n)=1;endend;%%%%%%%%%%构成双极性码st3=st1-st2;%%%%%%%%%%载波信号s1=sin(2*pi*f1*t)s2=sin(2*pi*f2*t)%subplot(312),plot(s1);%title('载波信号s1');%subplot(313),plot(s2);%title('载波信号s2');%%%%%%%%%%%调制%figure(2);F1=st1.*s1; %加入载波1 (2FSK)F2=st2.*s2; %加入载波2 (2FSK)e_fsk=F1+F2;subplot(312);plot(t,e_fsk);title('2FSK调制信号');e_psk=st3.*s1; %加入载波 (2PSK)subplot(313);plot(t,e_psk);title('2PSK调制信号');如有你有帮助,请购买下载,谢谢!四、程序运行结果及分析00.51 1.52 2.53 3.54 4.55-112基带信号st100.51 1.52 2.53 3.54 4.55-112FSK 调制信号00.51 1.52 2.53 3.54 4.55-1012PSK 调制信号。

实验四 2DPSK系统的仿真实验

实验四  2DPSK系统的仿真实验

图1
Communications Blockset / Source Coding 库下的 Differential Encoder 模块
Communications Blockset / Utility Functions 库下的 Unipolar to Bipolar Converter 模块
Communications Bll Passband Modulation/PM 库下的
码元间隔与数字信号 采样周期要一致
图4
进制数 要一致
图5 仿真相对相移键控方法产生 2DPSK 时,可以用 M-DPSK Modulator Passband 模块完成 2DPSK 的调制功能,该模块的参数设置如图 7 所示,注意各参数的设置方法;M-DPSK Demodulator Passband 模块完成 2DPSK 的解调功能,该模块的参数设置如图 8 所示,注意解 调模块的参数设置必须与调制模块的相关参数设置一致。
图6 46
2DPSK 信号的频谱如图 9 所示。2DPSK 信号时域波形如图 10 所示。
图7
四、实验内容
1. 进一步熟悉并掌握 Matlab/Simulink 基本库、通信库和 DSP 库中较为重要的一些功能 模块的作用以及相应功能参数的物理意义与设置方法。
2. 搭建 2DPSK 模拟法仿真模型如图 1 所示。设置系统参数并调试,同时观测并记录 A~D 各点的时域波形以及 D 点的频谱。
数字信号 的进制数
数字信号 采样周期
图3 43
数设置如图 4 所示,注意该模块差分的性质;单双极性变换 Unipolar to Bipolar Converter 模 块的参数设置如图 5 所示,注意进制数的设置值必需与 Random Integer Generator 模块一致; Random Number 模块产生一个高斯型分布的随机噪声,该模块的参数设置如图 6 所示。

实验四--基于simulink的2PSK、2DPSK数字调制与解调的仿真

实验四--基于simulink的2PSK、2DPSK数字调制与解调的仿真
2、进一步熟悉MATLAB环境下的Simulink仿真平台
3、锻炼学生分析问题和解决问题的能力
2、实验原理
1.12PSK调制原理
数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。
模拟调相法原理方框图如下图所示,极性变器将输入的二进制单极性码转换成双极性不归零码,然后与载波直接相乘,以实现2PSK
模拟调相法
键控法原理方框图如下图所示,用数字基带信号s(t)控制开关电路,以选择不同相位的载波输出。此时s(t)通常是单极性的,当s(t)=0时,输出e2PSK(t)=cosωct;当s(t)=1时,输出e2PSK(t)=-cosωct。
码型变化器参数设置:采用1变0不变调制,故极性设为“Negative”.
多路选择器参数设置:当二进制序列大于0时,输出第一路信号;当二进制序列小于0时,输出第二路信号。
高斯噪声的设置:信噪比90
带通滤波器参数:载波频率为4HZ,而基带号带宽为1HZ,考滤到滤波器的边沿缓降,故设置为2~7HZ。
低通滤波器参数设置:截止频率为1HZ,二进制序列的带宽为1HZ,故取1HZ。
差分编码为 (2)
差分译码为 (3)
再将相对码 进行2PSK调制,则所得到的即是2DPSK已调信号,其在任一码元时间 内的表达式为

2PSK和2DPSK调制解调仿真系统设计

2PSK和2DPSK调制解调仿真系统设计

2PSK和2DPSK调制解调仿真系统设计在设计2PSK和2DPSK调制解调仿真系统之前,我们首先需要了解什么是PSK和DPSK调制方式。

PSK(Phase Shift Keying)是一种利用相位来表达数字信息的调制方式。

在2PSK调制中,发送的数字信息被编码为两个相位状态,一般是0度和180度。

接收端通过检测相位的变化来解调数字信息。

DPSK(Differential Phase Shift Keying)也是一种相位调制方式,但与PSK不同的是,DPSK调制是基于相邻比特之间的相对相位差。

在2DPSK调制中,一个比特对应两个相位状态之一,但这两个相位状态的确定是基于前一个比特的相对相位差。

接收端同样通过检测相位差的变化来解调数字信息。

接下来,我们将详细介绍设计2PSK和2DPSK调制解调仿真系统的步骤。

1.确定系统的基本参数和需求:-选择合适的载波频率和带宽-确定符号周期和比特周期-确定基带信号的采样率和采样时间-确定传输信道的信噪比和衰落模型2.生成发送端的数字信息序列:-设计一个随机或固定的比特序列作为发送端的数字信息-确定比特序列的长度和采样率-将比特序列映射为相应的相位状态,得到发送信号3.进行2PSK调制:-根据2PSK调制的原理和公式,将发送信号转换为相位调制信号-可以使用复数来表示相位调制信号,实部和虚部分别对应相位为0度和180度-进行幅度归一化处理,使信号的平均功率为14.模拟信道传输:-在发送信号上加入高斯白噪声,模拟信道的干扰和噪声-考虑信道的衰落效应,可以使用加性高斯白噪声信道或其他信道模型5.进行2PSK解调:-接收端接收到经过信道传输的调制信号-经过采样和判决处理,将接收信号恢复为数字信息-利用解调的相位差来确定数字信息的比特值6.生成2DPSK发送信号:-根据2DPSK调制的原理和公式,将发送信号转换为相位调制信号-相对于2PSK调制,2DPSK调制相邻比特之间的相对相位差决定了相位状态的切换7.进行2DPSK调制和传输:-类似于2PSK调制和信道传输的步骤,将2DPSK发送信号调制和传输到接收端8.进行2DPSK解调:-接收端接收到经过信道传输的2DPSK调制信号-经过采样和判决处理,将接收信号恢复为数字信息9.分析和评估系统性能:- 计算误码率(Bit Error Rate, BER)和符号误码率(Symbol Error Rate, SER)等性能指标-绘制BER和SER随信噪比的变化曲线,评估系统的可靠性和性能10.优化和改进系统设计:-根据系统性能评估的结果,对系统参数进行调整和优化-可以尝试使用不同的调制方式、码型或编码技术来改进系统性能设计2PSK和2DPSK调制解调仿真系统需要考虑到数字信号的生成和调制、信道传输和解调等各个环节,同时还需要注意选择适当的参数和模型来实现系统的设计和仿真。

2PSK原理及调制解调仿真

2PSK原理及调制解调仿真

2PSK原理及调制解调仿真2PSK(二相移键调制)是一种数字调制技术,它使用两个相位状态来表示数字数据。

在2PSK中,每个相位状态代表一个比特,即"0"或"1"。

2PSK的原理可以通过以下步骤进行说明:1.数据编码:将数字数据转换为二进制形式。

例如,将十进制数"7"编码为二进制数"0111"。

2.相位映射:将每个比特对应到不同的相位状态上。

在2PSK中,通常将"0"映射到相位0°,将"1"映射到相位180°。

3.载波调制:将相位状态映射到载波信号上。

通常使用正弦波作为载波信号,其频率可以根据需求设定。

4.发射信号:将调制后的载波信号发送到信道中。

5.接收端解调:接收信号后,使用相位解调的方法将信号恢复成数字数据。

这可以通过比较接收到的信号与预设的相位状态来实现。

6.数据解码:将恢复的二进制数据转换为原始的数字数据。

2PSK的调制解调可以通过软件仿真工具进行模拟。

对于调制过程,可以使用软件如MATLAB或Simulink来实现。

首先,需要生成要调制的数字信号,并将其转换为二进制形式。

然后,将每个比特映射到相应的相位状态,并将其表示为正弦波信号。

最后,将所有的正弦波信号叠加起来,形成最终的调制信号。

这个过程可以通过MATLAB或Simulink中的各种函数和模块来实现。

对于解调过程,可以使用相位解调器来还原接收到的信号。

相位解调器通常包括相位鉴频器和比较器。

相位鉴频器用于提取信号的相位信息,而比较器则将提取的相位信息与预设的相位状态进行比较,以确定每个比特的值。

这个过程可以通过MATLAB或Simulink中的函数和模块来实现。

通过仿真实验,可以观察到在不同信噪比(SNR)条件下的调制解调性能。

SNR的增加会提高解调的准确性,但当SNR较低时,解调错误率将增加。

2PSK与2DPSK系统的性能分析.

2PSK与2DPSK系统的性能分析.

2PSK与2DPSK系统的性能分析实验目的:1.掌握2PSK与2DPSK的调制与解调原理2.对2PSK与2DPSK的系统的性能分析三、2PSK、2DPSK调制解调原理1.2PSK调制与解调2PSK信号的产生方法主要有两种,即相乘法和开关法。

方框图如下图1(a),(b)所示:a.(相乘法)b.(选择法)2PSK信号的解调方法是相干解调。

由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。

下图为2PSK系统原理方框图。

2PSK相干解调系统的各测试点的波形2.2DPSK调制与解调2DPSK调制原理方框图如下图2DPSK相干解调系统的各测试点波形四、2PSK、2DPSK调制解调仿真电路1.仿真参数设置1)信号源参数设置:基带信号码元速率设为101==T R B 波特,在观察每个码元波形时载频设为Hz f s 10=;在观察2PSK 、2DPSK 信号功率谱密度时,载频设为Hz f s 30=。

(说明:载频s f 设得较低,目的主要是为了降低仿真时系统的抽样率,加快仿真时间。

)2)系统抽样率设置:为得到准确的仿真结果,通常仿真系统的抽样率应大于等于10倍的载频。

本次仿真取10s f ,即200Hz3)系统时间设置:通常设系统Start time=0。

为能够清晰观察每个码元波形及2PSK 信号的功率谱密度,在仿真时对系统Stop time 必须进行两次设置,第一次设置一般取系统Stop time=6T~8T ,这时可以清楚地观察到每个码元波形;第二次设置一般取系统Stop time=1000T~5000T ,这时可以清楚地观察到2PSK 信号的功率谱密度。

2.2PSK 、2DPSK 调制与解调的仿真电路2PSK 的调制与仿真电路2DPSK的调制与解调仿真电路:仿真仿真分析:2PSK与2DPSK系统的性能分析:1.二进制差分相移键控(2DPSK)二进制差分相移键控常简称为二相相对调相,记作2DPSK。

基于MATLAB的2ASK、2FSK和2PSK的调制仿真(最新整理)

基于MATLAB的2ASK、2FSK和2PSK的调制仿真(最新整理)
if at(1,m*500+250)+0.5<0.5; for j=m*500+1:(m+1)*500; at(1,j)=0; end
else for j=m*500+1:(m+1)*Leabharlann 00; at(1,j)=1; end
end end subplot(427); plot(t,at); axis([0,5,-1,2]); title('抽样判决后波形')
if a(n)<1; for m=j/i*(n-1)+1:j/i*n st1(m)=0; end
else for m=j/i*(n-1)+1:j/i*n st1(m)=1; end
end end st2=t; %基带信号求反 for n=1:j;
if st1(n)>=1; st2(n)=0;
else st2(n)=1;
非相关接收经过调制后的 2FSK 数字信号通过两个频率不同的带通滤波器 f1、f2 滤出不 需要的信号,然后再将这两种经过滤波的信号分别通过包络检波器检波,最后将两种信号同 时输入到抽样判决器同时外加抽样脉冲,最后解调出来的信号就是调制前的输入信号。其原 理图如下图所示:
图 5(b)非相干方式 3.3、二进制相移键控(2PSK)
2FSK调制解调程序及注释 clear all close all i=10;%基带信号码元数 j=5000; a=round(rand(1,i));%产生随机序列 t=linspace(0,5,j); f1=10;%载波1频率 f2=5;%载波2频率 fm=i/5;%基带信号频率
5
%产生基带信号 st1=t; for n=1:10
title('F1=s1*st1'); subplot(412); plot(t,F2); title('F2=s2*st2'); e_fsk=F1+F2; subplot(413); plot(t,e_fsk); title('2FSK信号')%键控法产生的信号在相邻码元之间相位不 一定连续 nosie=rand(1,j); fsk=e_fsk+nosie; subplot(414); plot(t,fsk); title('加噪声后信号') %相干解调 st1=fsk.*s1;%与载波1相乘 [f,sf1] = T2F(t,st1);%通过低通滤波器 [t,st1] = lpf(f,sf1,2*fm); figure(3); subplot(311); plot(t,st1); title('与s1相乘后波形'); st2=fsk.*s2;%与载波2相乘 [f,sf2] = T2F(t,st2);%通过低通滤波器 [t,st2] = lpf(f,sf2,2*fm); subplot(312); plot(t,st2); title('与s2相乘后波形'); %抽样判决 for m=0:i-1;

基于Simulink的2PSK调制解调仿真实现

基于Simulink的2PSK调制解调仿真实现

《通信原理》课程设计报告题目:基于Simulink得2PSK调制解调仿真实现系别:计算机与信息工程学院专业:通信工程班级:14通信学号:姓名:时间:2016年12月12日至2016年12月23日指导老师:ﻬ第一阶段1、项目名称基于MATLAB/Simulink得2PSK调制解调系统仿真实现2、项目内容本课程设计主要运用MATLAB集成环境下得simulink仿真平台对2PSK调制解调系统进行建模仿真。

首先回顾2PSK调制与解调得基本原理,分析2PSK调制与解调得实现方法;接着基于simulink仿真平台设计出2PSK数字通信系统得结构,包括信源,调制,发送滤波器模块,信道,接受滤波器模块以及信宿;根据通信原理,设计出各个模块,并进行参数设置;最后进行仿真,根据显示结果进行性能分析。

3、项目完成计划本课程设计时间为两周,分五个阶段完成;第一阶段用来熟悉MATLAB软件,以及各模块元器件;第二阶段回顾基本原理;第三阶段构建仿真模型;第四阶段进行参数设置并进行仿真调试;第五阶段撰写课程设计报告,并为答辩准备。

4、设计软件介绍Simulink就就是MATLAB中得一种可视化仿真工具,就就是一种基于MATLAB得框图设计环境,就就是实现动态系统建模、仿真与分析得一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理得建模与仿真中。

Simulink可以用连续采样时间、离散采样时间或两种混合得采样时间进行建模,它也支持多速率系统,也就就就是系统中得不同部分具有不同得采样速率。

为了创建动态系统模型,Simulink提供了一个建立模型方块图得图形用户接口(GUI) ,这个创建过程只需单击与拖动鼠标操作就能完成,它提供了一种更快捷、直接明了得方式,而且用户可以立即瞧到系统得仿真结果。

Simulink得主要功能包括: (1)交互式、图形化得建模环境 ; (2)交互式得仿真环 ;(3)专用模块库;(4)提供了仿真库得补充与定制机制。

2PSK及2DPSK信号调制解调实验

2PSK及2DPSK信号调制解调实验

2PSK及2DPSK信号调制解调实验一、实验目的1. 掌握利用systemview进行仿真的方法;2. 掌握2PSK调制解调的基本原理;3. 掌握2DPSK调制解调的基本原理。

二、实验仪器电脑,systemview5.0软件三、实验原理1. 调制原理2PSK方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式。

就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。

两个载波相位通常相差180度,此时成为反向键控(PSK),也称为绝对相移方式。

绝对相移方式存在一个缺点。

我们看到,如果采用绝对相移方式,由于发送端是以某一个相位作基准的,因而在接收端也必须有这样一个固定基准相位作参考。

如果这个参考相位发送变化(0相位变π相位或π相位变0相位),则恢复得数字信息就会发送0变为1或1变为0,从而造成错误的恢复。

考虑到实际通信时参考基准相位的随机跳变(温度漂移或噪声引起)是可能的,而且在通信过程中不易被发觉。

比如,由于某种突然的干扰,系统中的分频器可能发生状态的转移、锁相环路的稳定状态也可能发生转移。

这时,采用2PSK方式就会在接收端得到完全相反的恢复。

这种现象,常称为2PSK方式的“倒π”现象。

为此,实际中一般不采用2PSK方式,而采用一种所谓的相对(差分)移相(2DPSK)方式。

2DPSK方式是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。

即用前后两个码元之间的相差来表示码元的值“0”和“1”。

例如,假设相差值“π”表示符号“1”,相差值“0”表示符号“0”。

因此,解调2DPSK信号时并不依赖于某一固定的载波相位参考值,只要前后码元的相对相位关系不破坏,则只要鉴别这个相差关系就可正确恢复数字信息,这就避免了2PSK中的倒π现象发生。

2. 解调原理2PSK信号是恒包络信号,因此2PSK信号的解调必须采用相干解调。

但如何得到同频同相的载波是个关键问题。

数字信号的载波调制 2ASK、2FSK、2PSK、2DPSK等方式进行仿真模拟

数字信号的载波调制 2ASK、2FSK、2PSK、2DPSK等方式进行仿真模拟

实验四数字信号的载波调制一、实验目的与要求1.复习数字载波调制的基本概念;2.深入理解键控调制的理论基础、实现技术及物理含义;3.对2ASK、2FSK、2PSK、2DPSK等方式进行仿真模拟,并分析其波形及频谱特性;4.通过实验结果分析数字调制的重要价值。

二、实验仪器与设备1.微型电子计算机40台2.Window2000以上版本操作系统40套3.System View 5.0以上版本40套三、实验原理信源编码的目的是提高信源的效率,去除冗余度。

信道编码的目的主要有两点:(1)要求码列的频谱特性适应通道频谱特性,从而使传输过程中能量损失最小,提高信号能量与噪声能量的比例,减小发生差错的可能性,提高传输效率。

(2)增加纠错能力,使得即便出现差错,也能得到纠正。

一般传输通道的频率特性总是有限的,即有上、下限频率,超过此界限就不能进行有效的传输。

如果数字信号流的频率特性与传输通道的频率特性很不相同,那么信号中的很多能量就会失去,信噪比就会降低,使误码增加,而且还会给邻近信道带来很强的干扰。

因此,在传输前要对数字信号进行某种处理,减少数字信号中的低频分量和高频分量,使能量向中频集中,或者通过某种调制过程进行频谱的搬移。

这两种处理都可以被看作是使信号的频谱特性与信道的频谱特性相匹配。

数字信号的载波调制是信道编码的一部份。

有线电视宽带综合网是基于模拟环境下的数字信号的传输,图象数字信号不是基带传输方式而是在射频通带中传输。

由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。

模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。

由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。

在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。

2PSK和2DPSK调制仿真

2PSK和2DPSK调制仿真

专业课课程大作业课程名称: MATLAB编程应用成绩:姓名:班级:学号:日期: 2012/12/26 2PSK和2DPSK调制仿真[摘要]本设计主要叙述了数字信号的调制方式,介绍了2PSK数字调制方式的基本原理,功率谱密度,并运用MATLAB软件对数字调制方式2PSK进行了编程仿真实现,在MATLAB平台上建立2PSK和2DPSK调制技术的仿真模型。

进一步学习了MATLAB编程软件,将MATLAB与通信系统中数字调制知识联系起来,为以后在通信领域学习和研究打下了基础在计算机上,运用MATLAB软件来实现对数字信号调制技术的仿真。

现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制技术一直是研究的一个重要方向。

关键词:通信系统;MATLAB;数字调制;;2DPSK;2PSK;1. 2PSK和2DPSK调制1.1 2PSK和2DPSK的产生方法2PSK信号与2DPSK信号的产生方法相同主要有两种。

第一种叫相乘法(如图1),是用二进制基带不归零矩形脉冲信号与载波相乘,得到相位反相的两种码元。

第二种方法叫选择法(如图2),是用此基带信号控制一个开关电路,以选择输入信号,开关电路的输入信号是相位相差π的同频载波。

这两种方法都可以用数字信号处理器实现。

图1 相乘法图2 选择法2.2PSK及2DPSK基本原理))开关电路2.1 2PSK的基本原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。

如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。

一般把信号振荡一次(一周)作为360度。

如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。

当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具体解调方法:对每个码元稳定区内的采样点按照公式(5)做DFT:
(5)
其中, 代表每个载波周期的采样点个数, 代表做DFT时使用的稳定区内的采样点个数(通常取多个载波整周期)。然后,提取出前后码元的相位跳变信息 来进行解调判决:计算 ,并根据 和 的正负情况确定 的取值范围。把本码元的相位记为 ,前一码元的相位记为 ,则
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为
(t)=Acos t+ )
其中, 表示第n个符号的绝对相位:
=
因此,上式可以改写为
2PSK信号波形为
2PSK调制方法主要有两种:模拟调相法和键控法(相位选择法)。
2DPSK调制原理是指载波的相位受数字信号的控制而改变,通常用相位0°来表示“1”,而用180°来表示“0”。差分移相键控2DPSK信号的参考相位不是未调波的相位,而是相邻的前一位码元的载波相位。2DPSK信号的产生只需要在2PSK调制前加一套相对码变换电路就可以实现,2DPSK的调制方框图见图
2.2 2DP.当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.
图2 -32PSK信号相干解调各点时间波形
这种现象通常称为"倒π"现象.由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信号的相干解调存在随机的"倒π"现象,从而使得2PSK方式在实际中很少采用.
差分相干解调:
2DPSK信号也可以采用差分相干解调方式(相位比较法),其原理框图见图2.5。其解调原理是:直接比较前、后码元的相位差,从而恢复发送的二进制数字信息。由于解调的同时完成了码反变换作用,故解调器中不需要码反变换器。由于差分相干解调方式不需要专门的相干载波,因此是一种非相干解调方法。
2PSK信号的解调原理方框图如下
2.1 2DPSK的调制原理
众所周知2PSK调制是将传输的数字码元“1”用初始相位为180°的正弦波表示,而数字码元“0”用初始相位为0°的正弦波表示。若设 是传输数字码元的绝对码,则2PSK已调信号在任一个码元时间 内的表达式为
(1)
若将传输数字码元的绝对码 先进行差分编码得相对码 ,其差分编译码如下:
模拟调相法原理方框图如下图所示,极性变器将输入的二进制单极性码转换成双极性不归零码,然后与载波直接相乘,以实现2PSK
模拟调相法
键控法原理方框图如下图所示,用数字基带信号s(t)控制开关电路,以选择不同相位的载波输出。此时s(t)通常是单极性的,当s(t)=0时,输出e2PSK(t)=cosωct;当s(t)=1时,输出e2PSK(t)=-cosωct。
基于DFT的2DPSK解调算法:
实际中接收到的2DPSK信号在经过带通滤波后,由于码元跳变处的高频分量被过滤掉,滤波后的2DPSK信号波形分为稳定区和过渡区,码元中间部分是稳定区,前、后部分为过渡区。稳定区内的信号基本无损失,波形近似为正弦波,而过渡区内的波形则不是正弦波,并且幅度明显降低。调制信息基本上只存在于码元稳定区。从上述分析出发,可以得到基于DFT的数字解调方案。
差分编码为 (2)
差分译码为 (3)
再将相对码 进行2PSK调制,则所得到的即是2DPSK已调信号,其在任一码元时间 内的表达式为
(4)
差分编码移相2DPSK在数字通信系统中是一种重要的调制方式,其抗噪性能和信道频带利用率均优于移幅键控(ASK)和移频键控(FSK),因而在实际的数据传输系统中得到广泛的应用。2DPSK调制解调系统的原理框图如图
2、进一步熟悉MATLAB环境下的Simulink仿真平台
3、锻炼学生分析问题和解决问题的能力
2、实验原理
1.12PSK调制原理
数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。
(6)
其中 是进行了位同步点调整时附加的相位。
可见,在每个码元周期只需要计算一次相位值即本码元的相位,然后相减得到跳变相位,就可以依据判决条件恢复原始数据,而不需要像文献中所提到的对每个码元要随着窗函数的移动多次计算谱值,因而大大减轻了计算量,非常适合于软件无线电的数字化实时解调。
当调频信号不包括载波分量时,必须采用相干解调,2DPSK的解调可采用两种方法。其一是极性比较法,然后再用码变换器变为绝对码。另外还有一种实用的方法叫做差分相干解调法,二者的原理框图分别如下:
信息科学与工程学院
2014-2015第一学期
《数据通信原理》实验报告
设计题目:基于simulink的2PSK/2DPSK数字调制与解调仿真
专业班级:信息工程2班
姓名学号:
指导教师:
实验四基于simulink的2PSK/2DPSK数字调制与解调仿真
1、实验目的
1、熟悉2PSK、2DPSK系统的调制、解调原理
相干解调:
信号可以采用相干解调方式(极性比较法),其原理框图见图2.4。其解调原理是:对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。在解调过程中,若相干载波产生180°相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换器后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊度的问题。
键控法
1.22PSK解调原理
2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0.
相关文档
最新文档