《材料力学》教学中的一些生活和工程实例
材料力学在生活中的应用:运动篇
•
香 蕉 球 原 理
怎样踢出香蕉球?
图一 足球在没有旋转下 水平运动的情形 (在此 图中球正在向下运动) 图二 足球只有旋转而没 有水平运动的情形 图三 「香蕉波」–足球 水平运动和旋转两种运 动同时存在的情形
弧线球的运用
台 球 中 的 弧 线 球
体育木地板要求对地板表层材质进行精选,必须选择软硬适中、 变形量微。长纤维结构(不易起刺)的树种,以免除对运动员皮 肤的伤害。长期以来的实践所证明,枫木为最理想。 枫木地板 性能: 1、含有纤维不容易断裂脱落的特点,以及在变形后仍 可变回原状的优点。同时较长的木纤维和紧密的木纤维结构, 使枫木材料有着很好的弹性和硬度 2、能有效地抗震,减少震 动,隔音; 3、独特的弹力软垫,为坚硬的枫木地板提供独特 的弹性及承受重压、减少运动员在地板上因弹跳所带来的震伤。 枫木以坚韧度高及级数第一见称,每条枫木地板尺寸为56mm 宽,22mm厚,长度由0.2m至2.4m不等,用特制的鱼钩钉在 64mm宽38mm厚1.2m长的松木方上,其底部附有弹力软垫, 平放在预铺有0.08mm厚的防潮胶纸的平整地面上。 特点: 1. 不翘曲变形, . 不伤原地面; 2. 环保健康; 3. 不滋生白蚁; 4. 防静音功能; 5. 无施工污染; 6. 可拆装、维护、保存;
对乒乓球旋转的力学分析
——伯努利定理和平行四边形法则
怎么选择一双适合自己双脚的溜冰鞋? 首先先看它的刚性强不强。第一是溜冰鞋的脚踝部分。这一个地方是支 撑身体重量的一个重要部位,它必须要有一定的硬度让练习者在不小心 跌跤的时候,能够使脚踝和小腿维持在一个直线的状况而不会弯曲。因 为弯曲的话,练习者的脚很可能就会因此而扭伤。而除了脚踝的包覆性 要高以外,还要能够有活动的「关节点」。第二点就是看溜冰鞋的底座 部分。所谓的底座就是溜冰鞋下方装置轮子的地方。这地方因为也是承 受着身体大部分的重量,所以也必需要有一定的要求。
材料力学 典型案例
材料力学典型案例材料力学是研究材料在受力作用下的变形和破坏行为的学科。
在工程实践中,材料力学与材料科学紧密结合,为工程设计和材料选择提供了理论和实验依据。
下面列举了一些典型案例,以说明材料力学在实际应用中的重要性和价值。
1. 汽车碰撞事故分析:材料力学可以用于分析汽车在碰撞事故中的变形和破坏行为。
通过对车体、座椅和安全气囊等材料的力学特性研究,可以优化汽车结构,提高碰撞安全性。
2. 桥梁设计与维护:材料力学可以用于桥梁的设计和维护。
通过对桥梁材料的强度和刚度进行分析,可以确保桥梁在承受荷载时不会发生变形或破坏,并选择合适的材料进行修复和加固。
3. 建筑结构分析:材料力学可以用于分析建筑结构的承载能力和安全性。
通过对建筑材料的力学性能进行研究,可以确定结构的合理设计方案,确保建筑物在使用过程中不会发生变形或破坏。
4. 航空航天工程:材料力学在航空航天工程中起着重要作用。
通过对航空航天材料的强度、刚度和疲劳性能进行研究,可以确保飞行器在高速飞行和复杂环境下的安全运行。
5. 医学器械设计:材料力学可以用于医学器械的设计和优化。
通过对医学器械材料的力学性能进行研究,可以确保器械在使用过程中不会产生变形或破坏,并提高其使用寿命和安全性。
6. 电子产品设计:材料力学在电子产品设计中起着重要作用。
通过对电子产品材料的热膨胀性和机械性能进行研究,可以避免因温度变化或振动引起的变形和破坏,提高产品的稳定性和可靠性。
7. 石油工程:材料力学在石油工程中具有重要意义。
通过对井下管道和设备材料的力学特性研究,可以确保石油开采过程中的安全运行,减少事故风险。
8. 3D打印技术:材料力学可以用于优化3D打印产品的设计和制造过程。
通过对不同材料的力学性能进行测试和分析,可以选择合适的材料,提高打印产品的强度和耐用性。
9. 污水处理工程:材料力学在污水处理工程中起着重要作用。
通过研究污水处理设备材料的耐腐蚀性和机械性能,可以确保设备在长期使用过程中不会发生变形或破坏。
材料力学在生活中与应用
材料力学理论在生活中的应用这篇论文选取了三个生活实例,运用材料力学所学的知识,通过受力分析,应力分析,强度校核回答了三个基本问题:铝合金封的廊子窗格是否可以无限高;千斤顶的承载重量是否可以任意大小和桥梁。
关键词材料力学拉压强度挠度剪切压杆稳定组合变形受力单元体铝合金千斤顶1.铝合金封的廊子窗格是否可以无限高图一铝合金门窗、廊子走在大街上,我们可以看到各式各样的廊子样式,可以看到大小不一的窗格布置,学了材料力学这门课程,我们不禁要提问了,窗格尺寸的极限是多么大才能保证支撑它的铝合金材料安全,不会变形?现在就将这个模型抽象出来,假设铝合金材料是空心铝管,厚度可以任意选择,屈服强度取只受玻璃给的压力(设玻璃居中,由于给定一段铝合金,主要承载件是玻璃,而且玻璃的相对总质量远远大于承载的铝合金的质量),外力是均匀分布力,设普通玻璃的密度是P kg?mm (忽略玻璃的宽度),玻璃高度为H,取长度a mm的铝合金材料,宽度为b mm,高为h mm,如图二所示:该结构危险点在铝合金与玻璃接触处, 并且中间部位有一定的挠度(只要有承载,就一定有挠度),当承载到一定极限时,挠度太大不满足装配要求了,或 者承载到一定极限就会使铝合金破坏。
情形(一):挠度w 不满足装配要求 --------将图二简化为图三(a )所示的力学简图,装配要求挠度值为[W],只要w W[W] 即可。
首先,做外力矩M F ,单位力力矩图M ,如图三(b )所示。
.. b H b HI运用图乘法可以求的w=1 x 2 X 亍x | x 4 X 2二计,进而,盍 < [w],可以满足装配要求。
如果给定了最大允许装配误差[w],知道铝合金管的宽b ,还图三(a )简化模型知道所使用的玻璃的密度p ,那么H < 48[w] 也就是玻璃不可能无限咼,是有一■图二玻璃安装示意图图三(b )弯矩图个极限值的情形(二):剪切破坏一一因为玻璃是有一定的厚度的,设厚为S在玻璃与铝合金接触的地方,有剪切力存在,考虑剪切面是矩形面,最大的剪切应力T=| X F A Q,力学简图如图四所示2 A铝合金图四铝合金侧面示意图1每个截面上,剪力F Q=2 p勸H,切面面积A = at, (t为铝合金厚度),最大剪3p H力为T=^,可见,最大剪力是一个跟铝合金长度a,宽度b,高h无关的量。
最新材料力学工程实例
一.吊车梁的强度分析:
最危险的情况:吊重作用在吊车一端
吊车受力图
吊车梁受力图
一.吊车梁的强度分析:
吊车梁剪力图
吊车梁弯矩图
一.吊车梁的强度分析:
危险面:根据弯矩图可知危险面为L=12 m处的截面,在该截面上
作用着大小为 21000 KN/m的弯矩。
由
My IZ
可知在L=12 m截面内各点的所受的正应力(忽略剪力产生
截面惯性矩:
Iz Iz1 Iz2 Iz3 0 .6* 1 0 5 .1 23 3 0 .4 6* 0 5 .1* 3 1 .442 3 0 .2 5 * 1 0 .12 3 1 0 .4 5 * 0 .1* 1 1 .942 1 2 0 .0* 3 2 .23 2 0 .0* 3 2 .2* 0 2 .22 4 0 .5 447
吊车梁受力图
二.极限时,吊车梁最大弯矩M=18165KN*m,
取M=18000KN*m,算得FA=150KN,F1=300KN
X= 1 L
7
故吊钩限位左右各1/7长度
二.改造方案
4.用斜撑加固吊车梁的方案
在原吊车梁的两端增设斜撑杆,两端铰支。使简支梁变成由梁、柱和 斜撑杆组成的静不定梁。适当调节斜撑杆的拉压刚度,即可通过斜撑 杆传递足够大的载荷,有效地减小吊车梁的极限内力。斜撑杆的轴向 力传到柱子上有一个水平分量,对柱子的稳定性构成威胁。为了平衡 这一水平力,在柱子间加设了拉杆。
12
一.吊车梁的强度分析:
危险点:最大压应力 y1.49m 9
ma xM Iz y210.4 0 *14 .0 47 0 99 7.4 0M 2 Pa 最大拉应力 y1.96m 9
ma xM Iz y 21 0.4 *0 1.4 907 6 0 99.5 2M 0 P 8M a 0 Pa 由于超出许用应力,故要对吊车梁进行改造。
材料力学在生活中的应用
机设102班:王海雁 郑世荃 苏东运
材料力学简介 材料力学(Mecha材料nics of materials)是研究材 料在各种外力作用下产生的应变、应力、强度、刚 度、稳定和导致各种材料破坏的极限。
拉伸与压缩变形
• 液压传动机构中的活塞杆在油压和工作阻力作用 下受拉; • 内燃机的连杆在燃气爆发冲程中受压; • 起重机钢索在吊重物时,拉床的拉刀在拉削工件 时,都承受拉伸; • 千斤顶的螺杆在顶起重物时,则承受压缩; • 桁架中的杆件不是受拉便是受压。
剪切变形
• 生活中机械常用的连 接件,如铆钉、键、 销钉、螺栓等在连接 中出现的变形属于剪 切挤压变形,在设计 时主要考虑其剪切应 力。
扭转变形
• 汽车的传动轴、转向 轴、水轮机的主轴等 轴类变形属于扭转变 形。
ቤተ መጻሕፍቲ ባይዱ
扭转变形的其他应用实例
弯曲变形
• 火车轴、起重机大梁 等的变形属于弯曲变 形。
其他弯曲变形实例
组合变形
• 车床主轴、电动机主 轴工作时同时发生扭 转、弯曲及压缩三种 变形。 • 钻床立柱同时发生拉 伸与弯曲两种变形。
应力集中
• 应力集中发生在切口 、切槽、油孔、螺纹 、轴肩等这些尺寸突 然改变处的横截面上 。
综合应用实例
谢谢观赏
生活中的材料力学实例分析
生活中的材料力学实例分析材料力学是研究物质在外力作用下的变形和破坏规律的一门学科。
在日常生活中,我们经常会遇到一些与材料力学相关的实例。
下面我将选择一些实例进行分析。
第一个实例是日常生活中的弹簧。
弹簧是一种能够产生恢复力的材料形式,具有很广泛的应用。
例如,我们在家里的床、沙发和椅子上经常会使用到弹簧,它们能够提供一定的支撑力和舒适感。
当我们坐在弹簧床上时,床垫下的弹簧能够根据人体的重量产生弹性变形,支撑身体并增加舒适感。
这里的弹簧可以看作是一个弹性体,受到外力后能够产生弹性变形,并通过恢复力将变形恢复到原来的形态。
弹簧的力学性质等取决于其材料的选择和制作工艺,例如弹簧的刚度和耐久性。
第二个实例是汽车的车身结构。
汽车的车身是由各种不同的材料组成的,例如钢铁、铝合金和碳纤维等。
在汽车行驶过程中,车身需要承受各种不同的力,例如重力、碰撞力和风力等。
材料力学的理论和方法可以用来研究汽车车身的强度和刚度等机械性质。
通过对车身材料的选择和设计结构的优化,可以提高汽车的安全性和性能。
第三个实例是建筑物的结构设计。
建筑物的结构不仅要承受自身的重力,还要考虑外界风力、地震等因素对结构的影响。
材料力学的知识可以用来分析建筑物的受力和变形规律,以及选取合适的材料和设计结构来保证建筑物的安全性。
例如,在高楼大厦的设计中,需要考虑到强度、刚度和稳定性等因素,以确保建筑物能承受风力和地震等外界力所带来的挑战。
第四个实例是医疗器械的设计与使用。
医疗器械的设计与制造需要考虑材料的力学性能,以保证其在使用过程中的安全性和有效性。
例如,人工关节的设计需要考虑到骨骼的力学特性以及韧带和肌肉的作用力。
材料力学的理论和方法可以用来优化人工关节的形状和材料的选择,以实现更好的适应性和稳定性。
第五个实例是体育用品的设计与制造。
体育用品的设计需要考虑到材料的强度、刚度、耐磨性和韧性等特性,以满足运动员的需求。
例如,篮球的弹性和柔韧性对运动员击球的效果有很大影响,而击剑运动需要剑的刚度和耐弯曲性来确保安全。
材料力学在生活中的应用
材料力学在生活中的应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
b5E2RGbCAP关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
p1EanqFDPw 1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
拉压,扭转,弯曲,剪勿的工程实例和生活中的实例,力学模型,力
3总结
通过文中变形案例的有限元数值模拟,以及课堂的实践,可以发现:动态演示直观展示了材料的变形过程,会帮助学生认识作用在杆件上的外力,以及由外力引起的变形,从而建立外力和变形的关系;通过对于力学参量的求解和展示,使得抽象的力学参量形象直观地呈现出来,加深对于基本力学概念的理解。同时,利用基本理论和计算方法进行理论求解,并与限元对变形模拟的数值解进行对比分析,加深了学生对于基本理论的理解和应用,拓宽了学习方法。这是本论文的探究目标所在。此外,将有限元数值模拟引入到力学课堂,对于变形进行数值模拟,还有许多工作可以进行,比如:文中以轴向拉压和压杆屈曲变形为案例,后续还应补充扭转、弯曲和组合变形等。
拉压,扭转,弯曲,剪勿的工程实例和生活中的实例,力构或构件的安全设计提供有效的理论知识和计算方法,内容以构件的基本力学变形方式为线索,包括拉伸压缩、扭转、弯曲、组合变形、细长杆压缩等,展开对于外力、变形、内力、应力、应变等基本力学参量的逐层介绍,进而深入理解各参量概念、物理意义、工程意义,并基于一定的强度、刚度、稳定性条件,通过对某些参量的计算,对工程结构或构件进行设计和校核。
1杆件轴向拉压变形案例
文中选取杆件基本的变形案例,采用ANSYS有限元数值模拟的方法,对变形的动态过程进行仿真。同时问题的理论解,以便于深入理解对力学基本概念、基本理论和计算方法。
材料力学在生活中的应用
材料力学在生活中的应用工程力学系别:专业:姓名:学号:班级:工程力学在材料中的应用在我们所学习的孟凡深版《工程力学》中的绪论谈到工程力学包括理论力学的静力学和材料力学的有关内容,是研究物体机械运动的一般规律和有关构件的强度、刚度、稳定性理论的科学,是一门理论性和实践性都较强的专业基础课。
工程力学是研究有关物质宏观运动规律,及其应用的科学。
工程力学提出问题,力学的研究成果改进工程设计思想。
从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。
人类对力学的一些基本原理的认识,一直可以追溯到史前时代。
在中国古代及古希腊的著作中,已有关于力学的叙述。
但在中世纪以前的建筑物是靠经验建造的。
1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于梁内应力分布的研究还是很不成熟的。
纳维于1819年提出了关于梁的强度及挠度的完整解法。
1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》,这被认为是弹性理论的创始。
其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。
早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。
欧拉提出了理想流体的运动方程式。
物体流变学是研究较广义的力学运动的一个新学科。
1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。
它分实验研究和理论分析与计算两个方面。
但两者往往是综合运用,互相促进。
工程力学:包括实验力学,结构检验,结构试验分析。
模型试验分部分模型和整体模型试验。
结构的现场测试包括结构构件的试验及整体结构的试验。
实验研究是验证和发展理论分析和计算方法的主要手段。
结构的现场测试还有其他的目的:1.验证结构的机能与安全性是否符合结构的计划、设计与施工的要求;2.对结构在使用阶段中的健全性的鉴定,并得到维修及加固的资料。
材料力学案例:教学与学习参考
竭诚为您提供优质文档/双击可除材料力学案例:教学与学习参考篇一:材料力学案例分析迈安那斯桥坍塌事故原因分析1.关键词:桥梁垮塌,组合变形,偏心载荷,设计失误2.事件背景时间:1983年6月27日,地点:美国康涅狄格州迈安那斯(mianus)河桥垮塌,造成4辆汽车掉落桥下,3人死亡,多人受伤。
图1垮塌的迈安那斯河桥该桥梁结构属于钢结构的多跨静定梁,建成于1958年,桥龄25年。
大桥双向各三线车道,每日车流量超过10万次。
大桥的悬臂式的结构在建桥当时是很流行的样式:主跨为两端外伸梁,主跨两侧各有一段约30米长的悬吊梁垮。
垮塌的是东悬吊跨的一段梁,其西端接在称为轴台的支架上,用水平销连接到中跨梁外伸段的自由端;东端以销接吊件连接在东边悬臂梁的末端,正是此悬吊组件的破坏导致了大桥的坍塌。
1983年春末,大桥边的居民向当局反映他们听到桥身发出尖锐的声响。
过去至少五六年来,这些居民陆续在河边检到桥上掉下来的混凝土碎块或碎钢屑,每次他们都尽责地向公路局报告。
而近来在轰隆的车流声中,他们又听到了新增的噪音。
一位居民表示:“像是几千只鸟同时唧喳地发出刺耳的鸣叫。
整个周末,都可以清楚地听到这样的声音。
”6月27日星期一凌晨1:30左右,大桥在一声巨响中发生坍塌。
图2悬吊梁的支撑结构3.事故过程与关键性细节康州公路局长看了现场的残骸后,表示他发现了桥梁倒塌的可能线索:把掉下去的桥身和悬臂式钢梁拴在一起的栓销少了一个。
这个长约18厘米的栓钉的一部分残余物最后在河里被捞起,其余的部分还在桥上,它看起来像是被剪断的。
事故起因是因为栓销断裂,还是另有原因?为了解开谜团,局长请来了专家,另外还有3家独立的工程公司和国家交通安全局的代表以及法院指派的工程师都参与了事故调查,可是各方都强调不同的理由并得出不同的结论。
事故调查最终认定了事件是按照如下的过程发生的。
这座桥在过去25年里,由于排水口误被铺路面的材料封掉,使得雨水不断从路面流到支撑桥体的悬吊组件里,浸入吊板和栓销中并产生锈蚀和冬季的冻胀;每一次,当汽车驶过桥面时,都会在吊板上产生侧推力,从而把吊板在栓销上的位置向外推,道桥与河流的斜交效应(540角)增大了上述侧推力;在悬吊跨梁的东南角上,侵蚀力、冻胀力和侧推力相叠加而形成了特别大的力,使用于约束栓销的销帽向外弯曲直至被推出去;在倒塌发生的几小时前或几天前,内吊板的下部很可能已经脱离开了栓销,使整个悬吊跨梁的东南角下倾了一点。
材料力学中的工程案例 (1)
材料力学中的工程案例
1 工厂吊车梁的改造
某工厂车间的吊车梁原来设计吊重为250吨,现需要升级至350吨,企业委托学校进行升级改造。
原梁为跨长24米的工字型简支梁,材料Q235钢,翼缘部分由多层钢板叠置组合而成,腹板为单层钢板,连接方式为铆钉连接和焊接,截面如图所示。
要求:由于车间生产任务重,做到改造期间不停产。
2、组合截面强度分析
古代寓言“七根筷子”:有一个老人,他有七个儿子,儿子之间不和睦,老人很担心。
临终前把七个儿子叫到床前,给每人一根筷子,让他们折断筷子。
七个儿子很容易的做到了,老人又拿出七根筷子,把他们捆成一捆,并用绳子捆紧,然后让七个儿子试着去折断筷子,可是却没有一个儿子能做到。
儿子们悟出来一个道理,也明白了父亲的愿望,让他们团结起来,从此就不会被人欺负了。
试通过材料力学分析折断七根筷子所用的力量是折断一根筷子的多少倍?(基于弯曲受力方式)
基于其它受力方式(拉伸和压缩)是否也有如此效应呢?。
材料力学在工程和生活中的应用
材料力学在工程和生活中的应用当我们学习了材料力学,我们就会发现身边的每一个角落都运用到了材料力学的原理。
事实上,除了生活中用到了材料力学,工程上,材料力学也发挥了很大的作用。
大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观,可是却不实用,它们经常因为撕不开而遭到我们的嫌弃。
相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多么特殊,都能轻松地撕开一个大口子。
这是为什么呢?这其实运用到了圣维南原理。
当我们沿着锯齿的凹槽撕的时候,手指所加的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生应力集中现象。
此时凹槽处的切应力会急剧增大,那么只要手指稍稍用力,就很容易从这里把它撕开。
这种应用应力集中的现象生活中还有很多。
比如掰黄瓜,有时候我们想把黄瓜掰成两段时,往往会先用指甲在黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就很容易被掰成两段。
同样的,因为在小缝处应力集中,黄瓜上作用的两个力矩使得缝隙处的切应力急剧增大,于是黄瓜中间截面发生脆断。
再比如撕布条,如果一块完整的布条要将其撕成两半是很困难的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。
像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。
所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。
当我们讨论完这两几个实例后,回头再想想材料力学课程的几大知识点,发现它们之间的联系是那么的密切,实际生活中我们遇到的承载材料一般都不是绝对的拉压杆,轴或者梁,它们往往是几种基本变形的组合,在分析时几乎要用到我们材料力学课程里所有的知识点。
材料力学在生活中的应用.doc
材料力学在生活中的应用.doc材料力学是研究材料特性、应力应变关系及其变形和断裂等规律,以及受力或受热条件下材料的性能、结构和效应的工程科学与技术的总称。
它是掌握材料的基础,也是研究混凝土、木材、钢材、玻璃、橡胶等通常在工业和日常生活中应用最多的材料的基本理论和综合的方法。
在生活中,材料力学有广泛的应用,以满足人们的需求。
首先来讲讲材料力学在汽车领域的应用,不少汽车制造厂都是根据材料力学原理来进行设计和制造的。
只有充分考虑到不同部件在不同真实使用条件下变形和分析强度和稳定性,才能安全地保证汽车的安全性能。
此外,材料力学在结构机械和生产机械的设计和制造中得到了广泛的应用。
这类机械及其部件不仅需要具有超强的承载能力,而且要考虑到各种断裂模式、疲劳损伤及其非线性行为等,这要求结构机械和生产机械的设计和制造,都要考虑到材料力学这一学科原理。
材料力学在航空产品及其制造中应用更加广泛。
由于航空产品外形优美,体积小,结构复杂,需要考虑多种材料性能。
这些材料的强度、韧性、硬度等,需要经过严格的材料力学的理论研究和实验测试,才能确定。
在军用航空器的设计制造中,需要考虑材料力学各种因素,以确保其最大限度地提高效能、改善性能和保证安全。
最后,材料力学在土木工程、桥梁工程建设中也发挥了重要作用。
桥梁的设计需要考虑延展性、韧性、抗振性等性能的变化,以保证桥梁的安全稳定性以及延长使用寿命。
总之,材料力学在汽车、结构机械、生产机械、航空产品、土木工程和桥梁工程等方面有广泛的应用,充分展示了它在生活应用中的重要作用。
只有正确理解材料力学知识并运用得当,我们才能更好地使用所使用的材料,从而实现安全、经济而有效的生活。
材料力学在生活中的应用 (1)
材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
机械式千斤顶(如图一(a)示),设其丝杠长度为l ,有效直径为d ,弹性模量E ,材料抗压强度为,承载力大小为F ,规定稳定安全因数为。
【完整版】材料力学在工程实际中的应用
【完整版】材料力学在工程实际中的应用材料力学在工程实际中的应用材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。
而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。
材料力学在生活中的应用十分广泛。
大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。
各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。
生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。
说到材料力学,我们首先应该了解它的属性。
材料力学在工程中常用的属性主要有:1.密度ρ:密度与结构自重和地震荷载有关。
2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。
3.强度f:材料的承受能力。
4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。
5.剪切模量G:指的是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量。
材料力学研究的主要问题是杆件的强度、刚度和稳定性问题,因此,制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是钢体。
变形固体中的变形就成为它的主要基本性质之一,必须予以重视。
例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。
因此,在材料力学中我们必须把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。
用身边的例子讲材料力学
用身边的例子讲材料力学
材料力学是研究材料的力学性能的学科,是工程力学的一个分支。
它既包括材料的力学性能的研究,也包括材料的结构和特性的研究。
用身边的例子来讲材料力学,可以从常见的物体中发现各种有趣的现象。
比如,玩具汽车的轮子,它们的外形是圆的,但实际上它们是由许多小的碎片组成的,这些碎片是通过一种叫做“压缩”的力学原理拼接而成的,这种力学原理可以让碎片在外力的作用下紧密联结在一起,形成一个稳定的整体。
再比如,一根绳子,它看上去是细长的,但实际上它是由许多细小的纤维组成的,这些纤维之间通过一种叫做“拉伸”的力学原理紧密结合在一起,形成一个稳定的整体,而这种力学原理可以让绳子有更强的承载能力。
最后,桥梁也是一个很好的例子,它们看上去很结实,但实际上它们是由许多小的金属组件组成的,这些组件之间通过一种叫做“弯曲”的力学原理紧密结合在一起,使桥梁有更强的承载能力,从而能够抗压和抗拉。
从上面的例子可以看出,材料力学是一个复杂而又有趣的学科,它涉及到许多不同的力学原理,可以让我们更好地了解材料的结构和性能,从而帮助我们更好地利用这些材料。
材料力学在生活中的应用
材料力学在生活中的应用Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
材料力学在生活中的应用
材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
机械式千斤顶(如图一(a)示),设其丝杠长度为l ,有效直径为d ,弹性模量E ,材料抗压强度为,承载力大小为F ,规定稳定安全因数为。