IGBT说明书
微机励磁控制器说明书
GDF-2微机励磁控制器(GDF-IGBT)安装使用说明深圳市国立旭振电气技术有限公司一、概述GDF-系列励磁控制器只需要一键启动后,即可实现励磁控制全自动,无人值守运行!▲GDF-系列励磁控制器是2014最新版。
IGBT励磁控制技术为目前较为先进的直流控制技术,现在国内只有少数励磁制造厂家掌握并用于高端励磁控制系统(高压励磁控制系统),原因是技术要求高、制造成本高。
我们将IGBT技术首先用于无刷励磁发电机。
解决了可控硅励磁容易受中频干扰,在满负荷跳闸时失压,无法为向水机提供关机电源等难题。
▲电路板制造时采用元件贴片技术,大大减少了人工插件制作的错误。
解决或修正了旧版本的已知问题。
主要特别功能:1、并网后自动按设定的功率因数值运行。
2、IGBT模块智能控制,不受谐波干扰,可以在180V以下的励磁电压稳定运行。
3、励磁控制回路手动调试功能,方便用户对控制器检查、设置和对发电机充磁。
4、发电机电压恒定、电压快速恢复功能,防止过电压或低电压。
5、自动识别停机过程并进行可调整的灭磁频率控制。
6、“独立小电网运行”功能,通过软件设置可实现该功能,适合工厂自行组合小电网的柴油发电机组并列运行。
7、50HZ或60HZ运行频率适应功能。
8、防止发电机过负荷功能。
二、技术参数1. 适用范围:▲GDF-IGBT适用于励磁电流15A以下、励磁电压180V以下的无刷励磁发电机。
2. 输入信号:▲电流:串接发电机定子C相电流互感器电流,额定电流:5A。
▲电压:发电机A1、B1、N电压400V/230V,电网A2、B2电压400V。
▲并网识别:发电机出口断路器的辅助接点:常开接点。
3. 控制器输出:励磁输出电压串电流表后至发电机的励磁电机。
4. 环境温度: -10°C~+50°C 海拔:2500米以下地区5.外型尺寸:控制器(宽)305 mm×(高)146 mm×(深)240mm6. 开孔尺寸:(宽)264 mm×(高)124 mm(GDF系列全部相同)三、安装接线1、阅读理解接线原理图,按端子接线图接好外引连线。
IXA12IF1200PB IGBT模块说明书
Copack
Part number
IXA12IF1200PB
IXA12IF1200PB
VCES =
I C25
=
V = CE(sat)
preliminary
1200 V 20 A 1.8 V
(G) 1
2 (C) 3 (E)
Backside: collector
Features / Advantages:
* on die level
IGBT
1.1 153
T VJ = 150 °C
Diode
1.25
V
85 mΩ
IXYS reserves the right to change limits, conditions and dimensions.
© 2011 IXYS all rights reserved
● Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
● SONIC™ diode - fast and soft reverse recovery - low operating forward voltage
IXA12IF1200PB
preliminary
Conditions
IC = 10A; VGE = 15 V IC = 0.3mA; VGE = VCE VCE = VCES; VGE = 0 V VGE = ±20 V VCE = 600 V; VGE = 15 V; IC =
inductive load VCE = 600 V; IC = 10 A VGE = ±15 V; RG=100 Ω
IGBT驱动板IGQD4使用手册说明书
IGBT 驱动板IGQD4使 用 手 册VER10产品安装,使用之前请认真阅读本使用手册.请妥善保管好本手册以备今后参阅株洲市华维变流数控设备有限公司地址地址::湖南省株洲市石峰区红旗北路186号 邮编邮编邮编::412004120011 电话电话::07310731--28436893 0738436893 07311-22967089 967089 138138138--07336044 07336044 传真传真::07307311-2262605939 05939 05939 E E -mail:mail:huaweiacdc huaweiacdc huaweiacdc@126.@126.@ net net 网站网站:: http://www.China http://www.Chinaa a c d net net1.概述概述绝缘栅双极晶体管(IGBT)是80 年代出现的新型复合器件。
其响应速度快,工作电流大, 耐压高等优点使得它在开关电源、变频器、逆变器等领域里很受青睐。
但由于IGBT 自身的特性, 使其工作时会发生擎住效应而导致门极失控, 或者因电流电压过大或不稳定, 造成IGBT 损坏而不能正常工作。
为此,对IGBT 的驱动和保护(特别是短路过流保护) 提出了很高的要求。
IGBT 的驱动电路的形式很多, 为了提高可靠性, 我们在此采用专用驱动模块M57962AL来驱动,它能驱动大电流大功率的应用, 能实现对IGBT的过流过压保护, 同时, 所设计的外围应用电路采用限制基极限流电阻和基射极限幅器, 确保了IGBT 基极不被烧坏和击穿。
主应用于逆变器、不间断电源、变频器、电焊机、伺服系统。
2.产品名称及型号名称:高频IGBT驱动板(4单元)。
型号:IGQD4。
3.IGBT驱动板产品特点四单元驱动板,驱动功率大, 可以驱动600A/600V 或400A/1200V的IGBT模块。
半桥应用时,双管信号互锁,用户可以设置死区时间,确保不直通。
高压 IGBT 数据手册说明书
HGTG18N120BND1200 V NPT IGBTHGTG18N120BND is based on Non- Punch Through (NPT)IGBT designs. The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where lowconduction losses are essential, such as: UPS, solar inverter, motor control and power supplies.Formerly Developmental Type TA49304.Ordering InformationPART NUMBER PACKAGE BRANDHGTG18N120BNDTO-24718N120BNDNOTE: When ordering, use the entire part number.SymbolEGCFeatures•26 A, 1200 V , T C = 110°C•Low Saturation V oltage: V CE (sat) = 2.45 V @ I C = 18 A •Typical Fall Time . . . . . . . . . . . . . 140ns at T J = 150°C •Short Circuit Rating •Low Conduction LossPackagingJEDEC STYLE TO-247TO-247GCEAbsolute Maximum Ratings T C = 25o C, Unless Otherwise SpecifiedHGTG18N120BND UNIT Collector to Emitter V oltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV CES1200V Collector Current ContinuousAt T C = 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I C2554AAt T C = 110o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I C11026A Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I CM160AGate to Emitter V oltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GES±20VGate to Emitter V oltage Pulsed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V GEM±30V Switching Safe Operating Area at T J = 150o C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SSOA100A at 1200VPower Dissipation Total at T C = 25o C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P D390WPower Dissipation Derating T C > 25o C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12W/o C Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T J, T STG-55 to 150o C Maximum Lead Temperature for Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L260o CShort Circuit Withstand Time (Note 2) at V GE = 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t SC8μsShort Circuit Withstand Time (Note 2) at V GE = 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t SC15μs CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.NOTES:Pulse width limited by maximum junction temperature.1.V2.CE(PK) = 960V, T J = 125o C, R G = 3Ω.Electrical Specifications T C = 25o C, Unless Otherwise SpecifiedPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Collector to Emitter Breakdown Voltage BV CES I C = 250μA, V GE = 0V1200--V Emitter to Collector Breakdown Voltage BV ECS I C = 10mA, V GE = 0V15--V Collector to Emitter Leakage Current I CES V CE = 1200V T C = 25o C--250μAT C = 125o C-300-μAT C = 150o C--4mACollector to Emitter Saturation Voltage V CE(SAT)I C = 18A,V GE = 15V T C = 25o C- 2.45 2.7V T C = 150o C- 3.8 4.2VGate to Emitter Threshold Voltage V GE(TH)I C = 150μA, V CE = V GE 6.07.0-V Gate to Emitter Leakage Current I GES V GE = ±20V--±250nA Switching SOA SSOA T J = 150o C, R G = 3Ω, V GE = 15V,L = 200μH, V CE(PK) = 1200V100--A Gate to Emitter Plateau Voltage V GEP I C = 18A, V CE = 600V-10.5-VOn-State Gate Charge Q G(ON)I C = 18A,V CE = 600V V GE = 15V-165200nC V GE = 20V-220250nCCurrent Turn-On Delay Time t d(ON)I IGBT and Diode at T J = 25o CI CE = 18AV CE = 960VV GE = 15VR G = 3ΩL = 1mHTest Circuit (Figure 20)-2328nsCurrent Rise Time t rI-1722ns Current Turn-Off Delay Time t d(OFF)I-170200ns Current Fall Time t fI-90140ns Turn-On Energy E ON- 1.9 2.4mJ Turn-Off Energy (Note 3)E OFF- 1.8 2.2mJCurrent Turn-On Delay Time t d(ON)I IGBT and Diode at T J = 150o C I CE = 18A V CE = 960V V GE = 15V R G = 3Ω L = 1mHTest Circuit (Figure 20)-2126ns Current Rise Timet rI -1722ns Current Turn-Off Delay Time t d(OFF)I -205240ns Current Fall Time t fI -140200ns Turn-On Energy E ON - 3.7 4.9mJ Turn-Off Energy (Note 3)E OFF - 2.6 3.1mJ Diode Forward Voltage V EC I EC = 18A- 2.6 3.2V Diode Reverse Recovery Timet rrI EC = 18A, dI EC /dt = 200A/μs -6075ns I EC = 2A, dI EC /dt = 200A/μs-4455nsThermal Resistance Junction To CaseR θJCIGBT --0.32o C/W Diode--0.75o C/WNOTE:3. Turn-Off Energy Loss (E OFF ) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I CE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.Electrical SpecificationsT C = 25o C, Unless Otherwise Specified (Continued)PARAMETERSYMBOL TEST CONDITIONSMIN TYP MAX UNIT Typical Performance Curves Unless Otherwise SpecifiedFIGURE 1. T C , CASE TEMPERATURE (o C)I C E , D C C O L L E C T O R C U R R E N T (A )50602575100125150********V GE = 15V50DC COLLECTOR CURRENT vs CASETEMPERATUREFIGURE 2. V CE , COLLECTOR TO EMITTER VOLTAGE (V)1400800I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )204060080040020010001200010012060T J = 150o C, R G = 3Ω, V GE = 15V , L = 200μHMINIMUM SWITCHING SAFE OPERATING AREAFIGURE 3. I CE , COLLECTOR TO EMITTER CURRENT (A)T J = 150o C, R G = 3Ω, L = 1mH, V CE = 960Vf M A X , O P E R A T I N G F R E Q U E N C Y (k H z )51104020501010030T C = 75o C, V GE = 15V , IDEAL DIODEf MAX1 = 0.05 / (t d(OFF)I + t d(ON)I )R ØJC = 0.32o C/W, SEE NOTES P C = CONDUCTION DISSIPATION (DUTY FACTOR = 50%)f MAX2 = (P D - P C ) / (E ON + E OFF )T CV GE110o C 12V15V 15V 75o C110o C75o C12V OPERATING FREQUENCY vs COLLECTOR TOEMITTER CURRENTFIGURE 4. V GE , GATE TO EMITTER VOLTAGE (V)I S C , P E A K S H O R T C I R C U I T C U R R E N T (A )t S C , S H O R T C I R C U I T W I T H S T A N D T I M E (μs )121314151651015202550100150200300t SCI SC30250V CE = 960V , R G = 3Ω, T J = 125o CSHORT CIRCUIT WITHSTAND TIMEFIGURE 5. 024V CE , COLLECTOR TO EMITTER VOLTAGE (V)I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )0204068106080PULSE DURATION = 250μsDUTY CYCLE < 0.5%, V GE = 12V T C = -55o CT C = 25o CT C = 150o CCOLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 6. I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )V CE , COLLECTOR TO EMITTER VOLTAGE (V)406080246810201000T C = -55o CT C = 25o CT C = 150o CDUTY CYCLE < 0.5%, V GE = 15V PULSE DURATION = 250μsCOLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 7. E O N 2, T U R N -O N E N E R G Y L O S S (m J )106I CE , COLLECTOR TO EMITTER CURRENT (A)8421510512253003540T J = 25o C, V GE = 12V , V GE = 15VT J = 150o C, V GE = 12V , V GE = 15VR G = 3Ω, L = 1mH, V CE = 960V 20TURN-ON ENERGY LOSS vs COLLECTOR TOEMITTER CURRENT FIGURE 8. 3.5I CE , COLLECTOR TO EMITTER CURRENT (A)E OF F , T U R N -O F F E N E RG Y L O S S (m J )0.5151051.02.51.53.04.04.52530R G = 3Ω, L = 1mH, V CE = 960VT J = 25o C, V GE = 12V OR 15VT J = 150o C, V GE = 12V OR 15V35402.020TURN-OFF ENERGY LOSS vs COLLECTOR TOEMITTER CURRENTFIGURE 9. I CE , COLLECTOR TO EMITTER CURRENT (A)t d I ,T U R N -O N D E L A Y T I M E (n s )5101520253035154025303540R G = 3Ω, L = 1mH, V CE = 960VT J = 25o C, T J = 150o C, V GE = 12VT J = 25o C, T J = 150o C, V GE = 15V20TURN-ON DELAY TIME vs COLLECTOR TOEMITTER CURRENTFIGURE 10. I CE , COLLECTOR TO EMITTER CURRENT (A)t r I ,R I S E T I M E (n s )100208060305402520154035100120R G = 3Ω, L = 1mH, V CE = 960VT J = 25o C, T J = 150o C, V GE = 12VT J = 25o C OR T J = 150o C, V GE = 15V TURN-ON RISE TIME vs COLLECTOR TOEMITTER CURRENTFIGURE 11. 1020520015100150I CE , COLLECTOR TO EMITTER CURRENT (A)t d (O F F )I , T U R N -O F F D E L A Y T I M E (n s )303502503004035R G = 3Ω, L = 1mH, V CE = 960V25V GE = 12V , V GE = 15V , T J = 25o CV GE = 12V , V GE = 15V , T J = 150o CTURN-OFF DELAY TIME vs COLLECTOR TOEMITTER CURRENT FIGURE 12. I CE , COLLECTOR TO EMITTER CURRENT (A)t f I , F A L L T I M E (n s )10525100150155020025030204035R G = 3Ω, L = 1mH, V CE = 960V1257517522525T J = 25o C, V GE = 12V OR 15VT J = 150o C, V GE = 12V OR 15VFALL TIME vs COLLECTOR TO EMITTERCURRENTFIGURE 13. I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )50136891012V GE , GATE TO EMITTER VOLTAGE (V)111001501415200T C = 25o CT C = 150o CT C = -55o CPULSE DURATION = 250μsDUTY CYCLE < 0.5%, V CE = 20V 7TRANSFER CHARACTERISTIC FIGURE 14. V G E , G A T E T O E M I T T E R V O L T A G E (V )Q G , GATE CHARGE (nC)520010050150V CE = 400VV CE = 800VI G(REF) = 2mA, R L = 33.3Ω, T C = 25o CV CE = 1200V1015200GATE CHARGE WA VEFORMSFIGURE 15. V CE , COLLECTOR TO EMITTER VOLTAGE (V)C , C A P A C I T A N C E (n F )C RES 05101520251C IESC OES2456FREQUENCY = 1MHz3CAPACITANCE vs COLLECTOR TO EMITTERVOLTAGEFIGURE 16. I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )V CE , COLLECTOR TO EMITTER VOLTAGE (V)10250102530DUTY CYCLE < 0.5%, T C = 110o C PULSE DURATION = 250μs201534V GE = 10V5V GE = 15V OR 12VCOLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 17. t 1t 2P DSINGLE PULSE0.50.20.10.050.02t 1,RECTANGULAR PULSE DURATION (s)10-210-110010-510-310-210-110010-4DUTY FACTOR, D = t 1 / t 2PEAK T J = (P D X Z θJC X R θJC ) + T C Z θJ C ,N O R M A L I Z E D T H E R M A L R E S P O N S E0.01NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASEFIGURE 18. V F , FORWARD VOLTAGE (V)I F , F O R W A R D C U R R E N T (A )10011012345150o C25o CDIODE FORWARD CURRENT vs FORWARDVOLTAGE DROPFIGURE 19. I F , FORWARD CURRENT (A)1020702013060t , R E C O V E R Y T I M E S (n s )10405t rr t a50t b2T C = 25o C, dI EC /dt = 200A/μsRECOVERY TIMES vs FORWARD CURRENTTest Circuits and WaveformsFIGURE 20. R G = 3ΩL = 1mHV DD = 960V+-HGTG18N120BNDINDUCTIVE SWITCHING TEST CIRCUIT FIGURE 21. t fIt d(OFF)It rI t d(ON)I 10%90%10%90%V CEI CEV GEE OFFE ONSWITCHING TEST WAVEFORMSHandling Precautions for IGBTsInsulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler’s body capacitance is notdischarged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as “ECCOSORBD™ LD26” or equivalent.2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.3. Tips of soldering irons should be grounded.4. Devices should never be inserted into or removed from circuits with power on.5. Gate Voltage Rating - Never exceed the gate-voltage rating of V GEM . Exceeding the rated V GE can result in permanent damage to the oxide layer in the gate region.6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited orfloating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.7. Gate Protection - These devices do not have an internalmonolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.Operating Frequency InformationOperating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I CE ) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f MAX1 or f MAX2; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.f MAX1 is defined by f MAX1 = 0.05/(t d(OFF)I + t d(ON)I ). Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. t d(OFF)I and t d(ON)I are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for anapplication other than T JM . t d(OFF)I is important when controlling output ripple under a lightly loaded condition.f MAX2 is defined by f MAX2 = (P D - P C )/(E OFF + E ON ). Theallowable dissipation (P D ) is defined by P D = (T JM - T C )/R θJC . The sum of device switching and conduction losses must not exceed P D . A 50% duty factor was used (Figure 3) and the conduction losses (P C ) are approximated by P C = (V CE x I CE )/2.E ON and E OFF are defined in the switching waveforms shown in Figure 21. E ON is the integral of the instantaneous power loss (I CE x V CE ) during turn-on and E OFF is the integral of theinstantaneous power loss (I CE x V CE ) during turn-off. All tail losses are included in the calculation for E OFF ; i.e., the collector current equals zero (I CE = 0).Mechanical DimensionsTO-247A03TRADEMARKSThe following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. *Trademarks of System General Corporation, used under license by Fairchild Semiconductor.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE AP P LICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.LIFE SUPPORT POLICYFAIRCHILD S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used here in:1. Life support devices or systems are devices or systems which, (a) areintended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.2.A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of Terms 2Cool AccuPower AX-CAP ®*BitSiCBuild it NowCorePLUSCorePOWERCROSSVOLTCTLCurrent Transfer Logic DEUXPEED ®Dual Cool EcoSPARK ®EfficentMax ESBC Fairchild®Fairchild Semiconductor®FACT Quiet SeriesFACT®FAST ®FastvCore FETBenchFPS F-PFS FRFET ®Global Power Resource SM Green Bridge Green FPS Green FPS e-Series G max GTO IntelliMAX ISOPLANAR Marking Small Speakers Sound Louder and Better MegaBuckMICROCOUPLER MicroFET MicroPakMicroPak2 MillerDrive MotionMax mWSaver OptoHiT OPTOLOGIC ®OPTOPLANAR ®PowerTrench ®PowerXS Programmable Active Droop QFET ®QS Quiet Series RapidConfigure Saving our world, 1mW/W/kW at a timeSignalWiseSmartMax SMART STARTSolutions for Your SuccessSPM ®STEALTH SuperFET ®SuperSOT -3SuperSOT -6SuperSOT -8SupreMOS ®SyncFET Sync-Lock ®*TinyBoostTinyBuckTinyCalcTinyLogic ®TINYOPTOTinyPowerTinyPWM TinyWireTranSiC ®TriFault DetectTRUECURRENT ®*P SerDesUHC ®Ultra FRFET UniFET VCX VisualMax VoltagePlus XS Datasheet Identification Product Status DefinitionAdvance InformationFormative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.No Identification NeededFull Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.ObsoleteNot In ProductionDatasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.ANTI-COUNTERFEITING POLICYFairchild Semiconductor Corporation s Anti-Counterfeiting P olicy. Fairchild s Anti-Counterfeiting P olicy is also stated on our external website, , under Sales Support .Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. P roducts customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild s quality standards for handing and storage and provide access to Fairchild s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.Rev. I64®。
Firstack PM140 数字智能型 IGBT 驱动产品说明书
PM140产品说明书概述Firstack数字智能型IGBT驱动是为大功率、高电压IGBT专门开发的,具有功能强大,可靠性高等特点,适用于两电平变流器,其应用覆盖新能源、轨道交通、工业传动及智能电网等各个领域。
PM140驱动产品是以Firstack数字智能型IGBT驱动为基础,针对PrimePACKTM 模块开发的即插即用型驱动。
图1 产品照片目录概述 (1)系统框架图 (3)使用步骤及注意事项 (4)机械尺寸图 (5)引脚定义 (6)状态指示灯说明 (8)驱动参数 (9)主要功能说明 (12)◆短路保护 (12)◆欠压保护 (12)◆软关断 (13)◆温度保护及采样 (13)门极电阻位置指示 (17)订购信息 (19)技术支持 (19)法律免责声明 (19)联系方式 (19)系统框架图数字控制核1D Z1V CC1V EE1软关断电路信号输入1C1级G1级V CC1E1级数字控制核2D Z2V CC2V EE2软关断电路信号输入2C2级G2级V CC2E2级COM1COM2故障指示==V CC1V EE1COM1故障指示电源输入V CE 检测电源检测V CE 检测电源检测故障返回电源V CC2V EE2COM2图2 系统框架图使用步骤及注意事项驱动器简便使用的相关步骤如下:1. 选择合适的驱动器使用驱动器时,应注意该驱动器适配的IGBT模块型号。
对于非指定IGBT 模块无效,使用不当可能会导致驱动和模块失效。
2. 将驱动器安装到IGBT 模块上对IGBT模块或驱动器的任何处理都应遵循国际标准IEC 60747-1第Ⅸ章或欧洲标准EN 100015要求的静电敏感器件保护的一般规范(即工作场所、工具等必须符合这些标准)。
如果忽视这些规范,IGBT和驱动器都可能会损坏。
3. 将驱动器连接到控制单元将驱动器接插件(光纤)连接到控制单元,并为驱动器提供合适的供电电压4. 检查驱动器功能检查门极电压:对于关断状态,额定门极电压在相应的数据手册中给出,对于导通状态,该电压为15V。
全数字IGBT感应加热电源使用说明书(串联型)
目录1. 全数字IGBT感应加热电源(串联型)功能简介 (6)2. 电源结构 (6)3. 使用要求 (6)4. 功能详解 (7)4.1. 实体按钮 (7)4.1.1. 实体按钮概述 (7)4.1.2. 调功电位器 (7)4.1.3. 控制方式切换开关 (7)4.1.4. 断路器操作按钮 (8)4.1.5. 整流单元操作按钮 (8)4.1.6. 逆变单元操作按钮 (8)4.1.7. 急停按钮 (8)4.2. 固定界面 (8)4.3. 主界面 (9)4.3.1. 主界面概述 (9)4.3.2. 主界面左侧电源主要运行数据 (10)4.3.2.1. 当前功率 (10)4.3.2.2. 直流电压 (10)4.3.2.3. 直流电流 (10)4.3.2.4. 逆变电流 (10)4.3.2.5. 炉体电流 (10)4.3.2.6. 当前频率 (10)4.3.2.7. 当前温度 (11)4.3.3. 调功方式切换按钮及功率给定输入框 (11)4.3.4. 数值输入键盘 (11)4.3.5. 控制方式切换按钮 (13)4.3.6. 整流单元操作按钮 (14)4.3.7. 逆变单元操作按钮 (14)4.4. 电能检测 (15)4.4.1. 三相有功功率 (15)4.4.2. 三相视在功率 (15)4.4.3. 三相功率因数 (15)4.4.4. 三相电压 (16)4.4.5. 三相电流 (16)4.4.6. 合相视在功率 (16)4.4.7. 合相视在电能 (16)4.4.8. 合相功率因数 (16)4.4.9. 合相有功功率 (16)4.4.10. 合相有功电能 (16)4.4.11. 电能清零按钮 (16)4.5. 工艺曲线 (17)4.5.1. 工艺曲线 (17)4.5.2. 工艺曲线的设置 (18)4.5.3. 运行工艺曲线 (20)4.6. 实时曲线 (21)4.6.1. 实时曲线 (21)4.6.2. 曲线历史 (22)4.7. 管理 (24)4.7.1. 修改密码 (25)4.7.2. 存储空间 (26)4.7.3. 参数设定 (27)4.7.3.1. 参数设定界面1 (27)4.7.3.2. 参数设定界面2 (29)4.7.3.3. 参数设定界面3 (30)4.7.4. 报警信息 (31)4.7.4.1. 与触摸屏通信中断 (32)4.7.4.2. 直流电压过压报警 (32)4.7.4.3. 直流电压欠压报警 (32)4.7.4.4. 直流电流过流报警 (32)4.7.4.5. 炉体电流过流报警 (33)4.7.4.6. 逆变电流过流报警 (33)4.7.4.7. 加热线圈接地报警 (33)4.7.4.8. SCR水流开关报警 (33)4.7.4.9. IGBT水流开关报警 (33)4.7.4.10. SCR温度开关报警 (34)4.7.4.11. IGBT温度开关报警 (34)4.7.4.12. 开门报警 (34)4.7.4.13. 急停报警 (34)4.7.4.14. 温度反馈断线 (34)4.7.4.15. 直流电压反馈断线 (34)4.7.4.16. 直流电流反馈断线 (34)4.7.4.17. 炉体电流反馈断线 (35)4.7.4.18. 逆变电流反馈断线 (35)4.7.4.19. 频率超上限 (35)4.7.4.20. 频率超下限 (35)4.7.4.21. 电源欠压或缺相 (35)4.7.4.22. 逆变模块X正过流报警 (35)4.7.4.23. 逆变模块X负过流报警 (35)4.7.4.24. IGBT驱动X报警 (35)4.7.4.25. 主板IGBT保护报警 (36)4.7.4.26. 主板正过流保护报警 (36)4.7.4.27. 主板负过流保护报警 (36)4.7.4.28. 主板温度流量保护报警 (36)4.7.5. 报警历史 (36)4.7.6. 状态诊断 (37)5. 通信 (40)6. 安全 (40)7. 电源注册 (41)1.全数字IGBT感应加热电源(串联型)功能简介非常感谢您使用我公司全数字IGBT感应加热电源(以下简称电源),希望我公司的电源能够为您提供更丰富的功能,更高的生产率,更高的效益。
富士IGBT模块应用手册说明书
Quality is our message富士IGBT 模块应用手册富士电机电子设备技术株式会社2004年5月RCH984目录第 1 章构造与特征1. 元件的构造与特征....................................................................................1-22. 富士电机电子设备技术的IGBT...............................................................1-33. 通过控制门极阻断过电流.........................................................................1-54. 限制过电流功能.......................................................................................1-65. 模块的构造..............................................................................................1-66. IGBT模块的电路构造..............................................................................1-7第 2 章术语与特性1. 术语说明..................................................................................................2-22. IGBT模块的特性.....................................................................................2-4第 3 章应用中的注意事项1. IGBT模块的选定.....................................................................................3-22. 静电对策与门极保护................................................................................3-23. 保护电路设计...........................................................................................3-34. 散热设计..................................................................................................3-35. 驱动电路的设计.......................................................................................3-46. 并联连接..................................................................................................3-47. 实际安装的注意事项................................................................................3-58. 保管、搬运上的注意事项.........................................................................3-59. 其他实际使用中的注意事项..................................................................3-5第 4 章发生故障时的应对方法1. 发生故障时的应对方法.............................................................................4-12. 故障的判定方法.......................................................................................4-73. 典型故障及其应对方法.............................................................................4-8第 5 章保护电路设计方法1. 短路(过电流)保护................................................................................5-22. 过电压保护..............................................................................................5-6第 6 章散热设计方法1. 发生损耗的计算方法................................................................................6-22. 散热器(冷却体)的选定方法..................................................................6-73. IGBT模块的安装方法............................................................................6-10第 7 章门极驱动电路设计方法1. 驱动条件和主要特性的关系.....................................................................7-22. 关于驱动电流...........................................................................................7-33. 空载时间的设定.......................................................................................7-54. 驱动电路的具体实例................................................................................7-65. 驱动电路设计、实际安装的注意事项.......................................................7-7第 8 章并联连接1. 电流分配的阻碍原因................................................................................8-22. 并联连接方法...........................................................................................8-3第 9 章评价、测定方法1. 适用范围..................................................................................................9-12. 评价、测定方法.......................................................................................9-1Quality is our message第1章构造与特征目录1. 元件的构造与特征............................................................................................1-22. 富士电机电子设备技术的IGBT.......................................................................1-33. 通过控制门极阻断过电流.................................................................................1-54. 限制过电流功能................................................................................................1-65. 模块的构造.......................................................................................................1-66. IGBT模块的电路构造......................................................................................1-7前言电动机可变速驱动装置和电子计算机的备用电源装置等电力变换器,随着双极型功率晶体管模块和功率MOSFET的出现,已经起了很大的变化。
大功率IGBT智能驱动模块使用手册说明书
WEPOWER2PD632大功率IGBT智能驱动模块使用手册WEPOWER 系列大功率IGBT智能驱动模块是特别为大功率IGBT设计的更为可靠,安全的智能驱动模块。
本产品已获得国家专利授权。
WEPOWER公司推出的系列大功率IGBT智能驱动模块驱动功率大、设计精巧、功能齐全,使用方便,填补了国内在大功率IGBT智能驱动器领域的空白,对我国电力电子技术及相关产业的发展起到了非常积极的促进作用。
我公司生产的2PD632双通道大功率IGBT智能驱动模块可直接替代CONPECT公司的2SD315型产品。
1.主要特点、技术指标和运用1)主要特点:* 适用于大功率IGBT模块驱动* 带短路、过流以及欠压保护* 软关断保护技术* 特别可靠和耐用* 高电气隔离* 开关频率从0~150KHZ* 占空比:0~100%* 抗干扰强,dv/dt>100,000V/us* 内部集成DC/DC电源2)技术指标驱动通道数:2通道;适用母线电压:≤1700V;额定输入电压:15V(±0.5V);最大驱动电流:±32A;内置DC/DC功率:2*6W;PWM输入电平:0-16V(兼容TTL和COMS);额定驱动电压:+15V/-10V;操作温度范围:2PD632I:-40℃~+85℃2PD632J: -40℃~+105℃2PD632M:-55℃~+125℃最大指标符号 定 义 参数 单位 VDD 原边供电电压 16 V VDC 原边供电电压 15.6 V V输入信号电压(高) VS+0.3 V iHV输入信号电压(低) GND-0.3 V iLIout输出峰值电流 16 A PEAK输出平均电流 250 mA IoutAVmax最大开关频率 100 kHz fmax最高C、 E极监测电压 1700 V VCEdv/dt 电压上升率 50 kV/usVisoIIO输入输出隔离电压(AC,RMS,2S) 4000 VVisoIPD 局部放电截止电压,RMS,QPD≤10PC 2000 VVisoI12通道1和通道2隔离电压(AC,RMS,2S)2000 VRGonmin最小开通电阻 0.5 ΩRGoffmin最小关断电阻 0.5 ΩQout/pulse单个脉冲最大输出电能 23 uCTop 使用温度2PD632I -40℃~+85℃℃2PD632J -40℃~+105℃2PD632M -55℃~+125℃Tstg 存储温度2PD632I -55℃~+105℃℃2PD632J -55℃~+125℃2PD632M -60℃~+130℃特性指标符号 定 义参数单位 最小 典型 最大VDD 原边供电电压 14 15 16 V VDC DC/DC供电电压 14.5 15 15.6ISO 原边空载电流 80 mA 原边最大电流 1000 mAVi输入信号电压 15/0 VViT+逻辑高输入门限电压3.5 - - VViT-逻辑低输入门限电压- - 1.5 VVG(on)门极开通电压 +15 VVG(off)门极关断电压 -10 Vtd(on)开通延迟时间 0.2 ustd(off)关断延迟时间 0.22 ustd(err)故障输出延迟时间 0.5 ustTD 通道1和通道2内部默认死区时间1.8 usCPS原副边耦合电容 17 pF VCEsat VEC过流保护门限 9 V W 重量 35 gMTBF 平均无故障时间(Ta=40℃,最大负载)1.6 106h3)应用z逆变器z电机驱动z机车牵引z大功率变换器z大型开关电源2、2PD632外形尺寸及引脚排列引脚功能引脚功能1 VDD +15V 输入端电源2 VDD +15V输入端电源3 SO1 通道A故障输出4 /RST 复位输入5 CA 通道A死区电容6 inB B通道输入7 CB 通道B死区电容8 NC9 SO2 通道B故障输出10 inA A通道输入11 GND 输入端电源地12 GND 输入端电源地13 VDC 内部DC/DC +15V 输入14 VDC 内部DC/DC +15V 输入15 VDC 内部DC/DC +15V 输入16 VDC 内部DC/DC +15V 输入17 VDC 内部DC/DC +15V 输入18 GND(dc) 内部DC/DC电源地19 GND(dc) 内部DC/DC电源地20 GND(dc) 内部DC/DC电源地21 GND(dc) 内部DC/DC电源地22 GND(dc) 内部DC/DC电源地44 G1 通道1门极输出43 G1 通道1门极输出42 COM1 通道1公共端41 COM1 通道1公共端40 NC39 E1 通道1E极38 E1 通道1E极37 NC36 C1 通道1C极检测端35 NC34 NC33 NC32 G2 通道2门极输出31 G2 通道2门极输出30 COM2 通道2公共端29 COM2 通道2公共端28 NC27 E2 通道2E极26 E2 通道2E极25 NC24 C2 通道2C极检测端23 NC3.应用举例下图是2PD632的运用参考电路。
ZX7(IGBT)说明书
目录1.目录 (1)2.安全警告 (2)3.本机描述 (3)4.技术参数表 (4)5.安装说明 (5)6.面板功能解释 (6)7.操作说明 (8)8.注意事项及预防措施 (9)9.日常维护 (10)10.检修前注意事项 (10)11.焊接时遇到的问题及分析 (11)12.故障分析及检修 (12)安全警告!在弧焊和切割过程中,可能会给您和他人造成伤害,在焊接或切割时作好防护。
详细情况请参考符合生产商事故预防要求的操作人员安全防护指南。
触电——可能会导致死亡!!·按照应用标准,安装好接地装置。
·在皮肤裸露、戴有湿手套或穿着湿衣服时,禁止接触带电部件或电焊条。
·确保您和地面及工件间是绝缘状态。
·确认您的工位是安全状态。
烟气——可能会有害健康!·让头部保持在烟气之外。
·在弧焊时,使用通风或抽气装置,避免吸入焊气。
弧光辐射——可能会损害您的眼睛,灼伤皮肤!·使用合适的焊接面罩和滤光镜,穿上防护服,以保护您的眼睛和身体。
·用适合的面罩或帘保护旁观者免受伤害。
火灾·焊接火花可能会导致失火,请确认焊接工位附近无易燃物。
噪音——过度的噪音对人的听力有害!·保护您的耳朵,使用耳朵护罩或戴上其他听力保护物。
·警告旁观者,噪音会对其听觉造成潜在伤害。
故障——遇到困难时,寻求专业人士的帮助!·如您在安装和操作时遇到困难,请按本手册的有关内容进行排查。
·如您阅读后仍不能完全理解,或按本手册指引仍不能解决问题,您应立即与您的供应商或我司的服务中心取得联系,寻求专业人士的帮助。
本机描述我司生产的焊机是采用先进的逆变技术制造的。
逆变电源是先将50/60Hz的工作频率整流为直流,利用大功率开关器件IGBT逆变为高频(频率可达15KHz),再降压整流,通过脉宽调制技术(PWM)输出大功率直流源,主变压器的重量,体积大幅度下降,效率提高30%以上。
IXYS CORPORATION H82N120C3 高速 IGBT 数据手册说明书
CES I C110= 82A V CE(sat) ≤ 3.20V t fi(typ)= 93nsG = Gate C = Collector E = Emitter Tab = CollectorTO-247High-Speed IGBTfor 20-50 kHz SwitchingFeatures●Optimized for Low Switching Losses ●Square RBSOA ●Positive Thermal Coefficient of Vce(sat)●High Current Handling Capability ●International Standard PackageAdvantages●High Power Density●Low Gate Drive RequirementApplications●High Frequency Power Inverters ●UPS●Motor Drives ●SMPS●PFC Circuits ●Battery Chargers ●Welding Machines ●Lamp BallastsSymbol Test Conditions Characteristic Values (T J = 25︒C, Unless Otherwise Specified) Min. Typ. Max.BV CES I C = 250μA, V GE = 0V 1200 V V GE(th)I C= 250μA, V CE = V GE3.05.0VI CES V CE = V CES , V GE = 0V25μA T J = 150︒C 500 μA I GES V CE = 0V, V GE = ±20V±100 nAV CE(sat)I C = 82A, V GE = 15V, Note 12.753.20 V T J = 150︒C3.76 VSymbol Test ConditionsMaximum Ratings V CES T J = 25°C to 175°C1200V V CGR T J = 25°C to 175°C, R GE = 1M Ω 1200V V GES Continuous ±20V V GEM Transient±30VI C25T C = 25°C (Chip Capability) 200A I LRMS Lead Current Limit 160 A I C110T C = 110°C 82A I CMT C = 25°C, 1ms 380ASSOA V GE = 15V, T VJ = 150°C, R G = 2Ω I CM = 164A (RBSOA) Clamped Inductive Load @V CE ≤ V CES P C T C = 25°C1250W T J -55 ... +175°CT JM 175°C T stg -55 ... +175°CT LMaximum Lead Temperature for Soldering 300°CT SOLD 1.6 mm (0.062in.) from Case for 10s 260 °C M d Mounting Torque 1.13/10Nm/lb.in.Weight6g1200V XPT TM IGBT GenX3TMIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Notes:1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.2. Switching times & energy losses may increase for higher V CE (clamp), T J or R G .Symbol Test Conditions (T J = 25°C Unless Otherwise Specified)fs I C = 60A, V CE = 10V, Note 1 30 50C ie sC oes V CE = 25V, V GE C resQ g(on)Q ge I C = 82A, V GE = 15V, V Q gc d(on)Fig. 1. Output Characteristics @ T 6080100120140160I C - A m p e r e sIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Fig. 7. Transconductance304050607080g f s - S i e m e n sFig. 12. Inductive Switching Energy Loss vs.Gate Resistance345678E o f f - M i l l i J o u l e sE off E on T J = 125oC , V GE = 15V V CE = 600VIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Fig. 18. Inductive Turn-on Switching Times vs.Gate Resistance6080100120140160 r i - N a n o s e c o n d st r i t d(on)T J = 125oC, V GE = 15V V CE = 600VI C = 80ATO-247 (IXYH) Outline1 - Gate2,4 - Collector3 -EmitterDisclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at /disclaimer-electronics. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.。
IGBT驱动片1TX-KE108产品手册 说明书
高温二单元大功率IGBT驱动片TX-KE108产品手册目录一、概述 (4)二、原理框图 (4)三、电气参数 (4)3.1 极限参数 (4)3.2 驱动特性 (5)3.3 工作条件 (6)3.4 短路保护特性 (6)3.5 对输入电源的要求 (6)四、波形图 (6)4.1 正常驱动波形图 (6)4.2 保护波形图 (7)4.3 说明 (7)五、尺寸结构 (7)5.1 外形尺寸 (7)5.2 引脚说明 (7)六、应用电路说明 (8)6.1 电源输入端Vdc的连接 (8)6.2 驱动器低压侧的设置和连接说明 (9)6.2.1 工作模式输入信号Mode (9)6.2.2 死区和短脉冲抑制示意图以及死区时间调整 (9)6.2.3 PWM输入信号VsA和VsB (9)6.2.4 故障输出信号Fault/ (9)6.2.5 复位信号Reset (9)6.2.6 自动复位功能 (10)6.3 驱动器高压侧输出的连接 (10)6.3.1 驱动功率的计算 (10)6.3.2 滤波电容 (10)6.3.3 IGBT的连接 (10)6.4 驱动保护 (10)6.4.1 过流保护阈值Vref (10)6.4.2 RC定时网络 (11)6.4.3 软关断 (11)6.4.4 欠压保护 (11)6.4.5 外部故障信号输入 (12)6.4.6 有源钳位 (12)6.5 典型应用图(以半桥电源为例) (12)七、相关产品信息 (12)7.1 TX-KE107 二单元高频驱动器 (12)7.2 TX-2DE300M17/33 (12)八、常见问题 (13)九、其它说明 (13)TX-KE108 高温大功率IGBT 2单元驱动器一、概述∙ 二单元隔离驱动器,可驱动电压≤1700V(定制3300V)的全系列IGBT 。
∙ 自带隔离的DC/DC 电源,使用方便,用户只需提供一个15V 电源。
∙ 驱动输出电流30A 。
∙ 变压器调制模式传递PWM 信号,工作占空比0-100%。
MAST5 系列 IGBT 驱动板 说明书
MAST5-3C-U12型IGBT 驱动板使 用 说 明一:功能描述内置3路IGBT 驱动,采用AST965,每路驱动电流均为5A 。
内置3路相互隔离DC-DC ,隔离电压2500VAC 。
电流源驱动方式,在同等EMI 情况下,减小密勒效应时间,降低开关损耗。
每路均具有V CE 检测方式的短路保护。
每路均具有欠压保护。
每路均具有IGBT 栅极TVS 保护元件。
每路均具有电源指示、脉冲指示。
集中的扁平线信号接口,支持多种输入电平。
外部只需输入1路电源12VDC (9-18V ),或24VDC (18-32V )二:结构和尺寸三:连接及说明192012VIN+ VIN-G1 E1 C1G2 E2 C2G3 E3 C3绞线其余2路接法同第一路1,2 - PEN-输出使能3,4 - PUL1-信号1输入5,6 - PUL2-信号2输入7,8 - PUL3-信号3输入电源+ 电源-9,10-GND-信号输入和输出公共负端11,12-VS-信号公共电源端13,14-PS1-保护信号1输出15,16-PS2-保护信号2输出17,18-PS3-保护信号3输出1、扁平线引脚定义描述表序号功能号描述12 PEN 驱动输出使能,如PEN为低电平,则无论输入信号如何变化,所有驱动输出保持为负电位;PEN为高电平时,允许驱动输出为高(根据输入信号变化);PEN信号须有2mA以上的高电平驱动能力,该信号不能悬空,不使用时应连接到VCC34 PUL1 第一路信号输入(信号1输入),当PEN为高时,信号输入为高时,驱动输出正电位,信号输入为低时,驱动输出负电位。
信号输入须具有8mA以上的高电平驱动能力56 PUL2 第二路信号输入(信号2输入),当PEN为高时,信号输入为高时,驱动输出正电位,信号输入为低时,驱动输出负电位。
信号输入须具有8mA以上的高电平驱动能力78 PUL3 第三路信号输入(信号3输入),当PEN为高时,信号输入为高时,驱动输出正电位,信号输入为低时,驱动输出负电位。
SGG1系列50A1200V IGBT模块 说明书
© 2006 SINGA CORP, Specifications subject to change without notice.威海新佳电子有限公司地址:山东威海高区火炬路223号特点:◇SPT芯片技术(软穿通)◇MOS输入控制◇超薄IGBT芯片,大电流低损耗,更低的拖尾电流◇VCE(sat)饱和电压更低,正温度系数,更易于并联使用◇高开关频率和更低开关损耗◇高抗短路能力◇优化的EMC特性◇模块大爬电距离设计◇DBC绝缘电压大于2500V RMS典型应用:◇AC和DC电机控制◇变频器◇UPS◇工业加热电源◇电焊机工艺特点:◇“真空+氢气”多气体保护焊接工艺,实现大面积无空洞焊接。
◇超声波扫描检测技术保证更加可靠的焊接质量。
绝对最大值Tc=25℃,除特殊说明参数名称符号条件数值单位IGBT集-射极击穿电压VCES 1200V 集电极直流电流IC Tc=25(80)℃ 75(50) A集电极重复峰值电流ICRM Tc=25(80)℃,tp=1ms 150(100) A栅极-发射极峰值电压VGES ±20V 结温Tvj -40—+150℃存储温度Tstg -40—+125℃绝缘电压VISOL RMS,1min,50Hz 2500 V反向二极管正向直流电流IF Tc=25(80)℃ 75(50) A正向重复峰值电流IFRM Tc=25(80)℃,tp=1ms 150(100) A© 2006 SINGA CORP, Specifications subject to change without notice.威海新佳电子有限公司地址:山东威海高区火炬路223号正向浪涌电流IFSM tp=10ms,sin,Tj=125℃500 A 特性值Tc=25℃,除特殊说明数值参数名称符号条件最小典型最大单位IGBT栅极阈值电压 VGE(th) VGE=VCE,Ic=2mA,Tj=25℃ 5 7 V集电极-发射极断态电流ICES VGE=0V,VCE=VCES 0.1 0.3mA栅极-发射极断态电流IGESVGE=0V,VGE=±20V,Tj=25℃-200 200 nA集电极-发射极斜率电阻rCE VGE=15V,Tj=25(125)℃18(24) 24(30)m Ω集电极-发射极饱和电压VCE(SAT)IC=50A,VGE=15V,芯片参数1.9(2.1) 2.35(2.55)V输入电容Cies 4.5 nF输出电容Coes VGE=0,VCE=25V,f=1MHz0.6 nF反向传输电容Cres 0.55 nF模块杂散电感LCE 25 nH开通延时时间 td(on)90 ns上升时间tr 55 ns关断延时时间 td(off) 440 ns下降时间tf 40 ns单个脉冲的开通损耗Eon 5.7 mj单个脉冲的关断损耗EoffVCC=600V,IC=50ARgon=Rgoff=15Ω,Tj=125℃,VGE=±15V4.7 mj反向二极管正向电压VFIF=50A;VGE=0V;Tj=25(125)℃2(1.8) 2.5(1.9)V反向恢复峰值电流IRRM 40 A反向恢复时间trrIF=50A,VGE=0,-diF/dt=900A/μs,Tj=125℃,VR=600V 400 nS热学特性IGBT结壳热阻Rth(j-c) 每个 IGBT 0.3 K/W© 2006 SINGA CORP, Specifications subject to change without notice.威海新佳电子有限公司地址 :山东 威海 高区 火炬路223号Rth(j-c)D每个反向二极管 0.65 K/W模块壳散热阻 Rth(c-s)每个模块0.05 K/W机械特性 安装力矩 M1 M6 3 5 NM端子连接力矩 M2 M5 2.55 NM重量 MAX 176 g 颜色白色外型尺寸 MAX 94×34×30.5 mm外形图。
功率模块IGBT、IPM、PIM性能综述说明书
功率模块IGBT、IPM、PIM 的性能及使用时有关问题的综述1 IGBT主要用途IGBT是先进的第三代功率模块,工作频率1-20KHZ,主要应用在变频器的主回路逆变器及一切逆变电路,即DC/AC变换中。
例电动汽车、伺服控制器、UPS、开关电源、斩波电源、无轨电车等。
问世迄今有十年多历史,几乎已替代一切其它功率器件,例SCR、GTO、GTR、MOSFET,双极型达林顿管等,目今功率可高达1MW的低频应用中,单个元件电压可达4.0KV(PT结构)— 6.5KV(NPT结构),电流可达1.5KA,是较为理想的功率模块。
追其原因是第三代IGBT模块,它是电压型控制,输入阻抗大,驱动功率小,控制电路简单,开关损耗小,通断速度快,工作频率高,元件容量大等优点。
实质是个复合功率器件,它集双极型功率晶体管和功率MOSFET的优点于一体化。
又因先进的加工技术使它通态饱和电压低,开关频率高(可达20KHZ),这两点非常显著的特性,最近西门子公司又推出低饱和压降(2.2V)的NPT—IGBT性能更佳,相继东芝、富士、IR、摩托罗拉亦已在开发研制新品种。
IGBT发展趋向是高耐压、大电流、高速度、低压降、高可靠、低成本为目标的,特别是发展高压变频器的应用,简化其主电路,减少使用器件,提高可靠性,降低制造成本,简化调试工作等,都与IGBT有密切的内在联系,所以世界各大器件公司都在奋力研究、开发,予估近2-3年内,会有突破性的进展。
目今已有适用于高压变频器的有电压型HV-IGBT,IGCT,电流型SGCT等。
2 关断浪涌电压在关断瞬时流过IGBT的电流,被切断时而产生的瞬时电压。
它是因带电动机感性负载(L)及电路中漏电感(Lp),其总值L*p = L + Lp则Vp* = Vce + Vp而Vp = L*p di/dt在极端情况下将产生Vp* Vces(额定电压)导致器件的损坏发生,为此要采取尽可能减小电感(L),电路中的漏电感(Lp)—由器件制造结构而定,例合理分布,缩短到线长度,适当加宽减厚等。
丹东华奥电子有限公司 LD33153 IGBT驱动器说明书
丹东华奥电子有限公司简介LD33153(替代MC33153)是专为IGBT 驱动器设计的,用于包括交流感应电机控制、无刷直流电机控制和不间断电源(UPS )的大功率应用。
虽然为驱动分立式和模块式IGBT 而设计,该器件也可以为驱动功率MOSFET 和双极型晶体管提供低成本的解决方案。
器件的保护功能包括去饱和或过流检测选择和欠压检测。
该器件提供双列直插和表面贴装封装。
特点系列信息●大电流输出端口:1A 拉电流/2A 灌电流●对常规型和感应型IGBT 都有保护电路●可预设故障消隐时间●过流和短路保护●为IGBT 优化的欠压锁定●负栅驱动能力●是驱动大功率MOSFET 和双极型晶体管的低成本解决方案内部方框图管脚图封装说明SOP8管装,编带,无铅DIP8单IGBT 栅极驱动器丹东华奥电子有限公司最大额定值电参数(V CC =15V ,V EE =0V ,开尔文地接至V EE ,T A =25℃,除非另外说明)参数缩写数值单位电源电压V CC 至V EE开尔文地至V EE V CC -V EE K GND -V EE2020V 逻辑输入V IN V EE -0.3至V CC V 电流检测输入V S -0.3至V CC V 消隐/去饱和输入V BD -0.3至V CCV 栅极驱动输入拉电流灌电流二极管箝位电流I O1.02.01.0A故障输出拉电流灌电流I FO 2510mA功耗和热特性SOP8封装最大功耗@Ta=50°C 热阻,结至环境DIP8封装最大功耗@Ta=50°C 热阻,结至环境PD R θJA PD R θJA 0.561801.0100W °C/W W °C/W 工作结温T J 150℃工作环境温度范围T A -40~+105℃储存温度范围T stg-65~+150℃参数缩写最小值典型值最大值单位逻辑输入输入门限电压高电平状态(逻辑1)低电平状态(逻辑0)V IH V IL 1.22.72.33.2V 输入电流高电平状态(V IH =3.0V )低电平状态(V IL =1.2V )I IH I IL13050500100µA驱动输出输出电压低电平状态(I Sink =1.0A )高电平状态(I Source =500mA )V OL V OH 12.02.013.9 2.5V 输出下拉电阻R PD100200k Ω电参数续(V CC=15V,V EE=0V,开尔文地接至V EE地,T A=25℃,除非另外说明)参数缩写最小值典型值最大值单位故障输出输出电压低电平状态(I Sink=5.0A)高电平状态(I Source=20mA)V FLV FH12.00.213.31.0V开关特性传输延迟(50%输入至50%输出,C L=1.0nF)逻辑输入至驱动输出上升逻辑输入至驱动输出下降T PLH(in/out)T PHL(in/out)80120300300ns驱动输出上升时间(10%至90%,C L=1.0nF)t r1755ns 驱动输出下降时间(90%至10%,C L=1.0nF)t f1755ns传输延迟电流检测输入至驱动输出故障消隐/去饱和输入至驱动输出t p(OC)t p(FLT)0.30.31.01.0µsUVLO起动电压V CC start11.31212.6V 禁用电压V CC dis10.41111.7V 比较器过流门限电压(V pin8>7.0V)V SOC506580mV 短路门限电压(V pin8>7.0V)V SSC100130160mV 故障销隐/去饱和门限(V pin1>100mV)V th(FLT) 6.0 6.57.0V 电流检测输入电流(V SI=0V)I SI-1.4-10µA 故障销隐/去饱和输入电流源(V pin8=0V,V pin4=0V)I chg-200-270-300µA 放电电流(V pin8=15V,V pin4=5.0V)I dschg 1.0 2.5mA 器件整体电源电流待机(V pin4=V CC,输出开路)工作(C L=1.0nF,f=20kHz)I CC7.27.91420mA丹东华奥电子有限公司图1.输入电流与输入电压关系曲线图2.输出电压与输入电压关系曲线图3.输入门限电压与温度关系曲线图4.输入门限电压与电源电压关系曲线图5.驱动输出低电平电压与温度关系曲线图6.驱动输出低电平电压与灌电流关系曲线丹东华奥电子有限公司图7.驱动输出高电平电压与温度关系曲线图8.驱动输出高电平电压与拉电流关系曲线图9.驱动输出电压与电流检测输入电压关系曲线图10.故障输出电压与电流检测输入电压关系曲线图11.过流保护门限电压与温度关系曲线图12.过流保护门限电压与电源电压关系曲线丹东华奥电子有限公司图13.短路比较器门限电压与温度关系曲线图14.短路比较器门限电压与电源电压关系曲线图15.电流检测输入电流与电压关系曲线图16.驱动输出电压与故障消隐/去饱和输入电压关系曲线图17.故障消隐/去饱和比较器门限电压与温度关系曲线图18.故障消隐/去饱和比较器门限电压与电源电压关系曲线丹东华奥电子有限公司图19.故障消隐/去饱和电流源与温度关系曲线图20.故障消隐/去饱和电流源与电源电压关系曲线图21.故障消隐/去饱和电流源与输入电压关系曲线图22.故障消隐/去饱和放电电流与输入电压关系曲线图23.故障输出低电平电压与灌电流关系曲线图24.故障输出高电平电压与拉电流关系曲线丹东华奥电子有限公司图25.驱动输出电压与电源电压关系曲线图26.UVLO与温度关系曲线图27.电源电流与电源电压关系曲线图28.电源电流与温度关系曲线图29.电源电流与输入频率关系曲线丹东华奥电子有限公司功能描述栅极驱动开关时间控制(管脚Pin5)栅极驱动的IGBT设计特点主要是优化开关功能特性。
IGBT说明书
1MBH15-120,1MBH15D-120,Molded IGBT1200V / 15AMolded PackageFeatures· Small molded package · Low power loss· Soft switching with low switching surge and noise· High reliability, high ruggedness (RBSOA, SCSOA etc.)· Comprehensive line-upApplications· Inverter for Motor drive· AC and DC Servo drive amplifier· Uninterruptible power supplyMaximum ratings and characteristicsAbsolute maximum ratings (at Tc=25°C unless otherwise specified)Item Symbol Collector-Emitter voltage V CES Gate-Emitter voltaga V GES Collector DC Tc=25°C I C25current Tc=100°C I C1001ms Tc=25°C IcpMax. power dissipation(IGBT)P C Operating temperature T j Storage temperature T stg Screw torque - Rating1200±2026 1578245+150-40 to +150 70Unit V V A A A W °C °C N·mEquivalent Circuit Schematic1MBH15-120 / IGBT1MBH15D-120 / IGBT+FWDIGBTIGBT + FWDItemZero gate voltage collector current Gate-Emitter leakage current Gate-Emitter threshold voltage Collector-Emitter saturation voltage Input capacitance Output capacitanceReverse transfer capacitance Turn-on time Turn-off timeI CES I GES V GE(th)V CE(sat)C ies Coes C res t on t r t off t f–– 1.0––205.5–8.5–– 3.5–1700––300––120––– 1.2––0.6–– 1.5––0.5V GE =0V, V CE =1200V V CE =0V, V GE =±20V V CE =20V, I C =15mA V GE =15V, I C =15A V GE =0V V CE =10V f=1MHzV CC =600V I C =15A V GE =±15V R G =120 ohm (Half Bridge)mA µA V V pFµsElectrical characteristics (at Tj=25°C unless otherwise specified)Thermal resistance characteristics Symbol Characteristics Conditions Unit Min. Typ. Max.1MBH15-120 / IGBT1MBH15D-120 / IGBT+FWDThermal resistance ––0.51IGBT °C/W Item Symbol Characteristics Conditions Unit Min. Typ. Max.Rth(j-c)1MBH15-120 / IGBTOutline drawings, mm1MBH15-120, 1MBH15D-120TO-3PLCharacteristics1MBH15-120,1MBH15D-120Collector current vs. Collector-Emitter voltage Tj=25°CCollector current vs. Collector-Emitter voltage Tj=125°CCollector-Emitter vs. Gate-Emitter voltage Tj=25°CCollector-Emitter vs. Gate-Emitter voltage Tj=125°CSwitching time vs. Collector currentVcc=600V, R G =120 ohm, V GE =±15V, Tj=25°C Switching time vs. Collector currentVcc=600V, R G =120 ohm, V GE =±15V, Tj=125°CCollector-Emitter voltage : V CE [V]Collector-Emitter voltage : V CE [V]C o l l e c t o r c u r r e n t : I c [A ]C o l l e c t o r c u r r e n t : I c [A ]0 1 2 3 4 5C o l l e c t o r -E m i t t e r v o l t a ge:V C E [V ]C o l l e c t o r -E m i t t e r v o l t a g e : V C E [V ]0 5 10 15 20Gate-Emitter voltage : V GE [V]Gate-Emitter voltage : V GE [V]S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]100Collector current : Ic [A]Collector current : Ic [A]S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]0 5 10 15 20 25504030201010864210001086 4 2 010010000 1 2 3 4 50 5 10 15 20Collector-Emitter voltage : V CE [V]10C a p a c i t a n c e : C i e s , C o e s , C r e s [n F ]Capacitance vs. Collector-Emitter voltageTj=25°C0 5 10 15 20 25 30 35100Switching time vs. R GVcc=600V, Ic=15A, V GE =±15V, Tj=25°C Dynamic input characteristicsTj=25°CGate resistance : R G [ohm]Gate charge : Qg [nC]1001000S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]C o l l e c t o r -E m i t t e r v o l t a g e : V C E [V ]G a t e -E m i t t e r v o l t a g e : V G E [V ]353025201510500 200 400 600 800 1000 1200Collector-Emitter voltage : V CE [V]C o l l e c t o r c u r r e n t : I c [A ]0 50 100 150 2002520151051000800600400200Switching time vs. R GVcc=600V, Ic=15A, V GE =±15V, Tj=125°CGate resistance : R G [ohm]1001000100S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]Reversed biased safe operating area+V GE =15V, -V GE = 15V, Tj = 125°C, R G = 120 ohm<<>Typical short circuit capabilityVcc=800V, R G =120 ohm, Tj=125°CS h o r t c i r c u i t t i m e : t s c [µs ]100050040030020010005 10 15 20 255040302010S h o r t c i r c u i t t i m e c u r r e n t : I s c [A ]Characteristics1MBH15-120,1MBH15D-120Gate voltage : V GE [V]10010-4 10-3 10-2 10-1 100Pulse width : P W [sec.]T h e r m a l r e s i s t a n c e : R t h (j -c ) [°C /W ]Transient thermal resistanceCharacteristics1MBH15-120,1MBH15D-1201MBH15D-120Reverse recovery time vs. Forward current-di/dt=45A / µsecReverse recovery current vs. Forward current -di/dt=45A / µsecr e v e r s e r e c o v e r y t i m e : t r r [n s e c ]r e v e r s e r e c o v e r y c u r r e n t : I r r [A ]8006004002001086420 5 10 15 20 25 30Forward current : I F [A]Forward current : I F [A]0 1.0 2.0 3.0 4.00 50 100 150 200Forward voltage : V F [V]F o r w a r d c u r r e n t : I F [A ]r e v e r s e r e c o v e r y t i m e : t r r [n s e c ]-di/dt [ A / µsec ]Forward current vs. Foeward voltageReverse recovery time characteristics vs. -di/dt IF=15A , Tj=125°C2015105r e v e r s e r e c o v e r y c u r r e n t : I r r [A ]10010-110-21015040302010800600400200 0。
IGBT驱动器产品手册说明书
BEIJI NG L MY ELECTRO NICS CO.,LTD TX-KA962/F中大功率IGBT驱动芯片TX-KA962F产品手册BEIJI NG L MY ELECTRO NICS CO.,LTD TX-KA962/F目录一、概述 (3)二、原理框图 (3)三、电气参数 (3)3.1 极限参数 (3)3.2 驱动特性 (4)3.3 工作条件 (4)3.4 短路保护特性 (4)3.5 驱动电源要求 (5)四、输出波形 (5)4.1 软关断曲线 (5)4.2 曲线说明 (5)五、尺寸结构 (6)5.1 外形尺寸 (6)5.2 引脚说明 (6)六、应用电路说明 (6)6.1 驱动器低压信号侧的连接 (6)6.1.1 输入信号的连接 (6)6.2 驱动高压侧驱动电源的连接 (6)6.3 驱动器高压侧输出的连接 (7)6.3.1 驱动功率的计算 (7)6.3.2 IGBT的连接 (7)6.4 保护参数的设置 (7)6.4.1 保护阈值设定(Vn) (7)6.4.2 盲区时间设定(Tblind) (8)6.4.3 软关断时间设定(Tsoft) (8)6.4.4 故障后再启动时间设定(Trst) (8)6.4.5 故障信号输出接口 (8)6.5 驱动芯片测试方法 (9)6.6 典型应用电路 (9)七、相关产品信息 (9)7.1 TX-PD203(DC-DC模块电源) (9)7.2 TX-QP102(死区控制芯片) (9)7.3 TX-DA962Dn系列IGBT驱动板 (9)八、常见问题 (10)九、其它说明: (10)BEIJI NG L MY ELECTRO NICS CO.,LTDTX-KA962/FTX-KA962F 、KA962 中大功率IGBT 驱动器一、概述∙ 单管中大功率IGBT 模块驱动器,可驱动300A/1700V 以下的IGBT 一只。
∙ 可按默认值直接使用,也可根据需要调节盲区时间、软关断的速度、故障后再次启动的时间。
高压IGBT产品说明书
050-7400 R e v E 9-2005APT30GP60B APT30GP60S600VA new generation of high voltage power IGBTs. Using punch-through technology and a proprietary metal gate, this IGBT has been optimized for very fast switching, making it ideal for high frequency, high voltage switch-mode power supplies and tail current sensitive applications. In many cases,the POWER MOS 7® IGBT provides a lower cost alternative to a Power MOSFET.•Low Conduction Loss • 100 kHz operation @ 400V, 37A •Low Gate Charge•200 kHz operation @ 400V, 24A •Ultrafast Tail Current shutoff•SSOA ratedMAXIMUM RATINGSAll Ratings: T C = 25°C unless otherwise specified.CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.APT Website - STATIC ELECTRICAL CHARACTERISTICSMINTYPMAX60034.562.2 2.72.12502500±100Characteristic / Test ConditionsCollector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)Gate Threshold Voltage (V CE = V GE , I C = 1mA, T j = 25°C)Collector-Emitter On Voltage (V GE = 15V, I C = 30A, T j = 25°C)Collector-Emitter On Voltage (V GE = 15V, I C = 30A, T j = 125°C)Collector Cut-off Current (V CE = 600V, V GE = 0V, T j = 25°C) 2Collector Cut-off Current (V CE = 600V, V GE = 0V, T j = 125°C) 2Gate-Emitter Leakage Current (V GE = ±20V)Symbol BV CES V GE(TH)V CE(ON)I CES I GESUNITVoltsµAnA Symbol V CES V GE V GEM I C1I C2I CM SSOA P D T J ,T STGT LAPT30GP60B_S600±20±3010049120120A @ 600V463-55 to 150300UNITVoltsAmpsWatts °C ParameterCollector-Emitter Voltage Gate-Emitter VoltageGate-Emitter Voltage TransientContinuous Collector Current @ T C = 25°C Continuous Collector Current @ T C = 110°C Pulsed Collector Current 1 @ T C = 25°C Switching Safe Operating Area @ T J = 150°C Total Power DissipationOperating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.050-7400 R e v E 9-2005APT30GP60B_SDYNAMIC CHARACTERISTICSSymbol C ies C oes C res V GEP Q g Q ge Q gc SSOA t d(on)t r t d(off)t f E on1E on2E off t d(on)t r t d(off)t f E on1E on2E offTest Conditions Capacitance V GE = 0V, V CE = 25Vf = 1 MHz Gate Charge V GE = 15V V CE = 300V I C = 30AT J = 150°C, R G = 5Ω, V GE =15V, L = 100µH,V CE = 600V Inductive Switching (25°C)V CC (Peak) = 400VV GE = 15V I C = 30A R G = 5ΩT J = +25°CInductive Switching (125°C)V CC (Peak) = 400VV GE = 15V I C = 30A R G = 5ΩT J = +125°C Characteristic Input Capacitance Output CapacitanceReverse Transfer Capacitance Gate-to-Emitter Plateau Voltage Total Gate Charge 3Gate-Emitter ChargeGate-Collector ("Miller") Charge Switching SOA Turn-on Delay Time Current Rise Time Turn-off Delay Time Current Fall TimeTurn-on Switching Energy 4Turn-on Switching Energy (Diode) 5Turn-off Switching Energy 6Turn-on Delay Time Current Rise Time Turn-off Delay Time Current Fall TimeTurn-on Switching Energy 4Turn-on Switching Energy (Diode) 5Turn-off Switching Energy 6MINTYPMAX3200295207.59020301201318554626033525033013188480260508518750UNIT pF V nC AnsµJns µJUNIT °C/W gmMINTYPMAX.27N/A 5.90CharacteristicJunction to Case (IGBT)Junction to Case (DIODE)Package WeightSymbol R ΘJC R ΘJC W TTHERMAL AND MECHANICAL CHARACTERISTICS1Repetitive Rating: Pulse width limited by maximum junction temperature.2For Combi devices, I ces includes both IGBT and FRED leakages 3See MIL-STD-750 Method 3471.4E on1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.)5E on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)6E off is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)APT Reserves the right to change, without notice, the specifications and information contained herein.050-7400 R e v E 9-2005TYPICAL PREFORMANCE CURVESB VC E S , C O L L E C T O R -T O -E M I T T E R B R E A KD O W N V CE , C O L L E C T O R -T O -E M I T T E R V O L T A G E (V )I C , C O L L E C T O R C U R R E N T (A )I C , C O L L E C T O R C U R R E N T (A )V O L T A G E (N O R M A L I Z E D )I C , D C C O L L E C T O R C U R R E N T (A )V C E , C O L L E C T O R -T O -E M I T T E R V O L T A G E (V )V G E , G A T E -T O -E M I T T E R V O L T A G E (V )I C , C O L L E C T O R C U R R E N T (A )APT30GP60BV CE , COLLECTER-TO-EMITTER VOLTAGE (V)V CE , COLLECTER-TO-EMITTER VOLTAGE (V)FIGURE 1, Output Characteristics(V = 15V)FIGURE 2, Output Characteristics (V = 10V)V GE , GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)FIGURE 3, Transfer CharacteristicsFIGURE 4, Gate ChargeV GE , GATE-TO-EMITTER VOLTAGE (V)T J , JUNCTION TRMPERATURE (°C)FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature T J , JUNCTION TEMPERATURE (°C)T C , CASE TEMPERATURE (°C)FIGURE 7, Breakdown Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature60504030201016141210864203.532.521.510.50140120100806040200-50-250255075100125150-50-2502550751001251501.21.151.101.051.00.950.900.850.8050-7400 R e v E 9-2005APT30GP60B_SI CE , COLLECTOR TO EMITTER CURRENT (A)I CE , COLLECTOR TO EMITTER CURRENT (A)FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current I I CE , COLLECTOR TO EMITTER CURRENT (A)FIGURE 12, Current Fall Time vs Collector Current I CE , COLLECTOR TO EMITTER CURRENT (A)I CE , COLLECTOR TO EMITTER CURRENT (A)FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current R G , GATE RESISTANCE (OHMS)T J , JUNCTION TEMPERATURE (°C)FIGURE 15, Switching Energy Losses vs. Gate ResistanceFIGURE 16, Switching Energy Losses vs Junction TemperatureS W I T C H I N G E N E R G Y L O S S E S (µJ )E O N 2, T U R N O N E N E R G Y L O S S (µJ )t r , R I S E T I M E (n s )t d (O N ), T U R N -O N D E L A Y T I M E (n s )S W I T C H I N G E N E R G Y L O S S E S (µJ )E OF F , T U R N O F F E N E RG Y L O S S (µJ )t f , F A L L T I M E (n s )t d (O F F ), T U R N -O F F D E L A Y T I M E (n s )1009080706050403020101008060402014001200100080060040020016001200800400252015105504030201014001200100080060040020002500200015001000500050-7400 R e v E 9-20055010140120100806040200C , C A P A C I T A N C E (PF )I C , C O L L E C T O R C U R R E N T (A )F M A X , O P E R A T I NG F R E Q U E N C Y (kH z )V CE , COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)V CE , COLLECTOR TO EMITTER VOLTAGEFigure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18, Minimim Switching Safe Operating Area0100200300400500600700 I C , COLLECTOR CURRENT (A)Figure 20, Operating Frequency vs CollectorCurrentTYPICAL PREFORMANCE CURVESAPT30GP60Bmax max1max 2max1d(on)r d(off )fdiss cond max 2on2offJ C diss JCF min(f ,f )0.05f t t t t P P f E E T T P R θ==+++−=+−=0.300.250.200.150.100.050Z θJ C , T H E R M A L I M P E D A N C E (°C /W )RECTANGULAR PULSE DURATION (SECONDS)Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration-5-4-3-2-1FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL0.00500F0.0132F0.135FJunction temp. (”C)RC MODELCase temperature050-7400 R e v E 9-2005APT30GP60B_SFigure 22, Turn-on Switching Waveforms and Definitions10 % 5 %10%t d(on)t r90%5 %Gate VoltageCollector VoltageCollector CurrentSwitching EnergyT J = 125 CFigure 23, Turn-off Switching Waveforms and DefinitionsT J = 125 CCollector CurrentCollector VoltageGate Voltage 90%90%t f t d(off)10%Switching EnergyAPT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,5225,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.Figure 24, E ON1 Test CircuitVDimensions in Millimeters (Inches)and Leads are PlatedDimensions in Millimeters and (Inches)TO -247 Package OutlineD 3PAK Package Outline。
IGBT 650V HB2系列产品说明书
STGW75H65DFB2-4TO247-4NG4K3E2C1_TABG(4)K(3)Features•Maximum junction temperature: T J = 175 °C •Low V CE(sat) = 1.55 V(typ.) @ I C = 75 A •Very fast and soft recovery co-packaged diode •Minimized tail current•Tight parameter distribution •Low thermal resistance•Positive V CE(sat) temperature coefficient•Excellent switching performance thanks to the extra driving kelvin pinApplications•Welding•Power factor correction •UPS•Solar inverters •ChargersDescriptionThe newest IGBT 650 V HB2 series represents an evolution of the advanced proprietary trench gate field-stop structure. The performance of the HB2 series is optimized in terms of conduction, thanks to a better V CE(sat) behavior at low current values, as well as in terms of reduced switching energy. A very fast soft recovery diode is co-packaged in antiparallel with the IGBT. The result is a product specificallydesigned to maximize efficiency for a wide range of fast applications.Trench gate field-stop, 650 V, 75 A, high-speed HB2 series IGBT in a TO247-4packageSTGW75H65DFB2-4DatasheetSTGW75H65DFB2-4Electrical ratings 1Electrical ratingsTable 1. Absolute maximum ratings1.Defined by design, not subject to production test.Table 2. Thermal dataSTGW75H65DFB2-4Electrical characteristics 2Electrical characteristicsT C = 25 °C unless otherwise specifiedTable 3. Static characteristicsTable 4. Dynamic characteristicsSTGW75H65DFB2-4Electrical characteristicsTable 5. Switching characteristics (inductive load)1.Including the reverse recovery of the diode.2.Including the tail of the collector current.Table 6. Diode switching characteristics (inductive load)STGW75H65DFB2-4Electrical characteristics (curves) 2.1Electrical characteristics (curves)STGW75H65DFB2-4 Electrical characteristics (curves)STGW75H65DFB2-4 Electrical characteristics (curves)STGW75H65DFB2-4 Electrical characteristics (curves)STGW75H65DFB2-4 Electrical characteristics (curves)Test circuits 3Test circuits4Package informationIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: . ECOPACK is an ST trademark.4.1TO247-4 package informationFigure 31. TO247-4 package outline8405626_2Package informationTO247-4 package information Table 7. TO247-4 mechanical dataRevision historyTable 8. Document revision historyContentsContents1Electrical ratings (2)2Electrical characteristics (3)2.1Electrical characteristics (curves) (5)3Test circuits (10)4Package information (11)4.1TO247-4 package information (11)Revision history (13)IMPORTANT NOTICE – PLEASE READ CAREFULLYSTMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.No license, express or implied, to any intellectual property right is granted by ST herein.Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to /trademarks. All other product or service names are the property of their respective owners.Information in this document supersedes and replaces information previously supplied in any prior versions of this document.© 2020 STMicroelectronics – All rights reservedSTGW75H65DFB2-4。
IGBT电路切换器说明书
RGS1D..25
25 ADC
1.5 mA 20 mADC 200 ADC
Agency Approvals and Conformances
RGC1D
UL508 Listed (E172877) cUL Listed (E172877)
RGS1D
UL508 Recognised (E172877) CSA (204075)
SurroSuunrrdouinndgingAAmmbbiieennttTeTmepmerpateurreature
Output Specifications (@ 40oC unless otherwise specified)
RGC1D..15
RGS1D..15
Current Rating
DC-1 @ 60°C DC-1 @ 40°C
IEC/EN 61000-6-2
IEC/EN 61000-4-2 Performance Criteria 1 Performance Criteria 2 Performance Criteria 1 Performance Criteria 2
IEC/EN 61000-4-4 Performance Criteria 2 Performance Criteria 1 IEC/EN 61000-4-5 Performance Criteria 1 Performance Criteria 1 Performance Criteria 1 Performance Criteria 1
Maximum transient peak voltage
1200 VDC
Maximum Onstate Voltage Drop
1.6 VDC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1MBH15-120,1MBH15D-120,Molded IGBT1200V / 15AMolded PackageFeatures· Small molded package · Low power loss· Soft switching with low switching surge and noise· High reliability, high ruggedness (RBSOA, SCSOA etc.)· Comprehensive line-upApplications· Inverter for Motor drive· AC and DC Servo drive amplifier· Uninterruptible power supplyMaximum ratings and characteristicsAbsolute maximum ratings (at Tc=25°C unless otherwise specified)Item Symbol Collector-Emitter voltage V CES Gate-Emitter voltaga V GES Collector DC Tc=25°C I C25current Tc=100°C I C1001ms Tc=25°C IcpMax. power dissipation(IGBT)P C Operating temperature T j Storage temperature T stg Screw torque - Rating1200±2026 1578245+150-40 to +150 70Unit V V A A A W °C °C N·mEquivalent Circuit Schematic1MBH15-120 / IGBT1MBH15D-120 / IGBT+FWDIGBTIGBT + FWDItemZero gate voltage collector current Gate-Emitter leakage current Gate-Emitter threshold voltage Collector-Emitter saturation voltage Input capacitance Output capacitanceReverse transfer capacitance Turn-on time Turn-off timeI CES I GES V GE(th)V CE(sat)C ies Coes C res t on t r t off t f–– 1.0––205.5–8.5–– 3.5–1700––300––120––– 1.2––0.6–– 1.5––0.5V GE =0V, V CE =1200V V CE =0V, V GE =±20V V CE =20V, I C =15mA V GE =15V, I C =15A V GE =0V V CE =10V f=1MHzV CC =600V I C =15A V GE =±15V R G =120 ohm (Half Bridge)mA µA V V pFµsElectrical characteristics (at Tj=25°C unless otherwise specified)Thermal resistance characteristics Symbol Characteristics Conditions Unit Min. Typ. Max.1MBH15-120 / IGBT1MBH15D-120 / IGBT+FWDThermal resistance ––0.51IGBT °C/W Item Symbol Characteristics Conditions Unit Min. Typ. Max.Rth(j-c)1MBH15-120 / IGBTOutline drawings, mm1MBH15-120, 1MBH15D-120TO-3PLCharacteristics1MBH15-120,1MBH15D-120Collector current vs. Collector-Emitter voltage Tj=25°CCollector current vs. Collector-Emitter voltage Tj=125°CCollector-Emitter vs. Gate-Emitter voltage Tj=25°CCollector-Emitter vs. Gate-Emitter voltage Tj=125°CSwitching time vs. Collector currentVcc=600V, R G =120 ohm, V GE =±15V, Tj=25°C Switching time vs. Collector currentVcc=600V, R G =120 ohm, V GE =±15V, Tj=125°CCollector-Emitter voltage : V CE [V]Collector-Emitter voltage : V CE [V]C o l l e c t o r c u r r e n t : I c [A ]C o l l e c t o r c u r r e n t : I c [A ]0 1 2 3 4 5C o l l e c t o r -E m i t t e r v o l t a ge:V C E [V ]C o l l e c t o r -E m i t t e r v o l t a g e : V C E [V ]0 5 10 15 20Gate-Emitter voltage : V GE [V]Gate-Emitter voltage : V GE [V]S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]100Collector current : Ic [A]Collector current : Ic [A]S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]0 5 10 15 20 25504030201010864210001086 4 2 010010000 1 2 3 4 50 5 10 15 20Collector-Emitter voltage : V CE [V]10C a p a c i t a n c e : C i e s , C o e s , C r e s [n F ]Capacitance vs. Collector-Emitter voltageTj=25°C0 5 10 15 20 25 30 35100Switching time vs. R GVcc=600V, Ic=15A, V GE =±15V, Tj=25°C Dynamic input characteristicsTj=25°CGate resistance : R G [ohm]Gate charge : Qg [nC]1001000S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]C o l l e c t o r -E m i t t e r v o l t a g e : V C E [V ]G a t e -E m i t t e r v o l t a g e : V G E [V ]353025201510500 200 400 600 800 1000 1200Collector-Emitter voltage : V CE [V]C o l l e c t o r c u r r e n t : I c [A ]0 50 100 150 2002520151051000800600400200Switching time vs. R GVcc=600V, Ic=15A, V GE =±15V, Tj=125°CGate resistance : R G [ohm]1001000100S w i t c h i n g t i m e : t o n , t r , t o f f , t f [n s e c .]Reversed biased safe operating area+V GE =15V, -V GE = 15V, Tj = 125°C, R G = 120 ohm<<>Typical short circuit capabilityVcc=800V, R G =120 ohm, Tj=125°CS h o r t c i r c u i t t i m e : t s c [µs ]100050040030020010005 10 15 20 255040302010S h o r t c i r c u i t t i m e c u r r e n t : I s c [A ]Characteristics1MBH15-120,1MBH15D-120Gate voltage : V GE [V]10010-4 10-3 10-2 10-1 100Pulse width : P W [sec.]T h e r m a l r e s i s t a n c e : R t h (j -c ) [°C /W ]Transient thermal resistanceCharacteristics1MBH15-120,1MBH15D-1201MBH15D-120Reverse recovery time vs. Forward current-di/dt=45A / µsecReverse recovery current vs. Forward current -di/dt=45A / µsecr e v e r s e r e c o v e r y t i m e : t r r [n s e c ]r e v e r s e r e c o v e r y c u r r e n t : I r r [A ]8006004002001086420 5 10 15 20 25 30Forward current : I F [A]Forward current : I F [A]0 1.0 2.0 3.0 4.00 50 100 150 200Forward voltage : V F [V]F o r w a r d c u r r e n t : I F [A ]r e v e r s e r e c o v e r y t i m e : t r r [n s e c ]-di/dt [ A / µsec ]Forward current vs. Foeward voltageReverse recovery time characteristics vs. -di/dt IF=15A , Tj=125°C2015105r e v e r s e r e c o v e r y c u r r e n t : I r r [A ]10010-110-21015040302010800600400200 0。