青岛版-数学-八年级上册-《逆命题和逆定理》专项练习-填空题
八年级数学上册4 平行线的性质定理和判定定理 解读“互逆命题与互逆定理”素材 青岛

学必求其心得,业必贵于专精解读“互逆命题与互逆定理”一、弄清互逆命题的概念观察下面两个命题:(1)同位角相等,两直线平行;(2)两直线平行,同位角相等.不难看出,第一个命题的题设是第二个命题的结论,而第二个命题的结论又是第一个命题的题设,我们把这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个叫做它的逆命题。
由互逆命题的定义可知,凡是命题,都可以写出它的逆命题,也就是说每个命题都有逆命题。
同时我们也发现一个真命题的逆命题不一定是真命题。
如原命题“对顶角相等"是真命题,它的逆命题“相等的角是对顶角”却是假命题.同样,原命题是假命题,它的逆命题不一定是假命题.如“对应角相等的三角形是全等三角形”是假命题,它的逆命题“全等三角形的对应角相等”却是真命题.互逆命题是说明两个命题之间的关系,两个命题的题设和结论可以互换,它们之中可以确定其中任何一个为原命题,但是一旦确定,另一个就是它的逆命题了。
二、弄搞清互逆定理的概念如果一个定理的逆命题经过证明是真命题,那么它也一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。
如“内错角相等,两直线平行”和“两直线平行,内错角相等"等,都是互逆定理.所有定理不一定都有逆定理,因为一个真命题的逆命题不一定也是真命题,如“对顶角相等”这个定理就没有逆定理.三、准确叙述一个命题的逆命题(1)对于一些简单的命题可直接交换它们的题设和结论,如“两直线平行,同位角相等”,直接交换它们的题设和结论就得到这个命题的逆命题。
(2)为了准确叙述,可把命题改写成“如果……,那么……"的形式,然后再把原命题的题设和结论互换,如“面积相等的两个三角形全等”,把它改写成“如果两个三角形的面积相等,那么这两个三角形全等”,然后再写出它的逆命题:“如果两个三角形全等,那么这两个三角形的面积相等”。
特别注意,在交换一个命题的题设和结论时,语言表述要准确,防止用词不当而造成错误.例如:“直角三角形的两个锐角互余”的逆命题写成“互余的两个锐角是直角三角形的两个锐角”就不恰当,而应写成“两个锐角互余的三角形是直角三角形”。
八年级数学《2.5逆命题和逆定理》基础训练(含答案)

2.5 逆命题和逆定理1.下列说法中,正确的是(A)A. 每一个命题都有逆命题B. 假命题的逆命题一定是假命题C. 每一个定理都有逆定理D. 假命题没有逆命题2.下列命题的逆命题为真命题的是(C)A. 直角都相等B. 钝角都小于180°C. 若x2+y2=0,则x=y=0D. 同位角相等3.下列定理中,有逆定理的是(D)A. 对顶角相等B. 同角的余角相等C. 全等三角形的对应角相等D. 在一个三角形中,等边对等角4.下列命题中,其逆命题是假命题的是(B)A. 等腰三角形的两个底角相等B. 若两个数的差为正数,则这两个数都为正数C. 若ab=1,则a与b互为倒数D. 如果|a|=|b|,那么a2=b25.写出下列命题的逆命题,并判断逆命题的真假,若是假命题,请举出反例.(1)若x=y=0,则x+y=0.【解】逆命题:若x+y=0,则x=y=0.这个逆命题是假命题.反例:当x=-1,y =1时,x+y=0,但x≠0,y≠0.(2)等腰三角形的两个底角相等.【解】逆命题:有两角相等的三角形是等腰三角形.这个逆命题是真命题.6.下列定理中,哪些有逆定理?如果有逆定理,请写出逆定理.(1)同旁内角互补,两直线平行.(2)三边对应相等的两个三角形全等.【解】(1)有逆定理,逆定理是“两直线平行,同旁内角互补”.(2)有逆定理,逆定理是“如果两个三角形全等,那么这两个三角形的三边对应相等.”(第7题)7.利用线段垂直平分线性质定理及其逆定理证明以下命题.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=E C.【解】连结B C.∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD是线段BC的垂直平分线(两点确定一条直线).又∵点E在AD上,∴EB=E C.8.写出命题“如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等”的逆命题,并判断原命题和逆命题的真假.若是假命题,请举出反例.【解】逆命题:如果两个角相等,那么其中一个角的两边与另一个角的两边分别垂直.原命题是假命题.反例:如解图①,∠CAD的两边与∠EBF的两边分别垂直,但∠CAD=45°,∠EBF=135°,即∠CAD≠∠EBF.(第8题解)逆命题是假命题.反例:如解图②,∠CAD=∠EBF,但显然AC与BE,BF都不垂直.9.写出命题“等腰三角形底边上的中点到两腰的距离相等”的逆命题,并证明该逆命题是真命题.【解】逆命题:如果一个三角形一边上的中点到另两边的距离相等,那么这个三角形是等腰三角形.已知:如解图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF.(第9题解)求证:△ABC为等腰三角形.证明:连结A D.∵D是BC的中点,∴S△ABD=S△AC D.∵DE⊥AB,DF⊥AC,∴S△ABD=12AB·DE,S△ACD=12AC·DF.又∵DE=DF,∴AB=AC,∴△ABC为等腰三角形.10.举反例说明定理“全等三角形的面积相等”没有逆定理.【解】逆命题:如果两个三角形的面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.(第10题解)11.已知命题“等腰三角形底边上的中线与顶角的平分线重合”,写出它的逆命题,判断该逆命题的真假,并证明.【解】逆命题:一边上的中线与它所对角的平分线重合的三角形是等腰三角形,是真命题.(第11题解)已知:如解图,在△ABC中,BD=CD,AD平分∠BA C.求证:△ABC是等腰三角形.证明:延长AD到点E,使DE=AD,连结BE,CE.∵BD=CD,DE=DA,∠BDE=∠CDA,∴△BDE≌△CDA(SAS).∴BE=CA,∠BED=∠CA D.∵AD平分∠BAC,∴∠CAD=∠BA D.∴∠BAD=∠BE D.∴AB=BE.∴AB=A C.∴△ABC是等腰三角形.。
八上2.5逆命题和逆定理

易证△BPE≌△BPQ,△CPD≌△CPQ,
得BQ=BE,CQ=CD,则BC=BE+CD=7.
八年级上 2.5 答案
选择填空题答案
2.5 课前检测 1-6 CDA BAD 2.5 课后检测
1-3 DDC
4. 5
5. 有
6. 两个相等的角是同位角
八上 2.5 课后 No.2
D
八上 2.5 课后 No.3
C
八上 2.5 课后 No.4
5
l P
A
B
八上 2.5 课后 No.5
有
八上 2.5 课后 No.6
两个相等的角是同位角
八上 Байду номын сангаас.5 课后 No.7
逆命题是:如果a2=b2,那么a=b. 这是假命题. 反例:当a=1,b=-1时,a2=b2,但 a≠b.
D C
F
3 2 S 3= AB , ∵ S1 S2 S3 4
S1
A
S2
B
S3
3 3 3 2 2 ∴ AC BC AB 2 4 4 4
E
∴ AC 2 BC 2 AB 2
∴ ∠ACB=Rt∠.
八上 2.5 课后 No.9
真
假
八上 2.5 课后 No.9
解:(1)连结BC.根据△BCD≌△CBE, 得∠ABC=∠ACB,则AB=AC
八上 2.5 课后 No.8
F
逆命题:如图,以△ABC各边 为边向外作等边三角形,若三 个等边三角形的面积S1,S2,S3
D
C
S1
A
S2
B
S3
E
满足S1+S2=S3,则∠ACB=RT∠.
逆命题和逆定理同步练习含答案

逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直 B .菱形的对角线相等 C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形 C .两条对角线互相平分的四边形是平行四边形 D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >> A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题2.逆定理,互逆定理3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假.,.2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是= .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。
2022-2023学年山东省高青县数学八年级第一学期期末学业质量监测试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.如图,在ABC ∆中,AB AC =,BE CD =,BD CF =,则EDF ∠的度数为( )A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠2.如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=( )A .30°B .45°C .60°D .15°3.下列命题中是真命题的是( )A .平面内,过一点有且只有一条直线与已知直线平行B 1227,3.14,π,0.301001…等五个数都是无理数 C .若0m <,则点()5P m -,在第二象限 D .若三角形的边a 、b 、c 满足: ()()2a b c a b c ab +-++=,则该三角形是直角三角形4.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .5.点(2,-3)关于y 轴的对称点是( ) A .()2,3-B .()2,3C .()2,3--D .()2,3-6.A B 、两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从A 地出发到B 地,乙车比甲车早到30分钟,设甲车平均速度为5x 千米/小时,则根据题意所列方程是( )A .2002003056x x -= B .2002001562x x -= C .2002001652x x -= D .2002003056x x+= 7.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y+=⎧⎨⨯=⎩8.以下关于直线24y x =-的说法正确的是( ) A .直线24y x =-与x 轴的交点的坐标为(0,-4) B .坐标为(3,3)的点不在直线24y x =-上 C .直线24y x =-不经过第四象限 D .函数24y x =-的值随x 的增大而减小 9.下列因式分解结果正确的是( ) A .24(4)x x x x -+=-+ B .224(4)(4)x y x y x y -=+-C .222(1)x y xy y y x -+=-D .234(1)(4)x x x x --=-+10.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B′处,则∠ADB′等于( )A .25°B .30°C .35°D .40°11.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .212.如图,设k =乙图中阴影部分面积甲图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .112k << D .102k <<二、填空题(每题4分,共24分)13.分式3221x x -+的值为零,则x 的值是_____________________. 14.要使分式22xx -有意义,则x 的取值范围是_______________.15()22144x x +-+的最小值,小明运用了“数形结合”的思想:如图所示,在平面直角坐标系中,取点()01A ,,点()4B ,-2,设点()P x ,0.那么21AP x =+()244BP x =-+借助上述信息,()22144x x +-+最小值为__________.16.三角形两边长分别是2,4,第三边长为偶数,第三边长为_______ 17.若方程组3(31)2y kx y k x =+⎧⎨=++⎩无解,则y =kx ﹣2图象不经过第_____象限.18.如图,在△ABC 中,∠ACB=90°, AC=6cm , BC=8cm ,动点P 从点C 出发,按C→B→A 的路径,以2cm 每秒的速度运动,设运动时间为t 秒.(1)当t=_____.时,线段AP 是∠CAB 的平分线;(2)当t=_____时,△ACP 是以AC 为腰的等腰三角形.三、解答题(共78分)19.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(8分)如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (﹣1,a ),l 1与y 轴交于点C ,l 2与x 轴交于点A .(1)求a 的值及直线l 1的解析式. (2)求四边形PAOC 的面积.(3)在x 轴上方有一动直线平行于x 轴,分别与l 1,l 2交于点M ,N ,且点M 在点N 的右侧,x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.21.(8分)材料:数学兴趣一小组的同学对完全平方公式进行研究:因()20a b -≥,将左边展开得到2220a ab b -+≥,移项可得:222a b ab +≥.数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m 、n ,都存在2m n mn +≥,并进一步发现,两个非负数m 、n 的和一定存在着一个最小值. 根据材料,解答下列问题: (1)()()2225x y +≥__________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭___________(0x >); (2)求()5602x x x+>的最小值; (3)已知3x >,当x 为何值时,代数式92200726x x ++-有最小值,并求出这个最小值.22.(10分)如图,在平面直角坐标系xOy 中,点 A ,B ,C 都在小正方形的顶点上,且每个小正方形的边长为1.(1)分别写出A ,B ,C 三点的坐标.(2)在图中作出ABC ∆关于y 轴的对称图形'''A B C ∆. (3)求出ABC ∆的面积.(直接写出结果)23.(10分) [建立模型](1)如图1.等腰Rt ABC 中, 90ACB ∠=︒, CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,求证: BEC CDA ≌; [模型应用](2)如图2.已知直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕点A 逆时针旋转45'°至直线2l ,求直线2l 的函数表达式:(3)如图3,平面直角坐标系内有一点()3,4B -,过点B 作BA x ⊥轴于点A ,BC ⊥y BC y ⊥轴于点C ,点P 是线段AB 上的动点,点D 是直线21y x =-+上的动点且在第四象限内.试探究CPD △能否成为等腰直角三角形?若能,求出点D 的坐标,若不能,请说明理由.24.(10分)如图,在平面直角坐标系中,直线4:3AB y x b=-+交y轴于点()0,4A,交x轴于点B,以AB为边作正方形ABCD,请解决下列问题:(1)求点B和点D的坐标;(2)求直线BC的解析式;(3)在直线BC上是否存在点P,使PCD∆为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.25.(12分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM 的面积相等,请求出点P的坐标.26.尺规作图:如图,已知ABC∆.(1)作A∠的平分线;(2)作边AC 的垂直平分线,垂足为E .(要求:不写作法,保留作图痕迹) .参考答案一、选择题(每题4分,共48分) 1、B【分析】由题中条件可得BDE CFD ∆≅∆,即∠=∠BDE CFD ,EDF ∠可由180︒与BDE ∠、CDF ∠的差表示,进而求解即可.【详解】∵AB AC =, ∴B C ∠=∠, 在BDE ∆和CFD ∆中BD CF B C BE CD =⎧⎪∠=∠⎨⎪=⎩∴BDE CFD ∆≅∆(SAS ), ∴∠=∠BDE CFD ,()180EDF BDE CDF ∠=︒-∠+∠()()180180180CFD CDF C =︒-∠+∠=︒-︒-∠C =∠,∵180A B C ∠+∠+∠=︒. ∴2180A EDF ∠+∠=︒, ∴1902EDF A ∠=︒-∠. 故选B . 【点睛】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题. 2、A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=2可求出α的度数.【详解】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA 于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选A.【点睛】本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.3、D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可. 【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B1227,3.14,π,0.301001…中只有π,0.301001…两个数是无理数,本选项说法是假命题;C 、若0m <,则点()5P m -,在第一象限,本选项说法是假命题; D 、()()2a b c a b c ab +-++=,化简得222=a b c +,则该三角形是直角三角形,本选项说法是真命题; 故选D. 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 4、B【分析】结合轴对称图形的概念进行求解即可. 【详解】解:根据轴对称图形的概念可知: A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项错误; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项正确. 故选B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 5、C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标. 【详解】解:∵所求点与点A (2,–3)关于y 轴对称, ∴所求点的横坐标为–2,纵坐标为–3,∴点A (2,–3)关于y 轴的对称点是(–2,–3). 故选C . 【点睛】本题考查两点关于y 轴对称的知识;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标相同. 6、B【分析】设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【详解】解:设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据题意得2002001562x x-=.故选B.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.7、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为190 2822x yx y+=⎧⎨⨯=⎩.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.8、B【分析】利用一次函数图象上点的坐标特征可得出结论A错误,把(3,3)代入函数解析式可得结论B正确;利用一次函数图象与系数的关系可得出结论C错误;利用一次函数的性质可得出结论D错误.【详解】解:A、当y=0时,2x-4=0,解得:x=2,∴直线y=2x-4与x轴的交点的坐标为(2,0),选项A不符合题意;B、当x=3时,y=2x-4=2,∴坐标为(3,3)的点不在直线y=2x-4上,选项B符合题意;C、∵k=2>0,b=-4<0,∴直线y=2x-4经过第一、三、四象限,选项C不符合题意;D、∵k=2>0,∴函数y=2x-4的值随x的增大而增大,选项D不符合题意.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一判定四个选项的正误是解题的关键.9、C【分析】根据因式分解的概念,用提公因式法,公式法,十字相乘法,把整式的加减化为整式的乘法运算.【详解】A. 24(4)x x x x -+=--,故此选项错误,B. 224(2)(2)x y x y x y -=+-,故此选项错误,C. 222(1)x y xy y y x -+=-,故此选项正确,D. 234(1)(4)x x x x --=+-,故此选项错误.故选:C .【点睛】考查因式分解的方法,有提公因式法,公式法,十字相乘法,熟记这些方法步骤是解题的关键.10、D【解析】∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB 反折而成,∴∠CB′D=∠B=65°.∵∠CB′D 是△AB′D 的外角,∴∠ADB′=∠CB′D ﹣∠A=65°﹣25°=40°.故选D .11、B【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.12、C 【解析】由题意可得:22()()()()a a b a a b a k a b a b a b a b--===-+-+, ∴11a b b k a a+==+, 又∵0a b >>, ∴112k<<, ∴12k k <<,即112k <<. 故选C.二、填空题(每题4分,共24分)13、23【分析】根据分式值为0的条件:分子为0,分母不为0可得关于x 的方程,解方程即得答案.【详解】解:根据题意,得:320x -=且210x +≠,解得:23x =. 故答案为:23. 【点睛】本题考查了分式值为0的条件,属于基础题型,熟练掌握基本知识是解题关键. 14、2x ≠【解析】根据分式有意义的条件,则:20.x -≠解得: 2.x ≠故答案为 2.x ≠【点睛】分式有意义的条件:分母不为零.15、5【分析】要求出()22144x x ++-+最小值,即求AP+PB 长度的最小值;根据两点之间线段最短可知AP+PB 的最小值就是线段AB 的长度,求出线段AB 长即可.【详解】连接AB ,如图:由题意可知:点()01A ,,点()4B ,-2,点()P x ,0∴21x +,()244x -+ ()22144x x +-+最小值,即求AP PB +长度的最小值,据两点之间线段最短可知求AP PB +的最小值就是线段AB 的长度.()0A ,1,点()42B -,,22435AB ∴=+=.故答案为:5.【点睛】本题主要考查了最短路线问题、两点间的距离公式以及勾股定理应用,利用了数形结合的思想,利用两点间的距离公式求解是解题关键.16、2【解析】试题解析:设第三边为a ,根据三角形的三边关系知,2-1<a <2+1. 即1<a <6,由周长为偶数,则a 为2.17、一【分析】根据两直线平行没有公共点得到k =3k +1,解得k =﹣12,则一次函数y =kx ﹣2为y =﹣12x ﹣2,然后根据一次函数的性质解决问题. 【详解】解:∵方程组()3312y kx y k x =+⎧⎪⎨=++⎪⎩无解, ∴k =3k +1,解得k =﹣12,∴一次函数y =kx ﹣2为y =﹣12x ﹣2, 一次函数y =﹣12x ﹣2经过第二、三、四象限,不经过第一象限. 故答案为一.【点睛】 本题考查一次函数与二元一次方程组的关系、一次函数图像与系数的关系,解题的关键是求出k 的值.18、32s , 3或275s 或6s 【分析】(1)过P 作PE ⊥AB 于E ,根据角平分线的性质可得PE=CP=2t ,AE=AC=6,进而求得BE 、BP ,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP 、AC=AP 情况进行讨论求解.【详解】(1)在△ABC 中,∵∠ACB=90°, AC=6cm , BC=8cm ,∴AB=10cm ,如图,过P 作PE ⊥AB 于E ,∵线段AP 是∠CAB 的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm ,∴BP=(8-2t)cm ,BE=10-6=4cm ,在Rt △PEB 中,由勾股定理得:222(82)(2)4t t -=+, 解得:t=32, 故答案为:32s ;(2)∵△ACP 是以AC 为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t=62=3s ; 当AC=CP=6时,如图2,过C 作CM ⊥AB 于M ,则AM=PM ,CM=6824105⨯=, ∵AP=10+8-2t=18-2t ,∴AM=12AP=9-t , 在Rt △AMC 中,由勾股定理得:222246()(9)5t =+-, 解得:t=275s 或t=635s , ∵0﹤2t ﹤8+10=18,∴0﹤t ﹤9,∴t=275s ; 当AC=AP=6时,如图3,PB=10-6=4,t=842+=6s , 故答案为:3s 或275s 或6s .【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,三、解答题(共78分)19、规定日期是6天. 【解析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.20、(1)a =2,y =﹣x +1;(2)四边形PAOC 的面积为52;(3)点Q 的坐标为7,05⎛⎫- ⎪⎝⎭或1,05⎛⎫- ⎪⎝⎭或(﹣67,0).【分析】(1)将点P的坐标代入直线l2解析式,即可得出a的值,然后将点B和点P 的坐标代入直线l1的解析式即可得解;(2)作PE⊥OA于点E,作PF⊥y轴,然后由△PAB和△OBC的面积即可得出四边形PAOC的面积;(3)分类讨论:①当MN=NQ时,②当MN=MQ时,③当MQ=NQ时,分别根据等腰直角三角形的性质,结合坐标即可得解.【详解】(1)∵y=2x+4过点P(﹣1,a),∴a=2,∵直线l1过点B(1,0)和点P(﹣1,2),设线段BP所表示的函数表达式y=kx+b并解得:函数的表达式y=﹣x+1;(2)过点P作PE⊥OA于点E,作PF⊥y轴交y轴于点F,由(1)知,AB=3,PE=2,OB=1,点C在直线l1上,∴点C坐标为(0,1),∴OC=1则1153211222 PAB OBCS S S=-=⨯⨯-⨯⨯=;(3)存在,理由如下:假设存在,如图,设M(1﹣a,a),点N4,2aa-⎛⎫ ⎪⎝⎭,①当MN =NQ 时,412a a a ---= ∴65a = ∴17,05Q ⎛⎫- ⎪⎝⎭, ②当MN =MQ 时, ∴611155a -=-=- ∴21,05Q ⎛⎫- ⎪⎝⎭,③当MQ =NQ 时,4122a a a ---=, ∴67a =, ∴36,07Q ⎛⎫- ⎪⎝⎭. 综上,点Q 的坐标为:7,05⎛⎫-⎪⎝⎭或1,05⎛⎫- ⎪⎝⎭或(﹣67,0). 【点睛】此题主要考查一次函数的几何问题、解析式求解以及动直线的综合应用,熟练掌握,即可解题.21、(1)20xy ,2;(2)15(3)当92x =时,代数式92200726x x ++-的最小值为1.【分析】(1)根据阅读材料即可得出结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变为926201326x x -++-,再利用阅读材料介绍的方法,即可得到结论.【详解】(1)∵0x >,0y >,∴()()222522520x y x y xy +≥⨯⋅=,∵0x >, ∴221122x x x x ⎛⎫+≥⋅= ⎪⎝⎭; (2)当x 0>时,2x ,52x均为正数,∴562x x +≥=所以,562x x+的最小值为 (3)当x 3>时,2x ,926x -,2x-6均为正数, ∴92200726x x ++- 92x 6201326x =-++-20132013≥= 2019= 由()20a b -≥可知,当且仅当a b =时,22a b +取最小值, ∴当92626x x -=-,即92x =时,有最小值. ∵x 3> 故当92x =时,代数式92200726x x ++-的最小值为1. 【点睛】本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.22、(1)A (1,4),B (-1,0),C (3,2);(2)作图见解析;(3)2.【分析】(1)根据点在坐标系中的位置即可写出坐标;(2)作出A 、B 、C 关于y 轴对称点A '、B ′、C '即可;(3)理由分割法求ABC ∆的面积即可;【详解】(1)由图象可知A (1,4),B (-1,0),C (3,2);(2)如图△A'B'C'即为所求;(3)S △ABC =12-12×4×2-12×2×2-12×2×4=2. 【点睛】 本题考查轴对称变换,解题时根据是理解题意,熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)直线l 2的函数表达式为:y =−5x−10;(3)点D 的坐标为(113,193-)或(4,−7)或(83,133-). 【解析】(1)由垂直的定义得∠ADC =∠CEB =90°,由同角的余角的相等得∠DAC =∠ECB ,然后利用角角边证明△BEC ≌△CDA 即可;(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,由(1)可得△ABO ≌△BCD(AAS ),求出点C 的坐标为(−3,5),然后利用待定系数法求直线l 2的解析式即可; (3)分情况讨论:①若点P 为直角时,②若点C 为直角时,③若点D 为直角时,分别建立(1)中全等三角形模型,表示出点D 坐标,然后根据点D 在直线y =−2x +1上进行求解.【详解】解:(1)∵AD ⊥ED ,BE ⊥ED ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠ACD +∠ECB =∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△CDA 和△BEC 中,ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△CDA (AAS );(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:332y x=+与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:20 35k bk b-+=⎧⎨-+=⎩解得:510 kb=-⎧⎨=-⎩,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=103 -,∴点D的坐标为(113,193-);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=12k,∴点D的坐标为(72k,72k),又∵点D在直线y=−2x+1上,∴772122k k,解得:k=53 -,∴点D的坐标为(83,133-);综合所述,点D的坐标为(113,193-)或(4,−7)或(83,133-).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.24、(1)点()3,0B ,点()4,7D ;(2)3944y x =-;(3)点()13,0P ,点()211,6P . 【分析】(1)根据待定系数法,可得直线AB 的解析式是:443y x =-+,进而求出()3,0B ,过点D 作DE y ⊥轴于点E ,易证()DAE ABO AAS ∆≅∆,从而求出点D 的坐标;(2)过点C 作CM x ⊥轴于点M ,证得:BCM ABO ∆≅∆,进而得()7,3C ,根据待定系数法,即可得到答案;(3)分两种情况:点P 与点B 重合时, 点P 与点B 关于点C 中心对称时,分别求出点P 的坐标,即可.【详解】(1)43y x b =-+经过点()0,4A , 4b ∴=,∴直线AB 的解析式是:443y x =-+, 当0y =时,4043x =-+,解得:3x =, ∴点()3,0B ,过点D 作DE y ⊥轴于点E ,在正方形ABCD 中,AD AB =,90DAB ∠=︒,DAE AB ∠+∠O =90︒,∠ABO +∠OAB =90︒,ABO DAE ∴∠=∠,DE AE ⊥,90AED AOB ∴=︒=∠,在DAE ∆和ABO ∆中,∵90ABO DAE AED ABO AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()DAE ABO AAS ∴∆≅∆∴43DE OA AE OB ====,,,7OE ∴=,∴点()4,7D ;(2)过点C 作CM x ⊥轴于点M ,同上可证得:BCM ABO ∆≅∆,∴CM=OB=3,BM=OA=4,OB=3+4=7,∴()7,3C ,设直线BC 得解析式为:y kx b =+(0,,k k b ≠为常数),代入点()()3,0,7,3B C 得:7330k b k b +=⎧⎨+=⎩,解得:3494k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线BC 的解析式是:3944y x =-; (3)存在,理由如下:点P 与点B 重合时,点()3,0P ;点P 与点B 关于点C 中心对称时,过点P 作PN ⊥x 轴,则点C 是BP 的中点,CM //PN ,∴CM 是BPN △的中位线,∴PN=2CM=6,BN=2BM=8,∴ON=3+8=11,∴点()11,6P综上所述:在直线BC 上存在点P ,使PCD ∆为等腰三角形,坐标为:()13,0P ,()211,6P .【点睛】本题主要考查一次函数与几何图形的综合,添加辅助线,构造全等三角形,是解题的关键,体现了数形结合思想.25、(1).﹣2,4; (2).﹣3m ;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交x轴于点C,,分别求出AB、MC的长度,由三角形面积公式表示出△ABM的面积即可;(3)求出当m=﹣3时,△ABM的面积,设P(1,a),将△ABP 的面积表示出来,列方程求解即可.【详解】(1)由题意得:a+2=1,b﹣4=4,∴a=﹣2,b=4;(2)作MC⊥x轴交x轴于点C,∵A(﹣2,1),B(4,1),∴AB=6,∵MC=﹣m,∴S△ABM=12AB·MC=12×6×(﹣m)=﹣3m;(3)m=﹣3时,S△ABM=﹣3×(﹣3)=9,设P(1,a),OP= |a|,∴S△ABP=12AB·OP=12×6×|a|=3 |a|,∴3 |a|=9,解得a=±3,∴P(1,3)或(1,﹣3).【点睛】本题主要考查非负数的性质、点的坐标以及三角形的面积公式,点的坐标转化为点到坐标轴的距离时注意符号问题.26、(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题考查了角平分线及线段垂直平分线的尺规作图方法,解题的关键是掌握相应的尺规作图.。
初中数学浙教版八年级上册《2.5逆命题和逆定理》练习题

逆命题与逆定理班级:___________姓名:___________得分:__________一、选择题1、下列判断是正确的是()A.真命题的逆命题是假命题B.假命题的逆命题是真命题C.定理逆命题的逆命题是真命题D.真命题都是定理2.已知下列命题:①若a≤0,则|a|=-a;②若ma²>na²,则m>n;③同位角相等,两直线平行;④对顶角相等.其中原命题与逆命题均为真命题的个数是()A.1 个B.2 个C.3 个D.4 个3.下列命题的逆命题是真命题的是()A.对顶角相等B.如果两个角是直角那么这两个角相等C.全等三角形的对应角等D.两直线平行,内错角相等4.下列命题中,逆命题不正确的是()A.两直线平行,同旁内角互补B.直角三角形的两个锐角互余C.全等三角形对应角相等D.直角三角形斜边上的中线等于斜边的一半5.下列命题中,其逆命题成立的是()A.如果a>0,b>0,那么ab>0B.两直线平行,内错角相等C.能被9整除的数,也能被3整除D.如果a=0,b=0,那么ab=0二、填空题1、“若x+y=0,则x、y互为相反数.”的逆命题是______.2. 下列命题:①全等三角形的面积相等;②平行四边形的对角线互相平分;③同旁内角互补,两直线平行.其中逆命题为真命题的有:______(请填上所有符合题意的序号).3. 请写出定理:“等腰三角形的两个底角相等”的逆定理______.4. 已知命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等”,用“如果…,那么…”的形式写出它的逆命题,并判断其真假.逆命题:______.这个逆命题是______ 命题(填“真”或“假”).5. 在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等、在上述定理中,存在逆定理的是______(填序号)三、解答题1. 写出下列两个定理的逆命题,并判断真假(1)在一个三角形中,等角对等边.(2)四边形的内角和等于360°.2. 写出下列命题的逆命题:(1)两条直线被第三条直线所截,如果有一对同位角相等,那么这两条直线平行;(2)角平分线上的点到角的两边的距离相等;(3)若r²=a,则r叫a的平方根;(4)如果a≥0,那么√a²=a.四、证明题请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.参考答案一、选择题2、B【解析】①若a≤0,则|a|=-a,是真命题,逆命题是若|a|=-a则a≤0,是真命题,②若ma2>na2,则m>n,是真命题,逆命题是若m>n,则ma2>na2,是假命题,③同位角相等,两直线平行,是真命题,逆命题是两直线平行,同位角相等,是真命题,④对顶角相等,是真命题,逆命题是相等的角是对顶角,是假命题,原命题与逆命题均为真命题的个数是2个;故选B.3、D【解析】A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、如果两个角是直角那么这两个角相等的逆命题为“如果两个角相等,那么这两个角为直角”,此命题为假命题,故本选项错误;C、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;D、两直线平行,内错角相等的逆命题为“如果内错角相等,那么两直线平行”,此命题为真命题,故本选项正确;故选D.4.C【解析】A、两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确;B、直角三角形的两个锐角互余的逆命题是两个锐角互余的三角形是直角三角形,正确;C、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,错误;D、直角三角形斜边上的中线等于斜边的一半的逆命题是斜边上的中线等于斜边的一半的三角形是直角三角形,正确;故选C.5. B【解析】A、如果a>0,b>0,那么ab>0,其逆命题为如果ab>0,则a>0,b>0,此逆命题为假命题,所以A选项错误;B、两直线平行,内错角相等的逆命题为内错角相等,内错角相等,此逆命题为真命题,所以B选项正确;C、能被9整除的数,也能被3整除的逆命题为能被3整除,也能被9整除的数,此逆命题为假命题,所C选项错误;D、如果a=0,b=0,那么ab=0的逆命题为如果ab=0,则a=0,b=0,此逆命题为假命题,所以D选项错误.故选B.二、填空题1、若x,y互为相反数,则x+y=0.【解析】“若x+y=0,则x、y互为相反数.”的逆命题是:若x,y互为相反数,则x+y=0”.故答案为:若x,y互为相反数,则x+y=0.2、②③【解析】①全等三角形的面积相等,逆命题是面积相等是三角形是全等三角形,是假命题;②平行四边形的对角线互相平分,逆命题是对角线互相平分的四边形是平行四边形,是真命题;③同旁内角互补,两直线平行,逆命题是两直线平行,同旁内角互补,是真命题.综上所述,逆命题为真命题的有②③.故答案为:②③.3、有两个角相等的三角形是等腰三角形【解析】根据等角对等边知,“等腰三角形的两个底角相等”的逆定理:有两个角相等的三角形是等腰三角形.4. 如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,真【解析】命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等”其逆命题是:如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,为真命题,故答案为:如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,真.5. ①③④⑤【解析】①中,即是勾股定理,存在逆定理,故正确;②中,三个角对应相等的两个三角形不一定是全等三角形,所以不存在逆定理,故错误;③中,即等腰三角形的性质定理,存在逆定理,即等角对等边,故正确;④中,即线段垂直平分线的性质,存在逆定理,即到线段两个端点的距离相等的点在线段的垂直平分线上,故正确;⑤中,即角平分线的性质定理,存在逆定理,即到角两边距离相等的点在角的平分线上.故填①③④⑤.三、解答题1.【解析】(1)逆命题:在一个三角形中,等边对等角.真命题.(2)内角和等于360°的多边形是四边形.真命题.2. 【解析】(1)两条平行线被第三条直线所截,同位角相等;(2)到角的两边的距离相等的点在角平分线上;(3)若r是a的平方根,那么r²=a;(4)如果√a²=a,那么a≥0.四、证明题【解析】因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.已知:△ABC中,∠B=∠C,求证:△ABC是等腰三角形.证明:过点A作AH⊥BC于点H,则∠AHB=∠AHC=90°,在△ABH和△ACH中,∵∠B=∠C ∠BHA=∠AHC AH=AH ,∴△ABH≌△ACH(AAS),∴AB=AC,∴△ABC是等腰三角形.。
八年级数学《勾股定理的逆定理》练习题含答案

八年级数学《勾股定理的逆定理》练习题一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.17.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.勾股定理的逆定理1.直角,逆定理.2.互逆命题,逆命题.3.(1)(2)(3).4.①锐角;②直角;③钝角.5.90°.6.直角.7.24.提示:7<a<9,∴a=8.8.13,直角三角形.提示:7<c<17.9.D.10.C.11.C.112.CD=9.13..514.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)。
逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案It was last revised on January 2, 2021逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >>A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题 2.逆定理,互逆定理 3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假., .2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是 = .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。
八年级数学逆命题、逆定理同步练习

13.9逆命题、逆定理1.下列语言是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗C.延长线段AD到C,使OC=OAD.两直线平行,内错角相等2.下列命题中真命题的个数是( )①已知直角三角形的面积为2,两直角边的比为1:2,则其斜边为10;、②直角三角形的最大边长为3,最小边长为1,则另一边长为2;③在直角三角形中,若两直角边边长为9和40,则斜边长为41;④等腰三角形的面积为12,底边上的高为4,则腰长为5.A.1个B.2个c.3个D.4个3.下列命题的逆命题是真命题的是( )A.直角都相等B.钝角都小于180。
C.如果x2+y2=0,那么x=y=0D.对顶角相等4.下列说法中,正确的是( )A.一个定理的逆命题是正确的B.命题“如果x<0,y>0,那么xy<0”的逆命题是正确的C.任何命题都有逆命题D.定理、公理都应经过证明后才能用5.下列这些真命题中,其逆命题也真的是( )A.全等三角形的对应角相等B.两个图形关于轴对称,则这两个图形是全等形C.等边三角形是锐角三角形D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6.以下列各组数为边长,能组成直角三角形的是( )A.8,15,17 B.4,5,6 C.5,8,10 D.8,39,407.证明一个命题是假命题的方法有__________.8.将命题“所有直角都相等”改写成“如果……那么…”的形式为___________。
9.举例说明“两个锐角的和是锐角”是假命题。
10.如图1所示,已知△ABC的三边长分别为a,b,c,且a+b=4,ab=1,c=14。
试判断△ABC的形状.11.下列说法中,正确的是( )A.每个命题不一定都有逆命题B.每个定理都有逆定理c.真命题的逆命题仍是真命题D.假命题的逆命题未必是假命题12.下列定理中,没有逆定理的是( )A.内错角相等,两直线平行B.直角三角形中两锐角互余c.相反数的绝对值相等D.同位角相等,两直线平行13.已知:如图2所示,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.14.如图3所示,△ABC中,∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P到各边的距离都相等,则这个距离是多少?15.下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角c.钝角大于它的补角D.锐角与钝角之和等于平角16.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为( )A.0个B.1个C.2个D.3个17.小明家、小红家、学校的距离如图4所示,学校在小明家的正东方向,那么小红家在小明家哪个方向?18.某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子.如图5所示,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60。
勾股定理及逆定理的练习题---

勾股定理及逆定理的练习题---编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(勾股定理及逆定理的练习题---)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为勾股定理及逆定理的练习题---的全部内容。
6。
如图所示,△ABC 中,AB=26,BC=20,BC 边上的中线AD=24,求AC .类型一 已知两边求第三边例1.在直角三角形中,若两边长分别为1cm,2cm ,则第三边长为_____________. 类型二 构造Rt△,求线段的长例2.如图2,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,求EB 的长.例3.如图3,P 为边长为2的正方形ABCD 对角线AC 上一动点,E 为AD 边中点,求EP+DP 最小值.例4、如图4,是一个三级台阶,它的每一级的长、宽和高分别为20dm 、3dm 、2dm,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________ dm.类型三 判别一个三角形是否是直角三角形 例5、如图5,正方形ABCD 中,F 为DC 的中点,E 为BC上一点,且CE=BC .你能说明∠AFE 是直角吗?类型四、拼图例6、在直线l 上依次摆放着七个正方形(如图7).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.类型五 实际运用例6、由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A 城气象局测得沙尘暴中心在A 城的正西方向240km 的B 处,以每时12km 的速度向北偏东 60度方向移动(如图7),距沙尘暴中心150km 的范围为受影响区域. ①A 城是否受到这次沙尘暴的影响?为什么?②若A 城受到这次沙尘暴的影响,那么遭受影响的时间有多长? 三、达标检测,体验成功(时间10分钟,满分100分)14图3图2 CPABCDEABCDEFBAFED CBA 图5 东北B l321S 4S 3S 2S 1图4C B AD EF 1.(18分)已知直角三角形的两边长为3、2,则另一条边长是________________. 2.(18分)如图8为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________________米.3.(18分)一种盛饮料的圆柱形杯如图9,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4。
19.3 命题和逆定理(解析版)

19.3 命题和逆定理1.知道原命题、逆命题、互逆命题、逆定理、互逆定理的含义2.会写一个命题的逆命题,并会证明它的真假3.知道每一个命题都有逆命题,但一个定理不一定有逆定理知识点一 互逆命题、原命题、逆命题1.概念在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题(1)原命题与逆命题是相对的,每个命题都有逆命题.(2)原命题是真命题,逆命题不一定是真命题;原命题是假命题,逆命题不一定是假命题拓展:符号语言表示原命题:如果p,那么q;逆命题:如果q,那么p.2.方法写原命题的逆命题时,首先要分清这个命题的题设和结论,最好先将原命题改写成“如果…,那么…”的形式,“如果”引出的部分是题设,“那么”引出的部分是结论,再根据改写后的命题写出原命题的逆命题.即学即练1(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列命题的逆命题是假命题的是( )A .直角三角形的两个锐角互余B .两直线平行,内错角相等C .三条边对应相等的两个三角形是全等三角形D .若x y =,则22x y =【答案】D【分析】写出原命题的逆命题后判断正误即可.【详解】解:A 、逆命题为两角互余的三角形是直角三角形,正确,是真命题,不符合题意;B 、逆命题为内错角相等,两直线平行,正确,是真命题,不符合题意;如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.即学即练2(2022秋·上海青浦·八年级校考期末)下列定理中,没有逆定理的是()A.两直线平行,同旁内角互补;B.两个全等三角形的对应角相等C.直角三角形的两个锐角互余;D.两内角相等的三角形是等腰三角形【答案】B【分析】先写出各选项的逆命题,判断出其真假即可解答.【详解】A.其逆命题是“同旁内角互补,两直线平行”,正确,所以有逆定理;B.其逆命题是“对应角相等的三角形是全等三角形”,错误,所以没有逆定理;C.其逆命题是“两个锐角互余的三角形是直角三角形”,正确,所以有逆定理;D.其逆命题是“等腰三角形的两个内角相等”,正确,所以有逆定理.故选B.【点睛】本题考查了命题与定理的区别,正确的命题叫定理.例2(2023秋·上海静安·八年级上海市风华初级中学校考期末)下列定理中,如果其逆命题是真命题,那么这个定理是()A.对顶角相等B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.邻补角互补【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案.【详解】解:∵“如果22a b=.”=,那么a=b”的逆命题是“如果a=b,那么22a b∴“如果22=,那么a=b”的逆命题是真命题,a b故答案为:真.【点睛】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.一、单选题1.(2023春·上海嘉定·八年级校考开学考试)下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等【答案】D【分析】先写出原命题的逆命题,然后判断真假即可解答.【详解】解:A、逆命题为两直线平行,同位角相等,正确,为真命题;B、逆命题为:在一个三角形中等角对等边,正确,是真命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:三个角对应相等的三角形全等,错误,为假命题,故选:D.【点睛】本题主要考查了命题与定理的知识,能够正确的写出原命题的逆命题是解题的关键.2.(2022秋·上海黄浦·八年级校联考阶段练习)下列命题中,逆命题是假命题的是( )A.等边三角形的三个内角都等于60°B.如果两个三角形全等,那么这两个三角形的对应角相等C.如果两个三角形全等,那么这两个三角形的对应边相等D.相等的两个角是对顶角【答案】B【分析】先分别确定各命题的逆命题,再判断真假即可.【详解】A选项的逆命题是“三个内角都等于60°的是等边三角形”,是真命题,所以不符合题意;题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.5.(2022秋·上海·八年级专题练习)下列命题中,其逆命题是真命题的命题个数( )(1)全等三角形的对应角相等; (2) 对顶角相等; (3) 等角对等边;(4)两直线平行,同位角相等; (5)全等三角形的面积相等;A .1个B .2个C .3个D .4个【答案】B【分析】首先写出各个命题的逆命题,再进一步判断真假.【详解】(1)逆命题是:三个角对应相等的两个三角形全等,错误;(2)逆命题是:相等的角是对顶角,错误;(3)逆命题是等边对等角,正确;(4)逆命题是同位角相等,两条直线平行,正确;(5)逆命题是面积相等,两三角形全等,错误.故选:B .【点睛】本题主要考查了逆命题的定义及真假性,学生易出现只判断原命题的真假,也就是审题不认真,难度适中.【答案】见解析【分析】由角的和差关系可得∠CPB=∠DPA,由中点的定义可得BP=AP,利用SAS可证明△APD≌△BPC,根据全等三角形的性质即可得结论.【详解】∵∠1=∠2,∴∠1+∠CPD=∠2+∠CPD,即∠CPB=∠DPA∵P是线段AB的中点,∴BP=AP,在△APD和△BPC中,BP APCPB DPA PC PD=ìïÐ=Ðíï=î,∴△APD≌△BPC,∴∠C=∠D.【点睛】本题考查中点的定义及全等三角形的判定与性质,判定三角形全等的常用方法有:SSS、SAS、AAS、ASA、HL等,注意:SSA、AAA不能判定两个三角形全等,利用SAS时,角必须是两边的夹角;熟练掌握并灵活运用全等三角形的判定定理是解题关键.14.(2022春·上海·八年级专题练习)如图,在Y ABCD中,E为对角线AC延长线上的一点.(1)若四边形ABCD是菱形,求证:BE=DE.(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,给出证明;若是假命题,举出反例.【答案】见解析【详解】试题分析:(1)根据“菱形ABCD的对角线互相垂直平分”的性质推知OE是△BDE 的边BD上的中垂线,结合角平分线的性质可知△DEB为等腰三角形;(2)(1)的逆命题是“若BE=DE,则四边形ABCD是菱形”.根据平行四边形ABCD的对角线相互平分知OD=OB,结合角平分线的性质推知OE是BD的中垂线,即平行四边形ABCD 的对角线互相垂直.试题解析:(1)连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,且BO=OD.又∵E是AC延长线上的一点,∴EO是△BDE的边BD的中垂线,∠DEB的角平分线,∴△DEB是等腰三角形,∴BE=DE;(2)(1)的逆命题是“若BE=DE,则四边形ABCD是菱形”,它是真命题,理由如下:∵平行四边形ABCD,对角线AC、BD交于点O,∴BO=OD.又∵BE=DE∴EO⊥BD,即AC⊥BD,∴四边形ABCD是菱形.。
专题15-逆命题及逆定理(知识点串讲)(解析版)

专题15 逆命题及逆定理知识框架重难突破一、互逆命题与互逆定理1.互逆命题对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.备注:所有的命题都有逆命题. 原命题正确,它的逆命题不一定是正确的.2.互逆定理如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.备注:(1)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理;(2)一个假命题的逆命题可以是真命题,甚至可以是定理.二、线段垂直平分线性质定理及其逆定理线段垂直平分线(也称中垂线)的性质定理是:线段的垂直平分线上的点到这条线段的两个端点的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.备注:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理的题设是已知线段相等,结论是确定线段被垂直平分,一定要注意两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点二、角平分线性质定理及其逆定理角平分线性质定理是:角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边距离相等的点在角的平分线上.备注:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意两者的区别,在使用这两个定理时不要混淆了.例1.(2019·四川南充市·八年级期末)下列命题的逆命题成立的是( )A .对顶角相等B .等边三角形是锐角三角形C .正方形的对角线互相垂直D .平行四边形的对角线互相平分【答案】D【解析】解:A 、逆命题为相等的角是对顶角,不成立;B 、逆命题为:锐角三角形是等边三角形,不成立;C 、逆命题为:对角线互相垂直的四边形是正方形,不成立;D 、逆命题为:对角线互相平分的四边形是平行四边形,成立,故选:D .练习1.(2019·山东德州市·)数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a 2>4.下列命题中,具有以上特征的命题是( )A .两直线平行,同位角相等B .如果|a |=1,那么a =1C .全等三角形的对应角相等D .如果x >y ,那么mx >my 【答案】C解:A 、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .练习2.(2020·山西临汾市·八年级期末)下列命题的逆命题是真命题的是( )A .若22a b >,则a b >B .两个全等三角形的对应角相等C .若0a =,0b =,则0ab =D .全等三角形的对应边相等解:A :逆命题:若a b >,则22a b >,当a=1,b=-2时,错误;B :逆命题:对应角相等的两个三角形全等,错误;C :逆命题:若0ab =,则0a =,0b =,也可能a=0,b≠0,错误;D :逆命题:对应边相等的两个三角形全等,根据SSS 可以判定,正确,故选D.例2.(2020·四川巴中市·八年级期末)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.练习1.(2018·富顺县赵化中学校八年级期末)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.例3.(2020·四川绵阳市·八年级期末)如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .∠A 、∠B 两内角的平分线的交点处B .AC 、AB 两边高线的交点处C .AC 、AB 两边中线的交点处D .AC 、AB 两边垂直平分线的交点处解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.练习1.(2019·四川成都市·八年级期末)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85. 例4.(2020·四川广元市·八年级期末)如图,在ABC 中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(1)若70ABC ∠=︒,则NMA ∠的度数是 ;(2)若8AB cm =,MBC △的周长是14cm .①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC 周长的最小值.【答案】(1)50︒;(2)①6;②14 cm .解:解:(1)如图,∵AB=AC ,∴∠C=∠ABC=70°,∴∠A=40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM=BM ,∴△MBC 的周长=BM+CM+BC=AM+CM+BC=AC+BC ,∵AB=8,∴AC=8,∵△MBC 的周长是14,∴BC=14-8=6;②∵PB+PC=PA+PC,PA+PC≥AC,∴当点P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.练习1.(2020·四川成都市·七年级期末)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【答案】(1)100°;(2)20°,推导见解析;(3)20解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+FA=20,由(2)可知,DA=DB,FA=FC,∴BC=DB+DF+FC=DA+DF+FA=20.练习2.(2020·四川成都市·八年级期末)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.(1)如图所示:(2)如图所示:点P 即为所求.例5.(2020·四川泸州市·)如图,在Rt ABC ∆中,90C ∠=︒,AD 是角平分线,若BC 10cm =,:3:2BD CD =,则点D 到AB 的距离是( )A .6cmB .5cmC .4cmD .3cm【答案】C过点D 作DE ⊥AB ,∵90C ∠=︒,∴DC ⊥AC,∵AD 平分∠BAC ,∴DE=DC,∵BC 10cm =,:3:2BD CD =,∴DE=DC=4cm ,故选:C.练习1.(2020·四川成都市·七年级期末)如图,在Rt ABC 中,90B ∠=︒,在边AB 、AC 上分别截取AD ,AE ,使AD AE =,分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点M ,作射线AM 交BC 边于点F .若2FB =,则点F 到AC 的距离为______.【答案】2根据作图过程可知:AF 平分∠BAC ,过点F 作FG ⊥AC ,∵∠B =90°,∴FB ⊥AB ,∴FG =FB =2.∴点F 到AC 的距离为2.故答案为:2.练习2.(2020·四川广元市·八年级期末)如图,OC 平分∠MON ,P 为OC 上一点,PA ⊥OM ,PB ⊥ON ,垂足分别为A 、B ,连接AB ,得到以下结论:(1)PA =PB ;(2)OA =OB ;(3)OP 与AB 互相垂直平分;(4)OP 平分∠APB ,正确的个数是( )A .1B .2C .3D .4【答案】C解:∵OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,∴P A =PB ,故(1)正确;在Rt △APO 和Rt △BPO 中,OP OP PA PB =⎧⎨=⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APO =∠BPO ,OA =OB ,故(2)正确,∴PO 平分∠APB ,故(4)正确,OP 垂直平分AB ,但AB 不一定垂直平分OP ,故(3)错误,故选:C .例6.(2020·四川绵阳市·八年级期末)如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若1BD =,3BC =,则AC 的长为( )A .5B .4C .3D .2【答案】A解:延长BD,与AC 交于点F,∵BD CD ⊥∴∠BDC =∠FDC=90°∵CD 平分ACB ∠,∴∠BCD =∠FCD在△BDC 和△FDC 中90BDC FDC BCD FCDCD CD ∠∠=︒⎧⎪∠∠⎨⎪=⎩== ∴△BDC ≌△FDC∴BD=FD =1 BC=FC=3∵A ABD ∠=∠∴AF=BF∵1BD =,3BC =,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A例7.(2020·四川巴中市·七年级期末)如图,DE 是ABC 中AB 边的垂直平分线,分别交AB ,BC 于点D ,E ,AE 平分BAC ∠,若30B ∠=︒.求C ∠的度数.【答案】∠C 的度数为90°.∵DE 是线段AB 的垂直平分线,∠B=30°,∴AE= BE ,∴∠BAE=∠B=30°,∵AE 平分∠BAC ,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°.∴∠C 的度数为90°.练习1.(2018·四川南充市·)如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.【答案】32解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BDDF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=6,AC=3,∴BE=32.故答案为:32练习2.(2020·四川眉山市·八年级期末)已知120MAN ∠=︒,AC 平分MAN ∠,点,B D 分别在,AN AM 上.(1)如图1,若CD AM ⊥于点D ,CB AN ⊥于点B .①利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可得,AC AD 的数量关系为________. ②请问:AC 是否等于AB AD +呢?如果是,请予以证明.(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【答案】(1)①12AD AC =(或2AC AD =),理由见解析;②AD AB AC +=,理由见解析;(2)仍成立,理由见解析解:(1)①12AD AC =(或2AC AD =) AC 平分,120MAN MAN ∠∠=︒,60CAD ∴∠=︒,又90ADC ∠=︒,30ACD ∴∠=︒利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可知12AD AC = ②AD AB AC += 证明:由①知,12AD AC = 同理,AC 平分,120MAN MAN ∠∠=︒,60CAB ∴∠=︒,又90ABC ∠=︒,30ACB ∴∠=︒,12AB AC = AD AB AC ∴+=(2)仍成立证明:过点C 分别作,AM AN 的垂线,垂足分别为,E FAC 平分,MAN ∠CE CF ∴=,180,180ABC ADC ADC CDE ∠+∠=︒∠+∠=︒ CDE ABC ∴∠=∠又90CED CFB ∠=∠=︒()CED CFB AAS ∴∆≅∆ED FB ∴=AD AB AE ED AF FB AE AF ∴+=-++=+ 由(1)中②知AE AF AC +=AD AB AC ∴+=.。
初中数学命题与证明专题训练50题-含参考答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.下列说法正确的是()A.真命题的逆命题是真命题B.假命题的逆命题是假命题C.一个定理一定有逆定理D.一个命题一定有逆命题2.命题“平行于同一条直线的两条直线平行”的条件是()A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线3.下列命题是假命题的是()A.对顶角相等B.两条直线被第三条直线所截,同位角相等C.在同一平面内,垂直于同一条直线的两条直线互相平行D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行4.下列命题是真命题的是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相平分且垂直的四边形是菱形D.对角线互相垂直的四边形是菱形5.下列命题是假命题的是()A.所有等边三角形一定相似B.所有等腰直角三角形一定相似C.有一个角为120︒的两个等腰三角形相似D.有一条边对应成比例的两个等腰三角形相似6.下列命题中正确的是【】A.函数y=x的取值范围是x>3B.菱形是中心对称图形,但不是轴对称图形C.一组对边平行,另一组对边相等四边形是平行四边形D.三角形的外心到三角形的三个顶点的距离相等7.有下列是真命题的有()个.①同一平面内,两条直线的位置关系分为相交、平行、垂直;①同一平面内,过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行;①对顶角相等;①内错角相等.A .1B .2C .3D .48.下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是( )A .9B .16C .8D .49.下列命题是假命题的是( )A .两直线平行,内错角相等B .三角形内角和等于180︒C .对顶角相等D .若a b =,则a b =10.为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数中可以作为反例的是( )A .31B .16C .8D .411.下列命题是真命题的是( )AB .三个连续的整数不能构成直角三角形的三边长C .一次函数3y kx =+的图象不可能同时经过三、四象限D .二元一次方程的解一定是整数解12.下列命题中:①有公共顶点且相等的角是对顶角;①直线外一点到这条直线的垂线段,叫做点到直线的距离;①互为邻补角的两个角的平分线互相垂直;①经过一点有且只有一条直线与已知直线平行.其中真命题的个数有( )A .1个B .2个C .3个D .4个13.下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成的线段平行(或共线)且相等14.现有下列命题:①若525x =,则2550x =;①若a b >,则2211a b c c >++;①若22x y =,则x y =,其中真命题有( )个. A .3 B .2 C .1 D .015.下列命题中,是真命题的是( )A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等C .等腰直角三角形都全等D .如果a b >,那么22a b >16.下列叙述:①最小的正整数是0;①单项式33x y 的次数是3;①用一个平面去截正方体,截面不可能是六边形:①若AC BC =,则点C 是线段AB 的中点;①若x 表示有理数,且x x =,则0x >.其中正确的个数有( )A .0个B .1个C .2个D .3个17.下列命题中,是假命题的是( )A .三个角都是60︒的三角形是等边三角形B .两个锐角的和是钝角C .若||3a =,则3a =±D .在同一平面内,若直线a l ⊥,b l ⊥,则a b ∥18.下列命题是真命题的是( )A .抛物线22y x x =-与坐标轴有3个不同交点B .若分式方程41(1)(1)1m x x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D .若一个角的两边分别与另一个角的两边平行,则这两个角相等19.下列命题中,真命题是( )A .如果把分式xy x y+中的x 和y 都扩大3倍,那么分式的值也扩大3倍 B .若b >a >0,则11a a b b +>+ C .对角线相等的四边形是矩形D .顺次连接菱形四边中点得到的四边形是正方形20.已知下列命题:①对角线互相垂直的四边形是菱形;①若x a =,则()20x a b x ab -++=;①两个位似图形一定是相似图形;①若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个二、填空题21.如图,直线AB 、CD 被直线EF 所截,①1、①2是同位角,如果①1≠①2,那么AB 与CD 不平行.用反证法证明这个命题时,应先假设:________.22.命题“等边三角形是锐角三角形”的逆命题是____________(填“真”或“假”)命题. 23.判断题:(1)所有的三角形都相似_____________(2)所有的梯形都相似_____________(3)所有的等腰三角形都相似_____________(4)所有的直角三角形都相似_____________(5)所有的矩形都相似_____________(6)所有的平行四边形都相似_____________(7)大小的中国地图相似_____________(8)所有的正多边形都相似_____________24.用一个a 的值说明命题“a -一定表示一个负数”是错误的,a 的值可以是__________.25.“如果0a =,0b =,那么0ab =”的逆命题是______.26.把命题“等角的余角相等”改写成“如果……,那么…….”的形式:如果___________,那么___________.27.用反证法证明“若a b =,则a b ”时,应假设__________.28.对于命题“若22a b >,则a b >”,为了说明这个命题是假命题,若取3a =-,则b 可取___________(写出符合题意的一个值).29.用一组a ,b 的值说明命题“若a 2>b 2,则a >b”是错误的,这组值可以是a=____,b=____.30.命题“若22a b >,则a b >”,能说明它是假命题的反例是=a ________,b =________.31.用反证法证明“a b <”时,应假设 .32.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)33.把“在同一平面内,两条直线相交,只有一个交点”改写成“如果⋯那么⋯”的形式是______ .34.用反证法证明“两直线平行,内错角相等”时应先假设____________;35.今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人的得票数内.全村设有四个投票点,目前第一、第二、第三投票点已公布投票结果,剩下第四投票点尚未公布投票结果,如表所示:(单位:票)三名候选人_____有机会当选村长(填甲、乙、丙),并写出你的推断理由_____. 36.写出命题“如果0a >,0b <,那么0a b <”的逆命题是______. 37.要说明命题“若a <1,则a 2<1”是假命题,可以举的反例是a =________(一个即可)38.两条直线相交成直角,就叫做两条直线互相垂直.这个句子是_____(填“定义”或“命题”).39.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :______________________;并写出一个例子(该例子能判断命题B 是错误的)40.求证:在直角三角形中至少有一个角不大于45°.已知:如图所示,①ABC 中,①C=90°,求证:①A ,①B 中至少有一个不大于45°. 证明:假设__________,则①A__________45°,①B______45°. ①①A+①B+①C>45°+ _______+__________,这与________________________相矛盾. 所以___________不能成立,所以①A ,①B 中至少有一个角不大于45°.三、解答题41.求证:在同一平面内,如果一条直线与两条平行直线中的一条相交,那么和另一条也相交.42.用反证法证明:如果一个三角形的两条较短边的平方和不等于较长边的平方,那么这个三角形不是直角三角形.43.指出下列命题的题设和结论:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)相交的两条直线一定不平行.44.下列定理中,哪些有逆定理?如果有逆定理,说出它的逆定理.(1)等腰三角形的两个底角相等.(2)内错角相等,两直线平行.(3)对顶角相等.45.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分、一支足球队在某一赛季共需比赛14场,现已经比赛了8场,输了一场,得了17分.请问:(1)前8场比赛中,这支球队共胜了几场?(2)请你分析一下,这支球队在后面的6场比赛中,至少要胜几场比赛,才能使总得分不低于29分?46.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了.甲说:“是乙不小心闯的祸.”乙说“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸”.如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是谁?谁闯了祸?47.能否在图中的四个圆圈内填入4个互不相同的数,使得任意两个圆圈中所填的数的平方和等于另外两个圆圈中所填数的平方和?如果能填,请填出一个例;如果不能填,请说明理由.48.在证明定理“三角形的中位线平行于第三边,且等于第三边的一半“时,小明给出如下部分证明过程.已知:在①ABC中,D、E分别是边AB、AC的中点.求证:.证明:如图,延长DE到点F,使EF=DE,连接CF,(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DE=4,请你直接写出边AB的取值范围.49.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.50.先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)同旁内角互补,两直线平行;(2)一个角的补角一定是钝角.参考答案:1.D【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A.真命题的逆命题可能是真命题,也可能是假命题,故本选项不符合题意;B.假命题的逆命题不一定是假命题,故本选项不符合题意;C.一个定理不一定有逆定理,故本选项不符合题意;D.一个命题一定有逆命题,正确,故本选项符合题意.故选D.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】解:“平行于同一条直线的两条直线平行”的条件是“两条直线平行于同一条直线”,故选D.【点睛】本题考查了对命题的题设和结论的理解,许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.4.C【分析】根据菱形的判定方法一一判断即可.【详解】解:A、对角线互相垂直且相等的四边形是菱形,是假命题,本选项不符合题意;B、对角线互相平分且相等的四边形是菱形,是假命题,本选项不符合题意;C、对角线互相平分且垂直的四边形是菱形,是真命题,本选项符合题意;D、对角线互相垂直的四边形是菱形,是假命题,本选项不符合题意.故选:C.【点睛】本题考查菱形的判定、真假命题,熟练掌握相关知识是解题的关键.5.D【分析】根据相似三角形的判定定理进行判定即可.【详解】解:A、所有等边三角形一定相似,故A选项为真命题;B、所有等腰直角三角形一定相似,故B选项为真命题;C、有一个角为120︒的两个等腰三角形相似,故C选项为真命题;D、有一条边对应成比例的两个等腰三角形不一定相似,故D选项为假命题,故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.D【详解】根据二次根式的性质,菱形的性质,等腰梯形的判定,外心的性质分别判断得出即可:A、函数y=x的取值范围是x≥3,故此选项错误;B、菱形是中心对称图形,也是轴对称图形,故此选项错误;C、一组对边平行,另一组对边相等四边形是也可能是等腰梯形,故此选项错误;D、根据外心的性质,三角形的外心到三角形的三个顶点的距离相等,故此选项正确.故选D.考点:命题与定理,函数自变量的取值范围,二次根式的性质,菱形的性质,等腰梯形的判定,外心的性质.7.B【分析】根据两直线的位置关系、垂直的定义、平行公理、对顶角相等、平行线的性质判断即可.【详解】解:①同一平面内,两条直线的位置关系分为相交、平行,故本小题说法是假命题;①同一平面内,过一点有且只有一条直线与已知直线垂直,本小题说法是真命题; ①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题; ①对顶角相等,本小题说法是真命题;①两直线平行,内错角相等,故本小题说法是假命题;综上,①①是真命题,共2个,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.D【分析】根据偶数与倍数的定义对各选项进行验证即可.【详解】解:A 、9不是偶数,故本选项不符合题意;B 、16是8的倍数,故本选项不符合题意.C 、8是8的倍数,故本选项不符合题意;D 、4是偶数但不是8的倍数,故本选项符合题意;故选:D .【点睛】本题考查了命题的真假和举反例,熟练掌握偶数与倍数的定义是解题的关键. 9.D【分析】利用平行线的性质、三角形的内角和、对顶角的定义及绝对值的性质分别判断后即可确定正确的选项.【详解】解:A 、两直线平行,内错角相等,正确,是真命题;B 、三角形内角和等于180︒,正确,是真命题;C 、对顶角相等,正确,是真命题;D 、若a b =,则a b =或a=-b ,故错误,是假命题,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和及平行线的性质,对顶角的定义、绝对值的性质,难度不大.10.D【详解】A.31是奇数,不合题意;B.16是8的2倍,不合题意;C.8是8的1倍,不合题意;D.4不是8的倍数,符合题意;故选D.11.C【分析】根据真命题的定义,无理数的定义,勾股定理的逆定理,一次函数的图象,二元一次方程的解的特征对各选项进行判断即可.【详解】解:A 9=是有理数,原命题错误,故不符合题意;B 中三个连续的整数如3,4,5能构成直角三角形的三边,原命题错误,故不符合题意;C 中根据k 的不同取值,一次函数3y kx =+的图象可能经过一、二、三象限或一、二、四象限,原命题正确,故符合题意;D 中二元一次方程的解不一定是整数解,原命题错误,故不符合题意;故选:C .【点睛】本题考查了真命题,无理数,勾股定理的逆定理,一次函数经过的象限,二元一次方程的解等知识.解题的关键在于对知识的灵活运用.12.A【分析】根据真假命题的概念结合相关知识对各个命题逐一分析判断即可.【详解】有公共顶点且相等的角不一定是对顶角,故①是假命题;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故①是假命题; 互为邻补角的两个角的平分线互相垂直,故①是真命题;经过直线外一点有且只有一条直线与已知直线平行,故①是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了真假命题的判断,熟练掌握相关概念是解题关键.13.C【分析】根据相关的概念和性质对各选项分析判断后利用排除法求解.【详解】A 、连接两点的线段的长度叫做两点间的距离,是定义,正确;B 、两条直线平行,同旁内角互补,是平行线的性质,正确;C 、如图,①AOB 、①AOC 有公共顶点且有一条公共边,和等于平角,而这两个角不是邻补角,故本选项错误;D 、平移变换中,各组对应点连成的线段平行(或共线)且相等,正确.故选C .14.C【分析】根据幂的乘方、不等式的性质和开平方运算判断即可.【详解】①若525x =,则2225(5)25625x x ===,原命题是假命题;①若a b >,则2211a b c c >++,是真命题; ①若22x y =,则x y =或x y =-,原命题是假命题;综上,真命题有①故选:C .【点睛】本题考查命题与定理,涉及幂的乘方、不等式的性质和开平方运算,熟练掌握知识点是解题的关键.15.A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a >b ,那么a 2<b 2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.16.A【分析】对各语句逐一判断即可得.【详解】解:①最小的正整数是1,原叙述错误;①单项式33x y 的次数是4,原叙述错误;①用一个平面去截正方体,截面与六个面均相交即可得六边形,原叙述错误;如图:①若AC BC =,且点C 在线段AB 上,则点C 是线段AB 的中点,原叙述错误; ①若x 表示有理数,且x x =,则x 0≥,原叙述错误.故选A.【点睛】本题主要考查数、式、几何图形的综合问题,解题的关键是熟练掌握有理数的概念、单项式的定义、中点的定义等知识点.17.B【分析】根据锐角与钝角的定义,等边三角形的定义,绝对值的定义以及平行线的判定定理逐项分析即可.【详解】解:A. 三个角都是60︒的三角形是等边三角形,是真命题;B. 两个锐角的和是钝角,是假命题,两个锐角的和有可能是钝角或者直角;C. 若||3a =,则3a =±,是真命题;D. 在同一平面内,若直线a l ⊥,b l ⊥,则a b ∥,是真命题.故选B.【点睛】本题主要考查了判断命题的真假,涉及了锐角与钝角的定义,等边三角形的定义,绝对值的定义以及平行线的判定定理等知识点,熟练掌握各知识点的相关概念是解题的关键.18.B【详解】解:A 、在22y x x =-中,令0x =得0y =,①与y 轴交点坐标为(0,0),令0y =得120,2x x ==,①与x 轴交点坐标为(0,0)、(2,0),①抛物线22y x x =-与坐标轴有2个不同交点,故A 是假命题,不符合题意;B 、若分式方程41(1)(1)1m x x x -=+--有增根,则增根可能是1或-1,去分母得,4111()()()m x x x -+=+-,当增根为1时,420m -=,解得2m =;当增根为-1时,4=0,不存在,故增根为1,故B 是真命题,符合题意;C 、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是矩形,故C 是假命题,不符合题意;D 、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故D 是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解二次函数与坐标轴交点坐标的求法、分式方程的增根、中点四边形和平行线的性质等知识.19.A【分析】根据分式的性质、不等式的性质、正方形和矩形的判定分别判断后即可确定正确的选项.【详解】解:A 、如果把分式xy x y+中的x 和y 都扩大3倍,则3?3333x y xy x y x y =++,那么分式的值也扩大3倍,真命题,符合题意;B 、()()()()111111a b b a a a a b b b b b b b +-++--==+++, ①b >a >0,①a -b <0,b >0,b +1>0,则()01a b b b -<+, ①11a ab b +<+,故原命题是假命题,不符合题意; C 、对角线相等的平行四边形是矩形,故原命题是假命题,不符合题意;D 、顺次连接菱形四边中点得到的四边形是矩形,故原命题是假命题,不符合题意; 故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解分式的基本性质、不等式的性质、正方形和矩形的判定等知识.20.B【分析】根据菱形的判定及性质、一元二次方程的解法、位似图形的性质逐一判断即可.【详解】解:①的原命题:对角线互相垂直的四边形是菱形.对角线互相垂直的平行四边形才是菱形,如果只有垂直,不能判定为菱形,故①的原命题为假命题,①的逆命题:菱形是对角线互相垂直的四边形,这是菱形的性质,故①的逆命题是真命题,故①不符合题意; ①的原命题:若x a =,则20x a b x ab -++=();若x a =,则220x a b x ab a a b a ab -++=-++=()(),故①的原命题是真命题:①的逆命题:若 20x a b x ab -++=().则x a =.解方程20x a b x ab -++=(),得:()()0x a x b --=,解得:1x a =,2x b =,故①的逆命题为假命题;故符合题意;①的原命题:两个位似图形一定是相似图形,根据位似图形的性质知:(1)两个图形必须是相似形;(2)对应点的连线都经过同一点:(3)对应边平行.故两个位似图形一定是相似图形,故①的原命题是真命题:①的逆命题:两个相似图形一定是位似图形.很显然,根据位似图形的性质知其不符合位似图形的性质(2)和(3),故①的逆命题是假命题,符合题意;①的原命题:若22x x =,则2x =;解方程22x x =,10x =,22x =.故①的原命题是假命题;①的逆命题:若2x =,则22x x =,等式左边224==,等式右边224=⨯=:故当2x =时,22x x =,故①的逆命题是真命题,故①不符合题意,满足题意的命题是①①,共2个.故答案为:B .【点睛】本题考查了命题的判断,涉及原命题与逆命题、菱形的判定及性质、一元二次方程的解法、位似图形的性质,解题的关键是掌握上述知识点并灵活运用.21.AB ①CD【分析】【详解】利用假设法来进行证明时,首先假设结论成立,即应先假设AB①CD . 故答案为:AB①CD .22.假【分析】把原命题改写为逆命题再进行判断即可.【详解】解:“等边三角形是锐角三角形”的逆命题是“锐角三角形是等边三角形”,内角分别为40°,60°,80°的三角形为锐角三角形,但不是等边三角形,故原命题的逆命题是假命题,故答案为:假.【点睛】本题考查了判断逆命题的真假性,掌握把原命题改写为逆命题并会用事实真理或定义定理来判断其真假是解题的关键.23. 错误 错误 错误 错误 错误 错误 正确 错误【分析】相似图形是指形状相同的图形.对多边形进行判断时,主要是看对应角是否相等,对应边的比是否相等.【详解】(1)所有的三角形,不能判断它们的对应角相等,对应边的比相等,不是相似形.所以(1)错误.(2)所有的梯形,不能判断对应的角相等,对应边的比相等,不是相似形.所以(2)错误.(3)所有的等腰三角形,不能判断对应的角相等,对应边的比相等.所以(3)错误. (4)所有的直角三角形,不能判断对应的角相等,对应边的比相等.所以(4)错误. (5)所有的矩形,不能判断对应的角相等,对应边的比相等.所以(5)错误.(6)所有的平行四边形,不能判断对应的角相等,对应边的比相等.所以(6)错误. (7)大小的中国地图,只是大小不等,性质相同,是相似形.所以(7)正确. (8)所有的边数相等的正多边形才相似.所以(8)错误.故答案是:(1)错误,(2)错误,(3)错误,(4)错误,(5)错误,(6)错误,(7)正确,(8)错误.【点评】本题考查的是相似图形,根据相似图形的定义对多边形是否相似进行判断. 24.答案不唯一,如1a =-【分析】根据题意找到一个使得命题不成立的a 值即可.【详解】当1a =-时,1a -=不是一个负数,故命题错误.故答案为:1a =-【点睛】本题主要考查了举例说明真(假)命题,根据题意找到反例是解题的关键. 25.如果0ab =,那么0a =,0b =【分析】将原命题的结论改为条件,条件改为结论即可得出逆命题.【详解】“如果0a =,0b =,那么0ab =”的逆命题是:如果0ab =,那么0a =,0b =.故答案为:如果0ab =,那么0a =,0b =.【点睛】本题考查根据原命题写逆命题,熟练掌握逆命题与原命题的关系是解题的关键. 26. 两个角相等 这两个角的余角也相等【分析】根据命题的概念解答即可.【详解】解:把命题“等角的余角相等”改写成“如果……那么……”的形式是如果两个角相等,那么这两个角的余角也相等,故答案为:两个角相等,这两个角的余角也相等.【点睛】本题考查的是命题的概念,命题写成“如果……那么……”的形式,这时,“如果”后面接题设,“那么”后面接结论.27.a b =【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:a ,b 的等价关系有,a b a b =≠两种情况,因而a b 的反面是a b =.因此用反证法证明“a b ”时,应先假设a b =. 故答案为:a b =.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.28.2(不唯一)【分析】对于命题“若a 2>b 2,则a>b”,为了说明这个命题是假命题,只需举反例若a 2>b 2, a<b 即可.【详解】“若a 2>b 2,则a>b” 是假命题,举出a<b ,有a 2>b 2成立,找a<b<|a|,a=-3,-3<b<3中取数满足条件.故答案为:2(不唯一).【点睛】本题考查验证假命题问题,关键是会举反例,利用不等式找出满足条件的范围是难点,是举反例的范围.29. 3a =-, 1b【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,①命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个。
19.3逆命题和逆定理(教学课件)-八年级数学上册【05】

3. 说出命题“两个全等三角形的面积相等”的逆命题,判 断这个命题的真假,并给出证明.
解: 逆命题是 “如果两个三角形的面积相等,那么这两 个三角形全等”.
分析:说明一个命题是真命题需经过证明,而说明一个命 题是假命题只需举一个反例即可.
解: 逆命题是 “如果两个三角形的面积相等,那么这两
个三角形全等”. 如图,在△ABC和这△个AB命E题中是,假命题. 举反例如下:
2.写出下列命题的逆命题再判断逆命题的真假. (1) 等边三角形的三个内角都等于 60°. (2)关于某一条直线对称的两个三角形全等
【解析】(1)逆命题:如果有三个角都等于60°的三角形,那么这个三 角形是全等三角形。此命题为真命题。
(2)逆命题:如果两个全等三角形,那么这两个三角形关于某 条直线对称。此命题为假命题。
AA’BC
A'
B
C
例题3 下列定理有没有逆定理?为什么?
(1)等边对等角
在一个三角形中,如果两条边相等,那么这 两条边所对的角相等。
解:原定理的逆命题是“等角对等边”,
这是一个真命题;
所以,“等边对角互为对顶角,那么这两个角相 等。
解:原定理的逆命题是“如果两个角相等,
(3)轴对称图形是等腰三角形 ; 假
等腰三角形是轴对称图形。 真
(4)全等三角形对应边相等; 真
三条边对应相等的两个 三角形是全等三角形.
真
1、如果原命题是真命题,它的逆命
题一定是真命题吗?
2、每一个命题都有逆命题吗?
每一个命题都有它的逆命题,但每 个真命题的逆命题不一定是真命题. 思考:一个定理是不是一定有逆定理?
概念 如果一个定理的逆命题经过证明也 是定理,那么这两个定理叫做互逆
2021-2022学年山东省青岛市城阳区八年级(上)期末数学试题及答案解析

2021-2022学年山东省青岛市城阳区八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.49的平方根是( )A. ±7B. 7C. ±√7D. √72.下列各组数据中,不能作为直角三角形边长的是( )A. 3,5,7B. 6,8,10C. 5,12,13D. 1,√3,23.如图,Rt△ABC的顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=3,画出与△ABC关于与y轴对称的△A1B1C1,则点A的对应点A1的坐标是( )A. (0,−3)B. (−4,0)C. (−3,0)D. (0,−4)4.点A(x1,y1)和点B(x2,y2)都在直线y=−5x−2上,且x1<x2,则y1与y2的大小关系是( )3A. y1≥y2B. y1≤y2C. y1>y2D. y1<y25.下列命题是真命题的是( )A. 如果两个角是内错角,那么这两个角一定相等B. 面积相等的两个三角形全等C. 三角形的任意两边之和大于第三边D. 三角形的一个外角大于任何一个内角6.如图,∠C+∠D=180°,∠DAE=3∠EBF,∠EBF=27°,点G是AB上的一点,若∠AGF=102°,∠BAF=34°,下列结论错误的是( )A. ∠AFB=81°B. ∠E=54°C. AD//BCD. BE//FG7. 如图,一次函数y =k 1x +b 1与y =k 2x +b 2交于点A ,则方程组{y =k 1x +b 1y =k 2x +b 2的解是( ) A. {x =2y =−1 B. {x =−1y =2 C. {x =−2y =1 D. {x =1y =−28. 如图,在一次爬山活动中,小新先出发,1ℎ后,小宇从同一地点出发去追小新,两人在山顶相遇并一起在山顶欣赏日出,而后两人一起沿原路返回,小新和小宇距起点的距离y(km)与时间x(ℎ)之间的关系如图所示,下列结论错误的是( )A. 在小宇追小新的过程中,小宇的平均速度是5km/ℎB. 小新从起点出发到山顶的平均速度是4km/ℎC. AB 的函数表达式是y =−4x +52D. 小宇从起点出发到返回起点所用的时间是13小时二、填空题(本大题共8小题,共24.0分)9. 计算:(√27+√43)×√3=______.10. 一组数据4,7,x ,6,9众数是9,则这5个数据的平均数为______.11. 在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩______.12. 如图,在△ABC 中,BM 平分∠ABC ,CM 平分∠ACB ,若∠M =119°,则∠A =______°.13.如图,已知∠ABD=∠PCE,AB//CD,∠AEC的角平分线交直线CD于点H,∠AFD=86°,∠H=22°,∠PCE=______°.14.某校为了选拔一名百米赛跑运动员参加比赛,组织了6次预选赛,其中甲、乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如表所示:甲12.012.012.411.612.211.8乙12.312.111.812.011.712.1由于甲、乙两名运动员成绩的平均数相同,学习决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.15.为加快“智慧校园”建设,我市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,求今年每套A型、B型一体机的价格分别是多少万元?设今天每套A型一体机的价格是x万元,B型一体机的价格是y万元,根据题意可列二元一次方程组为______.16.如图甲,是由27个同样大小的立方体组成的三阶魔方,总体积为216cm3.图甲中ABCD是一个正方形,把正方形ABCD放置在数轴上,如图乙所示,使得点A与数−1重合,则点B在数轴上表示的数为______;第1次旋转以点B为中心,将正方形ABCD按照顺时针方向旋转90°,则点C落在数轴上;第2次旋转继续以点C为中心,将正方形ABCD按照顺时针方向旋转90°…如此下去,将正方形ABCD第2022次旋转,该点落在数轴上表示的数为______.三、计算题(本大题共2小题,共18.0分)17.如图,方格纸中每个小方格都是边长为1个单位的正方形,已知△ABC的三个顶点的坐标都在格点上,分别为A(−2,1)、B(−4,3)、C(−5,0).(1)请将点A 、B 、C 的横坐标分别乘以−1后得到点A′、B′、C′,描在坐标系中,并顺次连接A′、B′、C′,得到△A′B′C′(2)请在第二象限内的格点上画点D ,使△ABD 是直角三角形,且边AD 、BD 均为无理数,则点D 的坐标为(______,______)(写出其中一个点D 坐标即可),△ABD 的面积是______.18. 计算和解方程组(1)(√27−√43)÷√3;(2)(√10−1)2−(√13−√2)(√13+√2); (3){4(x −2)=3y −8x 3−y 2=2.四、解答题(本大题共7小题,共54.0分。
八年级数学上册13.5逆命题与逆定理复习题试题

逆命题与逆定理制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
一、选择题1.以下说法中,正确的选项是〔〕A.每一个命题都有逆命题 B.假命题的逆命题一定是假命题C.每一个定理都有逆定理 D.假命题没有逆命题2.以下命题的逆命题为真命题的是〔〕A.假如a=b,那么a2=b2 B.平行四边形是中心对称图形C.两组对角分别相等的四边形是平行四边形 D.内错角相等3.以下定理中,有逆定理的是〔〕A.四边形的内角和等于360° B.同角的余角相等C.全等三角形对应角相等 D.在一个三角形中,等边对等角4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC ;(2)AD=BD=BC ;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有:( )二、填空题5.在两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.6.假如一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做BCFEDA_________.7.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 8.线段垂直平分线性质定理的逆定理是_____________________. 9.命题“对顶角相等〞的逆命题是________________,是_____命题. 10.写出下面命题的逆命题,并判断其真假.真 命 题 真假性 逆命题真假性 1 假如x=2,那么〔x-2〕=0 2 两个三角形全等那么对应边相等 3 在一个三角形中,等边对等角 4 等腰三角形是等边三角形 5同旁内角互补11.如图:AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是_____________ (写一个即可).〔第11题〕 〔第12题〕12.〔5分〕如图,AB=AC ,∠A =50o,AB 的垂直平分线DE 交AC 于点D , ∠DBC=三、解答题13.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,那么△ABC 的周长是多少?13.如图,在等腰△ABC 中,∠BAC =120º,DE 是AC 的垂直平分线,DE=1cm ,求BD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《逆命题和逆定理》专项练习-填空题
1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假.
,.
2.请写出定理:“等腰三角形的两个底角相等”的逆定理.
.
3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是= .
4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.
5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.
6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)
7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)
参考答案
1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,
∴该命题为假命题,
故答案为:三个角对应相等的两个三角形全等,假命题.
2.有两个角相等的三角形是等腰三角形.
3. 到角的两边距离相等的点在角平分线上
4. 两直线平行,同位角相等同位角相等,两直线平行.
5. 两条平行线被第三条直线所截,同旁内角互补
6. 如果一个数能被5整除,那么这个数能被10整除假命题
7.对应角相等的三角形全等假。