2017年九年级数学中考模拟试卷
最新2017年中考数学模拟试卷(含答案)
最新2017年中考数学模拟试卷(含答案)时间120分钟满分150分 2017.2.20 一、选择题(每小题3分,共21分)1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.B. C.D.3.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.4.由4个相同小立方体搭成的几何体如图所示,则它的俯视图是()A.B.C. D.5.某大学生对新一代无人机的续航时间进行7次测试,一次性飞行时间(单位:分钟)分别为20、22、21、26、25、22、25.则这7次测试续航时间的中位数是()A.22或25 B.25 C.22 D.216.顺次连结菱形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形7.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1二、填空题(每小题3分,共30分)8.计算:a2•a4= .9.分解因式:x2﹣9= .10.计算: = .11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示:.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= °.13.一个正多边形的每个外角都是36°,这个正多边形的边数是.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为.17.如图,在△ABC中,AB=AC,∠BAC=50 .分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 度;②若BC=9,与的长度之和为.三、解答题(共89分)18.计算:.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图. 组别行驶的里程x (千米) 频数(台) 频率Ax <20018 0.15 B200≤x <210 36 a C210≤x <220 30 D220≤x <230 b E x ≥23012 0.10 合计 c 1.00 根据以上信息回答下列问题:(1)a= ,b= ,c= ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.参考答案与试题解析一、选择题1.故选:A.2故选:B.3.故选A.4.故选:D.5.故选:C.6.故选B.7.故选C.二、填空题8.a6.9.(x+3)(x﹣3).10. 1 .11. 1.95×108.12.50 °.13.10 .14..15.cm.16.y=(x﹣4)2+3 .17.故答案为:25;故答案为:π.三、解答题(共89分)18.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.【解答】解:原式=2﹣+1+﹣2=1.【点评】本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2﹣3x=x+4,当x=﹣2时,原式=﹣2+4=2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AB∥EF,得到∠A=∠F,∠B=∠E,通过证明三角形全等得到对应边相等.【解答】证明:∵AB∥EF,∴∠A=∠F,∠B=∠E,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,找准对应边和对应角是解题的关键.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)先依据抛物线的对称轴方程求得抛物线的对称轴,从而可得到点A的坐标,从而可求得OA的长;(2)依据旋转的性质和特殊锐角三角函数值可求得点A′的坐标,然后将点A′的坐标代入抛物线的解析式进行判断即可.【解答】解:(1)∵x=﹣=﹣=2,∴A(2,0).∴OA=2.(2)如图所示:过A′作A′B⊥OA,垂足为B.由旋转的性质可知:OA′=OA=2.∵∠A′OA=60°,A′B⊥OA,∴OB=1,A′B=∴A′(1,).∵将x=1时,y=12﹣4+3+=,∴A′在该函数的图象上.【点评】本题主要考查的是二次函数的图象与几何变形,解答本题主要应用了二次函数的对称轴方程、旋转的性质,求得点A′的坐标是解题的关键.23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.组别行驶的里程x(千米)频数(台)频率A x<200 18 0.15B 200≤x<210 36 aC 210≤x<220 30D 220≤x<230 bE x≥230 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a= 0.3 ,b= 24 ,c= 120 ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组的频数、频率可得总数c,再依据频率=可求得a,根据频数之和等于总数可求得b;(2)由(1)知D组数量,补全图形即可;(3)用样本中行驶的里程数在220千米及以上的台数(即D、E两组频数之和)所占比例乘以总数2000可得.【解答】解:(1)本次调查的总台数c=18÷0.15=120,a=36÷120=0.3,b=120﹣18﹣36﹣30﹣12=24,故答案为:0.3,24,120.(2)由(1)知,D组的人数为24人,补全条形图如图:(3)×2000=600(台),答:估计电动汽车一次充电后行驶的里程数在220千米及以上的约有600台.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)【考点】二次函数的应用.【分析】(1)把n=390代入n=30x+90,解方程即可求得;(2)根据图象求得成本y与x之间的关系,然后根据:净利润=(出厂价﹣成本价)×销售量,结合x的范围整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.【解答】解:(1)∵45×5=225<390,∴30x+90=390,解得:x=6,答:小明第6天生产的粽子数量为390只;(2)由图象可知,当0≤x≤9时,y=3.4;当9<x≤15时,设y=kx+b,将(9,3.4)、(15,4)代入,得:,解得:,∴y=0.1x+2.5;①当0≤x≤5时,w=(5﹣3.4)×45x=72x,∵w随x的增大而增大,∴当x=5时,w取得最大值,w最大=360元;②当5<x≤9时,w=(5﹣3.4)(30x+90)=48x+144,∵w随x的增大而增大,∴当x=9时,w取得最大值,w最大=576元;③当9<x≤15时,w=[5﹣(0.1x+2.5)](30x+90)=﹣3x2+66x﹣225=﹣3(x﹣11)2+138,∴当x=11时,w取得最大值,w最大=138元;综上,当x=9时,w取得最大值,w最大=576元,答:第9天的净利润最大,最大值是576元.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= 8 ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.【考点】反比例函数综合题.【分析】(1)根据给定比例=,将QE=6、AQ=3、BP=4代入其中即可求出PE 的值;(2)①过点A 作y 轴的垂线交y 轴于点E ,过点B 作x 轴的垂线交x 轴于点F,延长EA、FB交于点M,由ME⊥y轴、MF⊥x轴,即可得出△CAE∽△BAM∽△BDF,根据相似三角形的性质即可得出、,再结合即可得出,由此即可证出AC=BD;②分别将x=0、y=0代入一次函数解析式中即可求出点C、D的坐标,由AE ⊥y轴可得出△ACE∽△DCO,再根据相似三角形的性质结合CD=4AB,即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值.【解答】(1)解:∵ =,QE=6,AQ=3,BP=4,∴PE===8.故答案为:8.(2)①证明:过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,如图3所示.∵ME⊥y轴,MF⊥x轴,∴△CAE∽△BAM∽△BDF,∴,,∵,∴,∴AC=BD.证毕.②当x=0时,y=2,∴点C(0,2);当y=0时,有﹣x+2=0,解得:x=2,∴点D(2,0).∵CD=4AB,AC=BD,∴==.∵AE⊥y轴,∴AE∥DO,∴△ACE∽△DCO,∴=,∵CO=2,OD=2,∴CE=EA=,∴点A的坐标为(,).∵点A在双曲线y=上,∴×=k=.【点评】本题考查了相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据相似三角形的性质找出线段与线段之间的关系是解题的关键.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.【考点】圆的综合题.【分析】(1)根据圆周角定理可知∠ODC是直角,所以可求得CD的长为1,利用CB=4DC可知,CB的长度为4;(2)根据(1)可知OA=4,OC,∠COA=60°,所以易证△OCA∽△CDO,可知∠OCA=90°,又易知四边形AOCB是平行四边形,所以∠CAB=90°,所以点P一定在BA的延长线上;(3)由题意知:P与B关于MN,所以m的范围是2≤m≤5,求出直线AC和OC的解析式后,设P的纵坐标为a,然后将y=a分别代入直线AC和OC解析式中,求出E、F的横坐标,然后利用PF=3PE,列出关于a的方程,然后解出a即可得出M的纵坐标.【解答】(1)由题意知:OC是直径,∴∠ODC=90°,∵∠DOC=30°,∴DC=OC=1,∴BC=4DC=4;(2)连接AC,由(1)可知:∠ODC=90°∴CD∥OA,∵BA∥OC,∴四边形AOCB是平行四边形,∴OA=BC=4,∵∠COD=30°,∴∠COA=∠OCD=60°,∵,∴△OCA∽△CDO,∴∠OCA=90°,在BA的延长线上截取AP=AB,过点P作PG⊥x轴于点G,∴AP=2,∠OAP=60°,∴AG=1,PG=,∴OG=OA﹣AG=3,∴P(3,﹣);(3)由题意知:当M与C重合,N在AB上移动时,m的范围是3≤m≤5,当N与A重合,M在CB上移动时,m的范围是2≤m≤5,∴点P与B关于MN对称时,2≤m≤5,由(1)可知,点C的坐标为(1,),点A的坐标为(4,0),设直线AC的解析式为:y=kx+b,把A(4,0)和C(1,)代入y=kx+b,得:,∴,∴直线AC的解析式为:y=﹣x+,设直线OC的解析式为:y=mx,把C(1,)代入y=mx,∴m=,∴直线OC的解析式为:y=x,设P的纵坐标为a,∴P的坐标为(m,a)∵PF∥x轴,∴E、F的纵坐标为a,令y=a代入y=﹣x+,∴x=4﹣a,∴E(4﹣a,a),令y=a代入y=x,∴x=a,∴F(a,a),如图1,当点P在AC的右侧时,∴PE=m﹣(4﹣a)=m﹣4+a,PF=m﹣a,∵PF=3PE,∴m﹣a=3(m﹣4+a),∴a=,如图2,当点P在EF之间时,此时,PE=4﹣a﹣m,PF=m﹣a,∵PF=3PE,∴m﹣a=3(4﹣a﹣m),∴a=(3﹣m),综上所述,P的纵坐标为或(3﹣m),m的范围是:2≤m≤5.【点评】本题考查圆的综合题目,涉及圆周角定理,轴对称的性质,相似三角形的性质和判定,题目较为综合,需要学生灵活运用所学知识进行解答.。
【中考模拟2017】湖北武汉市 2017年 九年级数学中考模拟试卷 六(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)则这个周共盈利( )A.715元B.630元C.635元D.605元2.下列四个图形中,既是轴对称图形,又是中心对称图形的是().A.①②B.①③C.②③D.①②③3.下列各数精确到万分位的是()A.0.0720 B.0.072 C.0.72 D.0.1764.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.80海里C.60海里D.100海里5.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x56.同时抛掷两枚质地均匀的正方体骰子1次,下列事件中是不可能事件的是( )A.朝上的点数之和为13B.朝上的点数之和为12C.朝上的点数之和为2D.朝上的点数之和小于37.下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′8.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°9.已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2﹣4m+n(n+2m)=8,则点P的坐标为()A.(0.5,﹣0.5)B.(,)C.(2,1)D.(1.5,0.5)10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题:11.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.12.已知关于x的方程x2-(a+b)x+ab-1=0,x、x2是此方程的两个实数根,现给出三个结论:1①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是________.(填上你认为正确的所有序号)13.已知等腰三角形的周长为13,其中一边长为3,其它两边的长为14.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.15.如图,在Rt△ABC中,ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以的长为半径作圆,将Rt△ABC截取两个扇形,则剩余(阴影)部分的面积为 cm2.(结果保留)16.已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于________.三、计算题:17.计算:sin60°+|﹣5|﹣(4015﹣π)0+(﹣1)2017+()﹣1.18.先化简,再从的范围内选取一个你喜欢的x值代入求值。
河南省中考数学仿真试卷(1)(含解析)-人教版初中九年级全册数学试题
2017年某某省中考数学仿真试卷(1)一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.5a﹣3a=24.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.507.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形二、填空题(每小题3分,共21分)9.分解因式:x2﹣4=.10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.2+60x,该型号飞机着陆后滑行m才能停下来.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为cm.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是,组中值为110次一组的频率为;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值X围.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值X围该.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.2017年某某省中考数学仿真试卷(1)参考答案与试题解析一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.【考点】绝对值.【分析】根据绝对值的定义即可求解.【解答】解:因为|3|=3,|﹣3|=3,∴绝对值等于3的数是±3.故选C.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.5a﹣3a=2【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂、积的乘方与幂的乘方的性质,完全平方公式以及合并同类项的知识,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、a3•a2=a5,故本选项错误;B、(ab3)2=a2b6,故本选项正确;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、5a﹣3a=2a,故本选项错误.故选B.4.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()【考点】极差;算术平均数;中位数;众数.【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.【解答】解:A、中位数是7.3,故A错误;B、众数是7.0,故B错误;C、平均数是7.3,故C正确;D、极差是0.8,故D错误.故选C.5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.【考点】简单几何体的三视图.【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【解答】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.50【考点】全等三角形的判定与性质;三角形的面积;等腰直角三角形.【分析】求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC=2AD=2AF,求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于BF×AC,代入求出即可.【解答】解:∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴△FBC的面积是×BF×AC=×12×8=48,故选C.7.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个【考点】一次函数综合题.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,AN=OA=1,共有2个,AO=ON=1时,有一个点,若OA是底边时,N是OA的中垂线与x轴的交点,有1个,再利用直线OM是正比例函数y=﹣x的图象,得出∠AON2=60°,即可得出答案.【解答】解:∵直线OM是正比例函数y=﹣x的图象,∴图形经过(1,﹣),∴tan∠AON2=.∴∠AON2=60°,若AO作为腰时,有两种情况,当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;此时2个点重合,若OA是底边时,N是OA的中垂线与直线MO的交点有1个.以上4个交点有2个点重合.故符合条件的点有2个.故选:A.8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE(SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【解答】解:易证△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED;∴△BPE≌△DPF(AAS),∴BP=DP,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即A正确;又∵AD=BE且AD∥BE,∴四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;综上,选项A、B、D正确.故选:C.二、填空题(每小题3分,共21分)9.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为14πcm2.【考点】圆锥的计算.【分析】先求得圆锥的底面周长,再根据圆锥的侧面积等于lr,l表示圆锥的底面周长,r表示圆锥的母线长或侧面展开扇形的半径.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,底面积为4πcm2,表面积为10π+4π=14πcm2,故答案为:14πcm2.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.【考点】概率公式;根的判别式.【分析】从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有12种结果,且每种结果出现的机会相同,关于x的一元二次方程x2﹣2mx+n2=0有实数根的条件是:4(m2﹣n2)≥0,在上面得到的数对中共有9个满足.【解答】解:从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有:4×3=12种结果,∵满足关于x的一元二次方程x2﹣2mx+n2=0有实数根,则△=(﹣2m)2﹣4n2=4(m2﹣n2)≥0,符合的有9个,∴关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.2+60x,该型号飞机着陆后滑行600 m才能停下来.【考点】二次函数的应用.【分析】2+60x的最大函数值,将函数解析式化为顶点式即可解答本题.【解答】解:∵2+60x=﹣1.5(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来,故答案为:600.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=8 .【考点】反比例函数综合题.【分析】首先作辅助线:过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=6﹣x 交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=6﹣x交x轴、y轴于A、B两点,∴A(6,0),B(0,6),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数y=(x>0)图象上的一点,∴PN•PM=4,∴CE•DF=4,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,则AF•BE=CE•DF=2CE•DF=8.故答案为:8.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为 6 cm.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:AE=EF,AB=BF;△FDE的周长为DE+FE+DF=AD+DF=8cm,△FCB的周长为FC+AD+AB=20 cm,分析可得:FC=[FC+AD+AB﹣(AD+DF)]=(2FC)=(△FCB的周长﹣△FDE的周长)=(20﹣8)=6cm.故答案为6.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.【考点】二次函数综合题.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故答案为:三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.【考点】分式的化简求值;负整数指数幂;特殊角的三角函数值.【分析】将原式第二项中被除式的分子利用完全平方公式分解因式,除式的分子利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后再利用同分母分式的减法运算计算,得到最简结果,接着利用特殊角的三角函数值及负指数公式化简,求出x的值,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:﹣÷=﹣÷=﹣•=﹣=﹣,当x=2sin60°﹣()﹣2=2×﹣4=﹣4时,原式=﹣=﹣.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是50 ,组中值为110次一组的频率为0.16 ;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?【考点】频数(率)分布直方图;一元一次不等式的应用;扇形统计图.【分析】(1)用频数除以所占的频率可得八(1)班的人数,由频数分布直方图知,组中值为110次一组的频数是8,再由频率=频数÷数据总和计算;(2)先计算组中值为130次一组的频数为50﹣8﹣10﹣14﹣6=12人,再补充完整频数分布直方图即可;(3)根据八年级同学一分钟跳绳的达标率不低于90%,列不等式求解.【解答】解:(1)八(1)班的人数是6÷0.12=50人,由频数分布直方图知,组中值为110次一组的频数是8,所以它对应的频率是8÷50=0.16;(2)组中值为130次一组的频数为12人,(3)设八年级同学人数有x人,达标的人数为12+10+14+6=42,根据一分钟跳绳次数不低于120次的同学视为达标,达标所占比例为:1﹣9%=91%=0.91,则可得不等式:42+0.91(x﹣50)≥0.9x,解得:x≥350,答:八年级同学人数至少有350人.18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.【考点】梯形;平行四边形的性质;菱形的性质;直角梯形.【分析】(1)如图,分别过A、D作BC的垂线,垂足分别为F、G,容易得到AF=DG,AD=FG,而CD=4,∠C=30°,由此可以求出CG=6,DG=AF=2,又∠B=60°,BF=2,若点P、A、D、E为顶点的四边形为直角梯形,则∠APC=90°或∠DPC=90°,那么P与F重合或P与G 重合,根据前面求出的长度即可求出此时的x的值;(2)若以点P、A、D、E为顶点的四边形为平行四边形,由于AD=BE=4,且AD∥BE,有两种情况:①当点P与B重合时,利用已知条件可以求出BP的长度;②当点P在CE中点时,利用已知条件也可求出BP的长度;(3)以点P、A、D、E为顶点的四边形能构成菱形.由(1)(2)知,当BP=0或8时,以点P、A、D、E为顶点的四边形是平行四边形,根据已知条件分别计算一组邻边证明它们相等即可证明它是菱形.【解答】解:(1)分别过点A、D作BC的垂线,垂足分别为F、G.∵∠C=30°,且CD=,∴DG=2,CG=6,∴DG=AF=2,∵∠B=60°,∴BF=2.∵BC=12,∴FG=AD=4,显然,当P点与F或点G重合时,以点P、A、D、E为顶点的四边形为直角梯形.所以x=2或x=6;(2)∵AD=BE=4,且AD∥BE,∴当点P与B重合时,即x=0时.点P、A、D、E为顶点的四边形为平行四边形,又∵当点P在CE中点时,EP=AD=4,且EP∥AD,∴x=8时,点P、A、D、E为顶点的四边形为平行四边形;(3)由(1)(2)知,∵∠BAF=30°,∴AB=2BF=4,∴x=0时,且PA=AD,即以点P、A、D、E为顶点的四边形为菱形.∵AB=BE,且∠B=60°,∴△ABE为正三角形.∴AE=AD=4.即当x=8时,即以点P、A、D、E为顶点的四边形为菱形,∴当BP=0或8时,以点P、A、D、E为顶点的四边形是菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值X围.【考点】反比例函数综合题.【分析】(1)作⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出d;(2)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数和直线B′C′的解析式;(3)直接从图象上找出y1<y2时,x的取值X围.【解答】解:(1)作⊥x轴于点N,∵A(﹣2,0)B(0,1).∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(HL),∴AN=BO=1,=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1)又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣6+2c=c,解得c=6,即反比例函数解析式为y1=,(3)此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)【考点】二次根式的应用.【分析】(1)先在Rt△ABC中利用45°的正切计算出AC=2,再在Rt△ADC中利用含30度的直角三角形三边的关系得到AD≈5.656(m),然后计算AD﹣AB即可;(2)利用等腰直角三角形的性质得到BC=AC=2,再在Rt△ADC中利用30度的正切计算出CD=2,则BD≈<3,由于滑滑板的正前方有3米长的空地就能保证安全,则可判定这样改造不可行.【解答】解:(1)在Rt△ABC中,∵tan∠ABC=,∴AC=4tan45°=2,在Rt△ADC中,∵∠D=30°,∴AD=2AC=4≈5.656(m),∵AD﹣AB=5.656﹣4≈1.66(m),∴改善后滑滑板会加长1.66米;(2)不可行,理由如下:∵△ABC为等腰直角三角形,∴BC=AC=2,在Rt△ADC中,∵tanD=,∴CD===2,∴BD=CD﹣BC=2﹣2≈2.060,<3,∴这样改造不可行.21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值X围该.【考点】一次函数的应用.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】×90+×30=42(万元).(2)由题意,得①当0≤x≤×3x=0.9x;②当30<x≤×3×30+×3×(x﹣30)=1.5x﹣18;③当x>×3×30+×3(m﹣30)+×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤×50﹣18=57(舍);②当45≤m<×50﹣0.6m﹣18=87﹣0.6m.∵57<y≤60,∴57<≤60,∴45≤m<50.综合①②得45≤m<50.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.【考点】四边形综合题.【分析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ≌△EAF,推出EF=EQ即可.【解答】(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两交点的横坐标分别是﹣3和1,设抛物线解析式的交点式y=a(x+3)(x﹣1),再配方为顶点式,可确定顶点坐标;(2)①设AC与抛物线对称轴的交点为E,先运用待定系数法求出直线AC的解析式,求出点E的坐标,即可得到DE的长,然后由S△ACD=×DE×OA列出方程,解方程求出a的值,即可确定抛物线的解析式;②先运用勾股定理的逆定理判断出在△ACD中∠ACD=90°,利用三角函数求出tan∠DAC=.设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.根据正切函数的定义求出OF=1.分两种情况进行讨论:(Ⅰ)如图2①,F点的坐标为(0,1),(Ⅱ)如图2②,F点的坐标为(0,﹣1).针对这两种情况,都可以先求出点P的坐标,再得出m的值,进而求出平移后抛物线的解析式.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),∴抛物线解析式为y=a(x+3)(x﹣1)=ax2+2ax﹣3a,∵y=a(x+3)(x﹣1)=a(x2+2x﹣3)=a(x+1)2﹣4a,∴顶点D的坐标为(﹣1,﹣4a);(2)如图1,①设AC与抛物线对称轴的交点为E.∵抛物线y=ax2+2ax﹣3a与y轴交于点C,∴C点坐标为(0,﹣3a).设直线AC的解析式为:y=kx+t,则:,解得:,∴直线AC的解析式为:y=﹣ax﹣3a,∴点E的坐标为:(﹣1,﹣2a),∴DE=﹣4a﹣(﹣2a)=﹣2a,∴S△ACD=S△CDE+S△ADE=×DE×OA=×(﹣2a)×3=﹣3a,∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2﹣2x+3;②∵y=﹣x2﹣2x+3,∴顶点D的坐标为(﹣1,4),C(0,3),∵A(﹣3,0),∴AD2=(﹣1+3)2+(4﹣0)2=20,CD2=(﹣1﹣0)2+(4﹣3)2=2,AC2=(0+3)2+(3﹣0)2=18,∴AD2=CD2+AC2,∴∠ACD=90°,∴tan∠DAC===,∵∠PAB=∠DAC,∴tan∠PAB=tan∠DAC=.如图2,设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.∵tan∠PAB===,∴OF=1,则F点的坐标为(0,1)或(0,﹣1).分两种情况:(Ⅰ)如图2①,当F点的坐标为(0,1)时,易求直线AF的解析式为y=x+1,由,解得,(舍去),∴P点坐标为(,),将P点坐标(,)代入y=﹣(x+m)2+4,得=﹣(+m)2+4,解得m1=﹣,m2=1(舍去),∴平移后抛物线的解析式为y=﹣(x﹣)2+4;(Ⅱ)如图2②,当F点的坐标为(0,﹣1)时,易求直线AF的解析式为y=﹣x﹣1,由,解得,(舍去),∴P点坐标为(,﹣),将P点坐标(,﹣)代入y=﹣(x+m)2+4,得﹣=﹣(+m)2+4,解得m1=﹣,m2=1(舍去),∴平移后抛物线的解析式为y=﹣(x﹣)2+4;综上可知,平移后抛物线的解析式为y=﹣(x﹣)2+4或y=﹣(x﹣)2+4.。
湖北省黄冈市2017届九年级中考模拟考试(D卷)数学试题(原卷版)
黄冈市2017年中考模拟试题数学D卷第Ⅰ卷(选择题共18 分)一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,共6小题,每小题3 分,共18 分)1. 实数在数轴上的位置如图所示,则下列各式正确的是()A. B. C. D.2. 下列运算正确的是()A. (2a)2=2a2B. a6÷a2=a3C. (a+b)2=a2+b2D. a3·a2=a53. 下列式子中结果为负数的是()A. │-2│B. -(-2)C. -2—1D. (-2)24. 一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C 应是()A. 140°B. 40°C. 100°D. 180°5. 一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A. m=3,n=5B. m=n=4C. m+n=4D. m+n=86. 如图所示的工件的主视图是()A. B. C. D.第Ⅱ卷(非选择题共102 分)二、填空题(共8 小题,每小题3 分,共24 分)7. 函数中自变量的取值范围是_________.8. 分解因式2x2− 4x + 2=_________.9. 化简的结果是________.10. 计算的结果是_______.11. 我市今年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均数是_____℃.12. 分式方程-=1的解是________.13. 用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为_____cm2.14. 如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF 的长为____....三、解答题(本大题共10小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)15. 解不等式组并在数轴上表示出它的解集.16. 如图,已知.求证:.17. 已知方程x2+2kx+k2-2k+1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若=4,求k的值.18. 某商场投入13800元资金购进甲乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48问:全部售完500箱矿泉水,该商场共获得利润多少元?19. “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.20. 如图,已知F是以AC为直径的半圆O上任意一点,过AC上任意一点H作AC的垂线分别交CF,AF的延长线于点E,B,点D是线段BE的中点.(1)求证:DF是⊙O的切线;...(2)若BF=AF,求证AF2=EF·CF.21. 如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=(k>0,x>0)的图像上点P(m,n)是函数图像上任意一点,过点P分别作x轴y轴的垂线,垂足分别为E,F.并设矩形OEPF和正方形OABC不重合的部分的面积为S.(1)求k的值;(2)当S=时求p点的坐标;(3)写出S关于m的关系式.22. 小明在数学课中学习了《解直角三角形》后,双休日组织数学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)23. 校园安全与每个师生、家长和社会有着切身的关系.某校教学楼共五层,设有左、右两个楼梯口,通常在放学时,若持续不正常,会导致等待通过的人较多,发生拥堵,从而出现不安全因素.通过观察发现位于教学楼二、三楼的七年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟12人递增,6分钟后经过单个楼梯口等待人数按每分钟12人递减;位于四、五楼的八年级学生从放学时刻起,经过单个楼梯口等待人数y2与时间为t(分)满足关系式y2=-4t2+48t-96(0≤t≤12).若在单个楼梯口等待人数超过80人,就会出现安全隐患.(1)试写出七年级学生在单个楼梯口等待的人数y1(人)和从放学时刻起的时间t(分)之间的函数关系式,并指出t的取值范围.(2)若七、八年级学生同时放学,试计算等待人数超过80人所持续的时间.(3)为了避免出现安全隐患,该校采取让七年级学生提前放学措施,要使单个楼梯口等待人数不超过80人,则七年级学生至少比八年级提前几分钟放学?24. 如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:经过A,B,D三点的抛物线的解析式是;(2)已知点F在(1)中的抛物线的对称轴上,求点F到点B,D的距离之差的最大值;(3)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(4)如图2,当点P在线段AB上移动时,设P点坐标为(x,-2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而增大时所对应的自变量x的取值范围.。
2017中考数学模拟试题
23. 解:( 1) k 为负数的概率是 2 3
( 2)画树状图或列表:
( 1 分)
. ..
分 分 分
分
.
( 3 分)
----------------------3
分
24. 证明:由翻折得 AB=AG∠, AGE=∠ ABE=90°
∴∠ AGF=90°
由正方形 ABCD得 AB=AD
∴ AG=AD -------1
A. π 5
B. 2π 5
C. 3π 5
BAC= 36°,则劣弧 D. 4π 5
BC的长是:
(5 题图) ...
( 6 题图)
.
6. 用直尺和圆规做一个角等于已知角,如图能得出∠
A′O′B′=∠ AOB的依据是:
A.SSS
B.SAS
C.ASA
D.AAS
7. 关于一组数据的平均数、中位数、众数,下列说法中正确的是:
分
在 Rt △AGF和 Rt△ ADF中,
AG=AD
AF=AF
∴ Rt △AGF ≌ Rt △ ADF( HL) -------------3
分
∴ FG=FD --------------------4
分
【应用】 5 -----2 分 4
Байду номын сангаас
15 ---------2
分
4
25. ( 1)证明:连接 AD
OB ,OC组成。 为记录寻宝者的行进路线, 在 BC的中点 M处放置了一台定位仪器,
设寻宝者行进的时间为 x,寻宝者与定位仪器之间的距离为 y,若寻宝者匀速行
进,且表示 y 与 x 的函数关系的图像大致如图②所示,则寻宝者的行进路线可能
江苏省淮安市2017年九年级中考模拟数学试卷(含答案)
淮安市2017年中考数学模拟试卷考试时间:120分钟 总分:150分 命题人:郭子涵 袁杰 万宇翔 审核人:万宇翔 李枭一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.﹣6的相反数是( )A .﹣6B .-61C .61D .62.函数y=1x +中自变量x 的取值范围是( ) A.1x >- B.1x ≥- C.1x <- D.1x ≤- 3.下列运算正确的是( )A .2a +3b = 5abB .2a ·3a =5aC .3a 2)( = 3a 6 D .6a +3a =9a4.用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为( )A B C D5.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程0q px x 2=++有实数根的概率是( ) A.41 B.31 C.21 D.32 6.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的 ( )A .平均数 B.频数分布 C.中位数 D.方差7.如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是( )A 、15°B 、20° C、25° D、30°8.如图,在平面直角坐标系中,点A 、B 均在函数y=xk(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( )A. (2,2)B. (2,3)C. (3,2)D. (4,23)(第8题) (第14题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数法表示电站的总装机容量,应记为. ▲ 千瓦. 10.因式分解:22944y x y ---= ▲ .11.关于x 的方程()22x 2m 1x m 10--+-=的两实数根为x 1,x 2,且x 12+x 22=3,则m= ▲ .12.已知实数m ,n 满足2m n 1-=,则代数式22m 2n 4m 1++-的最小值等于 ▲ . 13.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为 ▲ .14.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内圆弧OB 上一点,∠BM0=120o ,则⊙C 的半径长为 ▲ °. 15.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下:正面…………………密……………封……………线……………内……………不……………准……………答……………题……………………姓名____________ 年级________x... -1 0 1 2 3 ... y...[105212[...则当y 5<时,x 的取值范围是 ▲ .16.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 ▲ .17.如图,△ABC 是等腰直角三角形,AC=BC=a ,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,则 CD 的长为 ▲ .18.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=5,AC=2,则DF 的长为 ▲ .(第16题) (第17题) (第18题)三、解答题(本大题共十小题,共96分) 19.(本小题满分10分)1)、02017-︒45sin -cos45°+23-)(-1-41-)(2)、⎪⎩⎪⎨⎧=+=++3y -x 2-y x 3121-4y x -3y x 2)()()(20.(8分)1x x2-x x 24x 4-x 222+++,在0、1、2三个数中选一个合适的,代入求值21.(8分)如图,在正方形ABCD 内有一点P ,满足AP=AB ,PB=PC ,连接AC 、PD 求证(1)△APB △DPC (2)∠BAP=2∠PAC22.(8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教。
广西南宁市江南区2017年九年级数学中考模拟试卷有答案
2017年九年级数学中考模拟试卷一、选择题:1.若|x|=7,|y|=5,且x+y>0,那么x-y的值是()A.2或12B.-2或12C.2或-12D.-2或-122.如图所示的几何体的俯视图是( )3.网购越来越多地成为人们的一种消费方式,在2015年的“双11”促销活动中天猫和淘宝的支付交易额突破912.17亿元,将912.17亿元用科学记数法表示为()A.912.17×108B.9.1217×108C.9.1217×109D.9.1217×10104.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.5.如图,已知a∥b,三角形直角顶点在直线a上,已知∠1=25°18/27//,则∠2度数是()A.25°18/27//B.640 41/33//C.74°4133//D.64°41/43//6.某学校对七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如右图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有()人.A.8B.10C.6D.97.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(-a2)3=﹣a68.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x-4)-2b>0解集为()A.x>﹣2B.x<﹣2C.x>2D.x<39.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线10.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k取值范围是()A.k≥1.25B.k>1.25C.k<1.25D.k≤1.2511.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.312.抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3二、填空题:13.黄山主峰一天早晨气温为﹣1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间黄山主峰的气温是.14.函数的自变量x的取值范围是.15.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.16.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.17.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为.18.有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是,依次继续下去…,第2016次输出的结果是.三、解答题:19.计算:20.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=3,求菱形BFDE的面积.21.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?22.如图,△ABC内接于⊙O,过点B作⊙O的切线DE,F为射线BD上一点,连接CF.(1)求证:CBE=A;(2)若⊙O 的直径为5,BF=2,tanA=2.求CF的长.23.某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变,若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?24.在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C 在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?25.如图,二次函数y=-0.25x2+bx+c的图像经过点A(4,0),B(-4,-4),且与y轴交于点C.(1)试求此二次函数的解析式;(2)试证明:∠BAO=∠CAO(其中O是原点);(3)若P是线段AB上的一个动;点(不与A,B重合),过P作y轴的平行线,分别交此二次函数图像及x轴于Q、H两点.试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由。
2017年中考数学模拟试题及答案
2017年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分)1、比-2013小1的数是()A、-2012B、2012C、-2014 D、20142、如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3=()A、70°B、65°C、60°D、55°3、从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()A、 B、 C、 D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是()A、9.4×10-7mB、9.4×107mC、9.4×10-8mD、9.4×108m5、下列计算正确的是()A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-2)4=-a4b6D、-2a+(2a-1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x千克,则列出关于x的方程为()A、+4=B、-4=C、+4=D、-4=二、填空题(本大题共8小题,每小题3分,共24分)7、因式分解:2-x=。
8、已知x=1是关于x的方程x2+x+2k=0的一个根,则它的312l1l2FCBGDE正面另一个根是 。
9、已知=,则分式的值为 。
10、如图,正五边形,∥交的延长线于点F ,则∠= 度。
11、已知x =-1,2) ,y =+1,2) ,则x 2++y 2的值为 。
12、分式方程+=1的解为。
13、现有一张圆心角为108°,半径为作成一个底面半径为10的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 。
2017年九年级数学中考模拟试卷
2017 年九年级数学中考模拟试卷一、选择题:1.已知有理数 a, b, c在数轴上对应点的地点如图, 化简 : ∣ b-c ∣ -2 ∣ c+a∣-3 ∣ a-b ∣ =()A.-5a+4b-3cB.5a-2b+c2. 以下计算正确的选项是()A.2+a=2a﹣3a=﹣1 C.(﹣a)2?a3=a5÷4ab=2ab3. 若 x、 y为有理数,以下各式建立的是()A. (﹣ x)3=x3B. (﹣ x)4=﹣ x4 4=﹣ x4 D. ﹣x3=(﹣ x)34. 如图,依据三视图确立该几何体的全面积是(图中尺寸单位:cm)()222 2A. 40π cm B. 65π cm C.80π cm D. 105πcm5. 化简的结果是()A. B. C.x+1﹣16.以下运算中,正确的选项是()A.3a+2b=5abB.2a 3 +3a 2=5a 5C.3a 2 b ﹣ 3ba 2 =0D.5a 2﹣ 4a 2=17.某学校将为初一学生开设 ABCDEF共 6门选修课,现选用若干学生进行了“我最喜爱的一门选修课”检查,将检查结果绘制成如图统计图表(不完好)选修课A B C D E F 人数4060100依据图表供给的信息,以下结论错误的选项是()A.此次被检查的学生人数为 400 人B.扇形统计图中 E部分扇形的圆心角为 72°C.被检查的学生中喜爱选修课 E、F的人数分别为 80,70D.喜爱选修课 C的人数最少8.在同样时辰的物高与影长成比率,假如高为1.5 米的测竿的影长为 2.5 米,那么影长为 30 米的旗杆的高是()米米米米9.如图 1,在直角梯形 ABCD中,动点 P 从点 B 出发,沿 BC,CD运动至点 D 停止.设点 P 运动的行程为 x,△ ABP 的面积为y,假如 y 对于 x 的函数图象如图 2 所示,则△ BCD的面积是()A. 3 B . 4 C . 5 D .610. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24 米,拱的半径为13 米,则拱高为 ( )A.5 米 B .8米 C .7米 D . 5 米二、填空题:11.已知对于 x,y 的方程组的解为正数,则.12.分解因式: 2x3﹣4x2+2x=.13.如图,△ ABC是边长为4个等边三角形,D 为AB边中点 , 以 CD为直径画圆 , 则图中暗影部分面积为.14.如图在□ABCD中,点 E 在边 DC上, DE: EC=3: 1,连结 AE交 BD于点 F,若△ DEF的面积为 18,则□ABCD的面积为.三、计算题:15.计算 :2016 0﹣ | ﹣|++2sin45 °.16.解方程 :3x 2- 7x +4=0.四、解答题:17.如图 , 在 Rt △ ABC中 , ∠ ACB=90° , 点 D,E 分别在 AB,AC上 ,CE=BC,连结 CD,将线段 CD绕点 C按顺时针方向旋转 90°后得 CF, 连结 EF.( 1)增补达成图形;( 2)若 EF∥ CD,求证 : ∠ BDC=90°.第3页共3页18.如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,交 y 轴于 C点,此中 B 点坐标为( 3,0), C 点坐标为( 0,3),且图象对称轴为直线x=1.( 1)求此二次函数的关系式;( 2) P 为二次函数y=ax 2+bx+c 在 x 轴下方的图象上一点,且S△ABP=S△ABC,求 P 点的坐标.19.如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB的坡度为1: 2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端 B 点正上方的一点, BC⊥MN,在自动扶梯底端 A 处测得 C 点的仰角为 42°,求二楼的层高 BC(精准到 0.1 米).(参照数据: sin42 °≈ 0.67 , cos42°≈ 0.74 ,tan42 °≈ 0.90 )如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB 的坡度为 1:2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端B点正上方的一点,BC⊥ MN,在自动扶梯底端A 处测得 C点的仰角为42°,求二楼的层高BC(精准到0.1 米).(参照数据:sin42 °≈ 0.67 ,cos42 °≈ 0.74 ,tan42 °≈ 0.90 )20.一辆客车从甲地出发前去乙地,均匀速度v(千米 / 小时)与所用时间 t (小时)的函数关系以下图,此中60≤ v≤ 120.( 1)直接写出 v与t 的函数关系式;( 2)若一辆货车同时从乙地出发前去甲地,客车比货车均匀每小时多行驶20 千米, 3 小时后两车相遇.①求两车的均匀速度;②甲、乙两地间有两个加油站A、B,它们相距200 千米,当客车进入B加油站时,货车恰巧进入A加油站(两车加油的时间忽视不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲竞赛,菲菲同学将选手成绩区分为A、 B、 C、 D四个等级,绘制了两种不完好统计图.依据图中供给的信息,解答以下问题:( 1)参加演讲竞赛的学生共有人,扇形统计图中m=,n=,并把条形统计图增补完好.(2)学校欲从 A等级 2 名男生 2 名女生中随机选用两人,参加达州市举办的演讲竞赛,请利用列表法或树状图,求 A等级中一男一女参加竞赛的概率.(男生疏别用代码A 1、 A2表示,女生疏别用代码 B1、B2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax 2+bx的对称轴为 x=0.775 ,且经过点 A( 2, 1),点 P是抛物线上的动点, P的横坐标为 m( 0< m< 2),过点 P作PB⊥ x轴,垂足为 B,PB交 OA于点 C,点 O对于直线 PB的对称点为 D,连结 CD,AD,过点 A作 AE⊥x轴,垂足为 E.(1)求抛物线的分析式;(2)填空:①用含 m的式子表示点 C, D的坐标: C(,),D(,);②当 m=时,△ ACD的周长最小;( 3)若△ ACD为等腰三角形,求出全部切合条件的点P的坐标.23.如图①,△ ABC与△ CDE是等腰直角三角形,直角边AC、 CD在同一条直线上,点M、 N 分别是斜边AB、 DE的中点,点P 为 AD的中点,连结AE、 BD.(1)猜想 PM与 PN的数目关系及地点关系,请直接写出结论;(2)现将图①中的△ CDE绕着点 C顺时针旋转α(0°<α<90°),获得图②, AE与 MP、BD分别交于点 G、H.请判断( 1)中的结论能否建立?若建立,请证明;若不建立,请说明原因;(3)若图②中的等腰直角三角形变为直角三角形,使 BC=kAC,CD=kCE,如图③,写出 PM与 PN的数目关系,并加以证明.参照答案11.答案为: 7;12.答案为: 2x(x ﹣1) 2.13.答案为: 2.5 ﹣π .14.答案为: 112;15. 解: 20160 ﹣|﹣ |+ +2sin45 ° =1﹣ +( 3﹣1)﹣1+2×=1﹣ +3+ =4.16. 解: (3)x 1 =, x2=117.解:( 1)补全图形,以下图;(2)由旋转的性质得:∠ DCF=90°,∴∠ DCE+∠ ECF=90°,∵∠ ACB=90°,∴∠ DCE+∠BCD=90°,∴∠ ECF=∠ BCD,∵EF∥ DC,∴∠ EFC+∠ DCF=180°,∴∠ EFC=90°,在△ BDC和△ EFC中,,∴△BDC≌△ EFC(SAS),∴∠ BDC=∠ EFC=90°.18. 解:( 1)依据题意,得,解得.故二次函数的表达式为y=﹣ x2+2x+3.△ ABP △ABC PC P( 2)由 S =S ,得 y +y =0,得 y =﹣ 3,当 y=﹣ 3 时,﹣ x2+2x+3=﹣ 3,解得 x1=1﹣, x2=1+.故 P 点的坐标为( 1﹣,﹣ 3)或( 1+ ,﹣ 3).19.20.解:( 1)设函数关系式为 v=kt -1,-1∵ t=5 , v=120,∴ k=120 ×5=600,∴ v与 t 的函数关系式为 v=600t(5≤ t≤ 10);当 v=110 时, v﹣ 20=90.答:客车和货车的均匀速度分别为110 千米 / 小时和 90 千米 / 小时;②当 A加油站在甲地和B加油站之间时,110t ﹣( 600﹣ 90t ) =200,解得 t=4 ,此时 110t=110 ×4=440;当 B加油站在甲地和 A加油站之间时, 110t+200+90t=600 ,解得 t=2 ,此时 110t=110 ×2=220.答:甲地与 B加油站的距离为220 或 440 千米.21.22.23.解:( 1) PM=PN, PM⊥PN,原因以下:∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.在△ ACE和△ BCD中,∴△ ACE≌△ BCD(SAS),∴AE=BD,∠ EAC=∠CBD,∵点 M、N 分别是斜边AB、 DE的中点,点P 为 AD的中点,∴ PM= BD, PN= AE,∴PM=PM,∵∠ NPD=∠ EAC,∠ MPN=∠BDC,∠ EAC+∠BDC=90°,∴∠ MPA+∠ NPC=90°,∴∠ MPN=90°,即 PM⊥PN;( 2)∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∴△ ACE≌△ BCD.∴AE=BD,∠ CAE=∠CBD.又∵∠ AOC=∠ BOE,∠ CAE=∠CBD,∴∠ BHO=∠ ACO=90°.∵点 P、M、 N 分别为 AD、AB、 DE的中点,∴ PM= BD, PM∥ BD;PN=AE, PN∥ AE.∴ PM=PN.∴∠ MGE+∠ BHA=180°.∴∠ MGE=90°.∴∠ MPN=90°.∴ PM⊥ PN.(3) PM=kPN∵△ ACB和△ ECD是直角三角形,∴∠ ACB=∠ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∵ BC=kAC, CD=kCE,∴=k.∴△ BCD∽△ ACE.∴ BD=kAE。
广东省2017届九年级中考模拟考试(一)数学(解析版)
2017学年九年级模拟考试(之一)数学试题说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.一、选择题(本大题10小题,每小题3分,共30分)1. 下列运算正确的是()A. 3a+2a=5 a2B. a6÷a2= a3C. (-3a3)2=9a6D. (a+2)2=a2+4【答案】C【解析】试题分析:选项A,根据同类项合并法则可得3a+2a="5" a,本选项错误;选项B,根据同底数幂的除法可得a6÷a2= a4,本选项错误;选项C,根据积的乘方可得(-3a3)2=9a6,本选项正确;选项D,根据完全平方式可得(a+2)2=a2+4a+4,本选项错误.故选C.考点:合并同类项;同底数幂的除法;积的乘方;完全平方式.2. 钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A. 4.4×106B. 44×105C. 4×106D. 0.44×107【答案】A【解析】试题分析:根据科学记数法是把一个大于10的数表示成a×10n的形式(其中1≤a<10,n是正整数).确定a×10n(1≤|a|<10,n为整数),4400000有7位,所以可以确定n=7-1=6,再表示成a×10n的形式即可,即4400000=4.4×106.故答案选A.考点:科学记数法.3. 数据4,8,4,6,3的众数和平均数分别是()A. 5,4B. 8,5C. 6,5D. 4,5【答案】D【解析】试题分析:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选D.考点:众数;算术平均数.4. 如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A. B. C. D.【答案】B5. 函数y=x2-2x+3的图象的顶点坐标是( )A. (1,-4)B. (-1,2)C. (1,2)D. (0,3)【答案】C【解析】试题分析:首先将二次函数配成顶点式,然后得出顶点坐标.y=-2x+3=,则顶点坐标为(1,2)...考点:二次函数的顶点坐标6. 如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A. B. C. D.【答案】B【解析】直接根据题意构造直角三角形,进而利用勾股定理得出DC,AC的长,再利用锐角三角函数关系求出答案.解:如图所示:连接DC,由网格可得出∠CDA=90°,则DC=,AC=,故sinA===.故选B.“点睛”此题主要考查了勾股定理以及锐角三角函数关系,正确构造直角三角形是解题关键.7. 如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )A. 2B. 3C. 4D. 5【答案】C8. 如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD的度数为()A. B. C. D.【答案】D【解析】由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由圆周角定理,可求得∠B=∠ACD=40°,继而求得答案.解:∵在⊙O中,AB为直径,∴∠ADB=90°,∵∠B=∠ACD=40°,∴∠BAD=90°﹣∠B=50°.故选D.“点睛”此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.9. 三角板ABC中,∠ACB=90°,∠B=30°,AC=2,三角板绕直角顶点C逆时针旋转,当点A的对应点A′ 落在AB边的起始位置上时即停止转动,则B点转过的路径长为()...A. 2πB.C.D. 3π【答案】A【解析】试题分析:根据题意可得:∠BCB′=60°,BC=6,然后根据弧长的计算公式求出答案.考点:弧长的计算公式10. 如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A. B. C. D.【答案】B【解析】分点Q在AC上和BC上两种情况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=∴y=×AP×PQ=×x×=;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16-x,∠B=60°,∴PQ=BP•tan60°=(16-x).∴S△APQ=AP•PQ=x•(16-x)=x2+8x.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选B.考点:动点问题的函数图象.“点睛”本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.二、填空题(本大题共6小题,每小题4分,共24分)11. 因式分解:=___________.【答案】【解析】试题分析:本题首先提取公因式2x,然后再利用平方差公式进行因式分解.考点:因式分解.12. 要使式子有意义,则字母的取值范围是______....【答案】【解析】根据二次根式有意义的条件可得x-1>0,再解不等式即可.解:由题意得x-1>0,解得x>1.故答案为:x>1.“点睛“此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13. 如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若,则________.【答案】4【解析】根据平行四边形的性质得到AD∥BC,和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.解:因为E为AD中点,AD∥BC,所以,△DFE∽△BFC,所以,,,所以,=1,又,所以,4.“点睛”本题考查的是平行四边形的性质、相似三角形的判定和性质;掌握三角形相似的判定和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.14. 在等腰直角△ABC中,∠C=90°,AC=8,D为AC上一点,若,则AD=______。
2017年中考数学模拟试题(九)含答案
原点,点 C 在反比例函数 (-2,-2),则 k ( A.2 B.4
y
k x 的图象上.若点的坐标为
4题 D.16
) C.8
5.如图所示,在平行四边形纸片上作随机 扎针实验, 针头扎在阴影区域内的概率为( A. )
1 3
B.
1 4
C.
1 5
D.
1 6
5题
6. 如图,AB 与⊙O 相切于点 B,AO 的延长线交⊙O 于点 C, 连结 BC,若∠A=36°,则∠C 等于( A.36°; B.54°; C.60°; ) D.27°.
2017 年中考数学模拟试题(九)含答案 2017 年中考模拟数学试题(九)
(考试时间 120 分钟满分 150 分) 第 I 卷(选择题部分 共 30 分)
一、选择题(每小题 3 分,共 30 分.每小题只有一个正确选项,请把正确选项的字母代号填在下面 的表格内). 1.下列等式正确的是( A. ( 1) 1
4 3 2 3 4 3 2 3 4 3 2 3 4 3 2 3
y l
A
B
M
O N
C
(10 题)
x
)
O
2
A
4
t
O
2
4
t
O
2
4
t
O
2
4
t
B
C
第 I I 卷(非选择题 共 120 分)
D
二、填空题(共 24 分)
11. 函数 y= 2 x +
1 中自变量 x 的取值范围是 x3
。
12.2014 年索契冬奥会,大部分比赛将在总占地面积为 142000 平方米的“菲什特奥林匹克体育场” 进行 .将 142000 平方米用科学用科学记数法表示是 13.如图, ABC 中, C 90°, tan A 平方米
(完整版)2017年初三数学模拟试卷
2017年初三数学模拟试卷(6:2:2)(本卷共4页,三大题,共27小题;满分150分,考试时间120分钟)一、选择题(每题4分,共40分. 每题的四个选项中,只有一个符合题意) 1.2的绝对值等于( )A . 2B . ﹣2C .12D .12-2. 如图,∠1与( )是同旁内角. A . ∠2 B . ∠3 C . ∠4 D . ∠53. 计算2242x x -的结果是( ) A . 22x B . 26xC . 212xD .24. 用“百度”搜索引擎能搜索到与“引力波”相关的网页约8×106个,8×106等于( )A .860000 B .8600000 C .800000 D .8000000 5. 一组数据2,0,1,7,则这组数据的中位数是( ) A . 0.5B . 1C . 1.5D . 26.平面直角坐标系上一点P(1,1),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是( )A .B .C .D .8. 若m na a=,下列变形不一定正确的是( ) A . m n =B . mb nb a a =C . m nab ab= D .m nb b a a-=- 9. 如图,在△ABC 中,点D ,E 在BC 上,AB =AC ,AD =AE ,△ADE 绕着点A 旋转,当点E 转到边AC 上时,点D 恰好还在边BC 上,则∠B 与∠DAE 等量关系是( )A .∠B =∠DAE B .∠B +∠DAE =60°C .∠B +∠DAE =90°D .2∠B +3∠DAE =180°第2题E D 第9题10. 如图,小华在浴室镜前(镜子垂直于水平的地面)发现,能看到自己整个上半身,现在,小华退后二步,仍竖直站立,这时可以看到身体部位( ) A . 比之前更多 B . 和之前完全相同 C . 比之前更少 D . 不能确定二、填空题(共6小题,每题4分,满分24分)11. 若分式11x -有意义,则x 的取值范围是 . 12. 写出二元一次方程5x y +=的一个整数解: .13. 计算:2222016201781008+-⨯= .14. 有三个小球分别在ABC △的三个顶点上,不会碰撞的概率是.15. 菱形OABC ,点A 的横坐标是1,其中点A 和点C 在反比例函数2y x=的图象上,则对角线OB 的长度为 .16.抛物线2(0)y ax bx c a =++≠,过点(,)m n ,点(2,2)m n +和点(6,)m n +,当抛物线上的点P 横坐标为2m -时,则点P 的纵坐标为 (用含n 的代数式表示). 三、解答题(满分86分,作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 17.(6分) 计算:()01tan30π20163-︒+-+-18.(8分) 已知关于x 的一元二次方程260x mx ++=,写出一个m 的值,使该方程有两个整数根,并求出此时的两个整数根.19. (10分) 如图,四边形ABCD 中,∠A =∠C ,AB ∥CD . (1)求证:四边形ABCD 是平行四边形;(2)点E 是BC 的中点,只用一把无刻度的直尺在AD 边上作点F ,使得EF ∥AB , 作出满足题意的点F ,并根据作图证明EF ∥AB .A20. (8分) 甲,乙,丙三个学校举行初三数学三校联赛,评委从实践操作题,必答题,抢答题三个方面为各校代表队打分,各项成绩均按百分制记录,甲,乙,丙三个学校代表队各项得分如下表:(2)如果按照实践操作题占40%,必答题占30%,抢答题占30%,计算各校的成绩,哪个学校的成绩最高?21. (10分) 某企业为了保护环境,准备购买A和B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台和B型3台需要54万,购买A型4台和B型2台需要68万元.(1)求出A型和B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.22.(8分) 分别在下列5×5的正方形网格中,小正方形边长为1,按要求画出图形.要求所画图形的顶点都在格点上,且面积都等于5.等腰直角三角形正方形锐角三角形钝角三角形23. (10分)如图,在ABC △中,90C ∠=︒,BAC ∠的平分线AD 交BC 于点D ,过点D 作DE AD ⊥交AB 于点E ,以AE 为直径作O e . (1)求证:BC 是O e 的切线; (2)若AB=4BE ,求tan BAD ∠.24.(13分)数学学习小组的同学对有个角是60度的三角形中的角平分线进行“动点问题,动中求静”的活动探究,如图,∠MAN =60°,点B 和C 分别是射线AM 和AN 上的两个动点,△ABC 的角平分线BD ,CE 相交于点O ,.(1)小亮探究活动中发现∠BOE 的大小是不变的,请你写出∠BOE 的度数; (2)小颖探究活动中发现线段OD 和OE 的长度是相等的,请你证明:OD =OE ;(3)小辉受到小亮、小颖的启发,发现AE BE 与DO BO相关联,若58DO BO =,求AEBE 的值.25. (13分) 已知二次函数2()y x mx m m =++为常数其顶点为D ,当m 取不同的值时,其图象构成一个“抛物线系P ”,(1)求顶点D 的纵坐标最大值;(2)若抛物线:2y x mx m =++的图象,向右平移n (n >0)个单位长度后的图象还是“抛物线系P ”其中的一条抛物线,求m n -的值;(3)若抛物线:2y x mx m =++的图象关于直线y x =对称后的图象与直线12y x =交于A ,B 两点,且线段10AB =,求m 的值.D。
湖北省武汉市2017年中考数学模拟试卷附答案
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11+的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1) 探究与猜想:①取点M(0,1),直接写出直线l的解析式取点M(0,2),直接写出直线l的解析式②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为__________,请取M的纵坐标为n,验证你的猜想(2) 如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式参考答案10.提示:当CG⊥AF时,CD+DE有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元)21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA )∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ的解析式为y=6x-21。
2017中考数学模拟试卷含答案(精选5套)
--WORD 格式--可编辑--专业资料------2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( )A. 1B. 23C. 2D. 3 2. 下列的几何图形中,一定是轴对称图形的有( ) A. 5个 B. 4个 C. 3个 D. 2个 3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. 1.8×10 B. 1.8×108 C. 1.8×109 D. 1.8×1010 4. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名 8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2 = 9 B. (x - 2)2 = 9 C. (x + 2)2 = 1D. (x - 2)2 =1 9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S圆弧 角 扇形 菱形 等腰梯形 A. B. C. D. (第7题图)--WORD 格式--可编辑--专业资料----- -△ABC =( ) A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶3 10. 下列各因式分解正确的是( ) A. x 2 + 2x -1=(x - 1)2 B. - x 2 +(-2)2 =(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2 = x 2 + 2x + 1 11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C. 23D. 1 12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( ) A. 一直增大 B. 一直减小 C. 先减小后增大 D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,)13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 . 16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C(第11题图) (第12题图) (第17题图)--WORD 格式--可编辑--专业资料----- -的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 . 18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n +)÷22n m m -. 20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图 痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……② (第18题图)(第21题图) °--WORD格式--可编辑--专业资料------22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.(第23题图)小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)--WORD格式--可编辑--专业资料------24. (本小题满分8分)如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM = AN;(2)若⊙O的半径R = 3,PA = 9,求OM的长.(第24题图)25. (本小题满分10分)某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的2,求该校本次购买A3型和B型课桌凳共有几种方案?哪种方案的总费用最低?--WORD 格式--可编辑--专业资料------26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2017年初三适应性检测参考答案与评分意见一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12(第26题图)--WORD 格式--可编辑--专业资料----- -答案 D A C B C B D A B C A C 说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题 19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·m n m 22- …………2分 =n m m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x-1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x +--WORD 格式--可编辑--专业资料----- - 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC =36°, …………4分∵AB = AC ,∴∠ C =∠ABC = 72°, …………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分 ∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt△BDC中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC.cos30° (1)分= 63×23= 9,........................2分∴DF = DC + CF = 9 + 1 = 10, (3)分∴GE = DF = 10. …………………4分在Rt△BGE中,∠BEG = 20°,∴BG = CG·tan20°…………………5分=10×0.36=3.6,…………………6分在Rt△AGE中,∠AEG = 45°,∴AG = GE = 10,……………………7分∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ...............8分24. 解(1)如图,连接OA,则OA⊥AP. (1)分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9- x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 ……………8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. ……………1分∴4x + 5(x + 40)=1820. ………………………………………2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.a≤2(200 - a),3∴……………4分180 a + 220(200- a)≤40880.解得78≤a≤80. ……………5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. ……………7分∵-40<0,y随a的增大而减小,∴当 a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2017年中考数学模拟试题(二) 姓名---------座号---------成绩-----------一、 选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、39 3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为25、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( )A 、20°B 、80°C 、60°D 、100° 7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( ) A 、0个 B 、5个 C 、6个 D 、无数个B D ECA 22 主视图左视图 俯视图A9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>,则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >> 10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B=4,则AB=( ) A 、5 B 、2.4 C 、2.5D 、4.8 二、填空题 11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 一(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.计算﹣2﹣1的结果是()A.﹣3B.﹣2C.﹣1D.32.在Rt△ABC中,∠ABC=90°、tanA=,则sinA的值为()A. B. C. D.3.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )4.2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为( )A.3.8×109B.3.8×1010C.3.8×1011D.3.8×10125.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()6.下列实数中是无理数的是()A.0.38B.πC.D.7.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为()A.9.63×10﹣5B.96.3×10﹣6C.0.963×10﹣5D.963×10﹣48.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根9.函数y=﹣中的自变量x的取值范围是( )A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠110.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.511.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例12.二次函数y=a(x﹣3)2+4(a≠0)的图象在1<x<2这一段位于x轴的上方,在5<x<6这一段位于x轴的下方,则a的值为()A.1B.-1C.2D.﹣2二、填空题:13.分解因式:a3﹣4ab2= .14.×= ; = .15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则b=________,k=________.17.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为______m.三、解答题:19.解不等式组:20.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a = ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A、B、C)和2位女同学(D、E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.22.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.23.我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,(1).求一次至少买多少只,才能以最低价购买?(2).写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?24.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.25.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.参考答案1.A2.A3.C4.B5.D6.B7.A8.B9.D10.B11.B12.B13.答案为:a(a+2b)(a﹣2b).14.答案为:2,.15.答案为:20;16.答案为:-2,2;17.答案不唯一,如△ABF∽△DBE或△ACE∽△DCF或△EDB∽△FDC等18.答案为:1.8;19.解:由不等式①得,x-3x+6≤4,所以x≥1,不等式②去分母得,2(2x-1)>6x-15,解得x<6.5,∴不等式组的解集是1≤x<6.5。
【中考模拟2017】江西南昌市 2017年九年级数学 中考模拟试卷 三(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.相反数是( )A.﹣B.2C.﹣2D.2.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A.2771×107B.2.771×107C.2.771×104D.2.771×1053.如图,直线a, b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.1000B.900C.800D.7004.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.5.某次射击比赛中,甲队员的射击成绩统计如下:A.甲队员射击成绩的极差是3环B.甲队员射击成绩的众数是1环C.甲队员射击成绩的众数是7.5环D.经计算,甲队员射击成绩的平均数是7环,另外一名乙队员射击成绩的平均数也是7环,甲队员射击成绩的方差是1.2,乙队员射击成绩的方差是3,则甲队员的成绩比乙队员的成绩稳定6.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min 时容器内的水量为( )A.20 LB.25 LC.27LD.30 L二、填空题:7.在实数范围内分解因式:4a3﹣8a= .8.若分式方程=a无解,则a的值为.9.已知b<a<0,则ab,a2,b2的大小为 .10.已知关于x的方程x2-(a+b)x+ab-1=0,x,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③111.某种型号的电脑,原售价为7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为.12.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .13.如图,直线AB与⊙O相切于点B,BC是⊙O直径,AC交⊙O于点D,连接BD,则图中直角三角形有个.14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为.三、计算题:15.计算:.16.已知求代数式的值.四、解答题:17.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.18.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长。
江苏省淮安市2017年九年级中考模拟数学试卷(含解析)
淮安市2017年中考数学模拟试卷考试时间:120分钟 总分:150分一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. ﹣6的相反数是( ) A. ﹣6 B. ﹣16C. 6D.16【答案】C 【解析】【分析】根据相反数的定义,即可解答. 【详解】−6的相反数是:6, 故选C .2. 函数y=1x +中自变量x 的取值范围是( ) A. x≥﹣1 B. x≤﹣1 C. x >﹣1 D. x <﹣1【答案】A 【解析】【分析】根据被开方数大于等于0列式计算即可得解. 【详解】解:由题意得,10x +, 解得1x -. 故选A .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 3. 下列运算正确的是( ) A. 2a +3b = 5ab B. 235a a a =C. ()3326a a =D. 639a a a +=【答案】B 【解析】 【分析】【详解】解:A . 2a 与5b 不是同类项不能合并,故本项错误;B. 235a a a⋅=,正确;C. 33(2)8a a=,故本项错误;D. 6a与3a不是同类项不能合并,故本项错误.故选B.【点睛】本题考查了同底数幂的乘法法则,幂的乘方,合并同类项,考查学生的计算能力.4. 用5个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为()A. B. C. D.【答案】A【解析】【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:A.5. 一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程2x px q0++=有实数根的概率是( )A. 14B.13C.12D.23【答案】A【解析】【详解】解:列表如下:-2 1 4-2 --- (1,-2)(4,-2)1 (-2,1)--- (4,1)4 (-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q≥0的情况有4种,则P (满足方程的根)=42=63故选:A .6. 体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A. 平均数 B. 方差C. 众数D. 中位数【答案】B 【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B. 【点睛】考核知识点:均数、众数、中位数、方差的意义. 7. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°【答案】B 【解析】【详解】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,8. 如图,在平面直角坐标系中,点A 、B 均在函数ky x(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( )A. (2,2)B. (2,3)C. (3, 2)D. (4,32) 【答案】C 【解析】【详解】试题解析:把B 的坐标为(1,6)代入反比例函数解析式得:k=6, 则函数的解析式是:y=6x, ∵B 的坐标为(1,6),⊙B 与y 轴相切, ∴⊙B 的半径是1, 则⊙A 是2, 把y=2代入y=6x得:x=3, 则A 的坐标是(3,2). 故选C .考点:1.切线的性质;2.反比例函数图象上点的坐标特征.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数法表示电站的总装机容量,应记为_____千瓦. 【答案】1.82×107【解析】【详解】18200000=1.82×107, 故填:1.82×107. 10. 因式分解:22944x y y ---=_____. 【答案】()(32)32x y x y ++-- 【解析】【详解】 =9x²-y²-4y-4 =9x²-(y²+4y+4) =9x²-(y+2) ² =(3x+y+2)(3x-y-2)故答案为(3x+y+2)(3x-y-2).11. 关于x 的方程()222110x m x m --+-=的两实数根为x 1,x 2,且x 12+x 22=3,则m=_________.【答案】0 【解析】【详解】∵方程x ²−(2m −1)x +m ²−1=0的两实数根为x ₁,x ₂, ∴x ₁+x ₂=2m −1,x ₁x ₂=m ²−1,∵x ₁²+x ₂²=(x ₁+x ₂)²−2x ₁x ₂=(2m −1) ²−2(m ²−1)=3, 解得:m ₁=0,m ₂=2, ∵方程有两实数根,∴△=(2m −1) ²−4(m ²−1)⩾0, 即m ⩽54, ∴m ₂=2(不合题意,舍去), ∴m =0; 故答案为0.12. 已知实数m ,n 满足21m n -=,则代数式22241m n m ++-的最小值等于______. 【答案】4 【解析】【分析】把m-n 2=1变形为n 2=m-1,利用非负数的性质可得出m 的取值范围,再将令y=()22141m m m +-+-将代数式转化为只含字母m 的函数,通过函数的增减性即可得出结果. 【详解】解:∵m ﹣n 2=1, 即n 2=m-1≥0, ∴m≥1,令y=()()2222141=6-3=+3-12m m m m m m +-+-+∴该二次函数开口向上,对称轴为直线m=-3 ∴m>-3时,y 随着m 的增大而增大 ∵m≥1,∴当m=1时,y 取得最小值:()213-124y =+= ∴代数式22241m n m ++-有最小值:4故答案为:4【点睛】本题主要考查非负数的性质、配方法和二次函数最值等相关知识在求解过程中,重点是要将条件m ﹣n 2=1,转化为n 2=m-1,即利用非负数的性质得出m 的取值范围,又可将后面代数式中的n 2用含m 的式子进行替换,此时就可以用配方法并结合m 的取值以及函数关系式就可得求出最小值.13. 一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为_____. 【答案】215cm π 【解析】【详解】∵圆锥的高是4cm ,底面半径是3cm , ∴根据勾股定理得:圆锥的母线长为2234+=5cm , 则底面周长=6π, 侧面面积=12×6π×5=15πcm ². 故答案为215cm π.14. 如图,⊙C 过原点,且与两坐标轴分别交于点A ,点B ,点A 的坐标为(0,3),M 是第三象限内弧OB 上一点,∠BMO =120°,则⊙C 的半径为______.【答案】3 【解析】【分析】根据圆内接四边形的对角互补求出∠A 的度数,得到∠ABO 的度数,根据直角三角形的性质求出AB 的长,得到答案.【详解】解:∵点A 的坐标为(0,3), ∴OA =3,∵四边形ABMO 是圆内接四边形, ∴∠BMO+∠A =180°,又∠BMO =120°, ∴∠A =60°,则∠ABO =30°, ∴AB =2OA =6,则则⊙C 的半径为3, 故答案为:3.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆内四边形的性质及解直角三角形的方法. 15. 已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下:x...-1 0 1 2 3 ... y...[105212[...则当5y <时,x 的取值范围是_______. 【答案】04x <<. 【解析】【详解】解:由已知对应值,知二次函数2y ax bx c =++的对称轴是x=1,补充表格如下: x ... -1 0 1 2 3 4 5 ... y ...105212[510...∴当5y <时,x 的取值范围是04x << 故答案为:04x <<.【点睛】本题考查二次函数的性质.16. 如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_______(结果保留π).【答案】38π 【解析】【详解】试题分析:将左下阴影部分对称移到右上角,则阴影部分面积的和为一个900角的扇形面积与一个450角的扇形面积的和:22 9014513 3603608πππ⨯⨯⨯⨯+=.17. 如图7,△ABC是等腰直角三角形,AC=BC=,以斜边AB上的点O为圆心的圆分别与AC,BC相切与点E,F,与AB 分别交于点G,H,且EH 的延长线和CB 的延长线交于点D,则CD 的长为__________.【答案】【解析】【详解】试题分析:连结OE,OF.∵AC、BC与圆O相切与点E,F,∴∠OEA=90°,∠OFC=90°又∵△ABC是等腰直角三角形,∴∠ACB =90°,∠CBA=∠CAB=45°,AB=∵∠CBA=∠CAB=45°,且∠OEA=∠OFC=90°,OE=OF∴△AOE和△BOF都是等腰直角三角形,且△AOE≌△BOF.∴AE=OE,AO=BO∵OE=OF,∠OEC=∠OFC=∠ACB =90°∴四边形OEFC是正方形.∴OE=EC=AE=∵OE=OF,∴OA=OB=AB=.OH=,BH=∵∠ACB=∠OEA =90°.∴OE∥DC,∴∠OED=∠EDC∵OE=OH,∠OHE=∠OED=∠DHB=∠EDC,∴BD=BH=∴CD=BC+BH=考点:1、等腰直角三角形;2、切线的性质;3、三角形相似;4、圆的性质18. 如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.【答案】32【解析】【详解】解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=32.故答案为:32.三、解答题(本大题共十小题,共96分)19. (1)2112017sin45cos45(3)()4-︒-︒︒+--(2)2()1{34123()2()3x y x yx y x y++-=-+--=【答案】(1)12-;(2)21xy=⎧⎨=⎩.【解析】【详解】试题分析:(1) 分别根据数的开方、0指数幂、特殊角的三角函数值、负整数指数幂计算出各数,再根据实数混合运算的法则进行计算即可;(2)先对原方程化简,再根据加减消元法可以解答此方程; 试题解析: (1)解:原式=1-12+3-4=-12(2) ()()()21{3412323x y x y x y x y ++-=-+--=整理,得511153x y x y -=--+=⎧⎨⎩①② ①+②×5,得 14y =14 解得,y =1 将y =1代入②,得 x =2故原方程组的解是21x y =⎧⎨=⎩. 20. 先化简,再求值:222x 4x 4x 2x12x x-+-÷+,在0,1,2,三个数中选一个合适的,代入求值. 【答案】x 2,当x=1时,原式=12.【解析】【分析】先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到x 212-+,可通分得x2,代x 值时,根据分式和除式有意义的条件,必须使分母或被除式不为0,故只能取x=1.【详解】解:原式=22(x 2)x x 2x112x x(x 2)22--⋅+=+=-. 当x=1时,原式=12. 21. 如图,在正方形ABCD 内有一点P 满足AP=AB ,PB=PC ,连接AC 、PD . 求证:(1)△APB ≌△DPC ;(2)∠BAP=2∠PAC .【答案】(1)证明见解析()证明见解析.【解析】【详解】试题分析:根据正方形的性质和等腰三角形的性质得出∠ABP=∠DCP,再利用SAS判定三角形全等即可;(2)根据已知条件和正方形的性质得到△APD为等边三角形,求得∠DAP=60∘,即可分别求出∠PAC、∠BAP的度数,即可得到二者关系.试题解析:(1)∵四边形ABCD是正方形,∴∠ABC=∠DCB=90∘.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC−∠PBC=∠DCB−∠PCB,即∠ABP=∠DCP.又∵AB=DC,PB=PC,∴△APB≌△DPC.(3分)(2)证明:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45∘.∵△APB≌△DPC,∴AP=DP.又∵AP=AB=AD,∴DP=AP=AD.∴△APD是等边三角形.∴∠DAP=60∘.∴∠PAC=∠DAP−∠DAC=15∘.∴∠BAP=∠BAC−∠PAC=30∘.∴∠BAP=2∠PAC.点睛:本题考查正方形的性质、全等三角形的证明,要熟练掌握几种判定方法,根据条件选择合适的判定方法.本题是用角度证明2倍角关系,有时候也可用角平分线或等角转移来证明.22. 江西两所医院分别有一男一女共4名医护人员支援湖北随州抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是________.(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【答案】(1)12;(2)13【解析】【分析】(1)根据甲、乙两医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种等可能的情况数,其中所选的2名医护人员性别相同的有2种,则所选的2名医护人员性别相同的概率是21 42 =,故答案为:12;(2)将甲、乙两所医院的医护人员分别记为甲1、甲2、乙1、乙2(注:1表示男医护人员,2表示女医护人员),树状图如图所示:共有12种等可能的结果,满足要求的有4种.则P(2名医生来自同一所医院的概率)=41 123=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23. 为了解“数学思想作文对学习数学帮助有多大?”一研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和表来表示(图、表都没制作完成).选项帮助很大帮助较大帮助不大几乎没有帮助人数a543269b根据图、表提供的信息.(1)请问:这次共有多少名学生参与了问卷调查?(2)算出表中a、b的值.(注:计算中涉及到的“人数”均精确到1)【答案】(1)1244;(2)316,116.【解析】【详解】试题分析:(1)用“帮助较大”的人数除以所占的百分比计算即可得解.(2)用参与问卷调查的学生人数乘以“帮助很大”所占的百分比计算即可求出a,然后根据总人数列式计算即可求出b.试题解析:解:(1)∵由图表知,“帮助较大”的人数为543名,占43.65%,∴参与问卷调查的学生人数=543÷43.65%≈1244(名).(2)a=1244×25.40%=316,b=1244﹣316﹣543﹣269=1244﹣1128=116.考点:1.统计表;2.扇形统计图;3.频数、频率和问题的关系.24. 如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船c的求救信号.已知A、B两船相距100(3+3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:2≈1.41,3≈1.73)【答案】(1)A与C之间的距离AC为3A与D之间的距离AD为200(33(2)巡逻船A沿直线AC去营救船C,在去营救的途中无触暗礁危险.【解析】【分析】(1)作CE⊥AB于点E,则∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AEtan60°,在Rt△BCE中,3,由33求出x的值,再根据AC=2x得出AC的值,在△ACD中,由∠DAC=60°,∠ADC=75°得出∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=3,根据33y的值,故可得出AD的长,进而得出结论;(2)根据(1)中的结论得出DF的长,再与200相比较即可.详解】(1)作CE⊥AB于点E,则∠ABC=45°,∠BAC=60°,设AE=x海里,∵在Rt△AEC中,CE=AEtan60°3,在Rt△BCE中,3,∴33,解得3∴3在△ACD中,∵∠DAC=60°,∠ADC=75°,∴∠ACD=45°.过点D 作DF ⊥AC 于点F ,设AF=y ,则DF=CF=3y , ∴AC=y+3y=2003,解得y=100(3﹣3),∴AD=2y=200(3﹣3).答:A 与C 之间的距离AC 为2003海里,A 与D 之间的距离AD 为200(3﹣3)海里;(2)∵由(1)可知,DF=3AF=3×100(3﹣3)≈219,∵219>200,∴巡逻船A 沿直线AC 去营救船C ,在去营救的途中无触暗礁危险.【点睛】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25. 如图,AD 是圆O 切线,切点为A ,AB 是圆O 的弦.过点B 作BC//AD ,交圆O 于点C ,连接AC ,过点C 作CD//AB ,交AD 于点D .连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP=∠ACD .(1)判断直线PC 与圆O 的位置关系,并说明理由:(2)若AB=9,BC=6,求PC 的长.【答案】(1)直线PC 与圆O 相切(2)27PC=?7【解析】【详解】解:(1)直线PC 与圆O 相切.理由如下:如图,连接CO 并延长,交圆O 于点N ,连接BN ,∵AB//CD ,∴∠BAC=∠ACD ,∵∠BAC=∠BNC ,∴∠BNC=∠ACD ,∵∠BCP=∠ACD ,∴∠BNC=∠BCP ,∵CN 是圆O 的直径,∴∠CBN=90°,∴∠BNC+∠BCN=90°,∴∠BCP+∠BCN=90°,∴∠PCO=90°,即PC ⊥OC ,又∵点C 在圆O 上,∴直线PC 与圆O 相切(2)∵AD 是圆O 的切线,∴AD ⊥OA ,即∠OAD=90°,∵BC//AD ,∴∠OMC=180°-∠OAD=90°,即OM ⊥BC ,∴MC=MB ,∴AB=AC ,在Rt △AMC 中,∠AMC=90°,AC=AB=9,MC=12BC=3, 由勾股定理,得2222AM==93=62AC MC --设圆O 的半径为r ,在Rt △OMC 中,∠OMC=90°,OM=AM-AO=62r ,MC=3,OC=r ,由勾股定理,得OM 2+MC 2=OC 2,即()22262r 3=r +.解得2728r = 在△OMC 和△OCP 中,∵∠OMC=∠OCP ,∠MOC=∠COP ,∴△OMC ~△OCP , ∴OM CM =?OC PC ,即27622382728PC =.∴277PC = 26. 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种80千克的钱,现在可买88千克.(1)现在实际这种每千克多少元;(2)准备这种,若这种的量y (千克)与单价x (元/千克)满足如图所示的一次函数关系.①求y 与x 之间的函数关系式;②请你帮拿个主意,将这种的单价定为多少时,能获得最大利润.最大利润是多少.(利润=收入-进货金额)【答案】(1)20元;(2)①y 11x 440=-+;②将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.【解析】【分析】(1)设现在实际购进这种水果每千克x 元,根据原来买这种水果80千克的钱,现在可买88千克列出关于x 的一元一次方程,解方程即可.(2)①设y 与x 之间的函数关系式为y=kx+b ,将(25,165),(35,55)代入,运用待定系数法即可求出y 与x 之间的函数关系式.②设这种水果的销售单价为x 元时,所获利润为w 元,根据利润=销售收入-进货金额得到w 关于x 的函数关系式,根据二次函数的性质即可求解.【详解】解:(1)设现在实际购进这种水果每千克x 元,则原来购进这种水果每千克(x+2)元,由题意,得80(x+2)=88x ,解得x=20.∴现在实际购进这种水果每千克20元.(2)①设y 与x 之间的函数关系式为y=kx+b ,将(25,165),(35,55)代入,得25k b 165{35k b 55+=+=,解得k 11{b 440=-=. ∴y 与x 之间的函数关系式为y 11x 440=-+.②设这种水果的销售单价为x 元时,所获利润为w 元,则()()()()22w x 20y x 2011x 44011x 660x 880011x 301100=-=--+=-+-=--+,∴当x=30时,w 有最大值1100.∴将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.27. 如图,在平面直角坐标系中,已知点A (0,1),直线l :1y =-.动点P 满足条件:①P 在这个平面直角坐标系中;②P 到A 的距离和P 到l 的距离相等;(1)求点P 所经过的轨迹方程,并在网格中绘制这个图像.(提示:平面直角坐标系中两点之间的距离可以通过勾股定理来求得)(2)已知直线1y kx =+,小明同学说,这条直线与(1)中所绘的图像有两个交点?你能说明小明为什么这么说吗?(3)经过了上述的计算、绘图,小明发现,如果第(2)问的两个交点分别为B 、C ,那么,过的中点M 作直线l 的垂线,垂足为H ,连接BH 、CH ,所得到的三角形BCH 是个特殊的三角形,你能说明它是什么三角形吗?为什么?【答案】(1)24x y =,绘图见解析;(2)理由见解析; (3)BHC ∆是以BHC ∠为直角的直角三角形,理由见解析.【解析】【详解】试题分析:(1)设P 的坐标为(),x y ,再由A点坐标,利用两点之间的距离公式分别表示出P 到A 的距离和P 到l 的距离,由距离相等列出关系式,整理后即可得到点P 所经过的轨迹方程;(2)两方程联立,根据根的判别式即可判断得出结论;(3)利用梯形的中位线定理即可得到MB MC MH ==,易得BHC ∆是以BHC ∠为直角的直角三角形.试题解析:(1)设P 的坐标为(),x y ,由题意得:()2211x y y +-=+两边平方得:()()22211x y y +-=+ 24x y ∴=,图形为一个抛物线抛物线直线方程联立得:24{1x yy kx ==+ 2440x kx ∴--=216160k ∴∆=+>故它们有两个交点.(3)如图,过B 作'BB l ⊥于'B ,过C 作'CC l ⊥于'C 由(1)中的条件得:','BB BA CC CA ==''BC BA AC BB CC ∴=+=+显然,MH 是梯形''BB C C 的中位线.()11''22MH BB CC BC ∴=+= 即MB MC MH ==,易得BHC ∆是以BHC ∠为直角的直角三角形.28. 如图1,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A→B→C→D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.(4)如果点P 、Q 保持原速度速度不变,当点P 沿A→B→C→D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.【答案】(1)Q (1,0),点P 每秒钟运动1个单位长度;(2)AB =10,点C 的坐标为(14,12);(3)当476t =时,△OPQ 的面积最大.此时P 的坐标为(9415,5310);(4)当53t =或29513t =时, OP 与PQ 相等. 【解析】 【详解】试题分析:(1)仔细观察图形的特征结合图象的性质即可求得结果;(2)过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==,即可求得AF 的长,在Rt △AFB 中,根据勾股定理即可求得正方形的边长,过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H ,先证得△ABF ≌△BCH ,根据全等三角形的性质即可求得点C 的坐标;(3)过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N ,则△APM ∽△ABF ,根据相似三角形的性质可表示出3455AM t PM t ==,,即可得到3410,55PN OM t ON PM t ==-==,设△OPQ 的面积为S (平方单位),根据三角形的面积公式即可得到S 关于t 的函数关系式,再根据二次函数的性质即可求得结果; (4)根据等腰三角形的性质结合图形的特征即可求得结果.(1)由题意得点Q 开始运动时的坐标为(1,0),点P 运动速度每秒钟1个单位长度;(2)过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==.∴1046AF =-=.在Rt △AFB 中,228610AB +=过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H .∵90,ABC AB BC ∠=︒=∴△ABF ≌△BCH .∴6,8BH AF CH BF ====.∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12);(3)过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N ,则△APM ∽△ABF . ∴AP AM MP AB AF BF==. 1068t AM MP ∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位) ∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ∵310a =-<0 ∴当474710362()10t =-=⨯-时,△OPQ 的面积最大. 此时P 的坐标为(9415,5310). (4)当 53t =或29513t =时,有OP=PQ . 考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.衡石量书整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年九年级数学中考模拟试卷一、选择题:1.已知有理数a,b,c在数轴上对应点的位置如图,化简:∣b-c∣-2∣c+a∣-3∣a-b∣=( )A.-5a+4b-3cB.5a-2b+cC.5a-2b-3cD.a-2b-3c2.下列计算正确的是()A.2+a=2aB.2a﹣3a=﹣1C.(﹣a)2•a3=a5D.8ab÷4ab=2ab3.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)34.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2 B.65πcm2 C.80πcm2 D.105πcm25.化简的结果是()A. B. C.x+1 D.x﹣16.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=17.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少8.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米9.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 B.4 C.5 D.610.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.5米二、填空题:11.已知关于x,y的方程组的解为正数,则 .12.分解因式:2x3﹣4x2+2x= .13.如图,△ABC是边长为4个等边三角形,D为AB边中点,以CD为直径画圆,则图中阴影部分面积为 .14.如图在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,若△DEF的面积为18,则□ABCD的面积为.三、计算题:15.计算:20160﹣|﹣|++2sin45°.16.解方程:3x2-7x+4=0.四、解答题:17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.(1)求此二次函数的关系式;(2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP=S△ABC,求P点的坐标.19.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A 处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)20.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m= ,n= ,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码 A1、A2表示,女生分别用代码B1、B2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=0.775,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C,D的坐标:C(,),D(,);②当m= 时,△ACD的周长最小;(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.23.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.参考答案1.B2.C3.D4.B5.A6.C7.D8.B9.A10.B11.答案为:7;12.答案为:2x(x﹣1)2.13.答案为:2.5﹣π.14.答案为:112;15.解:20160﹣|﹣|++2sin45°=1﹣+(3﹣1)﹣1+2×=1﹣+3+=4.16.解:(3)x1=,x2=117.解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.18.解:(1)根据题意,得,解得.故二次函数的表达式为y=﹣x2+2x+3.(2)由S△ABP=S△ABC,得y P+y C=0,得y P=﹣3,当y=﹣3时,﹣x2+2x+3=﹣3,解得x1=1﹣,x2=1+.故P点的坐标为(1﹣,﹣3)或(1+,﹣3).19.20.解:(1)设函数关系式为v=kt-1,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=600t-1(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.21.22.23.解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN ∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE。
∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.第11 页共11 页。