七年级数学上册 第一单元有理数单元检测6 人教新课标版

合集下载

新人教版初中数学七年级数学上册第一单元《有理数》测试卷(答案解析)(6)

新人教版初中数学七年级数学上册第一单元《有理数》测试卷(答案解析)(6)

一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个 2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个3.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b4.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3C .﹣12D .125.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④6.下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=17.若一个数的绝对值的相反数是17-,则这个数是( ) A .17-B .17+C .17±D .7±8.下列有理数大小关系判断正确的是( ) A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-9.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2 D .4,3 10.用计算器求243,第三个键应按( )A .4B .3C .y xD .=11.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为( A .0B .1或- 1C .2或- 2D .0或- 212.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+ B .a 1a b a b a 1+>+>->- C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.14.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________. 15.数轴上表示 1 的点和表示﹣2 的点的距离是_____.16.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.17.填空:3÷3=____3×13=____(-12)÷(-2)=____(-12)×12⎛⎫-⎪⎝⎭=____(-9)÷12=____(-9)×2=____0÷(-2.3)=___0×1023⎛⎫- ⎪⎝⎭=___18.计算:3122--=__________;︱-9︱-5=______.19.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.20.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.三、解答题21.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.22.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 1023.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 24.计算: (1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷.25.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭26.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可. 【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确; ②|-a|一定是非负数,故说法不正确; ③倒数等于它本身的数为±1,说法正确; ④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确. 说法正确的有③、⑥, 故选A . 【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.A解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A . 【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.3.D解析:D 【分析】根据有理数减法法则,两两做差即可求解. 【详解】 ∵b<0∴()0a a b b -+=->,()0a b a b --=-> ∴()a a b >+,()a b a -> ∴()()a b a a b ->>+ 故选D . 【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.4.C解析:C 【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案. 【详解】原式﹣3×(﹣2)×(﹣2) =﹣3×2×2 =﹣12, 故选:C . 【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.5.D解析:D 【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可. 【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确. 故选:D . 【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.6.D解析:D 【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案. 【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确. 故选:D . 【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.7.C解析:C 【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可. 【详解】 ∵相反数为17-的数是17,而17-或17的绝对值都是17,∴这个数是17-或17. 故选C. 【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.8.A解析:A 【分析】先化简各式,然后根据有理数大小比较的方法判断即可. 【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=,∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>, ∴10.01-<-,故选项D 不正确. 故选:A . 【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.A解析:A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42, 故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.11.A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.12.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题13.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.14.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.15.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45. 【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案. 【详解】 用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656, 解得:x=131;第二个数是(5x+1)×5+1=656, 解得:x=26;同理:可求出第三个数是5; 第四个数是45, ∴满足条件所有x 的值是131或26或5或45. 故答案为131或26或5或45. 【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.17.166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0 【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案. 【详解】 解:根据题意,则331÷=,1313⨯=;(12)(2)6-÷-=,1(12)()62-⨯-=;1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0. 【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.18.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 19.73xy3=-2【分析】首先确定使用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法. 20.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.三、解答题21.(1)30;(2)B ,C ;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人.故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人)B 站人数为:28+12-4=36(人)C 站人数为:36+7-10=33(人)D 站人数为:33+8-11=30(人)易知B 和C 之间人数最多.故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.22.(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.24.(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.25.(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121(36)(36)(36)234=-⨯-+⨯--⨯-182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.26.(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。

七年级数学上册 第一章 有理数单元综合目标检测 (新版)新人教版

七年级数学上册 第一章 有理数单元综合目标检测 (新版)新人教版

第一章有理数单元检测参考完成时间:60分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法中不正确的是( ).A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2 000既是负数,也是整数,但不是有理数D.0是正数和负数的分界2.-2的相反数的倒数是( ).A.2 B.12C.12-D.-23.比-7.1大,而比1小的整数的个数是( ).A.6 B.7 C.8 D.94.如果一个数的平方与这个数的差等于0,那么这个数只能是( ).A.0 B.-1 C.1 D.0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为( ).A.63×102千米B.6.3×102千米C.6.3×104千米D.6.3×103千米6.有理数a,b在数轴上的位置如图所示,下列各式正确的是( ).A.a>0 B.b<0C.a>b D.a<b7.下列各组数中,相等的是( ).A.32与23B.-22与(-2)2C.-|-3|与|-3| D.-23与(-2)38.在-5,110-,-3.5,-0.01,-2,-212各数中,最大的数是( ).A.-12 B.1 10 -C.-0.01 D.-59.如果a+b<0,并且ab>0,那么( ).A.a<0,b<0 B.a>0,b>0C.a<0,b>0 D.a>0,b<010.若a表示有理数,则|a|-a的值是( ).A.0 B.非负数C.非正数D.正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.123-的倒数是________,123-的相反数是______,123-的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13.计算:-|-5|+3=__________.所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,12-,13,14-…,第2 013个数是________.15.比132-大而比123小的所有整数的和为________.16.若|x-2|与(y+3)2互为相反数,则x+y=__________.17.近似数2.35万精确到__________位.18.对于任意非零有理数a,b,定义运算如下:a b=(a-b)÷(a+b),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分)19.计算:(每小题4分,共20分)(1)-20+(-14)-(-18)-13;(2)172×314÷(-9+19);(3)-24×131243⎛⎫-+-⎪⎝⎭;(4)(-81)÷124+49÷(-16);(5)(-1)3-112⎛⎫-⎪⎝⎭÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,43--,0,227,-3.14,2 006,-(+5),+1.88(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合{ …}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变日期1日2日3日4日5日6日7日人数变化 1.60.80.4-0.4-0.80.2-1.2(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C 点拨:A中-3.14不是-π,是负分数,C选项中-2 000是负整数,更是有理数,所以说法错误.故选C.2答案:B3答案:C 点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D 点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D 点拨:A中科学记数法表示为2位数错,B、C中10的指数错,只有D正确,故选D.6答案:D 点拨:a在原点左侧为负数,b在原点右侧为正数,所以A、B、C均错,只有D正确.7答案:D 点拨:32=9,23=8,故A错;-22=-4,(-2)2=4,所以B错,-|-3|=-3,|-3|=3,所以C错;-23=-8,(-2)3=-8,相等,故选D.8答案:C 点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A 点拨:a+b<0,所以a,b中一定至少有一个负数,且负数的绝对值较大.又因为ab>0,所以a,b同号,且同为负号.10答案:B 点拨:可以用特殊值法求解,当a=2时,|a|-a=|2|-2=0;当a=0时,|a|-a=|0|-0=0;当a=-2时,|a|-a=|2|-(-2)=4,故选B.11答案:37-123123点拨:根据概念分别写出.12答案:-9或-1 点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1.13答案:-2 点拨:-|-5|=-5,14答案:12013点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是1 2013.15答案:-3 点拨:比132-大而比123小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1 点拨:|x-2|与(y+3)2互为相反数,所以|x-2|+(y+3)2=0,所以x-2=0,y+3=0,所以x=2,y=-3,所以x+y=-1.17答案:百18答案:-4 点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4.19解:(1)―20+(―14)―(―18)―13=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)172×314÷(-9+19)=1571571211024241016⨯÷=⨯⨯=;(3)-24×131243⎛⎫-+-⎪⎝⎭=12-18+8=2;(4)(-81)÷124+49÷(-16)=(-81)×49+49×116⎛⎫- ⎪⎝⎭=-36-136=13636-;(5)(-1)3-112⎛⎫-⎪⎝⎭÷3×[3―(―3)2]=-1-12÷3×(3―9)=-1-12×13×(-6)=-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:22,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭;(2)负数集合:44,, 3.14,(5),3⎧⎫-----+⋅⋅⋅⎨⎬⎩⎭;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:422, 3.14,, 1.88,37⎧⎫---+⋅⋅⋅⎨⎬⎩⎭.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏.21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a人,它们相差:(a+1.6+0.8+0.4)-(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a+1.6+0.8+0.4-a-1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人),所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a人,所以到3日时的人数是(a+1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16=+17+7+5+16+11-15-3-6-8-9=56-41=+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米.(2)出租司机最远处离出发点有17千米.(3)56+|-41|=97(千米),0.08×97=7.76(升).答:这天共耗油7.76升.。

人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷题号一二三总分19 20 21 22 23 24分数1.点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7 B.1 C.7 D.-12.如果水位下降2021m记作﹣2021m,那么水位上升2020m记作()A.﹣1m B.+4041m C.﹣4041m D.+2020m3.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣0.4 B.0.6 C.1.3 D.﹣24.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0 B.a﹣b<0 C.a>﹣b D.﹣b>a5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、下列说法中正确的是()A.任何正整数的正因数至少有两个B.一个数的倍数总比它的因数大C.1是所有正整数的因数D.3的因数只有它本身7.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为()A.0 B.2 C.﹣2 D.2或﹣28.在分数3579,,,8123250中能化成有限小数的有()A.1个B.2个C.3个D.4个9.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >10.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在( ) A .文具店B .玩具店C .文具店西边40米D .玩具店西边60米二、填空题: (每题3分,24分) 11.计算:=____________12.计算(−1.5)3×(−)2−1×0.62=___________. 13.的相反数是________.14.若,则________.15.、在数轴上得位置如图所示,化简:________.16. 当x________时,代数式的值为非负数.17. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是________个单位. 18.观察规律并填空. ⑴⑵⑶________(用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共46分,19题6分,20 ---24题8分)。

七年级数学上册第1章有理数单元综合检测6新版新人教版

七年级数学上册第1章有理数单元综合检测6新版新人教版

第一章单元测试题6一、选择题(每题3分,共21分)1.用科学记数法表示为1.999×103的数是()A.1999 B.199.9 C.0.001999 D.199902.若是a<2,那么│-1.5│+│a-2│等于()A.1.5-a B.a-3.5 C.a-0.5 D.3.5-a3.现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③倒数等于其本身的有理数只有1;•④平方等于其本身的有理数只有1.其中正确的有()A.0个 B.1个 C.2个 D.大于2个4.以下各组数中,互为相反数的是()A.2与12B.(-1)2与1 C.-1与(-1)2 D.2与│-2│ 5.2002年我国发觉第一个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为()A.6×102亿立方米 B.6×103亿立方米C.6×104亿立方米 D.0.6×104亿立方米6.某粮店出售的三种品牌的面粉袋上别离标有质量为(25±0.1)kg,(25±0.•2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg7.a,b两数在数轴上的位置如下图,以下结论中正确的选项是()A.a>0,b<0 B.a<0,b>0 C.ab>0 D.以上均不对二、填空题(每题3分,共21分)1.在0.6,-0.4,13,-0.25,0,2,-93中,整数有________,分数有_________.2.一个数的倒数的相反数是315,那个数是________.3.假设│x+2│+│y-3│=0,那么xy=________.4.绝对值大于2,且小于4的整数有_______.5.x平方的3倍与-5的差,用代数式表示为__________,当x=-1时,•代数式的值为__________. 6.假设m,n互为相反数,那么│m-1+n│=_________.7.观看以下顺序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;……猜想第n个等式(n为正整数)应为_________________________-___.三、竞技平台(每题6分,共24分)1.计算:(1)-42×58-(-5)×0.25×(-4)3ab O(2)(413-312)×(-2)-223÷(-12) (3)(-14)2÷(-12)4×(-1)4-(138+113-234)×242.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的动身地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问下班时,检修小组距动身地有多远?在东侧仍是西侧?(2)假设检修车每千米耗油2.8升,求从动身到下班共耗油多少升?3.已知(x+y-1)2与│x+2│互为相反数,a ,b 互为倒数,试求x y+ab 的值.4.已知a<0,ab<0,且│a │>│b │,试在数轴上简略地表示出a ,b ,-a 与-b 的位置,并用“<”号将它们连接起来.四、能力提高(1小题12分,2~3小题每题6分,共24分) 1.计算:(1)1-3+5-7+9-11+…+97-99;(2)(13-15)×52÷|-13|+(-15)0+(0.25)2003×420032.一个正方体的每一个面别离标有数字1,2,3,4,5,6.依照图•中该正方体三种状态所显示的数据,可推出“?”处的数字是多少?(1)451(2)321(3)53?3.如下图,一个点从数轴上的原点开始,先向右移动3单位长度,•再向左移动5个单位长度,能够看到终点表示的数是-2,已知点A ,B 是数轴上的点,•请参照图1-8并试探,完成以下各题:-5-4-3-2-10234567853(1)若是点A 表示数-3,•将点A•向右移动7•个单位长度,•那么终点B•表示的数是_______,A ,B 两点间的距离是________;(2)若是点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,• 那么终点B 表示的数是_______,A ,B 两点间的距离为________;(3)若是点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256•个单位长度,那么终点B 表示的数是_________,A ,B 两点间的距离是________.(4)一样地,若是A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p•个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?(12)、(11分)某检修小组1乘一辆汽车沿公路检修线路,约定向东为正。

人教版数学七年级上册第一章有理数《单元检测》带答案

人教版数学七年级上册第一章有理数《单元检测》带答案

人教版数学七年级上册第一章有理数测试及答案一.选择题1.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示( )A. 895710⨯ B. 995.710⨯ C. 109.5710⨯ D. 100.95710⨯2.下列运算结果为正数的是()A. ﹣32 B. ﹣3÷2 C. ﹣1+2 D. 0×(﹣2018)3.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A. 20B. ﹣20C. 10D. 84.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A. 2个B. 3个C. 4个D. 5个5.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数个数有()A. 2个B. 3个C. 4个D. 5 个6.如图,在数轴上点A最可能表示的数的绝对值是()A. ﹣2.5B. 2.5C. ﹣3.5D. 3.57.a,b,c三个数的位置如图所示,下列结论不正确的是()A. a+b<0B. b+c<0C. b+a>0D. a+c>08.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b﹣c|﹣|c﹣a|( )A. b﹣2c+aB. b﹣2c﹣aC. b+aD. b﹣a9.下列结论成立的是( )A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.10.若ab≠0,则aabb+的值不可能是()A. 0B. 1C. 2D. ﹣2 二.填空题11.计算:|-3|-1=__.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.13.145-的倒数是_____.14.已知:|m﹣n|=n﹣m,|m|=4,|n|=3,则m﹣n=_______ 15.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为_____.16.已知a,b互相反数,c,d互为倒数,则﹣5a+2017cd﹣5b=_____.三.解答题17.计算:(1)﹣18×(125 236+-);(2)(﹣1)3﹣(1﹣12)÷3×[2﹣(﹣3)2].18.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.19.下表给出了七(三)班6位同学的体重情况:(单位:kg)姓名 A B C D E F(1)完成表中空白部分;(2)这6位同学体重的和多少千克.20.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?21.为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.22.把下列各数填在相应的括号内:–19,2.3,–12,–0.92,35,0,–14.,0.563,π正数集合{ ……};负数集合{ ……};负分数集合{ ……};非正整数集合{ ……}23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?答案与解析一.选择题1.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为()A. 895710⨯ B. 995.710⨯ C. 109.5710⨯ D. 100.95710⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将957亿用科学记数法表示约为:9.57×1010.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算结果为正数的是()A. ﹣32B. ﹣3÷2C. ﹣1+2D. 0×(﹣2018)【答案】C【解析】【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【详解】解:∵-32=-9,-3÷2=-32,-1+2=1,0×(-2018)=0,∴选项C中的结果为正数,故选:C.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A. 20B. ﹣20C. 10D. 8【答案】A【解析】【分析】观察四个数,不难得出,选择﹣4与﹣5相乘,得到的积最大.【详解】﹣4与﹣5乘积最大,为20.故选A.【点睛】本题主要掌握有理数的乘法运算法则,两数相乘,同号得正,异号得负,并把绝对值相乘.4.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A. 2个B. 3个C. 4个D. 5个【答案】C【解析】【分析】试题解析:①最大的负整数是1,故不正确;②2和-2的绝对值相等,则数轴上表示数2和-2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选C.考点:1.有理数的乘方;2.有理数;3.数轴;4.绝对值;5.有理数大小比较.【详解】请在此输入详解!5.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A. 2个B. 3个C. 4个D. 5 个【答案】B【解析】【分析】根据正数与负数的定义求解.【详解】解:在-112,15,-10,0,-(-5),-|+3|中,负数有-112、-10、-|+3|这3个,故选:B.【点睛】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.6.如图,在数轴上点A最可能表示的数的绝对值是()A. ﹣2.5B. 2.5C. ﹣3.5D. 3.5【答案】B【解析】【分析】根据数轴的定义即可求出答案.【详解】解:由数轴可知:点A表示的数为a,∴-3<a<-2,∴在数轴上点A最可能表示的数的绝对值是2.5.故选:B.【点睛】本题考查数轴的性质,解题的关键是正确理解数轴的定义,本题属于基础题型.7.a,b,c三个数的位置如图所示,下列结论不正确的是()A. a+b<0B. b+c<0C. b+a>0D. a+c>0【答案】C【解析】【分析】根据数轴上点的位置判断出a,b,c的大小,利用有理数的加法法则判断即可.【详解】解:根据数轴上点的位置得:-4<b<-3<-1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.【点睛】此题考查了有理数的加法,以及数轴,熟练掌握运算法则是解本题的关键.8.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b﹣c|﹣|c﹣a|( )A. b﹣2c+aB. b﹣2c﹣aC. b+aD. b﹣a【答案】D【解析】【分析】观察数轴,可知:c<0<b<a,进而可得出b﹣c>0、c﹣a<0,再结合绝对值的定义,即可求出|b﹣c|﹣|c﹣a|的值.【详解】观察数轴,可知:c<0<b<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c﹣a|=b﹣c﹣(a﹣c)=b﹣c ﹣a+c=b﹣a.故选D.【点睛】本题考查了数轴以及绝对值,由数轴上a、b、c的位置关系结合绝对值的定义求出|b﹣c|﹣|c﹣a|的值是解题的关键.9.下列结论成立的是( )A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.【答案】B【解析】【分析】若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则a,b的大小不能确定.【详解】A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为负数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立.故选B.【点睛】本题考查了的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.10.若ab≠0,则aabb+的值不可能是()A. 0B. 1C. 2D. ﹣2 【答案】D【解析】【分析】当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,由此即可判断.【详解】解:当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,故选:D.【点睛】本题考查有理数的加法法则以及乘法法则,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二.填空题11.计算:|-3|-1=__.【答案】2【解析】【分析】根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为:2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.12.将数轴上表示﹣1的点A 向右移动5个单位长度,此时点A 所对应的数为_____. 【答案】4. 【解析】分析:在数轴上点向右平移几个单位,则就加上几;在数轴上点向左平移几个单位,则就加上几. 详解:根据题意可得:-1+5=4.点睛:本题主要考查的是数轴上点的平移法则,属于基础题型.理解平移的性质是解决这个问题的关键. 13.145-的倒数是_____. 【答案】521. 【解析】 【分析】求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可,是小数的化成分数后据此求出,据此解答.【详解】解:145- =145, 145的倒数是521. 故答案为:521. 【点睛】本题主要考查求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可.14.已知:|m ﹣n|=n ﹣m ,|m|=4,|n|=3,则 m ﹣n =_______ 【答案】-1或-7 【解析】 【分析】根据绝对值的代数意义和有理数的减法法则,结合已知条件分析解答即可.【详解】∵43m n n m m n ,,-=-==, ∴43m n m n ,,≤=±=±, ∴43m n =-=±,,∴当43m n =-=,时,437m n -=--=-;当43m n =-=-,时,4(3)431m n -=---=-+=-. 综上所述,1m n -=-或7-. 故答案为:-1或-7.【点睛】熟悉“有理数的减法法则和绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”是解答本题的关键.15.点A 1、A 2、A 3、…、A n (n 为正整数)都在数轴上.点A 2在点A 1的左边,且A 1A 2=1;点A 3在点A 2的右边,且A 2A 3=2;点A 4在点A 3的左边,且A 3A 4=3;…,点A 2018在点A 2017的左边,且A 2017A 2018=2017,若点A 2018所表示的数为2018,则点A 1所表示的数为_____. 【答案】3027. 【解析】 【分析】根据题意得出规律:当n 为奇数时,A n -A 1=n-12,当n 为偶数时,A n =A 1-n2,把n=2018代入求出即可. 【详解】解:根据题意得: 当n 为奇数时,A n -A 1=n-12,当n 为偶数时,A n -A 1=-n2, 2018为偶数,代入上述规律, A 2018-A 1=-20182=-1009, 解得A 1=3027. 故答案为:3027.【点睛】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.16.已知a ,b 互为相反数,c ,d 互为倒数,则﹣5a+2017cd ﹣5b=_____. 【答案】2017【解析】【分析】根据相反数及倒数的定义得出a+b=0,cd=1,再代入所求代数式进行计算即可.【详解】解:根据题意得:a+b=0,cd=1,则原式=-5(a+b)+2017cd=-5×0+2017×1=2017.故答案为2017.【点睛】本题考查的是有理数的混合运算,熟知相反数、倒数的定义是解答此题的关键.三.解答题17.计算:(1)﹣18×(125 236+-);(2)(﹣1)3﹣(1﹣12)÷3×[2﹣(﹣3)2].【答案】(1)-6;(2)16;【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-12×13×(-7)=-1+76=16.点睛:本题主要考查有理数混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.18.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.【答案】(1)a=﹣2,b=±3,c=﹣1;(2)24;【解析】分析】(1)根据相反数、绝对值、倒数的定义解答即可;(2)把所给的整式去括号合并同类项化为最简后,再代入求值即可.【详解】(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点睛】本题考查了代数式求值,相反数的定义,绝对值的性质,倒数的定义,是基础题,比较简单,但要注意b的两种情况.19.下表给出了七(三)班6位同学的体重情况:(单位:kg)(1)完成表中空白部分;(2)这6位同学体重的和多少千克.【答案】(1)答案见解析;(2)282千克;【解析】【分析】(1)先算出标准体重为45kg,再算出个人体重与班级平均体重的差值,填表即可;(2)将这6个人个人体重相加即可.【详解】(1)如表:(2)﹣1+2+0﹣3+4+10+45×6=282(kg),答:这6位同学体重的和是282千克;【点睛】本题考查了有理数的混合运算,以及正负数所表示的意义.20.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?【答案】(1)-25吨;(2)505吨;【解析】【分析】(1)理解“+”表示进库“-”表示出库,把粮库3天内发生粮食进出库的吨数相加就是库里现在的情况; (2)利用(1)中所求即可得出3天前粮库里存粮数量.【详解】(1)26+(﹣32)+(﹣25)+34+(﹣38)+10=﹣25(吨).答:粮库里的粮食是减少了25吨;(2)480﹣(﹣25)=505(吨).答:3天前粮库里存粮有505吨;【点睛】此题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,明确正数和负数的定义,并且注意0这个特殊的数字,既不是正数也不是负数.21.为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L ,警车出发时,油箱中有油20L ,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【答案】(1)在A 地的西方,距A 地4千米;(2)需加油5.6L ; 【解析】试题分析:(1)把这些数值相加,根据结果就可知道在那个方向,相距多少千米. (2)绝对值相加,乘以每小时耗油量即可,由此即可进行判断. 试题解析:解:(1)18-19-13+15+10-14+19-20=-4 所以B 地在A 地的西方,相距4千米;(2)0.2×(18+19+13+15+10+14+19+20)=25.6升 25.6﹣20=5.6故中途给警车加过油,至少加5.6升.点睛:本题考查有理数的加减混合运算,以及正负数的意义,从而可求出解.22.把下列各数填在相应的括号内: –19,2.3,–12,–0.92,35,0,–14.,0.563,π 正数集合{ ……}; 负数集合{ ……}; 负分数集合{ ……}; 非正整数集合{ ……}【答案】正数集合:32.30.5635,,,π⎧⎫⎨⎬⎩⎭负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,,负分数集合:10.924⎧⎫--⎨⎬⎩⎭,,非正整数集合:{}19120--,, 【解析】试题解析:利用正数,负数,负分数,非整数的定义进行分类即可.试题解析:正数集合:32.30.5635π⎧⎫⎨⎬⎩⎭,,, 负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,,负分数集合:10.924⎧⎫--⎨⎬⎩⎭,, 非正整数集合:{}19120--,,23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A→B(+1,+4),从B 到A 记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向. (1)图中A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程;(4)若图中另有两个格点M 、N ,且M→A (3-a ,b-4),M→N (5-a ,b-2),则N →A 应记为什么?【答案】(1)3;4;2;0;D ;2-;(2)见解析;()310;()4N A →应记为()22--,. 【解析】 【分析】(1)根据规定及实例可知A→C 记为(3,4)C→D 记为(1,-1);A→B→C→D 记为(1,4),(2,0),(1,-1);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可; (3)根据M→A (3-a ,b-4),M→N (5-a ,b-2)可知5-a-(3-a )=2,b-2-(b-4)=2,从而得到点A 向右走2个格点,向上走2个格点到点N ,从而得到N→A 应记为什么.【详解】(1)图中A→C (+3,+4),B→C (+2,0),C→D (+1,﹣2); 故答案为:(+3,+4),(+2,0),D ; (2)P 点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C;p记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3﹣a, b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2).【点睛】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.。

人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)

人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)

第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.3.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.4.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.(2020·湖北宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8 844 m,记为+8 844 m;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m,记为()A.415 mB.-415 mC.±415 mD.-8 844 m6.(2020·北京中考)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3 第6题图C.a>-bD.a<-b7.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.48.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC .若|a |>a ,则a ≤0D .若|a |>|b |,则a >b .9.如图,点A 表示的有理数是a ,则a ,﹣a ,1的大小顺序为( )A .a <﹣a <1B .﹣a <a <1C .a <1<﹣aD .1<﹣a <a10.设[a ]是有理数,用[a ]表示不超过a 的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是( ) A .[a ]+[﹣a ]=0 B .[a ]+[﹣a ]等于0或﹣1C .[a ]+[﹣a ]≠0D .[a ]+[﹣a ]等于0或1二、填空题(每小题3分,共24分)11.31的倒数是____;321的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.若0<<1,则a ,2a ,1a的大小关系是 .14.+5.7的相反数与-7.1的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台. 18. 规定﹡,则(-4)﹡6的值为 . 三、解答题(共66分)19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m 的值. 21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4) (3)(+﹣)×(﹣36) (4)2×(﹣)﹣12÷ (5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨+0.3 +0.1 ﹣﹣+0.2跌0.2 0.5(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.参考答案与解析一、选择题1.A 2.A 3.B 4.A 5.B 6.D 7.B8.B 9.A 10.B二、填空题11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.三、解答题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3 +0.1 ﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。

新人教版初中数学七年级数学上册第一单元《有理数》测试(答案解析)(6)

新人教版初中数学七年级数学上册第一单元《有理数》测试(答案解析)(6)

一、选择题1.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯-2.13-的倒数的绝对值( )A .-3B .13-C .3D .133.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 4.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .24 5.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是A .B .C .D . 6.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .47.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- 8.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=-D .133( 3.25)6 3.2532.544⨯--⨯=- 9.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 11.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11612.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000二、填空题13.把67.758精确到0.01位得到的近似数是__.14.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 15.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 16.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 17.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.18.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数. 19.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.20.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.三、解答题21.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭.22.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 23.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 24.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦25.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 26.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.C解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.3.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.4.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.6.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.7.A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】∵1199⎛⎫--=⎪⎝⎭,111010--=-,11910>-,∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.D解析:D【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 9.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.11.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.12.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题13.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.14.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.15.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.16.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫⎪⎝⎭=8×14=2.故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.17.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.18.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.19.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1; (2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1; (3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.20.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.三、解答题21.(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷=1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.24.(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.25.(1)-6;(2)132-【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+=142- =132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.26.(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28 =26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是  . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为  .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为  .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。

人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)

人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)

人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)第一部分:选择题(每小题3分,共30分)1. 下列数中能表示自然数的是()。

A. -3B. 0C. -2D. 22. 判断下列各式的真假()。

① -5 > -10 ② -6 < 3 ③ -2 > -1 ④ 0 > -1A. √√×√B. ×√×√C. ××√×D. √××√3. 若a > b,b > 0,则下列各式中一定成立的是()。

① a^2 > b^2 ② a - b > 0 ③ a^2 - b^2 > 0A. √√√B. √√×C. ×√√D. ××√4. 若x > -2,y < 0,则下列哪个不正确()。

A. x^2 > 4B. xy < 0C. x - y > 0D. x^2 + y < 05. 若a > b,则不正确的是()。

A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 26. 若x > 1,则不等式2x - 3 > 1的解集是()。

A. (0, 2)B. (2, +∞)C. (-∞, 0)D. (1, +∞)7. 若x < 0,y > 2,则不等式3x + 1 < 5y - 7的解集是()。

A. (-∞, -3)B. (3, +∞)C. (-∞, 3)D. (-3, +∞)8. 若x + y > 0,y < 0,则x的取值范围是()。

A. (0, +∞)B. (-∞, 0)C. (0, -∞)D. (-∞, +∞)9. 若a < 0,b < 0,则不等式a^2 - b^2 < 0的解集是()。

新人教版初中数学七年级数学上册第一单元《有理数》测试(有答案解析)(6)

新人教版初中数学七年级数学上册第一单元《有理数》测试(有答案解析)(6)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍3.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定4.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.245.已知︱x︱=4,︱y︱=5且x>y,则2x-y的值为()A.-13 B.+13 C.-3或+13 D.+3或-16.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是()A.0.15×105B.15×103C.1.5×104D.1.5×1057.下列各数中,互为相反数的是()A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)8.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是09.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B10.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=11.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|12.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克B .-0.02克C .0克D .+0.04克二、填空题13.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 14.数轴上表示有理数-3.5与4.5两点的距离是___________. 15.绝对值小于2018的所有整数之和为________.16.33278.5 4.5 1.67--=____(精确到千分位) 17.若两个不相等的数互为相反数,则两数之商为____.18.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______. 19.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()aa b cd b++-=___________.20.若2(1)20a b -+-=,则2015()a b -= _______________.三、解答题21.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.22.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 23.计算:(1)[]2(2)18(3)24-+--⨯÷(2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦24.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 25.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 26.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断. 【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+-- 即五名学生的实际成绩分别为:94;81;96;78;85, 则这五名同学的实际成绩最高的应是96分. 故选D . 【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.A【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h > 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.B解析:B 【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大. 【详解】∵乘积最大时一定为正数 ∴-1,-3,4的乘积最大为12 故选B .本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.C解析:C 【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案. 【详解】∵4x =,5y =, ∴x=±4,y=±5, ∵x >y , ∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13, 当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3, ∴2x-y 的值为-3或13, 故选:C . 【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.6.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】15000用科学记数法表示是1.5×104. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D 【解析】 【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可. 【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 8.A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.9.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.10.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.11.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.12.B解析:B【解析】-0.02克,选A.二、填空题13.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.14.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.15.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0 【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案. 【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0, 故答案为0. 【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.16.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则 解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位. 【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-. 【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.17.-1【分析】设其中一个数为a (a≠0)它的相反数为-a 然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a 所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1 【分析】设其中一个数为a (a ≠0),它的相反数为-a ,然后作商即可. 【详解】解:设其中一个数为a (a ≠0),则它的相反数为-a , 所以这两个数的商为a÷(-a)=-1. 故答案为:-1. 【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.18.2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论. 【详解】若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB 盖住2020或2021个整点. 故答案为:2020或2021. 【点睛】本题考查了数轴,解题的关键是找出长度为n (n 为正整数)的线段盖住n 或n +1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.19.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2 【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值. 【详解】解:根据题意得:a+b=0,cd=1,1ab=- 则原式=0+1-(-1)=2. 故答案为:2. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1 【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案. 【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1. 【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.三、解答题21.(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8. 【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可. 【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5, ∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0, 所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6, 所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8, 答:m 的值为2或8. 【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 22.(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一) 【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 23.(1)10;(2)-15 【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 24.(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.25.(1)-21;(2)17-【分析】(1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7) =÷-=1 7 -【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键.26.(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况.。

2020七年级数学上册 第一章《有理数》检测题6(含解析)(新版)新人教版

2020七年级数学上册 第一章《有理数》检测题6(含解析)(新版)新人教版

《有理数》单元检测题一、单选题1.如果,那么的值是( )A . 5或-5B . 1或-1C . 5或1D . 02.数a 、b 在数轴上的位置如图所示,则下列判断中,正确的是( )A . a > 1B . b > 1C . a <-1D . b < 03.在下列数:-(12-),-42,-|-9|,227,(-1)2004,0中,正数有( ) A . 1个 B . 2个 C . 3个 D . 4个4.若x ,y 为有理数,下列各式成立的是( ).A . (-x )3=x 3B . (-x)4=-x 4C . (x-y)3=(y-x)3D . -x 3=(-x)35.下列说法不正确的是( )A . 到原点的距离相等且在原点两旁的两个点所表示的数一定互为相反数B . 所有的有理数都有相反数C . 正数和负数互为相反数D . 在一个有理数前添加“—”号就得到它的相反数6.气温由-1 ℃ 上升2 ℃ 后是( )A . -1 ℃B . 1 ℃ C. 2 ℃ D. 3 ℃7.下列说法:①数轴上的点对应的数,如果不是有理数,那么一定是无理数;②介于4与5之间的无理数有无数个; ③数轴上的任意一点表示的数都是有理数;④任意一个有理数都可以用数轴上的点表示.其中正确的有( )A . 1个B . 2个C . 3个D . 4个8.下列说法错误的是( )A . 若a b =,则a b =或a b =-。

B . 如果23a a =,那么3a =C . 若20a b +=时,则0a =且0b =;D . 若a a =-,则a ≤0。

9.式子-232的意义是( ).A . .3与2商的相反数的平方;B . 3的平方与2的商的相反数;C . 3除以2的平方的相反数;D . 3的平方的相反数除2.10.2100×(﹣12)99=( ) A . 2 B . ﹣2 C . 12 D . ﹣12 11.下列选项是四位同学画的数轴,其中正确的是( )A . AB . BC . CD . D二、填空题12.如果|x |=4,那么x =________,如果|x -2|=8,那么x =________.13.A .B .C 三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低的地方高____米.14.|a |=1,|b |=4,且ab <0,则a +b =________.15.近似数2.30万精确到________位,用科学记数法表示为__________.16.若(a -1)2与|b +1|的值互为相反数,则a -b =__________.三、解答题17.计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4). (3)4-(+3.85)-(-3)+(-3.15).18.已知a 与3-互为相反数, b 与-12互为倒数,求a b -的值。

人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)

人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)

人教版七年级上册数学 第一章 有理数 单元检测试卷一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( ) A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( )A .14.12×108B .0.1412×1010C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( ) A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( )A .①②都正确B .①正确,②不正确C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( ) A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a 3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A.2B.–2C.1D.09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了()A.80元B.120元C.160元D.200元10.若a=-2020,则式子|a2+2019a+1|+|a2+2021a−1|的值是()A.4036B.4038C.4040D.4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算。

第一章有理数单元测试(新教材,提升卷)(原卷版)--七年级数学上册单元检测(人教版)

第一章有理数单元测试(新教材,提升卷)(原卷版)--七年级数学上册单元检测(人教版)

第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm . 姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2 (1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值:①13x x −+−的最小值为 ;②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .。

人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)

人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)

第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.若|a|=﹣a,a一定是( )A.正数B.负数C.非正数D.非负数2.近似数2.7×103是精确到( )A.十分位B.个位C.百位D.千位3.把数轴上表示数2的点移动3个单位后,表示的数为( ) A.5 B.1 C.5或1 D.5或﹣14.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.若|x|=4,且x+y=0,那么y的值是( )A.4 B.﹣4 C.±4 D.无法确定6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是()A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2 B.4.3 C.4.4 D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0 B.|a|>-b C.a+b>0 D.ab<09.若|a|=5,b=-3,则a-b的值为()A.2或8 B.-2或8 C.2或-8 D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是()A.2 B.4 C.6 D.8二、填空题(每小题3分,共30分)11.计算:4﹣5=,|﹣10|﹣|﹣8|=.12.对于两个非零整数x,y,如果满足这两个数的积等于它们的和的6倍,称这样的x,y为友好整数组,记作<x,y>,<x,y>与<y,x>视为相同的友好整数组.请写出一个友好整数组,这样的友好整数组一共有组.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.14.若|5﹣x|=x﹣5,则x的取值范围是.15.一个比例中,两个内项都是6,而且两个比的比值都是5,其中一个外项为x,则x的值为.16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.18. 规定﹡,则(-4)﹡6的值为.19.对于有理数a,b,定义一种新运算:a☆b=a2﹣b,则4☆(﹣3)=.20.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是.三、解答题(共60分)21.(6分)计算:(1)(﹣2.4)﹣(+1.6)﹣(﹣7.6)﹣(﹣9.4);(2)﹣14﹣×|2﹣(﹣3)2|+(﹣+﹣)÷(﹣).22.(5分)已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn﹣c的值.23.(6分)若有a,b两个数,满足关系式a+b=ab﹣1,则称a.b为“共生数对“,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对“.(I)若(x,﹣3)是“共生数对“,求x的值:(2)若(m,n)是“共生数对“,判断(n,m)是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.24.(7分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有箱,最重的一箱重千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?25.(8分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).(1)列式计算表中的数据a 和b ;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少? (3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)26.(8分)下面是按规律排列的一列数:第1个数:1-⎝⎛⎭⎪⎫1+-12;第2个数:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34; 第3个数:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56.(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果27.(10分)已知a 是平方等于本身的正数,b 是立方等于本身的负数,c 是相反数等于本身的数,d 是绝对值等于本身的数.求(a ÷b )2020﹣3ab +2(cd )2121的值.28.(10分)先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.参考答案与解析一、选择题1.A 2.C 3.B 4.A 5.C 6.B7.C8.D9.B10.C二、填空题11.解:4﹣5=﹣1,|﹣10|﹣|﹣8|=10﹣8=2.故答案为:﹣1,2.12.解:由已知可得若为为友好整数组,则xy≠0,且xy=6(x+y)∴(x﹣6)y=6x,显然当x=6时该等式不成立,∴x≠6∴y===6+∵y是整数∴是整数∴当x﹣6=1,即x=7时,y=42,故<7,42>是一个友好整数组.∵x,y是整数∴是整数,且x﹣6是整数∵xy≠0,且<x,y>与<y,x>视为相同的友好整数组.∴x﹣6=±1或±2或±3或±4或﹣6,∴这样的友好整数组一共有2+2+2+2+1=9(组).故答案为:<7,42>;9.13.解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.14.解:∵|5﹣x|=x﹣5,∴5﹣x≤0,∴x≥5,故答案为:x≥5.15.1.2或30.16.2417.5018.-919.19.20.π.三、解答题21.解:(1)(﹣2.4)﹣(+1.6)﹣(﹣7.6)﹣(﹣9.4)=(﹣2.4)+(﹣1.6)+7.6+9.4=13;(2)﹣14﹣×|2﹣(﹣3)2|+(﹣+﹣)÷(﹣)=﹣1﹣×|2﹣9|+(﹣+﹣)×(﹣24)=﹣1﹣×7+8+(﹣18)+2=﹣1﹣1+8+(﹣18)+2=﹣10.22.解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn﹣c=0+1﹣2=﹣1;当c=﹣2时,a+b+mn﹣c=0+1﹣(﹣2)=0+1+2=3;由上可得,代数式a+b+mn﹣c的值是﹣1或3.23.解:(1)∵(x,﹣3)是“共生数对”,∴x﹣3=﹣3x﹣1,解得:x=;(2)(n,m)也是“共生数对”,理由:∵(m,n)是“共生数对”,∴m+n=m﹣1,∴n+m=m+n=mn﹣1=nm﹣1,∴(n,m)也是“共生数对”;(3)由a+b=ab﹣1,得b=,若a=3时,b=2;若a=﹣1时,b=0,∴(3,2)和(﹣1,0)是“共生数对”24.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25 =0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8), =3×500.8, =1502.4(元).故出售这20箱冬桃可卖1502.4元.25.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分) (3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)26.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34 …⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)27.解:∵a 是平方等于本身的正数,b 是立方等于本身的负数,c 是相反数等于本身的数,d 是绝对值等于本身的数, ∴a =1,b =﹣1,c =0,d ≥0, ∴(a ÷b )2020﹣3ab +2(cd )2121=[1÷(﹣1)]2020﹣3×1×(﹣1)+2(0×d )2121 =(﹣1)2020+3+0 =1+3+0 =4.28.解:(1)原式=×12﹣×12+×12 =4﹣2+6 =8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.。

人教版七年级数学上册《第一章有理数》单元检测卷及答案

人教版七年级数学上册《第一章有理数》单元检测卷及答案

人教版七年级数学上册《第一章有理数》单元检测卷及答案知识点题型分布:考点1:正数与负数考点2:有理数及其大小比较一、选择题1.在-2,3与13,0, 1.7-五个数中,正数有( ) A .1个 B .2个 C .3个 D .4个2.增长2.7%记作 2.7+%,“减少3.4%”记作( )A . 3.4-%B . 2.7+%C . 3.4±%D . 3.4+%3.在有理数0.5012.5--,,,中,最小的数是( )A .0.5-B .0C .1-D .2.54.下列有理数大小关系判断正确的是( )A .33-<+B .910>-C 10.01->-D .010>-5.两个有理数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A .a >bB .a <bC .-a <-bD .|a|<|b| 6.(23-24七年级上·江苏南通·期中)如下表,检测五个排球,其中质量超过标准的克数记为2号3号 4号 5号正数,不足的克数记为负数1号−2.8−1.7+1.6−0.5+2.5某教练想从这五个排球中挑一个最接近标准的排球作为赛球,应选哪一个()A.2号B.3号C.4号D.5号7.下列各数中,互为相反数的是( )A.-2.25与214B.13与-0.33C.-12与0.2D.5与-(-5)8. 如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n二、填空题9.(23-24七年级上·江苏徐州·期中)有一种记分方法:以60分为准,68分记为8+分,某同学得54分,则应记为分.10.(23-24七年级上·安徽合肥·阶段练习)若m、n互为相反数,x、y互为倒数,则2021m+2021n-2022 xy=.11.(23-24七年级上·江苏南通·阶段练习)某项科学研究,以25分钟为一个时间单位,并记每天上午8时为0,8时以前记为负,8时以后记为正.例如:7:35记为1-,8:25记为1等等,以此类推,上午5:05应记为.12.(22-23七年级上·山东青岛·期中)检查5个足球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:足球编号12345与标准质量的差/克5+7+3-9-9+则最接近标准质量的是号足球;质量最大的足球比质量最小的足球多克.13.(23-24六年级下·黑龙江哈尔滨·期中)已知a、b互为相反数,c、d互为倒数,x的绝对值等于3,则255a b cdx+-的值为.14.(22-23七年级上·江苏南京·期中)绝对值不小于2且小于512的负整数的和是 . 15.(22-23七年级上·广东深圳·期中)若2a -与3b +互为相反数,则a b -的值为 .16.如图所示,A,B,C 为数轴上三点,且当A 为原点时,点B 表示的数是2,点C 表示的数是5.若以B 为原点,则点A 表示的数是 ,点C 表示的数是 ;若A ,C 表示的两个数互为相反数,则点B 表示的数是 .三、解答题17.(23-24七年级上·河南周口·阶段练习)高速公路养护小组乘车沿南北公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):17+ 9- 7+ 15- 3- 11+ 6- 8- 5+ 16+.(1)养护小组最后到达的地方在出发点哪个方向?距离出发点多远?(2)该养护小组一共行驶了多少千米?18.(23-24七年级上·湖南长沙·阶段练习)已知:a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,试回答问题:(1)请直接写出a ,b ,c 的值;(2)若a ,b ,c 所对应的点分别为A ,B ,C ,点P 为一动点,其对应的数为x ,点P 在A 到C 之间运动时,请化简式子:1123x x x +--+-.19.(23-24七年级上·河南商丘·期末)10袋小麦以每袋150千克为标准,超过的千克数记为正数,不足的千克数记为负数,记录如下: 编号1 2 3 4 5 6 7 8 9 10 与标准质量差 6- 3- 0 2+ 3+ 4+ 2- 2- 4-6+ (1)在10袋小麦中,第几袋的记数质量最接近标准质量?(2)与标准质量相比较,10袋小麦总计超过或不足多少千克?(3)每袋小麦的平均质量是多少千克?参考答案1.【答案】B【分析】根据正数大于0,负数小于0判断即可.【详解】解:在-2,3,13,0,-1.7五个数中,正数有3,13,共2个. 故选:B .【点睛】本题考查了正数和负数,掌握正数和负数的定义是解答本题的关键.2.【答案】A【分析】根据正负数的意义即可求解.【详解】解:增长2.7%记作 2.7+%,“减少3.4%”记作 3.4%-故选:A .【点睛】本题考查了正负数的意义,理解题意是解题的关键.3.【答案】C【分析】根据有理数大小比较的法则:①正数都大于0; ①负数都小于0; ①正数大于一切负数; ①两个负数,绝对值大的其值反而小,即可得出答案.【详解】解:①10.50-<-<<2.5①有理数中0.5012.5--,,,,最小的数是1-.故选:C .【点睛】本题主要考查了有理数的比较大小,解本题的关键是熟练掌握有理数的比较大小的法则. 4.【答案】B【分析】根据有理数比较大小的法则逐项比较即可解答.【详解】解:A 、①3333-=+=,,①33-=+,故本选项错误; B 、①90,100>-<,①910>-,故本选项正确;C 、①10.010->-<且10.01->-,则10.01-<-,故本选项错误;D 、由10100-=>故本选项错误.故选:B .【点睛】本题主要考查了有理数的大小比较,掌握好正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小是本题的关键.5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】6-【分析】本题主要考查了正负数的意义,正确理解题意是解题的关键.本题根据54分比基准分低6分可得答案.【详解】解:①以60分为准,68分记为8+分①某同学得54分,则应记为6-分故答案为:6-.10.【答案】-2022【分析】根据两个数是互为相反数可得,两数之和等于0,由两个数是互为倒数可得,两数乘积是1.【详解】①若m 、n 互为相反数,x 、y 互为倒数①m +n =0,xy =1,2021m +2021n -2022xy =2021×(x +y )-2022xy =2021×0-20221=-2022. 故答案为:-2022.【点睛】本题主要考查相反数的性质和倒数的性质,解决本题的关键是要熟练掌握相反数和倒数的性质. 11.【答案】7-【分析】本题考查了正负数的实际应用,相反意义的量,解题的关键是理解题意,掌握相反意义的量.由题意得,以上午8时为0,向前每25分钟为一个“1-”,上午5:05与8时相隔175分钟,进而可求出答案.【详解】解:由题意得,以上午8时为0,向前每45分钟为一个“1-”①上午5:05与8时相隔175分钟,175?25=7①上午5:05应记为:7-故答案为:7-.12.【答案】3 18【分析】根据超过的记为正,不足的记为负,绝对值小的接近标准,可得最接近标准的球;根据质量最大的求减去质量最小的球,可得质量最大的足球比质量最小的足球多多少克. 【详解】解:55+= 77+= |3|3-= |9|9-= 99+=①3570<<<①最接近标准质量的是3号足球;()999918+--=+=(克)即质量最大的足球比质量最小的足球多18克.故答案为:3;18.【点睛】本题考查了正负数的意义,绝对值的意义,有理数的减法的应用,掌握正负数的意义是解题的关键.13.【答案】-9【分析】根据相反数,倒数,绝对值得出a +b =0,cd =1,x =±3,再代入求出即可.【详解】解:①a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3①a +b =0,cd =1,x =±3①将其带入可得()25()13a b +-⨯±最后计算得到值为9-.故答案为9-.【点睛】本题考查了相反数,倒数,绝对值,求代数式的值的应用,能根据已知得出a +b =0,cd =1,x =±3是解此题的关键.14.【答案】−14【知识点】绝对值的意义、有理数大小比较、有理数加法运算【分析】本题考查绝对值和有理数大小比较,关键是掌握绝对值的性质;找出绝对值不小于2且小于512的所有负整数,相加即可得到结果.【详解】解:绝对值不小于2且小于512的整数包括:±2,±3,±4,±5,其中负整数有:−2 −3 ∴绝对值不小于2且小于512和为:−2+(−3)+(−4)+(−5)=−14.故答案为:−14.15.【答案】9-【分析】先根据相反数的性质列等式,得到|2||3|0a b -++=,再根据绝对值的非负性解得a b 、的值,代入求解即可.【详解】两个数互为相反数,则相加和为0,即|2||3|0a b -++=,根据绝对值的非负性,求得2a = 3b =- 则()239a b -=--=-.故答案为:9-【点睛】本题主要考查了绝对值、相反数与乘方的综合运算,掌握各概念性质是解题的关键.16.【答案】−2 3 −0.5【知识点】用数轴上的点表示有理数、相反数的定义、数轴上两点之间的距离【分析】本题考查数轴的综合应用,熟练掌握点在数轴上的表示、数轴的意义及三要素、相反数的意义和性质等是解题关键.根据各点之间的位置关系、原点位置及相反数的性质解答;【详解】解:由题意可知:AB =2 AC =5 BC =3①以B 为原点时,点A 表示的数是−2,点C 表示的数是3若A ,C 表示的两个数互为相反数,则AC 的中点(如图,设为D )为原点①AD =CD =2.5 BD =AD −AB =0.5且D 在B 的右边①点B 表示的数是−0.5;故答案为:−2 3 −0.5.17.【答案】(1)养护小组在出发点的北方,距离出发点15千米 (2)97千米【分析】此题主要考查有理数计算的应用.分析理解原题意是关键.(1)把这些数据相加即可得最后到达的位置及特点;(2)把这些数据的绝对值加起来可得汽车行驶的路程,再算出耗油量.【详解】(1)1797153116851615+-+--+--++=因为150>所以养护小组在出发点的北方,距离出发点15千米;(2)1797153116851697++-+++-+-+++-+-++++=所以该养护小组一共行驶了97千米.18.【答案】(1)1a =- 0b = 1c = (2)6【分析】本题考查了有理数、绝对值以及数轴(1)根据a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,即可得出a 、b ,c 的值;(2)先确定11x -≤≤,分析当11x -≤≤时113x x x +--、、的正负,去掉绝对值符号即可得出结论; 【详解】(1)①a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数①1a =- 0b = 1c =;(2)①P 在A 和C 之间①11x -≤≤①10x +> 10x -≥ 30x -< ①()()112311236x x x x x x +--+-=+--+-=19.【答案】(1)第3袋(2)不足2千克(3)149.8千克【分析】本题考查正负数表示相反意义量,绝对值,有理数加减运算,平均数,掌握正负数表示相反意义量,绝对值,有理数加减运算,平均数是解题关键.(1)先求超过或不足各数的绝对值,找出绝对值最小的即可;(2)计算超过或不足各数的和,看是正数还是负数,正数是几超过几千克,负数是不足几千克即可; (3)求出超过与不足数的平均数与150标准相加即可.【详解】(1)解:因为00=,所以第3袋的记数质量最接近标准质量.(2)解:()()()()()()()()630234224620-+-++++++++-+-+-++=-<所以10袋小麦总计不足2千克.(3)解:150102149.810⨯-=(千克) 所以每袋小麦的平均质量是149.8千克.。

新人教版七年级数学上册《第1章 有理数》单元测试卷

新人教版七年级数学上册《第1章 有理数》单元测试卷

新人教版七年级数学上册《第1章有理数》单元测试卷一、选择题(本大题共9小题,共27.0分)1.下列各数中,小于−2的数是()A. −12B. −πC. −1D. 12.计算|−12|−12的结果是()A. 0B. 1C. −1D. 143.一个数的绝对值等于它的相反数,这个数不会是()A. 负整数B. 负分数C. 0D. 正整数4.若三个有理数的和为0,则()A. 三个数可能同号B. 三个数一定为0C. 一定有两个数互为相反数D. 一定有一个数等于其余两个数的和的相反数5.−3的负倒数()A. 3B. −3C. 13D. −136.如果|a|=−a,下列成立的是()A. a>0B. a<0C. a>0或a=0D. a<0或a=07.若a+b<0,ab<0,则下列说法正确的是()A. a,b异号,且负数的绝对值大B. a,b异号,且a>bC. a,b异号,且a的绝对值大D. a,b异号,且正数的绝对值大8.已知有理数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A. |m|<1B. mn<0C. n>1D. m−n>09.下列各组数中,数值相等的有()①−27与(−2)7;②−22与(−2)2;③(−1)2018与−1;④455与1625.A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共11小题,共33.0分)10.一个数的相反数是最大的负整数,这个数是______;若|−x|=5.5,则x=______;若|−a|=a,则a______0.11.|−8|=______.12.用“>”“<”或“=”号填空:−78______ −89;−2.5______ −212;−|−13|______ 14.13.−3的倒数是______ ,−3的绝对值是______ .14.(−1)99+(−1)100=______ .15.若|−a|=|−513|,则a=______.16.用科学记数法表示:32200000=______ ;0.00002004=______ .17.(−45)5中,底数是______ ,指数是______ .18.小明在玩“24点”游戏时,抽到下列四个数2,−3,1,4,每个数只能用一次,把上面四个数进行混合运算,使运算结果为24,他列出算式为__________=24.19.如图是一组数值转换机的示意图.当输入值为9时,输出值为.20.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+⋯+32018的结果的个位数字是.三、计算题(本大题共1小题,共6.0分)21. 画出数轴,把下列各组数分别在数轴上表示出来,并用“<”连接起来:−12,2,0,−3,|−0.5|,−(−412),−22.四、解答题(本大题共5小题,共44.0分)22. 计算:(−2)2−|−7|+3−2×(−12).23. 若|m −2|+|n −5|=0,求(m −n)2的值.24.某次数学单元检测,七年级(10)班某小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,不足80分的分数记为负,成绩记录如下(单位:分):+10,−2,+15,+8,−15,−7.(1)本次检测成绩最好的为多少分?(2)本次检测小组成员中成绩最高与最低相差多少分?(3)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?25.规定一种新运算“∗”,即m∗n=(m+2)×3−n,例如3∗4=(3+2)×3−4=11,根据规定解答下列问题:(1)求2∗(−5)的值;(2)求[3∗(−2)]∗(−8)的值。

人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)

人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)

《有理数》检测题一、单选题1.实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.2.实数在数轴上的对应点位置如图所示,把,按照从小到大的顺序排列,正确的是( ).A. B.C. D.3.的计算结果为()A. B. C. D.4.在﹣,0,﹣π,﹣1这四个数中,最小的数是()A. ﹣B. 0C. ﹣πD. ﹣15.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A. (﹣3)﹣(+1)=﹣4 B. (﹣3)+(+1)=﹣2 C. (+3)+(﹣1)=+2 D. (+3)+(+1)=+46.在 0.5, 0 ,-1,-2 这四个数中,绝对值最大的数是( ) A. 0.5 B. 0 C. -1 D. -27.一个数的绝对值等于5,这个数是().A. 5B. ±5C. -5D.8.的倒数的相反数是()A. ﹣5B.C.D. 59.计算的结果等于( ).A. -2B. 0C. 1D. 210.气温由﹣1℃上升2℃后是()A. 3℃B. 2℃C. 1℃D. ﹣1℃11.武汉地区冬季某一天最高气温7℃,最低-3℃,则这一天最高气温比最低气温高()A. 10℃B. 4℃C. 8℃D. 7℃二、填空题12.(2017四川省宜宾市)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.常用成语中有“半斤八两”,旧制一斤为十六两,若一两为十六钱,则48钱为_____斤.14.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1200亿吨油当量.将1200亿用科学记数法表示为a×10n的形式,则a的值为_____.15.2017年襄阳全市实现地区生产总值4064.9亿元,数据4064.9亿用科学计数法表示为_______.16.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为_________.17.计算_______________.三、解答题18.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A 与点C距离为12个单位长度?参考答案1.C【解析】分析:根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.详解:由数轴上点的位置,得:a<−4<b<0<c<1<d.A.a<−4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>|b|,故C符合题意;D.b+c<0,故D不符合题意;故选:C.点睛:本题考查了实数与数轴、绝对值的性质.2.C【解析】分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.详解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a.故选C.点睛:本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣b<0<﹣a,是解答此题的关键.3.B【解析】分析:原式利用绝对值的代数意义计算即可.详解:原式==﹣.故选B.点睛:本题考查了有理数的减法以及绝对值,熟练掌握运算法则是解答本题的关键.4.C【解析】分析:正数大于一切负数;零大于一切负数;零小于一切正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.本题只要根据有理数大小比较方法即可得出答案.详解:根据有理数的大小比较方法可得:-π<-<-1<0,故选C.点睛:本题主要考查的是有理数的大小比较方法,属于基础题型.明白有理数的大小比较方法即可得出答案.5.B【解析】分析:根据向左为负,向右为正得出算式(-3)+(+1),求出即可.详解:∵把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,∴根据向左为负,向右为正得出(-3)+(+1)=-2,∴此时笔尖的位置所表示的数是-2.故选:B.点睛:本题考查了有关数轴问题,解此题的关键是理解两次运动的表示方法和知道一般情况下规定:向左用负数表示,向右用正数表示.6.D【解析】分析:根据绝对值的意义,数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值,由距离的多少比较即可.详解:0.5的绝对值为0.5;0的绝对值为0;-1的绝对值为1;-2的绝对值为2.因为2最大,所以绝对值最大的是-2.故选:D.点睛:此题主要考查了绝对值的意义,熟记绝对值的意义和绝对值的性质是解题关键,比较简单.7.B【解析】分析:根据绝对值的定义解答.详解:绝对值是5的数,原点左边是-5,原点右边是5,∴这个数是±5.故选B.点睛:本题主要考查了绝对值的定义,要注意从原点左右两边考虑求解.8.D【解析】分析:先根据倒数的定义得到的倒数为-5,再根据相反数的定义得到-5的相反数为5.详解:∵的倒数为-5,-5的相反数为5,∴的倒数的相反数是5.故选D.点睛:本题考查了倒数的定义,也考查了相反数的定义.9.A【解析】分析:根据有理数的减法运算法则进行计算即可得解.详解:﹣1﹣1=﹣2.故选A.点睛:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.10.C【解析】分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.详解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选C.点睛:本题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.11.A【解析】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).故选A.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.12.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.考点:1.两条直线相交或平行问题;2.有理数大小比较;3.解一元一次不等式组.13.256【解析】【分析】根据题意列出算式,计算即可得.【详解】根据题意得:48÷16=48÷42=46(两),46÷16=46÷42=44=256(斤),故答案为:256.【点睛】本题考查了有理数的乘方、同底数幂的除法,掌握相应的运算法则是解题的关键.14.1.2.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1200亿有12位,所以可以确定n=12-1=11.详解:1200亿=1.2×1011,故a=1.2.故答案为:1.2.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.4.0649×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4064.9亿=406490000000,406490000000小数点向左移动11位得到4.0649,所以4064.9亿用科学计数法表示为4.0649×1011,故答案为:4.0649×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:12000=1.2×104.故答案为:1.2×104.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.【解析】分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.18.(1) a=﹣1,b=1,c=5;(2) 1秒后点A与点C距离为12个单位长度.【解析】分析:(1)根据非负数的性质列出算式,求出a、b、c的值;(2)根据题意列出方程,解方程即可.详解:(1)由题意得,b=1,c-5=0,a+b=0,则a=-1,b=1,c=5;(2)设x秒后点A与点C距离为12个单位长度,则x+5x=12-6,解得,x=1,答:1秒后点A与点C距离为12个单位长度.点睛:本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
b O 有理数单元检测
一、选择题(每小题3分,共21分)
1.用科学记数法表示为1.999×103
的数是( )
A .1999
B .199.9
C .0.001999
D .19990 2.如果a<2,那么│-1.5│+│a-2│等于( )
A .1.5-a
B .a-3.5
C .a-0.5
D .3.5-a
3.现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有
理数只有零;③倒数等于其本身的有理数只有1;•④平方等于其本身的有理数只有1.其
中正确的有( )
A .0个
B .1个
C .2个
D .大于2个 4.下列各组数中,互为相反数的是( ) A .2与
12
B .(-1)2与1
C .-1与(-1)2
D .2与│-2│ 5.2002年我国发
现第一个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为( ) A .6×102亿立方米 B .6×103亿立方米
C .6×104
亿立方米 D .0.6×104
亿立方米
6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,
(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .0.8kg B .0.6kg C .0.5kg D .0.4kg
7.a ,b 两数在数轴上的位置如图所示,下列结论中正确的是( ) A .a>0,b<0 B .a<0,b>0 C .ab>0 D .以上均不对
二、填空题(每小题3分,共21分) 1.在0.6,-0.4,
13
,-0.25,0,2,-93
中,整数有________,分数有_________.
2.一个数的倒数的相反数是315
,这个数是________.
3.若│x+2│+│y-3│=0,则xy=________.
4.绝对值大于2,且小于4的整数有_______.
5.x 平方的3倍与-5的差,用代数式表示为__________,当x=-1时,•代数式的值为__________.
6.若m ,n 互为相反数,则│m-1+n │=_________. 7.观察下列顺序排列的等式: 9×0+1=1; 9×1+2=11; 9×2+3=21; 9×3+4=31; 9×4+5=41; ……
猜想第n 个等式(n 为正整数)应为_________________________-___. 三、竞技平台(每小题6分,共24分) 1.计算:
(1)-42×5
8
-(-5)×0.25×(-4)3
(2)(41
3
-3
1
2
)×(-2)-2
2
3
÷(-
1
2

(3)(-1
4
)2÷(-
1
2
)4×(-1)4 -(1
3
8
+1
1
3
-2
3
4
)×24
2.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:
+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?
3.已知(x+y-1)2与│x+2│互为相反数,a,b互为倒数,试求x y+ab的值.
4.已知a<0,ab<0,且│a│>│b│,试在数轴上简略地表示出a,b,-a与-b的位置,并用“<”号将它们连接起来.
四、能力提高(1小题12分,2~3小题每题6分,共24分)
1.计算:
(1)1-3+5-7+9-11+…+97-99;
(2)(1
3
-
1
5
)×52÷|-
1
3
|+(-
1
5
)0+(0.25)2003×42003
2.一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所
显示的数据,可推出“?”处的数字是多少?
(1)
451
(2)
3
21
(3)
5
3
?
3.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,•再向左移动5个单位
长度,可以看到终点表示的数是-2,已知点A ,B 是数轴上的点,•请参照图1-8并思考,完成下列各题:
-5-4
-3
-2
-1
2
3
4
5
6
7
8
53
1
(1)如果点A 表示数-3,•将点A•向右移动7•个单位长度,•那么终点B•表示的数是_______,
A ,
B 两点间的距离是________; (2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,• 那么终点B 表示的数是_______,A ,B 两点间的距离为________;
(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256•个单位长度,那么终点B 表示的数是_________,A ,B 两点间的距离是________.
(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p•个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?
五、(10分)某检修小组1乘一辆汽车沿公路检修线路,约定向东为正。

某天从A 地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。

另一小组2也从A 地出发,在南北向修,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8。

(1)分别计算收工时,1,2两组在A 地的哪一边,距 A 地多远? (2)若每千米汽车耗油a 升,求出发到收工各耗油多少升?
答案:
一、1.A 2.D 3.B 4.C 5.B 6.C 7.A
二、1.0,2,-9
3
0.6,-0.4,
1
3
,-0.25 2.
5
16
3.-6
4.±3 5.3x2+5 8 6.•1 • •7.10n-9
三、1.(1)-90 (2)11
3
(3)2
2.提示:(1)+10-2+3-1+9-3-2+11+3-4+6=30(千米),在距出发地东侧30千米处.(2)2.8×(10+2+3+1+9+3+2+11+4+3+6)=151.2(升).
所以从出发到收工共耗油151.2升.
3.解:由(x+y-1)2+│x+2│=0,
得x=-2,y=3,且ab=1.
所以x y+ab=(-2)3+1=-7.
4.解:数轴表示如图3所示,a<-b<b<-a.
四、1.(1)-50 (2)10 2.6
3.(1)4 7 (2)1 2 (3)-92 88
(4)终点B表示的数是m+n-p,A,B两点间的距离为│n-p│.
五、1.(1)100 (2)10000 (3)n2
2.(1)
50
12
n
n =
∑(2)50
3.(1)-135 (2)a
1q n-1(3)•a
1
=5,a
4
=40.。

相关文档
最新文档