【经典复习强化】(全国通用)2019届高考物理一轮复习精讲 第14讲 机械能守恒定律及其应用
【名师讲解】高三物理一轮复习:五 机械能、动量守恒定律(96张PPT)
方 法 技 巧
⑴机车以恒定功率启动
增大,F= P/ 减少
机车启动问题的两种物理模型
a= F F f 减少
m
当 a=0 时,即 F= Ff 时, 达到最大 值 m
保持 m 匀速 运动
其 v-t图象如图
m
O
t
⑵ 机车由静止开始做匀加速运动
a= F F f ,a 一定,则 F
2、功率
.定义:功跟完成这些功所用 时间 的比值叫做功率
.物理意义:反映力对物体做功的 快慢 。
(3).公式: 定义式:P=W/t 导出式:P=Fv cosθ , θ为F与v 之间的夹角 (4).平均功率和瞬时功率 平均功率:描述在一段时间内做功的快慢,用P= W/t 计算,若用P=F Vcosθ 计算, V为时间t内的 平均速度 。 瞬时功率:描述某一时刻做功的快慢,用P=F Vcosθ 计算, v表示该时刻的 瞬时速度 ,P表示该时刻的 。 瞬时功率 (5).额定功率和实际功率 额定功率:机器正常工作时的最大输出功率,也就是机 器铭牌上的标称值. 实际功率:机器在工作中实际输出的功率. 机器不一定在额定功率下工作,机器的实际功率总是小 于或等于额定功率.
54J
18W
36W
【练习2】 、从空中以40m/s的初速度平抛一重为10N的物体,
物体在空中运动3s落地,不计空气阻力,取g=10m/s2,则物 体落地时重力的瞬时功率是多少?3s内重力的平均功率为多少?
300W
150W
【练习3】 (资料第71页例题5).如图所示小物体位于光滑的斜 面上,斜面位于光滑的水平地面上,从地面上看,在小物体 沿斜面下滑的过程中,斜面对小物体的作用力( B ) A.垂直于接触面,做功为零; B.垂直于接触面,做功不为零; C.不垂直于接触面,做功为零; D.不垂直于接触面,做功不为零
中考一轮物理单元复习第十四章 内能利用【综合备课】(解析版)
②在做功冲程中,是机械能转化为内能;
③只有做功冲程是燃气对外做功;
④汽油机和柴油机的点火方式相同;
以上说法中正确的是( )。
A.只有①②③B.只有①③C.只有②④D.只有②③④
【答案】B。
【解析】①汽油机在吸气冲程中吸入的是汽油和空气的混合物,而柴油机吸入的是空气,所以在吸气冲程中,都会吸入空气,故①正确;②在汽油机的做功冲程中,是内能转化为机械能,故②错;③在汽油机的四个冲程中,只有做功冲程是燃气对外做功,故③正确;④汽油机和柴油机的点火方式不同,汽油机中有火花塞,采用的是点燃式点火;而柴油机是喷油嘴喷出雾状柴油,进行压燃式点火,故④错误。所以只有①③正确。故选B。
A. ①B. ②C. ③D. ④
【答案】C。
【解析】A.汽油机的一个工作循环中,压缩冲程结束后,下个冲程是做功冲程,有图①可知,活塞向上运动,排气门打开,所以图①是排气冲程,故A不符合题意;
B.汽油机的一个工作循环中,压缩冲程结束后,下个冲程是做功冲程,有图②可知,活塞向下运动,进气门打开,所以图②是吸气冲程,故B不符合题意;
D、物体内能增加时,温度可能不变,例如,晶体吸热熔化时,故D正确。故选D。
二、填空题
5.(2020·江西省2020中等学校招生考试模拟)如图所示的是四冲程汽油机工作状态示意图,由图可以看出,此时它正处在_______冲程;为了降低汽油机内汽缸的温度,汽缸外有一个水箱将汽缸包围住,这是通过____________的方式减少汽缸的内能。
干泥土
0.84×103
表 3:几种燃料的热值
燃料
热值(J/kg)
干木柴
约 1.2×107
无烟煤
约 3 4×107
功和机械能(高频考点精讲)(原卷版)-2022年中考物理一轮复习高频考点精讲与易错题精选(全国通用)
第十一章功和机械能(高频考点精讲)考点01 功【高频考点精讲】1、功的概念:如果一个力作用在物体上,物体在这个力的方向上通过了一段距离,力学里就说这个力做了功。
2、做功的两个必要因素:一个是作用在物体上的力,另一个是物体在这个力的方向上移动一段距离。
两个因素必须都有,缺一不可,否则就没有做功。
3、力对物体不做功的情况,可分为以下三种情况:(1)物体受到力的作用但没有通过距离,这个力对物体没有做功,例如人用力推箱子,但是没有推动;一个人提着书包站着不动,力都没有对物体做功。
(2)物体由于惯性通过一段距离,但物体没有受到力的作用,这种情况也没有做功,例如在光滑的冰面上滑动的冰块,由于惯性向前运动,虽然在水平方向上通过了一段距离,但是并没有水平方向上的力作用于它,所以没有力对冰块做功。
(3)物体通过的距离跟它受力的方向垂直,这种情况虽然有力的作用,物体也通过了一段距离,但这个距离不是在力的方向上通过的距离,这个力也没有做功。
例如人在水平面上推车前进,重力的方向是竖直向下的,车虽然通过了距离,但不是在重力方向上通过的距离,因而重力没有对车做功。
4、功的计算:(1)公式:功等于力与物体在力的方向上移动距离的乘积,W = F s;(2)单位:国际单位制中,力(F)的单位是牛(N),距离(s)的单位是米(m),功的单位是牛×米(N•m),用专门的名称叫做焦耳,简称焦,符号J。
【热点题型精练】1.根据如图所示的几个情景,下列说法正确的是()A.女孩搬起一个箱子,女孩对箱子做了功B.司机费了很大的力也未能推动汽车,但司机对汽车做了功C.吊车吊着货物水平移动一段距离,吊车对货物做了功D.足球被踢出后在草地上滚动的过程中,运动员对足球做了功2.小李同学先后用同样大小的力F使同一木箱分别在如图所示甲、乙、丙三个表面上沿力的方向移动相同的距离,该力F在这三个过程中所做的功分别为W甲、W乙、W丙,关于做功大小的下列说法正确的是()A.W甲<W乙<W丙B.W甲>W乙>W丙C.W甲=W乙=W丙D.W甲=W乙<W丙3.如图所示,斜面高为1m,长为4m,用沿斜面向上大小为75N的拉力F,将重为200N的木箱由斜面底端匀速缓慢拉到顶端,下列关于做功的判断正确的是()A.木箱受到重力做功的大小为800JB.木箱受到斜面摩擦力做功大小为100JC.木箱受到合力做功的大小为125JD.木箱受到斜面的支持力做功大小为200J4.如图甲所示,物体在水平拉力F的作用下由静止沿粗糙水平面向右运动,0~6s内拉力随时间变化的规律如图乙,速度随时间变化的规律如图丙,则在2~4s内,物体克服摩擦力所做的功为()A.10J B.30J C.50J D.80J5.如图所示的单摆,让小球从A点静止释放,小球从A点向B点摆动的过程中,小球受到的重力对小球功,细绳对小球的拉力功(均选填“做”或“不做”)。
2022届高考物理一轮复习 第14讲 实验四 探究加速度与力、质量的关系 讲义(考点+经典例题)
第十四讲实验四探究加速度与力、质量的关系一.实验目的(1)学会应用控制变量法研究物理规律。
(2)探究加速度与力、质量的关系。
(3)掌握利用图像处理数据的方法。
二.实验原理(1)控制变量法①保持质量不变,探究加速度与合力的关系。
②保持合力不变,探究加速度与质量的关系。
(2)求加速度a=x4+x5+x6-x1-x2-x39T2或a=ΔxT2。
三.实验器材小车、砝码、小盘、细绳、一端附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺。
四.实验步骤(1)质量的测量:用天平测量小盘和砝码的质量m′和小车的质量m。
(2)安装:按照如图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车施加牵引力)。
(3)用阻力补偿法测合力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑。
(4)操作:①小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,断开电源,取下纸带,编号码。
②保持小车的质量m不变,改变小盘和砝码的质量m′,重复步骤①。
③在每条纸带上选取一段比较理想的部分,测加速度a。
④描点作图,作a-F的图像。
⑤保持小盘和砝码的质量m′不变,改变小车质量m,重复步骤①和③,作a-1 m图像。
五、数据处理和实验结论1.探究加速度与力的关系(1)根据多组(a ,F)数据作出aF 图象。
若图象是一条过原点的直线,可判断a∝F 。
(2)实际情况分析①图象解析式为a =1m +M ·mg 。
可见连接数据点和坐标系原点的直线斜率为1m +M 。
若M 为定值,则随着m 的增大,此斜率会减小 ,当m 不再远小于M 时,图象向下弯曲。
②mg =0时,小车具有非零的加速度a ,这说明平衡摩擦力过度。
③mg =0时,a =0;mg≠0时,a ≠0。
这说明摩擦力被平衡。
④当mg 增大到某值时,小车才具有非零的加速度a ,这说明平衡摩擦力不足或没有平衡摩擦力。
2020版新一线高考物理(人教版)一轮复习教学案:第14章 第1节 机械振动 含答案
第1节机械振动知识点一| 简谐运动的特征1.简谐运动(1)定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
(2)平衡位置:物体在振动过程中回复力为零的位置。
(3)回复力①定义:使物体返回到平衡位置的力。
②方向:总是指向平衡位置。
③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。
2.简谐运动的两种模型[(1)简谐运动的平衡位置就是质点所受合力为零的位置。
(×)(2)做简谐运动的质点先后通过同一点,回复力、速度、加速度、位移都是相同的。
(3)做简谐运动的质点,速度增大时,其加速度一定减小。
(√)简谐运动的“五个特征”1.动力学特征:F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数。
2.运动学特征:简谐运动的加速度的大小与物体偏离平衡位置的位移的大小成正比,而方向相反,为变加速运动,远离平衡位置时,x 、F 、a、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反。
3.运动的周期性特征:相隔T 或nT 的两个时刻,振子处于同一位置且振动状态相同。
4.对称性特征(1)相隔T 2或(2n +1)2T (n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反。
(2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。
(3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP′。
(4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO 。
5.能量特征:振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。
[典例] (多选)如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C 、D 两点之间做周期为T 的简谐运动。
高考物理第一轮复习资料(知识点梳理)
学习必备欢迎下载高考物理第一轮复习资料(知识点梳理)学好物理要记住:最基本的知识、方法才是最重要的。
学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)(最基础的概念、公式、定理、定律最重要)每一题弄清楚(对象、条件、状态、过程)是解题关健力的种类 : ( 13 个性质力)说明:凡矢量式中用“重力:G = mg弹力: F= Kx滑动摩擦力: F 滑 = N静摩擦力:O f 静f m浮力: F 浮 = gV 排压力 : F= PS =ghs+”号都为合成符号“受力分析的基础”万有引力:m 1 m 2电场力: F 电 =q E =qu q1 q2(真空中、点电荷 ) F 引=G2库仑力: F=Kr 2r d磁场力: (1) 、安培力:磁场对电流的作用力。
公式: F= BIL( B I )方向 :左手定则(2) 、洛仑兹力:磁场对运动电荷的作用力。
公式:f=BqV (B V) 方向 : 左手定则分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大 ,但斥力变化得快。
核力:只有相邻的核子之间才有核力,是一种短程强力。
运动分类:(各种运动产生的力学和运动学条件、及运动规律)重点难点高考中常出现多种运动形式的组合匀速直线运动 F 合=0V0≠0静止匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动(决于 F 合与 V0的方向关系 ) 但 F 合=恒力只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等圆周运动:竖直平面内的圆周运动(最低点和最高点 );匀速圆周运动 (是什么力提供作向心力)简谐运动;单摆运动;波动及共振;分子热运动;类平抛运动;带电粒子在f洛作用下的匀速圆周运动物理解题的依据:力的公式各物理量的定义各种运动规律的公式物理中的定理定律及数学几何关系FF12F222F1 F2COS F1- F2F∣ F1 +F 2∣、三力平衡: F3=F1 +F2非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向匀变速直线运动:基本规律:V t = V 0 + a t S = v o t + a t2几个重要推论:(1)推论: V t2- V 02 = 2as (匀加速直线运动: a 为正值匀减速直线运动: a 为正值)(2) A B 段中间时刻的即时速度:(3) AB段位移中点的即时速度 :V t/ 2 = V =S N 1S NV s/2 = = == VN2T(4) S 第 t 秒 = St-S t-1= (v o t + a t2) - [ v o( t- 1) + a (t- 1)2]= V 0 + a (t -)(5)初速为零的匀加速直线运动规律①在 1s 末、 2s 末、 3s 末⋯⋯ ns 末的速度比为1: 2: 3⋯⋯ n;②在 1s 、 2s、 3s⋯⋯ ns 内的位移之比为12: 22: 32⋯⋯ n2;③在第 1s 内、第2s 内、第 3s 内⋯⋯第ns 内的位移之比为1: 3: 5⋯⋯ (2n-1);④从静止开始通过连续相等位移所用时间之比为1::⋯⋯(⑤通过连续相等位移末速度比为1: 2 : 3 ⋯⋯n(6) 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(7)通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律初速无论是否为零 ,匀变速直线运动的质点 ,在连续相邻的相等的时间间隔内的位移之差为一常数;匀变速直线运动的物体中时刻的即时速度等于这段的平均速度⑴是判断物体是否作匀变速直线运动的方法。
2020年高考物理一轮复习热点题型专题14动量守恒定律及应用(学生版)
2020年高考物理一轮复习热点题型专题14—动量守恒定律及应用题型一动量守恒定律的理解和基本应用题型二碰撞模型问题“滑块—弹簧”碰撞模型“滑块—木板”碰撞模型“滑块—斜面”碰撞模型题型三“人船”模型问题题型四“子弹打木块”模型问题题型一动量守恒定律的理解和基本应用【例题1】(2019·江苏卷)质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为_________。
A.m vM B.M vmC.m vm M+D.M vm M+【例题2】(2018·湖北省仙桃市、天门市、潜江市期末联考)如图所示,A、B两物体的质量之比为m A∶m B=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车),则有()A.A、B系统动量守恒B.A、B、C及弹簧整个系统机械能守恒C.小车C先向左运动后向右运动D.小车C一直向右运动直到静止题型二碰撞模型问题1.碰撞遵循的三条原则(1)动量守恒定律(2)机械能不增加E k1+E k2≥E k1′+E k2′或p122m1+p222m2≥p1′22m1+p2′22m2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大或相等.②相向碰撞:碰撞后两物体的运动方向不可能都不改变.2.弹性碰撞讨论(1)碰后速度的求解根据动量守恒和机械能守恒⎩⎪⎨⎪⎧ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ② 解得v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2 v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则:v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2, ①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度.②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动.③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.【例题1】(2019·湖南省长沙市雅礼中学高三下学期一模)一质量为m 1的物体以v 0的初速 度与另一质量为m 2的静止物体发生碰撞,其中m 2=km 1,k <1。
【高考第一轮复习物理】机械能及其守恒定律知识梳理
本章有关功和能的概念,以及动能定理和机械能守恒定律是在牛顿运动定律的基础上,研究力和运动关系的进一步拓展.用能量的观点分析问题,不仅为解决力学问题开辟了途径,同时也是分析解决电磁学、热学领域问题的重要的思路.功和能的关系,能量的转化和守恒,往往出现在高考压轴题中,涉及的物理过程较复杂,综合性较强,涉及的知识面广,对考生的综合分析能力要求较高.对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿运动定律、动能定理、动量定理及能量守恒的方法分析问题、解决问题.【一】功和功率一、功1.做功的两个不可缺少的因素:力和物体在力的方向上发生的位移.2.功的公式:W=Flcos a ,其中F为恒力,α为F的方向与位移l的方向夹角;功的单位:焦耳(J);功是标量.3.正功和负功(1) 功的正负的意义①功是标量,但有正负之分,正功表示动力对物体做功,负功表示阻力对物体做功②一个力对物体做负功,往往说成是物体克服这个力做功(2) 功的正负的确定①若α<90°,则W>0,表示力对物体做正功② 若α=90°,则W =0,表示力对物体 不做功③ 若90°<α≤180°,则W<0,表示力对物体做 负功功的公式可有两种理解:一 、是力“F”乘以物体在力的方向上发生的位移“l cos α”;二 、是在位移 l 方向上的力“Fcos α”乘以位移 l.求解变力做功的方法:一、平均力法:如果力的方向不变力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式:来求功。
求解变力做功的方法:二、微元法:在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再对“元过程”运用必要的数学方法或物理思想处理,进而使问题得到解决.对于滑动摩擦力、空气阻力等变力,在曲线运动或往复运动时,这类力的功等于力和路程的乘积。
高考物理第一轮复习限时规范训练:机械能守恒定律及其应用(解析版)
一轮复习限时规范训练机械能守恒定律及其应用一、选择题:在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~7题有多项符合题目要求.1、关于机械能守恒,下列说法中正确的是( )A.物体做匀速运动,其机械能肯定守恒B.物体所受合力不为零,其机械能肯定不守恒C.物体所受合力做功不为零,其机械能肯定不守恒D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能削减答案:D解析:物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或削减,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2的匀加速运动时,物体肯定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能削减,故选项D正确.2.如图所示,表面光滑的固定斜面顶端安装肯定滑轮,小物块A,B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A,B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A.速率的改变量不同B.机械能的改变量不同C.重力势能的改变量相同D.重力做功的平均功率相同答案:D解析:由题意依据力的平衡有m A g=m B g sin θ,所以m A=m B sin θ.依据机械能守恒定律mgh=12mv2,得v=2gh,所以两物块落地速率相等,选项A错误;因为两物块的机械能守恒,所以两物块的机械能改变量都为零,选项B错误;依据重力做功与重力势能改变的关系,重力势能的改变为ΔE p=-W G=-mgh,所以E p A=m A gh=m B gh sin θ,E p B=m B gh,选项C错误;因为A、B两物块都做匀变速运动,所以A重力的平均功率为P A=m A g·v2,B重力的平均功率P B=m B g·v2sin θ,因为m A=m B sin θ,所以PA=P B,选项D正确.3.静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间改变关系是( )A B C D答案:C解析:物体受恒力加速上升时,恒力做正功,物体的机械能增大,又因为恒力做功为W=F·12at2,与时间成二次函数关系,选项A、B两项错误;撤去恒力后,物体只受重力作用,所以机械能守恒,D项错误,C项正确.4.如图所示,粗细匀称、两端开口的U形管内装有同种液体,起先时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流淌,当两液面高度相等时,右侧液面下降的速度为( )A.18gh B.16ghC.14gh D.12gh答案:A解析:设管子的横截面积为S ,液体的密度为ρ.打开阀门后,液体起先运动,不计液体产生的摩擦阻力,液体机械能守恒,液体削减的重力势能转化为动能,两边液面相平常,相当于右管12h 高的液体移到左管中,重心下降的高度为12h ,由机械能守恒定律得ρ·12hS ·g ·12h =12ρ·4hS ·v 2,解得,v =gh8.选项A 正确.5.如图所示,一质量为m 的小球套在光滑竖直杆上,轻质弹簧一端固定于O 点,另一端与该小球相连.现将小球从A 点由静止释放,沿竖直杆运动到B 点,已知OA 长度小于OB 长度,弹簧处于OA ,OB 两位置时弹力大小相等.在小球由A 到B 的过程中( )A .加速度等于重力加速度g 的位置有两个B .弹簧弹力的功率为零的位置有两个C .弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功D .弹簧弹力做正功过程中小球运动的距离等于小球克服弹簧弹力做功过程中小球运动的距离答案:AC解析:在运动过程中A 点为压缩状态,B 点为伸长状态,则由A 到B 有一状态弹力为0且此时弹力与杆不垂直,加速度为g ;当弹簧与杆垂直时小球加速度为g .则有两处加速度为g ,故A 项正确;在A 点速度为零,弹簧弹力功率为0,弹簧与杆垂直时弹力的功率为0,有一位置的弹力为0,其功率为0,共3处,故B 项错误;因A 点与B 点弹簧的弹性势能相同,则弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功,故C 项正确;因小球对弹簧做负功时弹力大,则弹簧弹力做正功过程中小球运动的距离大于小球克服弹簧弹力做功过程中小球运动的距离,故D 项错误.6.如图所示,滑块A ,B 的质量均为m ,A 套在固定竖直杆上,A ,B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并紧靠竖直杆,A ,B均静止.由于微小扰动,B起先沿水平面对右运动.不计一切摩擦,滑块A,B视为质点.在A下滑的过程中,下列说法中正确的是( ) A.A,B组成的系统机械能守恒B.在A落地之前轻杆对B始终做正功C.A运动到最低点时的速度为2gLD.当A的机械能最小时,B对水平地面的压力大小为2mg答案:AC解析:A,B组成的系统中只有动能和势能相互转化,故A、B组成的系统机械能守恒,选项A正确;分析B的受力状况和运动状况:B先受到竖直杆向右的推力,使其向右做加速运动,当B的速度达到肯定值时,杆对B有向左的拉力作用,使B向右做减速运动,当A落地时,B的速度减小为零,所以杆对B先做正功,后做负功,选项B错误;由于A、B组成的系统机械能守恒,且A到达最低点时B的速度为零,依据机械能守恒定律可知选项C正确;B先做加速运动后做减速运动,当B的速度最大时其加速度为零,此时杆的弹力为零,故B对水平面的压力大小为mg,由于A、B组成的系统机械能守恒,故此时A机械能最小,选项D错误.7.如图所示,A,B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B,C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手限制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直,右侧细线与斜面平行.已知A的质量为4m,B,C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,起先时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C 恰好离开地面.下列说法错误的是( )A.斜面倾角α=60°B.A获得的最大速度为2g m 5kC.C刚离开地面时,B的加速度最大D .从释放A 到C 刚离开地面的过程中,A ,B 两小球组成的系统机械能守恒答案:ACD解析:释放A 后,A 沿斜面下滑至速度最大时C 恰好离开地面,此时细线中拉力等于4mg sin α,弹簧的弹力等于mg ,则有4mg sin α=mg +mg ,解得斜面倾角α=30°,选项A 错误;释放A 前,弹簧的压缩量为x =mg k ,A 沿斜面下滑至速度最大时弹簧的伸长量为x ′=mg k,由机械能守恒定律得4mg ·2x sin α-mg ·2x =12·4mv 2+12mv 2,解得A 获得的最大速度为v =2g m 5k,选项B 正确;C 刚离开地面时,B 的加速度为零,选项C 错误;从释放A 到C 刚离开地面的过程中,A ,B 两小球、地球、弹簧组成的系统机械能守恒,选项D 错误.二、非选择题8.如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,起先时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会遇到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2) 解:设绳与水平杆夹角θ2=53°时,A 的速度为v A ,B 的速度为v B ,此过程中B 下降的高度为h 1,则有mgh 1=12mv 2A +12mv 2B ,其中h 1=h sin θ1-hsin θ2,v A cos θ2=v B ,代入数据,解以上关系式得v A ≈1.1 m/s.A 沿着杆滑到左侧滑轮正下方的过程,绳子拉力对A 做正功,A 做加速运动,此后绳子拉力对A 做负功,A 做减速运动.故当θ1=90°时,A 的速度最大,设为v A m ,此时B 下降到最低点,B 的速度为零,此过程中B 下降的高度为h 2,则有mgh 2=12mv 2A m ,其中h 2=h sin θ1-h ,代入数据解得v A m =1.63 m/s. 9.如图所示,水平地面与一半径为l 的竖直光滑圆弧轨道相接于B 点,轨道上的C 点位置处于圆心O 的正下方.在距地面高度为l 的水平平台边缘上的A 点,质量为m 的小球以v 0=2gl 的速度水平飞出,小球在空中运动至B 点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g ,试求:(1)B 点与抛出点A 正下方的水平距离x ;(2)圆弧BC 段所对的圆心角θ;(3)小球滑到C 点时,对圆轨道的压力.解:(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得l =12gt 2,x =v 0t 联立解得x =2l .(2)由小球到达B 点时竖直分速度v 2y =2gl ,tan θ=v y v 0,解得θ=45°. (3)小球从A 运动到C 点的过程中机械能守恒,设到达C 点时速度大小为v C ,由机械能守恒定律有mgl ⎝ ⎛⎭⎪⎪⎫1+1-22=12mv 2C -12mv 20 设轨道对小球的支持力为F ,有F -mg =m v 2C l解得F =(7-2)mg由牛顿第三定律可知,小球对圆轨道的压力大小为F ′=(7-2)mg ,方向竖直向下.10.如图所示,在竖直空间有直角坐标系xOy ,其中x 轴水平,一长为2l 的细绳一端系一小球,另一端固定在y 轴上的P 点,P 点坐标为(0,l ),将小球拉至细绳呈水平状态,然后由静止释放小球,若小钉可在x 正半轴上移动,细绳承受的最大拉力为9mg ,为使小球下落后可绕钉子在竖直平面内做圆周运动到最高点,求钉子的坐标范围.解:当小球恰过圆周运动的最高点时,钉子在x 轴正半轴的最左侧,则有mg =m v 21r 1 小球由静止到圆周的最高点这一过程,依据机械能守恒定律有mg (l -r 1)=12mv 21 x 1=2l -r 12-l 2解得x 1=73l 当小球处于圆周的最低点,且细绳张力恰达到最大值时,钉子在x 轴正半轴的最右侧,则有F max -mg =m v 22r 2小球由静止到圆周的最低点这一过程,依据机械能守恒定律有 mg (l +r 2)=12mv 22x 2=2l -r 22-l 2解得x 2=43l 因而钉子在x 轴正半轴上的范围为73l ≤x ≤43l .。
第14讲 动量和动量定理—人教版高一物理下册复习讲义(机构用)
第十四讲 动量和动量定理教学目标:1.了解冲量的概念,会求力的冲量;2.理解动量定理的确切含义和表达式,知道动量定理适用于变力;3.会用动量定理解释现象和处理有关问题。
重点难点:1.动量冲量的定义的理解;2.动量定理的矢量性及动量定理理解。
知识模块:知识点1:动量1.定义:物体的质量与速度的乘积叫动量2.定义式:mv P = 式中v 取地球作参考系3.方向: 动量是矢量,方向与瞬时速度v 方向相同。
4.单位:千克·米/秒 记作s m kg /⋅5.物理意义:速度是状态量,速度与质量乘积也是状态量。
质点在某一点的速度方向,沿曲线在这一点的切线方向。
6.动量变化是末动量与初动量之差,公式为12P P P -=∆它应是矢量之差,用平行四边形求出。
方向由初动量指向末动量。
知识点2:冲量1.定义:力F 和作用时间t的乘积,叫做力的冲量。
用字母I 表示2.公式: I Ft =3.单位:牛·秒 记作4.方向:冲量是矢量,方向是由力F 的方向决定。
5.冲量的物理意义:冲量是力F 在时间t 内的积累效果。
不是瞬时效果。
6.冲量的计算 :Ft I =只适合于恒力计算冲量知识点3:动量定理1. 表述:物体所受合外力的冲量等于物体动量的变化公式:00P P mv mv I t t -=-=2. 动量定理的意义(1)力对时间的积累效果是物体的动量发生变化的原因。
冲量是与作用过程有关的物理量,作用结果使物体的运动状态改变一定的量,所以力的冲量是动量变化(多少和方向)的原因。
(2)动量定理是矢量关系,冲量与动量变化不只是大小相等,方向也相同,动量变化的方向与合外力或合外力的平均力方向相同。
(运算中要用矢量运算法则)知识点4:应用动量定理的解题步骤应用动量定理解决的两类题:一是已知冲量求动量变化;一是已知动量变化求冲量。
解题步骤是(1)选择恰当的物体或物体系作为研究对象。
(2)对研究对象进行受力分析,从而确定所研究过程中所受各力的冲量。
物理(新课标)高考总复习第一轮复习课件:第十四章第一节机械振动
第十四章 机械振动与机械波 光 电磁波与相对论
考试内容
要求
全反射、光导纤维
Ⅰ
光的干涉、衍射和偏振现象
Ⅰ
电磁波的产生
Ⅰ
电磁波的发射、传播和接收
Ⅰ
电磁波谱
Ⅰ
狭义相对论的基本假设
Ⅰ
质能关系
Ⅰ
实验:探究单摆的运动、用单摆测定重力加速度
实验:测定玻璃的折射率
实验:用双缝干涉测光的波长
说明:1.简谐运动只限于单摆和弹簧振子. 2.简谐运动的公式只限于回复力公式;图象只限于位移-时间图象. 3.光的干涉只限于双缝干涉、薄膜干涉
3.运动的周期性特征:相隔 T 或 nT 的两个时刻,振子处于 同一位置且振动状态相同. 4.对称性特征 (1)相隔T2或(2n2+1)T(n 为正整数)的两个时刻,振子位置关 于平衡位置对称,位移、速度、加速度大小相等,方向相反. (2)如图所示,振子经过关于平衡位置 O 对称的两点 P、P′(OP=OP′)时,速度的大小、动能、势能 相等,相对于平衡位置的位移大小相等.
A.h=1.7 m B.简谐运动的周期是 0.8 s C.0.6 s 内物块运动的路程为 0.2 m D.t=0.4 s 时,物块与小球运动方向相反
[审题指导] 由物块简谐运动的表达式可知物块运动的振幅 A、周期 T,以及 t 时刻的具体位置,再结合自由落体运动判 断两者运动的关系.
[解析] 由物块简谐运动的表达式 y=0.1sin (2.5πt) m 知,ω =2.5π rad/s,T=2ωπ=22.5ππ s=0.8 s,选项 B 正确;t=0.6 s 时,y=-0.1 m,对小球:h+|y|=12gt2,解得 h=1.7 m,选 项 A 正确;物块 0.6 s 内路程为 0.3 m,t=0.4 s 时,物块经 过平衡位置向下运动,与小球运动方向相同.故选项 C、D 错误.
2024届高考一轮复习物理教案(新教材鲁科版):机械能守恒定律及其应用
第3讲 机械能守恒定律及其应用目标要求 1.知道机械能守恒的条件,理解机械能守恒定律的内容.2.会用机械能守恒定律解决单个物体或系统的机械能守恒问题.考点一 机械能守恒的判断1.重力做功与重力势能的关系 (1)重力做功的特点①重力做功与路径无关,只与始末位置的高度差有关. ②重力做功不引起物体机械能的变化. (2)重力势能 ①表达式:E p =mgh . ②重力势能的特点重力势能是物体和地球所共有的,重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关. (3)重力做功与重力势能变化的关系重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大.即W G =E p1-E p2=-ΔE p . 2.弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能. (2)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增大.即W =-ΔE p . 3.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.(2)表达式:mgh 1+12m v 12=mgh 2+12m v 22.1.物体所受的合外力为零,物体的机械能一定守恒.( × ) 2.物体做匀速直线运动,其机械能一定守恒.( × )3.物体的速度增大时,其机械能可能减小.(√)机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,则机械能守恒.(2)利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功(或做功代数和为0),则机械能守恒.(3)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统内也没有机械能与其他形式能的转化,则机械能守恒.例1忽略空气阻力,下列物体运动过程中满足机械能守恒的是()A.电梯匀速下降B.物体由光滑斜面顶端滑到斜面底端C.物体沿着斜面匀速下滑D.拉着物体沿光滑斜面匀速上升答案 B解析电梯匀速下降,说明电梯处于受力平衡状态,并不是只有重力做功,机械能不守恒,所以A错误;物体在光滑斜面上,受重力和支持力的作用,但是支持力的方向和物体位移的方向垂直,支持力不做功,只有重力做功,机械能守恒,所以B正确;物体沿着斜面匀速下滑,物体处于受力平衡状态,摩擦力和重力都要做功,机械能不守恒,所以C错误;拉着物体沿光滑斜面匀速上升,物体处于受力平衡状态,拉力和重力都要做功,机械能不守恒,所以D错误.例2(多选)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是()A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变量与重力势能零点的选取有关答案ABC解析在运动员到达最低点前,运动员一直向下运动,根据重力势能的定义可知重力势能始终减小,故选项A正确;蹦极绳张紧后的下落过程中,弹力方向向上,而运动员向下运动,所以弹力做负功,弹性势能增加,故选项B正确;对于运动员、地球和蹦极绳所组成的系统,蹦极过程中只有重力和弹力做功,所以系统机械能守恒,故选项C正确;重力做功是重力势能转化的量度,即W G=-ΔE p,而蹦极过程中重力做功只与初末位置的高度差有关,与重力势能零点的选取无关,所以重力势能的改变量与重力势能零点的选取无关,故选项D错误.例3(多选)如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁(不与槽粘连).现让一小球自左端槽口A点的正上方由静止开始下落,从A点与半圆形槽相切进入槽内,则下列说法正确的是()A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从A点向半圆形槽的最低点运动的过程中,小球的机械能守恒C.小球从A点经最低点向右侧最高点运动的过程中,小球与半圆形槽组成的系统机械能守恒D.小球从下落到从右侧离开半圆形槽的过程中,机械能守恒答案BC解析当小球从半圆形槽的最低点运动到半圆形槽右侧的过程中,小球对半圆形槽的力使半圆形槽向右运动,半圆形槽对小球的支持力对小球做负功,小球的机械能不守恒,A、D错误;小球从A点向半圆形槽的最低点运动的过程中,半圆形槽静止,则只有重力做功,小球的机械能守恒,B正确;小球从A点经最低点向右侧最高点运动的过程中,小球与半圆形槽组成的系统只有重力做功,机械能守恒,C正确.考点二单物体机械能守恒问题1.表达式2.应用机械能守恒定律解题的一般步骤例4 (2023·福建省龙岩第一中学月考)如图所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,所有接触面光滑,固定曲面在B 处与水平面平滑连接,AB 之间的距离s =1 m ,固定斜面高为h =0.8 m ,质量m =0.2 kg 的小物块从斜面顶端由静止释放,g 取10 m/s 2,求:(1)物块到达B 点时的速度大小;(2)弹簧被压缩到最短时所具有的弹性势能. 答案 (1)4 m/s (2)1.6 J解析 (1)物块从斜面顶端到达底端时,由机械能守恒定律得mgh =12m v B 2解得v B =4 m/s(2)由能量关系可知弹簧被压缩到最短时所具有的弹性势能E p =mgh =1.6 J.例5 (2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R ,则v =LgR,故C 正确,A 、B 、D 错误.例6 (2021·浙江1月选考·20改编)如图所示,竖直平面内由倾角α=60°的斜面轨道AB 、半径均为R 的半圆形细圆管轨道BCDE 和16圆周细圆管轨道EFG 构成一游戏装置固定于地面,B 、E 两处轨道平滑连接,轨道所在平面与竖直墙面垂直.轨道出口处G 和圆心O 2的连线,以及O 2、E 、O 1和B 等四点连成的直线与水平线间的夹角均为θ=30°,G 点与竖直墙面的距离d =3R .现将质量为m 的小球从斜面的某高度h 处静止释放.小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力.(1)若释放处高度h =h 0,当小球第一次运动到圆管最低点C 时,求速度大小v C ; (2)求小球在圆管内与圆心O 1点等高的D 点所受弹力F N 与h 的关系式; (3)若小球释放后能从原路返回到出发点,高度h 应该满足什么条件? 答案 见解析解析 (1)从A 到C ,小球的机械能守恒,有 mgh 0=12m v C 2,可得v C =2gh 0(2)小球从A 到D ,由机械能守恒定律有 mg (h -R )=12m v D 2根据牛顿第二定律有F N =m v D 2R联立可得F N =2mg (hR -1)满足的条件h ≥R(3)第1种情况:不滑离轨道原路返回,由机械能守恒定律可知,此时h 需满足的条件是 h ≤R +3R sin θ=52R第2种情况:小球与墙面垂直碰撞后原路返回, 小球与墙面碰撞后,进入G 前做平抛运动,则 v x t =v x v yg =d ,其中v x =v G sin θ,v y =v G cos θ故有v G sin θ·v G cos θg =d ,可得v G =2gR由机械能守恒定律有mg (h -52R )=12m v G 2可得h =92R .考点三 系统机械能守恒问题1.解决多物体系统机械能守恒的注意点(1)对多个物体组成的系统,要注意判断物体运动过程中系统的机械能是否守恒.一般情况为:不计空气阻力和一切摩擦,系统的机械能守恒.(2)注意寻找用绳或杆相连接的物体间的速度关系和位移关系.(3)列机械能守恒方程时,一般选用ΔE k =-ΔE p 或ΔE A =-ΔE B 的形式. 2.几种实际情景的分析 (1)速率相等情景注意分析各个物体在竖直方向的高度变化. (2)角速度相等情景①杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.②由v=ωr知,v与r成正比.(3)某一方向分速度相等情景(关联速度情景)两物体速度的关联实质:沿绳(或沿杆)方向的分速度大小相等.(4)含弹簧的系统机械能守恒问题①由于弹簧发生形变时会具有弹性势能,系统的总动能将发生变化,若系统除重力、弹簧弹力以外的其他力不做功,系统机械能守恒.②弹簧两端物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.③对同一弹簧,弹性势能的大小由弹簧的形变量决定,弹簧的伸长量和压缩量相等时,弹簧的弹性势能相等.考向1速率相等情景例7(多选)(2023·福建省厦门外国语学校月考)如图所示,半径为R的光滑圆环固定在竖直面内,质量均为m的A、B两球用长度为2R的轻杆连接套在圆环上,开始时轻杆竖直并同时由静止释放两球.当A球运动到B的初始位置时,轻杆刚好水平,重力加速度为g,则从开始运动到轻杆水平的过程中,下列说法正确的是()A.小球A、B的机械能均保持守恒B.小球A、B组成的系统机械能守恒C.轻杆水平时小球A的速度大小为2gRD.轻杆水平时小球B的速度大小为2gR答案BD解析由于环是光滑的,因此A、B组成的系统机械能守恒,当杆水平时,设A、B两球的速度大小均为v,由题意可知mg×2R=12×2m v2,则v=2gR,因为A球的重力势能转化为了A球和B球的动能,因此从开始到杆水平时,B球的机械能增加,则A球的机械能减少,故B、D正确,A、C错误.多个物体组成的系统,应用机械能守恒时,先确定系统中哪些能量增加、哪些能量减少,再用ΔE增=ΔE减(系统内一部分增加的机械能和另一部分减少的机械能相等)解决问题.考向2角速度相等情景例8(多选)(2023·安徽滁州市定远县第三中学模拟)轮轴机械是中国古代制陶的主要工具.如图所示,轮轴可绕共同轴线O自由转动,其轮半径R=20 cm,轴半径r=10 cm,用轻质绳缠绕在轮和轴上,分别在绳的下端吊起质量为2 kg、1 kg的物块P和Q,将两物块由静止释放,释放后两物块均做初速度为0的匀加速直线运动,不计轮轴的质量及轴线O处的摩擦,重力加速度g取10 m/s2.在P从静止下降1.2 m的过程中,下列说法正确的是()A.P、Q速度大小始终相等B.Q上升的距离为0.6 mC.P下降1.2 m时Q的速度大小为2 3 m/sD.P下降1.2 m时的速度大小为4 m/s答案BD解析由题意知轮半径R=20 cm,轴半径r=10 cm,根据线速度与角速度关系可知v Pv Q =ωR ωr=2 1,故A项错误;在P从静止下降1.2 m的过程中,由题意得h Ph Q=v P t vQt=21,解得h Q=0.6 m,故B 项正确;根据机械能守恒得m P gh P =12m P v P 2+12m Q v Q 2+m Q gh Q ,由A 项和B 项知v P v Q =21,h Q =0.6 m ,解得v Q =2 m/s ,v P =4 m/s ,故C 项错误,D 项正确.考向3 关联速度情景例9 (多选)(2023·福建厦门市湖滨中学月考)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .小环到达B 处时,重物上升的高度也为d B .小环在B 处的速度与重物上升的速度大小之比等于22C .小环从A 运动至B 点过程中,小环减少的重力势能大于重物增加的机械能D .小环在B 处时,小环速度大小为(3-22)gd 答案 CD解析 小环到达B 处时,重物上升的高度应为绳子缩短的长度,即h =2d -d =(2-1)d ,故A 错误;沿绳子方向的速度大小相等,将小环速度沿绳子方向与垂直于绳子方向正交分解,应满足v 环cos θ=v 物,即v 环v 物=1cos θ=2,故B 错误;环下滑过程中无摩擦力做功,只有重力和系统内的弹力做功,故系统机械能守恒,环减小的机械能等于重物增加的机械能,所以小环减少的重力势能减去小环增加的动能等于重物增加的机械能,故小环减少的重力势能大于重物增加的机械能,故C 正确;小环和重物组成的系统机械能守恒,故mgd -12m v环2=12×2m v 物2+2mgh ,联立解得v 环=()3-22gd ,故D 正确.考向4 含弹簧的系统机械能守恒问题例10(多选)如图所示,一根轻弹簧一端固定在O点,另一端固定一个带有孔的小球,小球套在固定的竖直光滑杆上,小球位于图中的A点时,弹簧处于原长,现将小球从A点由静止释放,小球向下运动,经过与A点关于B点对称的C点后,小球能运动到最低点D点,OB垂直于杆,则下列结论正确的是()A.小球从A点运动到D点的过程中,其最大加速度一定大于重力加速度gB.小球从B点运动到C点的过程,小球的重力势能和弹簧的弹性势能之和可能增大C.小球运动到C点时,重力对其做功的功率最大D.小球在D点时弹簧的弹性势能一定最大答案AD解析在B点时,小球的加速度为g,在BC间弹簧处于压缩状态,小球在竖直方向除受重力外还有弹簧弹力沿竖直方向向下的分力,所以小球从A点运动到D点的过程中,其最大加速度一定大于重力加速度g,故A正确;由机械能守恒定律可知,小球从B点运动到C点的过程,小球做加速运动,即动能增大,所以小球的重力势能和弹簧的弹性势能之和一定减小,故B错误;小球运动到C点时,由于弹簧的弹力为零,合力为重力G,所以小球从C点往下还会加速一段,所以小球在C点的速度不是最大,即重力的功率不是最大,故C错误;D点为小球运动的最低点,速度为零,小球机械能最小,由小球和弹簧组成的系统运动过程中只有重力做功,系统机械能守恒,所以小球在D点时弹簧的弹性势能最大,故D正确.例11如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放A后,A沿斜面下滑至速度最大时,C恰好离开地面.求:(1)斜面的倾角α;(2)A球获得的最大速度v m的大小.答案(1)30°(2)2g m 5k解析(1)由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面,A的加速度此时为零.由牛顿第二定律得4mg sin α-2mg=0则sin α=12,α=30°.(2)初始时系统静止且细线无拉力,弹簧处于压缩状态,设弹簧压缩量为Δx,对B:kΔx=mg 因α=30°,则C球离开地面时,弹簧伸长量也为Δx,故弹簧弹性势能变化量为零,A、B、C三小球和弹簧组成的系统机械能守恒,有4mg·2Δx·sin α-mg·2Δx=12(5m)v m2联立解得v m=2g m5k.课时精练1.如图所示,斜劈劈尖顶着竖直墙壁静止在水平面上.现将一小球从图示位置由静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法中正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能的减少量等于斜劈动能的增加量答案 B解析不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,系统机械能守恒,B正确;斜劈动能增加,重力势能不变,故斜劈的机械能增加,C错误;由系统机械能守恒可知,小球重力势能的减少量等于斜劈动能的增加量和小球动能的增加量之和,D 错误;斜劈对小球的弹力与小球位移的夹角大于90°,故弹力做负功,A 错误.2.(2021·海南卷·2)水上乐园有一末段水平的滑梯,人从滑梯顶端由静止开始滑下后落入水中.如图所示,滑梯顶端到末端的高度H =4.0 m ,末端到水面的高度h =1.0 m .取重力加速度g =10 m/s 2,将人视为质点,不计摩擦和空气阻力.则人的落水点到滑梯末端的水平距离为( )A .4.0 mB .4.5 mC .5.0 mD .5.5 m 答案 A解析 设人从滑梯由静止滑到滑梯末端速度为v ,根据机械能守恒定律可知mgH =12m v 2,解得v =4 5 m/s ,从滑梯末端水平飞出后做平抛运动,竖直方向做自由落体运动,根据h =12gt 2可知t =2h g=2×1.010s =15s ,水平方向做匀速直线运动,则人的落水点距离滑梯末端的水平距离为x =v t =45×15m =4.0 m ,故选A. 3.质量为m 的小球从距离水平地面高H 处由静止开始自由落下,取水平地面为参考平面,重力加速度大小为g ,不计空气阻力,当小球的动能等于重力势能的2倍时,经历的时间为( ) A.6H g B .2H 3g C.2H 3gD.2H g答案 B解析 设下降h 时,动能等于重力势能的2倍,根据机械能守恒:mgH =mg (H -h )+E k 即:mgH =3mg (H -h ),解得h =23H ,根据h =12gt 2解得t =2H3g,故选B. 4.(2023·武汉东湖区联考)如图所示,有一条长为L =1 m 的均匀金属链条,有一半在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/s B.522 m/sC. 5 m/sD.352m/s 答案 A解析 设链条的质量为2m ,以开始时链条的最高点的重力势能为零,链条的机械能为E =-12×2mg ·L 4sin 30°-12×2mg ·L 4=-38mgL ,链条全部滑出后,动能为E k ′=12×2m v 2,重力势能为E p ′=-2mg ·L 2,由机械能守恒定律可得E =E k ′+E p ′,即-38mgL =m v 2-mgL ,解得v=2.5 m/s ,故A 正确,B 、C 、D 错误.5.(多选)如图,一个质量为0.9 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v A =4 m/s.(取g =10 m/s 2)下列说法正确的是( )A .小球做平抛运动的初速度v 0=2 3 m/sB .P 点和C 点等高C .小球到达圆弧最高点C 点时对轨道的压力大小为12 ND .P 点与A 点的竖直高度h =0.6 m 答案 CD解析 小球恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧,则小球到A 点时的速度与水平方向的夹角为θ,所以v 0=v x =v A cos θ=2 m/s ,选项A 错误;小球到A 点时的竖直分速度v y =v A sin θ=2 3 m/s ,由平抛运动规律得v y 2=2gh ,解得h =0.6 m ,而AC 的竖直距离为R +R cos θ=0.45 m ,可知P 点高于C 点,选项B 错误,D 正确;取A 点的重力势能为零,由机械能守恒定律得12m v A 2=12m v C 2+mg (R +R cos θ),代入数据得v C =7 m/s ,在C 点时由牛顿第二定律得N C +mg =m v C 2R,代入数据得N C =12 N ,根据牛顿第三定律,小球对轨道的压力大小N C ′=N C =12 N ,选项C 正确.6.如图所示,有一光滑轨道ABC ,AB 部分为半径为R 的14圆弧,BC 部分水平,质量均为m的小球a 、b 固定在竖直轻杆的两端,轻杆长为R ,小球可视为质点,开始时a 球处于圆弧上端A 点,由静止开始释放小球和轻杆,使其沿光滑弧面下滑,重力加速度为g ,下列说法正确的是( )A .a 球下滑过程中机械能保持不变B .b 球下滑过程中机械能保持不变C .a 、b 球都滑到水平轨道上时速度大小均为2gRD .从释放a 、b 球到a 、b 球都滑到水平轨道上,整个过程中轻杆对a 球做的功为12mgR答案 D解析 对于单个小球来说,杆的弹力做功,小球机械能不守恒,A 、B 错误;两个小球组成的系统只有重力做功,所以系统的机械能守恒,故有mgR +mg (2R )=12·2m v 2,解得v =3gR ,C 错误;a 球在下滑过程中,杆对小球做功,重力对小球做功,故根据动能定理可得W +mgR =12m v 2,v =3gR ,联立解得W =12mgR ,D 正确.7.(多选)如图所示,质量为M 的小球套在固定倾斜的光滑杆上,原长为l 0的轻质弹簧一端固定于O 点,另一端与小球相连,弹簧与杆在同一竖直平面内.图中AO 水平,BO 间连线长度恰好与弹簧原长相等,且与杆垂直,O ′在O 的正下方,C 是AO ′段的中点,θ=30°.现让小球从A 处由静止释放,重力加速度为g ,下列说法正确的有( )A .下滑过程中小球的机械能守恒B .小球滑到B 点时的加速度大小为32g C .小球下滑到B 点时速度最大D .小球下滑到C 点时的速度大小为2gl 0 答案 BD解析 下滑过程中小球的机械能会与弹簧的弹性势能相互转化,因此小球的机械能不守恒,故A 错误;因为在B 点,弹簧恢复原长,因此重力沿杆的分力提供加速度,根据牛顿第二定律可得mg cos 30°=ma ,解得a =32g ,故B 正确;到达B 点时加速度与速度方向相同,因此小球还会加速,故C 错误;因为C 是AO ′段的中点,θ=30°,由几何关系知当小球到C 点时,弹簧的长度与在A 点时相同,故在A 、C 两位置弹簧弹性势能相等,小球重力做的功全部转化为小球的动能,有mgl 0=12m v C 2,解得v C =2gl 0,故D 正确.8.(2023·广东省深圳实验学校、湖南省长沙一中高三联考)如图所示,一根长为3L 的轻杆可绕水平转轴O 转动,两端固定质量均为m 的小球A 和B, A 到O 的距离为L ,现使杆在竖直平面内转动,B 运动到最高点时,恰好对杆无作用力,两球均视为质点,不计空气阻力和摩擦阻力,重力加速度为g .当B 由最高点第一次转至与O 点等高的过程中,下列说法正确的是( )A .杆对B 球做正功 B .B 球的机械能守恒C .轻杆转至水平时,A 球速度大小为10gL5D .轻杆转至水平时,B 球速度大小为310gL5答案 D解析 由题知B 运动到最高点时,恰好对杆无作用力,有mg =m v 22L ,B 在最高点时速度大小为v =2gL ,因为A 、B 角速度相同,A 的转动半径只有B 的一半,所以A 的速度大小为v2,当B 由最高点转至与O 点等高时,取O 点所在水平面的重力势能为零,根据A 、B 机械能守恒,mg ·2L -mgL +12m ⎝⎛⎭⎫v 22+12m v 2=12m v A 2+12m v B 2,2v A =v B ,解得v A =310gL 10,v B =310gL5,故C 错误,D 正确;设杆对B 做的功为W ,对B 由动能定理得mg ·2L +W =12m v B 2-12m v 2,解得W =-65mgL ,所以杆对B 做负功,B 机械能不守恒,故A 、B 错误.9.(2023·广东省佛山一中高三月考)如图所示,物块A 套在光滑水平杆上,连接物块A 的轻质细线与水平杆间所成夹角为θ=53°,细线跨过同一高度上的两光滑定滑轮与质量相等的物块B 相连,定滑轮顶部离水平杆距离为h =0.2 m ,现将物块B 由静止释放,物块A 、B 均可视为质点,重力加速度g =10 m/s 2,sin 53°=0.8,不计空气阻力,则( )A .物块A 与物块B 速度大小始终相等 B .物块B 下降过程中,重力始终大于细线拉力C .当物块A 经过左侧定滑轮正下方时,物块B 的速度最大D .物块A 能达到的最大速度为1 m/s 答案 D解析 根据关联速度得v A cos θ=v B ,所以二者的速度大小不相等,A 错误;当物块A 经过左侧定滑轮正下方时细线与杆垂直,则根据选项A 可知,物块B 的速度为零,所以B 会经历减速过程,减速过程中重力会小于细线拉力,B 、C 错误;当物块A 经过左侧定滑轮正下方时,物块A 的速度最大,根据系统机械能守恒得mg (h sin θ-h )=12m v 2,解得v =1 m/s ,D 正确.10.(2023·四川省泸县第一中学模拟)如图所示,把质量为0.4 kg 的小球放在竖直放置的弹簧上,并将小球缓慢向下按至图甲所示的位置,松手后弹簧将小球弹起,小球上升至最高位置的过程中其速度的平方随位移的变化图像如图乙所示,其中0.1~0.3 m 的图像为直线,弹簧的质量和空气的阻力均忽略不计,重力加速度g =10 m/s 2,则下列说法正确的是( )A .小球与弹簧分离时对应的位移小于0.1 mB .小球的v 2-s 图像中最大的速度为v 1=2 m/sC .弹簧弹性势能的最大值为E p =1.2 JD .压缩小球的过程中外力F 对小球所做的功为W F =0.6 J 答案 C解析 由于不计空气阻力,则小球与弹簧分离后,小球加速度为g ,说明小球在s =0.1 m 时刚好回到弹簧原长位置,小球与弹簧分离,即分离时对应的位移为0.1 m ,A 错误;对直线段有v 22=2g (0.3 m -0.1 m),解得v 2=2 m/s ,由题图可知最大速度v 1>v 2,B 错误;从释放到小球速度为0的过程,弹性势能全部转化为小球的机械能,以最低点为重力势能参考平面,小球的机械能为mgh 0=0.4×10×0.3 J =1.2 J ,故弹簧弹性势能最大值为E p =1.2 J ,C 正确;向下按h =0.1 m 的过程,根据功能关系有W F +mgh =E p ,解得W F =0.8 J ,D 错误. 11.(2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg(ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F 向=2mω2R设F 与水平方向的夹角为α,则F cos α=F 向 F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR。
高考物理一轮复习详细讲义(教师版):机械能守恒定律
第三节机械能守恒定律【基础梳理】提示:mgh地球参考平面-ΔE p弹性形变形变量-ΔE p重力或弹力重力或弹力E′k+E′p-ΔE pΔE B减【自我诊断】判一判(1)克服重力做功,物体的重力势能一定增加.()(2)重力势能的变化与零势能参考面的选取有关.()(3)弹簧弹力做负功时,弹性势能减少.()(4)物体在速度增大时,其机械能可能在减小.()(5)物体所受合外力为零时,机械能一定守恒.()(6)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒.()提示:(1)√(2)×(3)×(4)√(5)×(6)√做一做把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).忽略弹簧的质量和空气阻力.则小球从A位置运动到C位置的过程中,下列说法正确的是()A.经过位置B时小球的加速度为0B.经过位置B时小球的速度最大C.小球、地球、弹簧所组成系统的机械能守恒D.小球、地球、弹簧所组成系统的机械能先增大后减小提示:C机械能守恒的判断【知识提炼】(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力或弹力做功”不等于“只受重力或弹力作用”.(2)对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.(3)对于系统机械能是否守恒,可以根据能量的转化进行判断.严格地讲,机械能守恒定律的条件应该是对一个系统而言,外力对系统不做功(表明系统与外界之间无能量交换),系统内除了重力和弹力以外,无其他摩擦和介质阻力做功(表明系统内不存在机械能与其他形式之间的转换),则系统的机械能守恒.【跟进题组】1.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒解析:选CD.甲图中重力和弹簧弹力做功,系统机械能守恒,但弹簧的弹性势能增加,A的机械能减少,A错;B物体下滑,B对A的弹力做功,A的动能增加,B的机械能减少,B错;丙图中A、B组成的系统只有重力做功,机械能守恒,C对;丁图中小球受重力和拉力作用,但都不做功,小球动能不变,机械能守恒,D对.2.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是( )A .子弹的机械能守恒B .木块的机械能守恒C .子弹和木块总机械能守恒D .子弹和木块上摆过程中机械能守恒解析:选D.子弹射入木块过程,系统中摩擦力做负功,机械能减少;而共同上摆过程,系统只有重力做功,机械能守恒.综上所述,整个过程机械能减少,减少部分等于克服摩擦力做功产生的热量.单个物体的机械能守恒问题 【知识提炼】1.机械能守恒定律的表达式2.求解单个物体机械能守恒问题的基本思路【典题例析】(2016·高考全国卷Ⅲ)如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.[审题指导] 对小球从开始下落到运动过程中一直只有重力做功,满足机械能守恒条件.利用圆周运动的向心力知识就可判断能否到达C 点.[解析] (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得 E k A =mg R4①设小球在B 点的动能为E k B ,同理有 E k B =mg 5R4② 由①②式得E k B ∶E k A =5∶1.③ (2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力F N 应满足F N ≥0④ 设小球在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有F N +mg =m v 2CR 2⑤由④⑤式得,v C 应满足mg ≤m 2v 2CR⑥ 由机械能守恒有mg R 4=12m v 2C⑦由⑥⑦式可知,小球恰好可以沿轨道运动到C 点. [答案] (1)5∶1 (2)见解析【迁移题组】迁移1 机械能守恒定律在圆周运动中的应用1.一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R ,圆轨道2的半径是轨道1的1.8倍,小球的质量为m ,若小球恰好能通过轨道2的最高点B ,则小球在轨道1上经过A 处时对轨道的压力为( )A .2mgB .3mgC .4mgD .5mg解析:选C.小球恰好能通过轨道2的最高点B 时,有mg =m v 2B1.8R ,小球在轨道1上经过A 处时,有F +mg =m v 2AR ,根据机械能守恒定律,有1.6mgR +12m v 2B =12m v 2A ,解得F =4mg ,由牛顿第三定律可知,小球对轨道的压力F ′=F =4mg ,选项C 正确.迁移2 机械能守恒定律在平抛运动中的应用2.如图,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小.解析:(1)设环到b 点时速度为v b ,圆弧轨道半径为r ,小环从a 到b 由机械能守恒有 mgr =12m v 2b①环与bc 段轨道间无相互作用力,从b 到c 环做平抛运动 h =12gt 2② s =v b t③ 联立可得r =s 24h④代入数据得r =0.25 m.(2)环从b 点由静止下滑至c 点过程中机械能守恒,设到c 点时速度为v c ,则 mgh =12m v 2c⑤ 在bc 段两次过程中环沿同一轨迹运动,经过同一点时速度方向相同 设环在c 点时速度与水平方向间的夹角为θ,则环做平抛运动时 tan θ=v yv b⑥ v y =gt⑦联立②③⑥⑦式可得 tan θ=22⑧则环从b 点由静止开始滑到c 点时速度的水平分量v cx 为v cx =v c cos θ⑨ 联立⑤⑧⑨三式可得 v cx =2310 m/s.答案:(1)0.25 m (2)2310 m/s多个物体(连接体)的机械能守恒问题【知识提炼】1.多物体机械能守恒问题的解题思路2.多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”. (1)轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等. ②用好两物体的位移大小关系或竖直方向高度变化的关系.③对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒.(2)轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.(3)轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.②含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.③弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.④由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【典题例析】(多选)如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g .则( )A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg[审题指导] 首先判断机械能是否守恒,然后把两滑块的速度关系找出来,利用机械能守恒定律求解问题.[解析] 由题意知,系统机械能守恒.设某时刻a 、b 的速度分别为v a 、v b .此时刚性轻杆与竖直杆的夹角为θ,分别将v a 、v b 分解,如图.因为刚性杆不可伸长,所以沿杆的分速度v ∥与v ′∥是相等的,即v a cos θ=v b sin θ.当a 滑至地面时θ=90°,此时v b =0,由系统机械能守恒得mgh =12m v 2a ,解得v a =2gh ,选项B 正确;同时由于b 初、末速度均为零,运动过程中其动能先增大后减小,即杆对b 先做正功后做负功,选项A 错误;杆对b 的作用力先是推力后是拉力,对a 则先是阻力后是动力,即a 的加速度在受到杆的向下的拉力作用时大于g ,选项C 错误;b 的动能最大时,杆对a 、b 的作用力为零,此时a 的机械能最小,b 只受重力和支持力,所以b 对地面的压力大小为mg ,选项D 正确.[答案] BD【迁移题组】迁移1 轻绳模型 1.(2019·哈尔滨六中检测)如图所示,物体A 的质量为M ,圆环B 的质量为m ,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l =4 m ,现从静止释放圆环.不计定滑轮和空气的阻力,g 取10 m/s 2,若圆环下降h =3 m 时的速度v =5 m/s ,则A 和B 的质量关系为( )A .M m =3529B .M m =79C .M m =3925D .M m =1519解析:选A.圆环下降3 m 后的速度可以按如图所示分解,故可得v A =v cos θ=v h h 2+l2,A 、B 和绳子看成一个整体,整体只有重力做功,机械能守恒,当圆环下降h =3 m 时,根据机械能守恒可得mgh =Mgh A +12m v 2+12M v 2A ,其中h A =h 2+l 2-l ,联立可得M m =3529,故A正确.迁移2 轻杆模型 2.(2019·山东烟台模拟)如图所示,可视为质点的小球A 和B 用一根长为0.2 m 的轻杆相连,两球质量均为1 kg ,开始时两小球置于光滑的水平面上,并给两小球一个大小为2 m/s ,方向水平向左的初速度,经过一段时间,两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,重力加速度g 取10 m/s 2,在两小球的速度减小为零的过程中,下列判断正确的是( )A .杆对小球A 做负功B .小球A 的机械能守恒C .杆对小球B 做正功D .小球B 速度为零时距水平面的高度为0.15 m解析:选D.由于两小球组成的系统机械能守恒,设两小球的速度减为零时,B 小球上升的高度为h ,则由机械能守恒定律可得mgh +mg (h +L sin 30°)=12·2m v 20,其中L 为轻杆的长度,v 0为两小球的初速度,代入数据解得h =0.15 m ,选项D 正确;在A 球沿斜面上升过程中,设杆对A 球做的功为W ,则由动能定理可得-mg (h +L sin 30°)+W =0-12m v 20,代入数据解得W =0.5 J ,选项A 、B 错误;设杆对小球B 做的功为W ′,对小球B ,由动能定理可知-mgh +W ′=0-12m v 20,代入数据解得W ′=-0.5 J ,选项C 错误.迁移3 轻弹簧模型 3.(2016·高考全国卷Ⅱ)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动.重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.解析:(1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得E p =12M v 2B +μMg ·4l ②联立①②式,取M =m 并代入题给数据得v B =6gl③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足m v 2l-mg ≥0 ④设P 滑到D 点时的速度为v D ,由机械能守恒定律得 12m v 2B =12m v 2D+mg ·2l ⑤ 联立③⑤式得v D =2gl⑥ v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦ P 落回到AB 上的位置与B 点之间的距离为s =v D t ⑧ 联立⑥⑦⑧式得s =22l .⑨(2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知5mgl >μMg ·4l ⑩ 要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有12M v 2B≤Mgl ⑪联立①②⑩⑪式得53m ≤M <52m .答案:见解析迁移4 非质点类模型4.有一条长为L =2 m 的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB .522 m/sC . 5 m/sD .352m/s 解析:选B.设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为E =E p +E k =-12×2mg ×L 4sin θ-12×2mg ×L 4+0=-14mgL (1+sin θ)链条全部滑出后,动能为 E ′k =12×2m v 2重力势能为E ′p =-2mg L2由机械能守恒可得E =E ′k +E ′p 即-14mgL (1+sin θ)=m v 2-mgL解得v =12gL (3-sin θ)=12×10×2×(3-0.5) m/s =522m/s 故B 正确,A 、C 、D 错误.机械能守恒定律的应用球到达最低点时的速度大小;球到达最低点的过程中,杆对球在圆环右侧区域内能达到的最高点位【对点训练】如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将环从与定滑轮等高的A 处由静止释放,当环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环刚释放时轻绳中的张力等于2mgB .环到达B 处时,重物上升的高度为(2-1)dC .环在B 处的速度与重物上升的速度大小之比为22D .环减少的机械能大于重物增加的机械能解析:选B.环释放后重物加速上升,故绳中张力一定大于2mg ,A 项错误;环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将B 处环速度v 进行正交分解,重物上升的速度与其分速度v 1大小相等,v 1=v cos 45°=22v ,所以,环在B 处的速度与重物上升的速度大小之比等于2,C 项错误;环和重物组成的系统机械能守恒,故D 项错误.(多选)(2019·哈尔滨模拟)将质量分别为m 和2m 的两个小球A 和B ,用长为2L 的轻杆相连,如图所示,在杆的中点O 处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B 球顺时针转动到最低位置的过程中(不计一切摩擦)( )A .A 、B 两球的线速度大小始终不相等B .重力对B 球做功的瞬时功率先增大后减小C .B 球转动到最低位置时的速度大小为 23gL D .杆对B 球做正功,B 球机械能不守恒解析:选BC.A 、B 两球用轻杆相连共轴转动,角速度大小始终相等,转动半径相等,所以两球的线速度大小也相等,选项A 错误;杆在水平位置时,重力对B 球做功的瞬时功率为零,杆在竖直位置时,B 球的重力方向和速度方向垂直,重力对B 球做功的瞬时功率也为零,但在其他位置重力对B 球做功的瞬时功率不为零,因此,重力对B 球做功的瞬时功率先增大后减小,选项B 正确;设B 球转动到最低位置时速度为v ,两球线速度大小相等,对A 、B 两球和杆组成的系统,由机械能守恒定律得2mgL -mgL =12(2m )v 2+12m v 2,解得v=23gL ,选项C 正确;B 球的重力势能减少了2mgL ,动能增加了23mgL ,机械能减少了,所以杆对B 球做负功,选项D 错误.(建议用时:35分钟)一、单项选择题1.(2019·北京模拟)将一个物体以初动能E 0竖直向上抛出,落回地面时物体的动能为E 02.设空气阻力恒定,如果将它以初动能4E 0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )A .3E 0B .2E 0C .1.5E 0D .E 0解析:选A.设动能为E 0,其初速度为v 0,上升高度为h ;当动能为4E 0,则初速度为2v 0,上升高度为h ′.由于在上升过程中加速度相同,根据v 2=2gh 可知,h ′=4h 根据动能定理设摩擦力大小为f ,则f ×2h =E 02,因此f ×4h =E 0.因此在升到最高处其重力势能为3E 0,所以答案为A.2.(2019·无锡模拟)如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )A .斜劈对小球的弹力不做功B .斜劈与小球组成的系统机械能守恒C .斜劈的机械能守恒D .小球重力势能减少量等于斜劈动能的增加量解析:选B.不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B 正确,C 、D 错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A 错误.3.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大解析:选A.不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等,故只有选项A 正确.4.(2019·兰州模拟)如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2RB .5R 3C.4R3D .2R 3解析:选C.设A 、B 的质量分别为2m 、m ,当A 落到地面上时,B 恰好运动到与圆柱轴心等高处,以A 、B 整体为研究对象,则A 、B 组成的系统机械能守恒,故有2mgR -mgR =12(2m +m )v 2,A 落到地面上以后,B 仍以速度v 竖直上抛,上升的高度为h =v 22g ,解得h =13R ,故B 上升的总高度为R +h =43R ,选项C 正确. 5.如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变解析:选B.圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=3L,根据机械能守恒定律,弹簧的弹性势能增加了ΔE p=mgh=3mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.6.如图所示,竖直平面内的半圆形光滑轨道,其半径为R,小球A、B质量分别为m A、m B,A和B之间用一根长为l(l<R)的轻杆相连,从图示位置由静止释放,球和杆只能在同一竖直面内运动,下列说法正确的是()A.若m A<m B,B在右侧上升的最大高度与A的起始高度相同B.若m A>m B,B在右侧上升的最大高度与A的起始高度相同C.在A下滑过程中轻杆对A做负功,对B做正功D.A在下滑过程中减少的重力势能等于A与B增加的动能解析:选C.选轨道最低点为零势能点,根据系统机械能守恒条件可知A和B组成的系统机械能守恒,如果B在右侧上升的最大高度与A的起始高度相同,则有m A gh-m B gh=0,则有m A=m B,故选项A、B错误;小球A下滑、B上升过程中小球B机械能增加,则小球A机械能减少,说明轻杆对A做负功,对B做正功,故选项C正确;A下滑过程中减少的重力势能等于B上升过程中增加的重力势能和A与B增加的动能之和,故选项D错误.7.如图所示,粗细均匀、两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为( )A . 18ghB . 16ghC .14gh D .12gh解析:选A.当两液面高度相等时,减少的重力势能转化为整个液体的动能,如解析图所示,由机械能守恒定律可得18mg ·12h =12m v 2,解得v =18gh . 二、多项选择题 8.(2019·宁波调研)某娱乐项目中,参与者抛出一小球去撞击触发器,从而进入下一关.现在将这个娱乐项目进行简化,假设参与者从触发器的正下方以速率v 竖直上抛一小球,小球恰好击中触发器.若参与者仍在刚才的抛出点,沿A 、B 、C 、D 四个不同的光滑轨道分别以速率v 抛出小球,如图所示.则小球能够击中触发器的可能是( )解析:选CD.竖直上抛时小球恰好击中触发器,则由-mgh =0-12m v 2,h =2R 得v =2gR .沿图A 中轨道以速率v 抛出小球,小球沿光滑圆弧内表面做圆周运动,到达最高点的速率应大于或等于gR ,所以小球不能到达圆弧最高点,即不能击中触发器.沿图B 中轨道以速率v 抛出小球,小球沿光滑斜面上滑一段后做斜抛运动,最高点具有水平方向的速度,所以也不能击中触发器.图C 及图D 中小球在轨道最高点速度均可以为零,由机械能守恒定律可知小球能够击中触发器.9.(2019·苏北四市调研)如图所示,固定在竖直面内的光滑圆环半径为R ,圆环上套有质量分别为m 和2m 的小球A 、B (均可看做质点),且小球A 、B 用一长为2R 的轻质细杆相连,在小球B 从最高点由静止开始沿圆环下滑至最低点的过程中(已知重力加速度为g ),下列说法正确的是( )A .A 球增加的机械能等于B 球减少的机械能 B .A 球增加的重力势能等于B 球减少的重力势能C .A 球的最大速度为2gR3D .细杆对A 球做的功为83mgR解析:选AD.系统机械能守恒的实质可以理解为是一种机械能的转移,此题的情景就是A 球增加的机械能等于B 球减少的机械能,A 对,B 错;根据机械能守恒定律有:2mg ·2R -mg ·2R =12×3m v 2,所以A 球的最大速度为4gR3,C 错;根据功能关系,细杆对A 球做的功等于A 球增加的机械能,即W A =12m v 2+mg ·2R =83mgR ,故D 对.10.把质量是0.2 kg 的小球放在竖立的弹簧上,并把球往下按至A 的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C (图丙).途中经过位置B 时弹簧正好处于自由状态(图乙).已知B 、A 的高度差为0.1 m ,C 、B 的高度差为 0.2 m ,弹簧的质量和空气阻力都可以忽略,重力加速度g =10 m/s 2.则下列说法正确的是( )A .小球从A 上升至B 的过程中,弹簧的弹性势能一直减小,小球的动能一直增加 B .小球从B 上升到C 的过程中,小球的动能一直减小,势能一直增加 C .小球在位置A 时,弹簧的弹性势能为0.6 JD .小球从位置A 上升至C 的过程中,小球的最大动能为 0.4 J解析:选BC.小球从A 上升到B 的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A 、B 之间某处的合力为零,速度最大,对应动能最大,选项A 错误;小球从B 上升到C 的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B 正确;根据机械能守恒定律,小球在位置A 时,弹簧的弹性势能为E p =mgh AC =0.2×10×0.3 J=0.6 J ,选项C 正确;小球在B 点时的动能为E k =mgh BC =0.4 J <E km ,选项D 错误. 11.(2019·温州高三模拟)如图所示,在竖直平面内半径为R 的四分之一圆弧轨道AB 、水平轨道BC 与斜面CD 平滑连接在一起,斜面足够长.在圆弧轨道上静止着N 个半径为r (r ≪R )的光滑小球(小球无明显形变),小球恰好将圆弧轨道铺满,从最高点A 到最低点B 依次标记为1、2、3…、N .现将圆弧轨道末端B 处的阻挡物拿走,N 个小球由静止开始沿轨道运动,不计摩擦与空气阻力,下列说法正确的是( )A .N 个小球在运动过程中始终不会散开B .第1个小球从A 到B 过程中机械能守恒C .第1个小球到达B 点前第N 个小球做匀加速运动D .第1个小球到达最低点的速度v <gR解析:选AD.在下滑的过程中,水平面上的小球要做匀速运动,而曲面上的小球要做加速运动,则后面的小球对前面的小球有向前挤压的作用,所以小球之间始终相互挤压,冲上斜面后后面的小球把前面的小球往上压,所以小球之间始终相互挤压,故N 个小球在运动过程中始终不会散开,故A 正确;第一个小球在下落过程中受到挤压,所以有外力对小球做功,小球的机械能不守恒,故B 错误;由于小球在下落过程中速度发生变化,相互间的挤压力变化,所以第N 个小球不可能做匀加速运动,故C 错误;当重心下降R2时,根据机械能守恒定律得:12m v 2=mg ·R 2,解得:v =gR ;同样对整体在AB 段时,重心低于R2,所以第1个小球到达最低点的速度v <gR ,故D 正确.12.如图所示,滑块A 、B 的质量均为m ,A 套在固定倾斜直杆上,倾斜直杆与水平面成45°角,B 套在固定水平直杆上,两直杆分离不接触,两直杆间的距离忽略不计且杆足够长,A 、B 通过铰链用长度为L 的刚性轻杆(初始时轻杆与水平面成30°角)连接,A 、B 从静止释放,B 沿水平面向右运动,不计一切摩擦,滑块A 、B 均视为质点,在运动的过程中,下列说法正确的是( )A .当A 到达与B 同一水平面时v B =22v A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14讲机械能守恒定律及其应用]
1.质量为m的小球从桌面竖直向上抛出,桌面离地高度为h.小球能达到的最大高度离地面为H,以桌面为零势能参考平面,不计空气阻力,则小球落地时的机械能为( ) A.mgH B.mg(H-h)
C.mg(H+h) D.mgh
2.[2013·安徽省六安一中高三月考] 如图K14-1所示,斜面体置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是( )
图K14-1
A.物体的重力势能减少,动能增加
B.斜面体的机械能不变
C.斜面体对物体的作用力垂直于斜面,不对物体做功
D.物体和斜面体组成的系统机械能守恒
3.[2013·上海浦东新区期末] 如图K14-2所示,两块三角形的木板B、C竖直放在水平桌面上,它们的顶点连接在A处,底边向两边分开.一个锥体置于A处,放手之后,奇特的现象发生了,椎体自动地沿木板滚上了B、C板的高处,不计一切阻力.下列说法正确的是( )
图K14-2
A.锥体在滚动过程中重心逐渐升高
B.锥体在滚动过程中重心逐渐降低
C.锥体在滚动过程中机械能逐渐增大
D.锥体在滚动过程中机械能保持不变
4.[2013·黑龙江省哈六中高三上学期期中] 如图K14-3所示,a、b两物块质量分别为m、2m,用不计质量的细绳相连接,悬挂在定滑轮的两侧,不计滑轮质量和一切摩擦.开始时,a、b两物块距离地面高度相同,用手托住物块b,然后突然由静止释放,直至a、b 物块间高度差为h .在此过程中,下列说法正确的是( )
图K14-3
A.物块a的机械能逐渐增加
B.物块b的机械能减少了2
3 mgh
C.物块b重力势能的减少量等于细绳拉力对它所做的功
D.物块a重力势能的增加量小于其动能的增加量
5.如图K14-4甲所示,小球的初速度为v0,沿光滑斜面上滑,能上滑的最大高度为h,在图乙中,四个物体的初速度均为v0.在A图中,小球沿一光滑内轨向上运动,内轨半径大于h;在B图中,小球沿一光滑内轨向上运动,内轨半径小于h;在图C中,小球沿一光滑内轨向上运动,内轨直径等于h;在D图中,小球固定在轻杆的下端,轻杆的长度为h的一半,小球随轻杆绕O点向上转动.则小球上升的高度能达到h的有( )
图K14-4
6.如图K14-5所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到达b点时与一个轻弹簧接触,滑块压缩弹簧到c点后开始弹回,返回b点再离开弹簧,最后又回到a点,已知ab=1 m,bc=0.2 m.关于整个过程,下列说法错误的是( )
图K14-5
A.滑块动能的最大值是6 J
B.弹簧的弹性势能的最大值是6 J
C .从c 点到b 点弹簧的弹力对滑块做的功是6 J
D .整个过程滑块和弹簧组成的系统机械能守恒
7.[2013·江苏省南京师大附中期末] 图K14-6是检验某种防护罩承受冲击能力的装置,M 为半径R =1.6 m 、固定于竖直平面内的光滑半圆弧轨道,A 、B 分别是轨道的最低点
和最高点;N 为防护罩,它是一个竖直固定的14圆弧,其半径r =45 5 m ,圆心位于B 点.在A 放置水平向左的弹簧枪,可向M 轨道发射速度不同的质量均为m =0.01 kg 的小钢珠,弹簧枪可将弹性势能完全转化为小钢珠的动能.假设某次发射的小钢珠沿轨道恰好能经过B
点,水平飞出后落到N 的某一点上,取g =10 m/s 2.求:
(1)钢珠在B 点的速度;
(2)发射该钢珠前,弹簧的弹性势能E p ;
(3)钢珠从M 圆弧轨道B 点飞出至落到圆弧N 上所用的时间.
图K14-6
8.[2013·上海黄浦区期末考] 如图K14-7所示,用两根金属丝弯成光滑半圆形轨道,竖直固定在地面上,其圆心为O 、半径为0.3 m .轨道正上方离地0.4 m 处固定着水平长直光滑杆,杆与轨道在同一竖直平面内,杆上P 点处固定一定滑轮,P 点位于O 点正上方.A 、B 是质量均为2 kg 的小环,A 套在杆上,B 套在轨道上,一条不可伸长的细绳绕过定滑轮连接两环.两环均可看作质点,且不计滑轮的大小和质量.现在A 环上施加一个大小为55 N
的水平向右的恒力F ,使B 环从地面由静止沿轨道上升.g 取10 m/s 2.
(1)在B 环上升到最高点D 的过程中恒力F 做功为多少?
(2)当被拉到最高点D 时,B 环的速度大小为多少?
(3)当B 、P 间细绳恰与圆形轨道相切时,B 环的速度大小为多少?
(4)若恒力F 作用足够长的时间,请描述B 环经过D 点之后的运动情况.
图K14-7
1.B 2.AD 3.BD 4.AB 5.AD 6.A 7.(1)4 m/s (2)0.4 J (3)0.4 s 8.(1)22 J (2)4 m/s (3)2.06 m/s (4)略。