2018年福建漳州中考数学试卷及答案解析版

合集下载

2018年福建漳州中考数学试卷及答案解析版

2018年福建漳州中考数学试卷及答案解析版

≈ 0.60,cos37° ≈ 0.80,tan37° ≈ 0.75, 2 ≈ 1.41)
C 45°
D
N
37°
M
A
B
【答案】
解:过点 C、D 分别作 CE⊥AB 于 E,DF⊥AB 于 F
则∠CEA =∠DFA = 90°,又∵AB // CD,∴∠ECD = 180°− ∠CEA = 90°,
∴四边形 CDFE 为矩形,∴EF = CD = 3.2(公里),
(2) 13 2
(3)连接 BB1,与 y 轴的交点即所求的点 D,使得 DB + DB1 的值最小. 设 BB1 所在直线的函数关系式为 y = kx + b (k ≠ 0),
把点
B(−1,2),B1(2,1)代入得:
2 1

k 2k
b b
,解得
k
=

1 3
,b
=
5 3

∴y = 1 x + 5 ,∴D(0, 5 )
B
D
C
O
−2 A −1 0
1
【答案】 2 16.(2018 福建漳州,16,4 分)如图,一个宽为 2 厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,
刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是 3 和 9,那么玻璃杯的杯口外 沿半径为___________cm.
3 4 5 6 7 8 9 2 厘米
【答案】10
三、解答题(共 9 小题,满分 86 分,请在答.题.卡.的相应位置解答) 17.(2018 福建漳州,17,8 分)计算: 4 16 cos 30 . 【答案】解:原式 = 4 − 4 + 3 = 3

(完整版)2018年福建省漳州市中考数学试卷含答案

(完整版)2018年福建省漳州市中考数学试卷含答案

福建省漳州市2018年中考数学试卷一、选择题〈共10小题,每小题4分,满分40分.每小题只有一个正确的选项) 1.<4分)<2018•漳州)下列各数中正数是< )A.2B.﹣C.0D.﹣考点:实数专题:探究型.分析:根据实数的分类对各选项进行逐一分析即可.解答:解:A、2是正数,故本选项正确;B、﹣是负数,故本选项错误;C、0既不是正数,也不是负数,故本选项错误;D、﹣是负数,故本选项错误.故选A.点评:本题考查的是实数的定义,即有理数和无理数统称实数.2.<4分)<2018•漳州)下列运算正确的是〈)A.m4•m2=m8B.〈m2)3=m5C.m3÷m2=m D.3m﹣m=2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、利用幂的乘方运算法则计算得到结果,即可作出判断;C、利用同底数幂的除法法则计算得到结果,即可作出判断;D、合并同类项得到结果,即可作出判断.解答:解:A、m4•m2=m6,本选项错误;B、〈m2)3=m6,本选项错误;C、m3÷m2=m,本选项正确;D、3m﹣m=2m,本选项错误,故选C点评:此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.3.<4分)<2018•漳州)使分式有意义的x的取值范围是〈)A.x≤3B.x≥3C.x≠3D.x=3考点:分式有意义的条件分析:根据分式有意义的条件可得x﹣3≠0,再解即可.解答:解:由题意得:x﹣3≠0,解得:x≠3,故选:C.点此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不评:等于零.4.<4分)〈2018•漳州)如图,几何体的俯视图是〈)A.B.C.D.考点:简单组合体的三视图分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看可得分成3列的三个正方形,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.〈4分)<2018•漳州)用下列一种多边形不能铺满地面的是< )A.正方形B.正十边形C.正六边形D.等边三角形考点:平面镶嵌<密铺).分析:根据平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能,即可得出答案.解答:解:∵用一种正多边形镶嵌,只有正方形,正六边形,等边三角形三种正多边形能镶嵌成一个平面图案.∴不能铺满地面的是正十边形;故选B.点评:此题考查了平面镶嵌,用到的知识点是只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.6.<4分)<2018•漳州)若反比例函数y=的图象经过点<﹣2,m),则m的值是〈)A.B.﹣C.﹣4D.4考点:反比例函数图象上点的坐标特征.专题:计算题.分析:将点〈﹣2,m)代入反比例函数y=即可求出m的值.解答:解:将点〈﹣2,m)代入反比例函数y=得,m==﹣4,故选C.点评:本题考查了查反比例函数图象上点的坐标特征,所有在反比例函数上的点的坐标符合函数解读式.7.<4分)〈2018•漳州)下列命题中假命题是〈)(完整版)2018年福建省漳州市中考数学试卷含答案A.平行四边形的对边相等B.等腰梯形的对角线相等C.菱形的对角线互相垂直D.矩形的对角线互相垂直考点:命题与定理.分析:根据平行四边形、等腰梯形、菱形、矩形的性质分别对每一项进行分析即可.解答:解:A、平行四边形的对边相等,正确,是真命题;B、等腰梯形的对角线相等,正确,是真命题;C、菱形的对角线互相垂直,正确,是真命题;D、矩形的对角线相等,并且互相平分,故原命题是假命题;故选D.点评:此题考查了命题与定理,用到的知识点是平行四边形、等腰梯形、菱形、矩形的性质,关键是能够运用性质,对命题进行判断.8.〈4分)〈2018•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘M和y厘M,则依题意列方程组正确的是〈)b5E2RGbCAPA.B.C.D.考点:由实际问题抽象出二元一次方程组专题:几何图形问题.分析:根据图示可得:长方形的长可以表示为x+2y,长又是75厘M,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.解答:解:根据图示可得,故选:B.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.9.<4分)〈2018•漳州)某日福建省九地市的最高气温统计如下表:地市福州莆田泉州厦门漳州龙岩三明南平宁德最高气温〈℃)292830313130303228针对这组数据,下列说法正确的是< )A.众数是30B.极差是1C.中位数是31D.平均数是28考点:极差;算术平均数;中位数;众数.分析:根据众数、中位数、极差、平均数的定义及计算公式分别进行计算,即可得出答案.解答:解:∵30出现了3次,出现的次数最多,∴众数是30,∵最大值是32,最小值是28,∴极差是32﹣28=4;把这组数据从小到大排列为:28,28,29,30,30,30,31,31,32,最中间的数是30,则中位数是30;平均数是<29+28×2+30×3+31×2+32)÷9=29.9;故选A.点评:此题考查了众数、中位数、极差、平均数,掌握众数、中位数、极差、平均数的定义及计算公式是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数〈或最中间两个数的平均数),求极差的方法是用一组数据中的最大值减去最小值.10.<4分)〈2018•漳州)二次函数y=ax2+bx+c<a≠0)的图象如图所示,下列结论正确的是< )p1EanqFDPwA.a<0B.b2﹣4ac<0C.当﹣1<x<3时,y>0D.﹣考点:二次函数图象与系数的关系专题:存在型.分析:根据二次函数的图象与系数的关系对各选项进行逐一分析即可.解答:解:A、∵抛物线的开口向上,∴a>0,故本选项错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故本选项错误;C、由函数图象可知,当﹣1<x<3时,y<0,故本选项错误;D、∵抛物线与x轴的两个交点分别是〈﹣1,0),〈3,0),∴对称轴x=﹣==1,故本选项正确.故选D.点评:本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.二、填空题〈共6小题,每小题4分,满分24分)11.<4分)〈2018•漳州)分解因式:ab2+a= a<b2+1) .考点:因式分解—提公因式法.分析:根据观察可知公因式是a,提出a即可解出此题.解答:解:ab2+a=a〈b2+1).故答案为:a<b2+1).点评:此题考查的是对公因式的提取,只要找出公因式即可解出此题.12.〈4分)〈2018•漳州)据《维基百科》最新统计,使用闽南语的人数在全世界数千语种中位列第21名,目前有约70010000人使用闽南语,70010000用科学记数法表示为7。

2018年福建省中考数学试卷(b卷)(解析版)

2018年福建省中考数学试卷(b卷)(解析版)

2018年福建省中考数学试卷(B卷)一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)(2018•福建)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.(4.00分)(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)(2018•福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4.00分)(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°6.(4.00分)(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4.00分)(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4.00分)(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4.00分)(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°10.(4.00分)(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、填空题:本题共6小题,每小题4分,共24分)11.(4.00分)(2018•福建)计算:()0﹣1= .12.(4.00分)(2018•福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)(2018•福建)不等式组的解集为.15.(4.00分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)(2018•福建)如图,直线y=x+m与双曲线y=相交于A,B 两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8.00分)(2018•福建)解方程组:.18.(8.00分)(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(8.00分)(2018•福建)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(12.00分)(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.25.(14.00分)(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC 有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.2018年福建省中考数学试卷(B卷)参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【考点】15:绝对值;2A:实数大小比较.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.(4.00分)(2018•福建)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥【考点】U3:由三视图判断几何体.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图.3.(4.00分)(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【考点】K6:三角形三边关系.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.【点评】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.(4.00分)(2018•福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【考点】L3:多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.5.(4.00分)(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°【考点】KG:线段垂直平分线的性质;KK:等边三角形的性质.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.6.(4.00分)(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【考点】X1:随机事件.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【点评】此题主要考查了随机事件,关键是掌握随机事件定义.7.(4.00分)(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【考点】2B:估算无理数的大小.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.(4.00分)(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.(4.00分)(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°【考点】M5:圆周角定理;MC:切线的性质.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10.(4.00分)(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【考点】AA:根的判别式.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.二、填空题:本题共6小题,每小题4分,共24分)11.(4.00分)(2018•福建)计算:()0﹣1= 0 .【考点】6E:零指数幂.【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.【点评】此题主要考查了零指数幂,关键是掌握a0=1(a≠0).12.(4.00分)(2018•福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【考点】W5:众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.【点评】本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据.13.(4.00分)(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.(4.00分)(2018•福建)不等式组的解集为x>2 .【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(4.00分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【考点】KQ:勾股定理.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.16.(4.00分)(2018•福建)如图,直线y=x+m与双曲线y=相交于A,B 两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【考点】G8:反比例函数与一次函数的交点问题.【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8.00分)(2018•福建)解方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8.00分)(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.19.(8.00分)(2018•福建)先化简,再求值:(﹣1)÷,其中m=+1.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(8.00分)(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【考点】SB:作图—相似变换.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.【点评】本题考查了相似三角形的性质与判定,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式.21.(8.00分)(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【考点】Q2:平移的性质;R2:旋转的性质;S9:相似三角形的判定与性质.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB 是解本题的关键.22.(10.00分)(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【考点】V5:用样本估计总体;VC:条形统计图;W2:加权平均数;X4:概率公式.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.【点评】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义.23.(10.00分)(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【考点】AD:一元二次方程的应用;HE:二次函数的应用.【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24.(12.00分)(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.【考点】JB:平行线的判定与性质;KQ:勾股定理;M2:垂径定理;MA:三角形的外接圆与外心.【分析】(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.【解答】(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠B DE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.【点评】本题考查圆的有关性质,等腰三角形的判定和性质,平行线的性质和判定,平行四边形的性质和判定,解直角三角形等知识,考查了运算能力、推理能力,并考查了分类思想.25.(14.00分)(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC 有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.【考点】HF:二次函数综合题.【分析】(1)由A的坐标确定出c的值,根据已知不等式判断出y1﹣y2<0,可得出抛物线的增减性,确定出抛物线对称轴为y轴,且开口向下,求出b的值,如图1所示,可得三角形ABC为等边三角形,确定出B的坐标,代入抛物线解析式即可;(2)①设出点M(x1,﹣x12+2),N(x2,﹣x22+2),由MN与已知直线平行,得到k值相同,表示出直线MN解析式,进而表示出ME,BE,NF,BF,求出tan∠MBE与tan∠NBF的值相等,进而得到BC为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y轴为BC的垂直平分线,设P为外心,利用勾股定理化简PB2=PM2,确定出△MBC外心的纵坐标的取值范围即可.【解答】解:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12。

2018年福建省中考数学试卷A卷含参考解析

2018年福建省中考数学试卷A卷含参考解析

2018年福建省中考数学试卷A卷含参考解析2018年中考数学试卷(A卷)..参考答案与试题解析..一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是..()A.|﹣3|B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,.|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.(4.00分)某几何体的三视图如图所示,则该几何体是..()A.圆柱B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得..【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,8.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1=0.【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120.【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为6.【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形=AC•BC=m2+6,利用二次函数的性质即可求出当m=0的面积公式得出S△ABC时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a ﹣a2.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE ⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.。

2018年福建省漳州市中考数学试题及解析

2018年福建省漳州市中考数学试题及解析

22.(10 分)(2018•漳州)如图,在矩形 ABCD 中,点 E 在边 CD 上,将该矩形沿 AE 折叠,使点 D 落在 边 BC 上的点 F 处,过点 F 作分、FG∥CD,交 AE 于点 G 连接 DG. (1)求证:四边形 DEFG 为菱形;
(2)若 CD=8,CF=4,求 的值.
23.(10 分)(2018•漳州)国庆期间,为了满足百姓的消费需求,某商店计划用 170000 元购进一批家电,
5.(4 分)(2018•漳州)一组数据 6,﹣3,0,1,6 的中位数是( )
A.0
B.1
C.2
D.6
考点:中位数. 菁优网版 权所有
分析:根据中位数的定义先把这组数据从小到大排列,再找出最中间的数即可得出答案. 解答:解:把这组数据从小到大排列为:﹣3,0,1,6,6,最中间的数是 1,则中位数是 1.
A.
B.
C.
D.
考点:几何体的展开图. 菁优网版 权所有
分析:由平面图形的折叠及长方体的展开图解题. 解答:解:由四棱柱四个侧面和上下两个底面的特征可知,
A、可以拼成一个长方体; B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图. 故选 A. 点评:考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.
20.(8 分)(2018•漳州)如图,在 10×10 的正方形网格中,点 A,B,C,D 均在格点上,以点 A 为位似中
心画四边形 AB′C′D′,使它与四边形 ABCD 位似,且相似比为 2.
(1)在图中画出四边形 AB′C′D′;
(2)填空:△AC′D′是
Байду номын сангаас
三角形.
21.(8 分)(2018•漳州)在一只不透明的袋中,装着标有数字 3,4,5,7 的质地、大小均相同的小球,小 明和小东同时从袋中随机各摸出 1 个球,并计算这两个球上的数字之和,当和小于 9 时小明获胜,反之小东 获胜. (1)请用树状图或列表的方法,求小明获胜的概率; (2)这个游戏公平吗?请说明理由.

2018年福建省中考数学试卷(a卷)(含答案解析)-推荐

2018年福建省中考数学试卷(a卷)(含答案解析)-推荐

2018年福建省中考数学试卷(A卷)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1. (4.00分)在实数| - 3| , - 2, 0,n中,最小的数是()A. | - 3|B.- 2 C . 0 D.n2. (4.00分)某几何体的三视图如图所示,贝U该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3. (4.00分)下列各组数中,能作为一个三角形三边边长的是()A. 1,1,2B. 1,2,4C. 2,3,4D. 2,3,54. (4.00分)一个n边形的内角和为360°,则n等于()A. 3B. 4C. 5D. 65. (4.00分)如图,等边三角形ABC中, AD丄BC垂足为D,点E在线段AD上,/ EBC=45,则/ ACE等于()A. 15°B. 30°C. 45°D. 60°6 . (4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于 12D. 两枚骰子向上一面的点数之和等于 127. (4.00分)已知m= .+「,则以下对m 的估算正确的( )A. 2v m K 3B. 3v m K 4C. 4v m< 5D. 5v m< 68. (4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条 索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长 5尺;如果将绳索对半折后再去量竿,就比竿短 5尺.设绳 索长x 尺,竿长y 尺,则符合题意的方程组是()A.rJ 1C.x=y4-5fx=y-59. (4.00分)如图,AB 是。

O 的直径,BC 与相切于点B, AC 交于点D,若/ ACB=50,10 . (4.00分)已知关于x 的一元二次方程(a+1) x 2+2bx+ (a+1) =0有两个相等的实数根, 下列判断正确的是()A . 1 一定不是关于x 的方程x 2+bx+a=0的根B . 0 一定不是关于x 的方程x 2+bx+a=0的根C . 1和-1都是关于x 的方程x 2+bx+a=0的根D . 1和-1不都是关于x 的方程x 2+bx+a=0的根、细心填一填(本大题共 6小题,每小题4分,满分24分,请把答案填在答題卷相应题 号的横线上)C. 60D. 80)11. (4.00 分)计算:(二)0- 1=.212. (4.00 分)某 8 种食品所含的热量值分别为:120, 134, 120, 119, 126, 120, 118, 124, ACB=90 , AB=6 D 是 AB 的中点,贝U CD=15. (4.00分)尺的锐角顶点与另一个的直角顶点重合于点 A ,且另三个锐角顶点B , C, D 在同一直线上.若16. (4.00分)如图,直线y=x+m 与双曲线y==相交于A , B 两点,BC// x 轴,AC// y 轴,则△ ABC 面积的最小值为 _____三、专心解一解(本大题共 9小题,满分86分,请认真读题,冷静思考解答题应写出必要 的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置) 17. (8.00分)解方程组:]丹尸1 .[4r+y=10把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角则这组数据的众数为的解集为C DAB=二,则 CD=_E18. (8.00分)如图,?ABCD勺对角线AC, BD相交于点O, EF过点O且与AD BC分别相交于20. (8.00分)求证:相似三角形对应边上的中线之比等于相似比. 要求:①根据给出的△ ABC 及线段A'BA' (/A =Z A ),以线段A B'为一边,在给 出的图形上用尺规作出厶A'B ' C ,使得△ A'B ' C ABC 不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21. (8.00分)如图,在 Rt △ ABC 中,/ C=90,AB=1Q AC=8线段AD 由线段AB 绕点A 按 逆时针方向旋转90°得到,△ EFG 由厶ABC 沿CB 方向平移得到,且直线EF 过点D. (1)求/ BDF 的大小;甲公司为“基本工资+揽件提成”,其中基本工资为 70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过 40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:19. (8.00分)先化简,再求值:2irH-L乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下: 点 E, F .求证:OE=OF-1)十,其中 m=「;+1.(2)求CG 的长.(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23. (10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN某人利用旧墙和木栏围成一个矩形菜园ABCD其中AE X MN已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCDS积的最大值.3 C24. (12.00分)已知四边形ABCD1O O的内接四边形,AC是O O的直径,DEL AB,垂足为E.(1)延长DE交O O于点F,延长DC,FB交于点P,如图1.求证:PC=PB(2)过点B作BC L AD,垂足为G, BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=/5,DH=1 / OHD=0。

【2018中考数学真题】福建试题(A卷,含解析)【2018数学中考真题解析系列】

【2018中考数学真题】福建试题(A卷,含解析)【2018数学中考真题解析系列】

福建省2018年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S2+6,利用二次函数△ABC=AC•BC=m的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x ≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.。

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析一、选择题本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A.|﹣3|B.﹣2C.0D.π答案解析:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B. 2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥答案解析:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案解析:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于( )A.3B.4C.5D.6答案解析:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°答案解析:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12答案解析:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<6答案解析:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.B.C.D.答案解析:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A.40°B.50°C.60°D.80°答案解析:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根答案解析:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题11.计算:()0﹣1= 0 .答案解析:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 120 .答案解析:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .答案解析:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3. 14.不等式组的解集为 x>2 .答案解析:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .答案解析:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .答案解析:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.解方程组:.答案解析:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.答案解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.先化简,再求值:(﹣1)÷,其中m=+1.答案解析:(﹣1)÷===,当m=+1时,原式=.20.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.答案解析:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.答案解析:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.答案解析:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.答案解析:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE 的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.答案解析:(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.25.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N (x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C 的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.答案解析:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.。

(完整版)2018年福建省中考数学试卷(A)及答案

(完整版)2018年福建省中考数学试卷(A)及答案

2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数、、0、–2中,最小的是() .3-π(A) (B) –2 (C) 0 (D)3-π2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4(D)2、3、54.一个边形的内角和360°,则等于( ) .n n (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上,若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 () .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12(D) 两枚骰子向上一面的点数之和等于127.已知m =,则以下对m 的估算正确的是 ( ) .34+(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <68.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) .(A) (B) (C) (D) ⎪⎩⎪⎨⎧-=+=5215y x y x ⎪⎩⎪⎨⎧+=-=5215y x y x ⎩⎨⎧-=+=525y x y x ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB =50°,则∠BOD = ( ) .(A) 40° (B) 50°(C) 60°(D) 80°,10.已知一元二次方程 有两个相等的实数根,则下面选项正确的是( ) .0)1(2)1(2=++++a b x a (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根(C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根二、填空题(24分)11.计算:=___0___.1220-⎪⎪⎭⎫⎝⎛12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.(2题)俯视图(5题)A(19题)A BCDO13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____.14. 不等式组的解集为__x >2_____.⎩⎨⎧>-+>+02313x x x 15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB =,则CD =___–1____.2316.如图,直线y =x +m 与双曲线交于点A 、B 两点,作BC ∥x xy 3=轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组:⎩⎨⎧=+=+1041y x y x 18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:,其中m m m m 11122-÷⎪⎭⎫ ⎝⎛-+13+=m 20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.EAA'B'(13题)A B21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG . (1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示:(1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED ,CG=AE===AD AC AB ⨯10810⨯22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F .(1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =,DH =1,3∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和∴PB=PC ;1==BF CDPB PC (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH∴∠ODH=180°–2∠OHD=180°–2×80°=20°∴∠OAD=∠ODA=∠ADB–(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120°∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) .(1)若图象过点(,0),求a 与b 满足的关系式; 2-(2)抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,;0<x 1< x 2时,0))((2121>--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有0))((2121<--y y x x 一个内角为60°.①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2又图象过(,0),∴0= a ()2+b ()+22-2-2- ∴a =–1b 22(图1)(图2)(2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC .①又△ABC 中有一个内角为60°,∴△ABC 是正△.连接OC ,则OC=OA=2,∴C(,–1)3从而有y =–x 2+2,②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4)tan ∠1=====PE ME 114y x --114kx x --22114x x kx x ⋅--221214x x kx x x -tan ∠2====== PF NF 224y x -224kx x -11224x x kx x ⋅-211214x kx x x x -kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程 有两个相等的实数根,则下面选项正确的是( ) .0)1(2)1(2=++++a b x a (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根(C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D)16.如图,直线y =x +m 与双曲线交于点A 、B 两点,作BC ∥x xy 3=轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:=x +m , x 2+mx –3=0x3由y =x +m 知:AC=BC=x A –x B ==∆122+m ∴ S △ABC ==221BC 6)12(2122≥+m。

【精品】福建省2018年中考数学试题(A卷,含答案)

【精品】福建省2018年中考数学试题(A卷,含答案)

2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) .(A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C )长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) .(A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、54.一个n 边形的内角和360°,则n 等于( ) . (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <6 8.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) . (A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) . (A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. (2题)俯视图 (5题)A(19题)ABCD12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____. 13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y x18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.EA A'B'(13题)A21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG . (1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示: (1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED ,CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公 司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长; (2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1, ∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB = 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH ∴∠ODH=180°–2∠O HD=180°–2×80°=20° ∴∠OAD=∠ODA =∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120° ∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2(图1)(图2)∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2, ∴C(3,–1) 从而有y =–x 2+2,②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4) tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -2tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。

2018年福建中考数学试题解析

2018年福建中考数学试题解析

2018年福建中考数学数学试题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE 等于()A.15° B.30° C.45° D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40° B.50° C.60° D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S2+6,利用二次函数△ABC=AC•BC=m的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x ≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.。

2018年福建省中考数学试卷(A)及答案

2018年福建省中考数学试卷(A)及答案

2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) .(A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、54.一个n 边形的内角和360°,则n 等于( ) . (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <6 8.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) . (A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) . (A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) .(A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____. 13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____(2题)俯视图 (5题)A(19题)A BCDOA14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y x18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG .EA A' B'(1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示:(1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED , CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ; (2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1,∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH ∴∠ODH=180°–2∠OHD=180°–2×80°=20° ∴∠OAD=∠ODA=∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120° ∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2, ∴C(3,–1) 从而有y =–x 2+2,(图1)(图2)②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4) tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -=221x k +tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) .(A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根 ③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。

2018年福建省中考数学试卷及答案

2018年福建省中考数学试卷及答案

2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) . (A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) .(A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、5 4.一个n 边形的内角和360°,则n 等于( ) .(A)3 (B) 4 (C) 5 (D)65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <68.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) .(2题)俯视图 (5题)(19题)ABC DO(A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) .(A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分) 17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y xA(13题)A18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D(1)求∠BDF 的度数;(2)求CG 的长. 解:构辅助线如图所示: (1)∠BDF =45°EA A'B'(2)AD=AB=10,证△ABC ∽△AED , CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数; ②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1, ∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH∴∠ODH=180°–2∠OHD=180°–2×80°=20°∴∠OAD=∠ODA=∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120°(图1)E CBADFPOG (图2)AB CDOE H G∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2,∴C(3,–1) 从而有y =–x 2+2,②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4)tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -=221x k +tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根 ②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根 ③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。

福建省2018年中考数学试题(A卷,含答案)

福建省2018年中考数学试题(A卷,含答案)

2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) .(A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) .(A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、54.一个n 边形的内角和360°,则n 等于( ) . (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <6 8.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长尺,竿长y 尺,则符合题意的方程组是( ) . (A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) . (A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程2+b +a =0的根 (B)0一定不是方程2+b +a =0的根 (C) 1和–1都是方程2+b +a =0的根 (D) 1和–1不都是方程2+b +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.(2题)俯视图(5题)A(19题)ABCD13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__>2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =+m 与双曲线xy 3=交于点A 、B 两点,作BC ∥ 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组 ⎩⎨⎧=+=+1041y x y x18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.E A A' B'(13题)A21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG . (1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示: (1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED ,CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长; (2)求矩形菜园ABCD 面积的最大值.A CB D E F G24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1, ∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=,则∠EBD=90°–,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH ∴∠ODH=180°–2∠OHD=180°–2×80°=20° ∴∠OAD=∠ODA=∠ADB –(∠ODH+ )=60°–(20°+ )=40°– 又∵∠AOD=2∠ABD=120° ∴180°–2(40°–)=120°,解之得: =20°25.(14分)已知抛物线y =a 2+b +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (1,y 1)、N (2,y 2)都满足1< 2<0时,0))((2121>--y y x x ;0<1<2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (图1)(图2)(2)依题知抛物线:y =a 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2, ∴C(3,–1) 从而有y =–2+2,②设直线MN :y =,则 =–2+2, 2+ –2=01 +2 = –,1 2 =–2, 2 = ––1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4) tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -2tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221 ∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程2+b +a =0的根 (B)0一定不是方程2+b +a =0的根 (C) 1和–1都是方程2+b +a =0的根 (D) 1和–1不都是方程2+b +a =0的根第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,=1是方程2+b +a =0的根②a +1≠0,a 可以取0,故=0是方程2+b +a =0的根 ③当b=a +1时,=–1是方程2+b +a =0的根但b =–(a +1)和b=a +1不能同时成立,即=1和=–1为方程根不能同时成立,故选(D) 16.如图,直线y =+m 与双曲线xy 3=交于点A 、B 两点,作BC ∥ 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=+m , 2+m –3=0由y =+m 知:AC=BC=A –B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

75
C.
2x
y 75 y 3x
D.
2
x
y 75 x 3y
【答案】B
9.(2018 福建漳州,9,分)某日福建省九城市的最高气温统计如下表:
城市
福州 莆田 泉州 厦门 漳州 龙岩 三明 南平 宁德
最高气温(℃) 29 28 30 31 31 30 30 32 28
目前有约 70010000 人使用闽南语,70010000 用科学记数法表示为________________.
【答案】7.001×107
13.(2018 福建漳州,13,4 分)如图,△ABC 中,D、E 分别是 AB、AC 的中点,∠B = 70°,则∠ADE = _____
度.
A
D
E
B
C
【答案】70 14.(2018 福建漳州,14,4 分)某班围绕“舞蹈、乐器、声乐、其他等四个项目中,你最喜欢哪项活动(每人只
针对这组数据,下列说法正确的是( )
A.众数是 30 B.极差是 1 C.中位数是 31 D.平均数是 28
【答案】A
10.(2018 福建漳州,10,分)二次函数 y = ax2 + bx + c (a ≠ 0)的图象如图所示,下列结论正确的是(
)
y
−1 O
3
x
A.a < 0
B.b2 − 4ac < 0
(2)由题意知,y ≤ 12000,则 25x + 8000 ≤ 12000,∴25x ≤ 4000
∴ x ≤ 160
∴最多可运往 A 地的水仙花 160 件.
21.(2018 福建漳州,21,8 分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是 A.菱形,
B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后
一、选择题
2018 年福建省漳州中考试卷
数学
8.(2018 福建漳州,8,分)如图,10 块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为 x 厘米 和 y 厘米,则依题意列方程正确的是 ( )
x 厘米
75 厘米
A.
x
2 y 75 y 3x
B.
x
2y x 3y
(2)若总运费不超过 12000 元,最多可运往 A 地的水仙花多少件?
【答案】
解:(1)运往 C 地的水仙花 3x(件),运往 B 地的水仙花(800 − 4x) (件),
则总运费 y = 20x + 10(800 − 4x) + 15×3x = 20x + 8000 − 40x + 45x = 25x + 8000;
(1)随机抽取一张卡片图案是轴对称图形的概率是_____________;
(2)随机抽取两张卡片(不放回),求两张卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.
【答案】
解:(1)0.75
(2)
A.菱形 B.平行四边形 C.线段 D.角
C.当−1 < x < 3 时,y > 0 D. b = 1 2a
【答案】D
二、填空题(共 6 小题,每小题 4 分,满分 24 分.请将答案填入答.题.卡.的相应位置)
11.(2018 福建漳州,11,4 分)分解因式 ab2 + a = __________.
【答案】a(b2 + 1)
12.(2018 福建漳州,12,4 分)据《维基百科》最新统计,使用闽南语的人数在全世界数千语种中位列第 21 位,
E
B
C
【答案】解:(1)3 对; (2)①△ABE≌△CDF,
证明:在□ABCD 中,AB // CD,AB = CD,∴∠ABE =∠CDF, 又∵BE = DF,∴△ABE≌△CDF (SAS); ②△ADE≌△CBF, 证明:在□ABCD 中,AD // BC,AD = BC,∴∠ADE =∠CBF, ∵BE = DF,∴BD − BE = BD − DF,即 BF = DE,∴△ADE≌△CBF (SAS) ③△ABD≌△CDB, 证明:在□ABCD 中,AB = CD,AD = BC, 又∵BD = BD,∴△ABD≌△CDB (SSS)
20.(2018 福建漳州,20,8 分)漳州三宝之一“水仙花”畅销全球,某花农要将规格相同的 800 件水仙花运往 A、
B、C 三地销售,要求运往 C 地的件数是运往 A 地件数的 3 倍,各地的运费如下表所示:
A地
B地
C地
运费(元/件) 20
10
15
(1)设运往 A 地的水仙花 x(件),总运费为 y(元),试写出 y 与 x 的函数关系式;
B
D
C
O
−2 A −1 0
1
【答案】 2 16.(2018 福建漳州,16,4 分)如图,一个宽为 2 厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,
刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是 3 和 9,那么玻璃杯的杯口外 沿半径为___________cm.
∴x1 = 2 + 3 ,x2 = 2 − 3
19.(2018 福建漳州,19,8 分)如图,□ABCD 中,E、F 是对角线 BD ห้องสมุดไป่ตู้两点,且 BE = DF. (1)图中共有_______对全等三角形; (2)请写出其中一对全等三角形:________≌__________,并加以证明.
A
D
F
限一项)”的问题,对全班 50 名学生进行问卷调查,调查结果如下扇形统计图,请问该班喜欢乐.器.的学生 有________名.
B A22% D10%
C22%
A −舞蹈 B−乐器 C−声乐 D−其他
【答案】23 15.(2018 福建漳州,15,4 分)如图,正方形 ODBC 中,OC = 1,OA = OB,则数轴上点 A 表示的数是___________.
3 4 5 6 7 8 9 2 厘米
【答案】10
三、解答题(共 9 小题,满分 86 分,请在答.题.卡.的相应位置解答) 17.(2018 福建漳州,17,8 分)计算: 4 16 cos 30 . 【答案】解:原式 = 4 − 4 + 3 = 3
22 18.(2018 福建漳州,18,8 分)解方程:x2 − 4x + 1 = 0. 【答案】解:x2 − 4x = −1,∴x2 − 4x + 4 = 3,即(x − 2)2 = 3,∴x − 2 = ± 3 ,
相关文档
最新文档