知识讲解:力的合成与分解).

合集下载

【力的合成与分解】知识点总结

【力的合成与分解】知识点总结

14
考点二 力的分解 1.按力的效果分解 (1)根据力的实际作用效果―确―定→两个实际分力的方向. (2)再根据两个实际分力方向―画―出→平行四边形. (3)最后由三角形知识―求―出→两分力的大小.
师生互动
15
2.正交分解法 (1)定义:将已知力按互相垂直的两个方向进行分解的方法. (2)建立坐标轴的原则:一般选共点力的作用点为原点.在静力学中,以少分解力和 容易分解力为原则(即尽可能让更多的力在坐标轴上);在动力学中,以加速度方向和垂 直加速度方向为坐标轴建立坐标系.
3.力的合成 (1)定义:求几个力的__合__力__的过程.
4
(2)运算法则 ①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为 _邻__边___作平行四边形,这两个邻边之间的_对__角__线___就表示合力的大小和方向.如图甲所 示,F1、F2 为分力,F 为合力.
②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的 尾的__有__向__线__段__为合矢量.如图乙,F1、F2 为分力,F 为合力.
对称法解决非共面力问题 [素养必备]
在力的合成与分解的实际问题中,经常遇到物体受多个非共面力作用处于平衡状态 的情况,而在这类平衡问题中,又常有图形结构对称的特点,结构的对称性往往对应着 物体受力的对称性.解决这类问题的方法是根据物体受力的对称性,结合力的合成与分 解知识及平衡条件列出方程,求解结果.
7
1.合力不一定大于分力,二者是等效替代的关系,受力分析时不可同时作为物体 所受的力.
2.力的分解的四种情况 (1)已知合力和两个分力的方向求两个分力的大小,有唯一解. (2)已知合力和一个分力(大小、方向)求另一个分力(大小、方向),有唯一解.

高中物理知识点总结:力的合成、力的分解

高中物理知识点总结:力的合成、力的分解

力的合成与分解一、共点力作用于同一物体且作用线能够相交于一点的几个力,称之为共点力。

二、力的合成1、合力与分力如果一个力作用在物体上与几个力共同作用在物体上产生的效果相同,那么这个力就是那几个力的合力,那几个力就是这个力的分力。

相同的效果包括使物体产生相同的形变或是使物体产生相同的加速度。

2、合力与分力的关系合力与分力是一种等效代换的关系。

下图中,物体在力F作用下处于静止状态,在力 F1、F2共同作用下也能处于静止状态,即F1、F2共同作用的效果与力F单独作用的效果相同,于是F是F1、F2的合力;F1、F2是力F的分力,从作用效果上可以相互替换。

即,对于下图而言,可以认为没有F1、F2作用,而是有力F作用,替换后,物体的运动状态保持不变。

3、力的合成(1)力的合成:已知分力求合力的过程称为力的合成。

(2)平行四边形定则:以表示两个分力的线段为邻边作平行四边形,该平行四边形的对角线表示合力的大小和方向。

2.力的平行四边形定则求两个互成角度的力的合力,可以用表示这两个力的线段为邻边作平行四边形,它的对角线就表示合力的大小和方向.F1F2FOF1F2FO说明:①矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)②力的合成和分解实际上是一种等效替代.③由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零.④在分析同一个问题时,合矢量和分矢量不能同时使用.也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量.⑤矢量的合成分解,一定要认真作图.在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线.各个矢量的大小和方向3.根据力的平行四边形定则可得出以下几个结论:①共点的两个力(F1、F2)的合力(F)的大小,与它们的夹角(θ)有关;θ越大,合力越小;θ越小,合力越大.F1与F2同向时合力最大;F1与F2反向时合力最小,合力的取值范围是:_____________≤F≤________________.②合力可能比分力大,也可能比分力小,也可能等于某一分力.③共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零.(3)三角形定则与多边形定则4、两个共点力的合成总结(1)两个分力在一条直线上且同向时,它们的合力大小为两力之和,方向同两力方向。

高中物理知识点:力的合成与分解公式

高中物理知识点:力的合成与分解公式
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
3.合力大小范围:F1-F2≤F≤F1+F2
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解公式〕
以下是为大家整理的关于《高中物理知识点:力的合成与分解公式》,供大家学习参考!
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

高中物理知识点:力的合成与分解公式

高中物理知识点:力的合成与分解公式

高中物理知识点:力的合成与分解公式
1.同一直线上力的合成同向:F=F1+F2,反向F=F1-F2 (F1>F2)
2.互成角度力的合成F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围|F1-F2|小于等于F小于等于|F1+F2|
4.力的正交分解Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高一物理-力的合成与分解

高一物理-力的合成与分解

第三讲 力的合成与分解知识点一:力的合成合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力 力的合成:求几个已知力的合力叫做力的合成①共点力:几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力 ②平行四边形定则:根据两个分力的大小和方向,用力的图示法,从力的作用点起,按同一标度作出两个分力 F 1、F 2,以F 1、F 2为邻边作平行四边形,它的对角线就表示合力的大小及方向③矢量三角形法则:将两分力F 1、F 2首尾相接(有箭头的叫尾,无箭头的叫首),由F 1的首端指向F 2的尾端 的有向线段即为合力F 的大小及方向二力合成:2121F FF F F +≤≤-合,θ越大,F 合越小 ①当︒=0θ时,即两个力的方向一致,21F F F +=合,为最大②当︒=180θ时,即二力方向相反,21-F F F =合,为最小,且方向与较大的力的方向一致③当︒=90θ时,2221F F F +=合,12tan F F =θ④当︒=120θ,且F 1=F 2时,F 合=F 1=F 2,合力的方向在两分力的夹角平分线上 题型一、概念理解1. 关于两个大小不变的共点力与其合力的关系,下列说法正确的是( )A 合力大小随两力夹角增大而增大B 合力的大小一定大于分力中最大者C 两个分力夹角小于180°时,合力大小随夹角减小而增大D 合力的大小不能小于分力中最小者 2、 关于共点力,下列说法中不正确的是( )A 作用在一个物体上的两个力,如果大小相等,方向相反,这两个力是共点力B 作用在一个物体上的两个力,如果是一对平衡力,则这两个力是共点力C 作用在一个物体上的几个力,如果它们的作用点在同一点上,则这几个力是共点力D 作用在一个物体上的几个力,如果它们力的作用线汇交于同一点,则这几个力是共点力 3、 关于两个分力F 1、F 2与它们的合力F ,下列说法中正确的是( )A 合力F 的作用效果一定与F 1 , F 2共同作用产生的效果相同B F 1、 F 2一定是同种性质的力C F 1、 F 2 不一定是同一个物体受的力D F 1、F 2与F 是物体同时受到的三个力 4、 关于合力与其两个分力的关系,下列说法正确的是( )A 合力的大小一定大于小的分力,小于大的分力B 合力的大小随分力夹角的增大而增大C 合力的大小一定大于任何一个分力D 合力的大小可能大于大的分力,也可能小于小的分力题型二、力的合成1. 如下图所示,F 1、F 2、F 3恰好构成封闭的直角三角形,这三个力的合力最大的是( )2. 作图求下图所示各种情况下三个力的合力大小( )3. 如图所示,重为100N 的物体在水平向左的力F =20N 作用下,以初速度v 0沿水平面向右滑行。

力的合成与分解知识点梳理

力的合成与分解知识点梳理

力的合成与分解知识点梳理力的合成与分解是物理学中的基础知识,它们描述了多个力的作用和分解方式。

在本篇文章中,我们将讨论力的合成与分解的概念、方法以及相关应用。

以下是力的合成与分解的知识点梳理:一、力的合成1. 概念:力的合成是指将多个力按照一定规则相加得到合力的过程。

多个力的合成可以产生一个等效的力,这个等效的力被称为合力。

2. 方法:a. 图解法:将力的大小和方向用箭头表示,在力的起点将箭头首尾相接,合力的箭头即为首尾相连的箭头。

b. 分解为分力:将一个力分解为两个或多个分力,再将这些分力按照一定规则合成,得到合力。

c. 使用平行四边形法则:根据平行四边形法则,将两个力的起点相连,构成一个平行四边形,合力的箭头即为对角线的箭头。

二、力的分解1. 概念:力的分解是将一个力分解为两个或多个分力的过程。

力的分解可以将复杂的力的作用转化为较简单的力的作用,使问题求解更简便。

2. 方法:a. 分解为垂直方向的分力:根据力在直角坐标系中的分解,将力分解为垂直方向的分力和水平方向的分力。

b. 分解为平行和垂直于斜面的分力:对一个斜面上作用的力进行分解时,可以将力分解为平行和垂直于斜面的分力,以便求解问题。

c. 使用三角函数:根据力的大小和夹角,使用三角函数(如正弦、余弦)将力分解为不同方向的分力。

三、应用1. 力的合成与分解在静力学中的应用:通过将力的作用分解为水平和垂直方向的分力,可以分析物体在平衡状态下的受力情况。

2. 力的合成与分解在动力学中的应用:通过合成力,可以计算物体在多个不同方向上作用力的结果,进而分析物体的运动状态。

3. 力的合成与分解在斜面上的应用:通过分解斜面上的力,可以确定平行和垂直方向的分力,从而计算物体在斜面上的受力和运动情况。

4. 力的合成与分解在物体平衡条件的判断中的应用:分解物体所受外力得到水平方向分力的合力为零,垂直方向分力的合力为零即可判断物体是否处于平衡状态。

综上所述,力的合成与分解是物理学中重要的概念,它们描述了多个力的作用方式和分解方法。

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结力是物理学中的一个重要概念,力的合成与分解是解决力学问题的基础。

下面我们来详细总结一下力的合成与分解的相关知识点。

一、力的合成1、合力的概念如果一个力作用在物体上产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。

2、共点力如果几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。

3、力的合成法则(1)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。

(2)三角形定则将两个分力首尾相接,连接始端与末端的有向线段就表示合力的大小和方向。

4、合力的计算(1)已知两个分力的大小和方向,求合力的大小和方向,直接运用平行四边形定则或三角形定则计算。

(2)已知两个分力的大小和夹角θ,合力的大小可以通过公式:$F =\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$计算,合力的方向可以通过三角函数关系求得。

5、合力的范围(1)两个力的合力范围:$|F_1 F_2| \leq F \leq F_1 + F_2$。

(2)三个力的合力范围:先求出其中两个力的合力范围。

再看第三个力在这个范围内的情况,从而确定三个力的合力范围。

二、力的分解1、力的分解的概念求一个已知力的分力,叫做力的分解。

2、力的分解遵循的原则力的分解是力的合成的逆运算,同样遵循平行四边形定则或三角形定则。

3、力的分解的方法(1)按照力的实际作用效果进行分解。

例如,放在斜面上的物体受到的重力可以分解为沿斜面方向向下的分力和垂直斜面方向向下的分力。

(2)正交分解法将一个力沿着互相垂直的两个方向进行分解。

4、力的分解的唯一性(1)已知两个分力的方向,有唯一解。

(2)已知一个分力的大小和方向,有唯一解。

(3)已知两个分力的大小,其解的情况可能有:两力之和大于合力时,有两解。

高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。

以下是对该知识点的讲解。

1. 力的分解力的分解是指将一个力分解为多个力的效果。

这样做有助于我们更好地理解和分析力的作用。

在力的分解中,我们常使用正交分解法和图解法。

1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。

这种方法常用于解决斜面问题和倾斜物体问题。

在正交分解时,我们可以根据三角函数关系来计算力的分解分量。

1.2 图解法图解法是通过绘制矢量图来展示力的分解。

我们可以使用比例尺来确定力的大小和方向。

通过观察图示,我们可以清楚地看到力的分解效果。

图解法常用于解决平面力系统和多个力合成问题。

2. 力的合成力的合成是指将多个力合成为一个力的效果。

这有助于我们将多个力简化为一个力进行分析。

力的合成有两种常见方法:向量法和平行四边形法。

2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。

在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。

最终的合成力的大小和方向由向量相加或相减的结果得出。

2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。

我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。

通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。

力的分解与合成是物理学中非常实用的技巧。

通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。

以上是对高一物理《力的分解与合成》知识点的简要讲解。

希望对您的学习有所帮助!。

力的合成与分解

力的合成与分解

力的合成与分解一、知识要点 1、力的合成 (1)运算法则:①平行四边形法则,见图(A ),用表示两个共点力F 1和F 2的线段为邻边作平行四边形,那么这两个邻边之间的对角线就表示合力F 的大小和方向。

②三角形定则:求两个互成角度的共点力F 1、F 2的合力,可以把表示F 1、F 2的线段首尾相接地画出,见图(B ),把F 1、F 2的另外两端连接起来,则此连线就表示合力F 的大小、方向。

三角形定则是平行四边形定则的简化,本质相同。

(2)力的合成的几种特殊情况:①相互垂直的两个力的合成,如图所示,F =,合力F 与分力F 1的夹角θ的正切为:21tan F F θ=。

②夹角为θ的两个等大的力的合成,如图所示,作出的平行四边形为菱形,利用其对角线互相垂直的特点可得直角三角形,解直角三角形求得合力2cos2'θF F =,合力'F 与每一个分力的夹角等于2θ。

③夹角为120的两个等大的力的合成,如图所示,实际是②的特殊情况:FF F =⋅=2120cos 2',即合力大小等于分力。

实际上对角线把画出的菱形分为两个等边三角形,所以合力与分力等大。

(3). 合力与两分力之间的大小关系:在两个力F 1和F 2大小一定情况下,改变F 1与F 2方向之间的夹角θ,当θ角减小时,其合力F 逐渐增大,当0θ=时,合力最大F =F 1+F 2,方向与F 1和F 2方向相同;当θ角增大时,其合力逐渐减小,当180θ=,合力最小F =|F 1-F 2|,方向与较大的力方向相同,即合力大小的取值范围为F 1+F 2≥F ≥|F 1-F 2|。

(4). 多个力的合成:应先求其中任意两个力的合力,再求这个合力与第三个力的合力,直到把所有的力都合成进去,最后得到的就是这些力的合力。

2、力的分解(1)作用在物体上的同一个力F 可以分解为无数对大小、方向不同的分力。

一般情况下我们按照力的作用效果进行分解,按力的效果进行分解,这实际上就是定解条件。

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结在物理学中,力的合成与分解是一个重要的概念,它帮助我们理解物体在多个力作用下的运动状态以及如何更有效地分析和解决力学问题。

接下来,让我们一起深入了解力的合成与分解的相关知识点。

一、力的合成1、概念力的合成是指求几个力的合力的过程。

合力是指如果一个力产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力。

2、平行四边形定则这是力的合成所遵循的基本法则。

以两个共点力 F₁和 F₂为例,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力 F 的大小和方向。

3、合力的计算(1)若两个力 F₁和 F₂在同一直线上,方向相同时,合力 F =F₁+ F₂,方向与两力相同;方向相反时,合力 F =|F₁ F₂| ,方向与较大的力相同。

(2)当两个力不在同一直线上时,需要通过平行四边形定则来计算合力的大小和方向。

可以利用三角函数知识,比如合力 F 的大小可以表示为 F =√(F₁²+ F₂²+ 2F₁F₂cosθ) ,其中θ 为两力之间的夹角。

4、多个力的合成依次两两合成,最终得到多个力的合力。

二、力的分解1、概念力的分解是力的合成的逆运算,将一个力按照需要分解为两个或多个分力。

2、分解原则(1)按照力的实际作用效果分解。

比如,一个斜面上的物体受到的重力,可以分解为沿斜面方向向下的力和垂直斜面方向向下的力。

(2)正交分解法:将一个力分解为相互垂直的两个分力。

选择合适的坐标轴,将力沿着坐标轴进行分解。

3、力分解的唯一性一个已知力可以有无数组分力,但在具体问题中,要根据实际情况确定分力的方向,从而得到唯一的分解结果。

三、力的合成与分解的应用1、共点力的平衡当物体受到多个共点力作用而处于平衡状态时,合力为零。

可以通过力的合成与分解,求出各个力之间的关系,从而解决平衡问题。

2、动态平衡问题在一些情况下,物体所受的力在变化,但仍保持平衡状态。

最新人教版八年级上册物理知识总结力的合成与分解

最新人教版八年级上册物理知识总结力的合成与分解

最新人教版八年级上册物理知识总结力的合成与分解力的合成与分解在物理学中是一个非常重要的概念,它帮助我们理解和解释物体受力的情况。

本文将为大家总结人教版八年级上册物理课中关于力的合成与分解的知识点。

一、力的合成力的合成是指当一个物体受到两个或多个力的作用时,求出它们合成力的大小和方向的过程。

1. 合力的概念在力的合成中,首先要了解合力的概念。

合力是指多个力作用在同一个物体上所产生的力,它的大小和方向等于所有力的矢量和。

2. 力的合成原理力的合成原理是指力的合成过程中,可以利用平行四边形法则或三角形法则来求得合力的大小和方向。

- 平行四边形法则:当两个力作用在同一个物体上时,可以按照它们的大小和方向画出一个平行四边形,合力的大小和方向等于对角线的大小和方向。

- 三角形法则:当两个力作用在同一个物体上时,可以按照它们的大小和方向画出一个三角形,合力的大小和方向等于两个力的合成结果。

3. 力的平衡在力的合成中,如果多个力的合成结果等于零,即合力为零,那么物体处于力的平衡状态。

力的平衡可以分为静力平衡和动力平衡两种情况。

- 静力平衡:当物体处于静止状态时,合力为零。

- 动力平衡:当物体处于匀速直线运动状态时,合力为零。

二、力的分解力的分解是指将一个力分解成若干个部分力的过程,它有助于我们研究力的作用效果。

1. 分解力的概念分解力是指将一个力分解成两个或多个部分力,这些部分力的合成结果等于原力。

2. 分解力的原理分解力的原理是指力的分解过程中,可以利用平行四边形法则或三角形法则来求得部分力的大小和方向。

- 平行四边形法则:当一个力作用在一个物体上时,可以按照它的大小和方向画出一个平行四边形,将其分解成两个平行的部分力。

- 三角形法则:当一个力作用在一个物体上时,可以按照它的大小和方向画出一个三角形,将其分解成两个相互垂直的部分力。

3. 分解力的应用力的分解在实际应用中有着广泛的应用,例如斜面上物体的滑动问题、悬挂物体的平衡问题等等。

力的合成与分解知识点与例题讲解

力的合成与分解知识点与例题讲解

千里之行,始于足下。

力的合成与分解知识点与例题讲解力的合成和分解是力学中的重要概念,它们用来描述多个力对物体产生的总效果以及将一个力分解成多个分力的过程。

以下是关于力的合成和分解的知识点与例题讲解。

一、力的合成力的合成是指将多个力按照一定的方法相加得到它们的合力。

合力是多个力的矢量和,可以用矢量图形法或分解法求得。

1. 矢量图形法首先,将力的大小按比例用箭头表示,箭头的长度表示力的大小,箭头的方向表示力的方向。

然后,将各个力的箭头按照规定的尺度和方向画在同一张纸上,箭头起点相同,终点相连,则合力的箭头就是从起点到终点的箭头。

2. 分解法将一个力按照一定的规则分解成两个或多个力的过程称为力的分解。

常用的分解方法有水平方向分解和垂直方向分解。

水平方向分解:将力按照水平方向分解为两个分力,一个是水平方向分力,另一个是垂直方向分力。

根据三角函数的定义,水平方向分力等于力的大小乘以力的水平方向的余弦值,垂直方向分力等于力的大小乘以力的垂直方向的正弦值。

垂直方向分解:将力按照垂直方向分解为两个分力,一个是水平方向分力,另一个是垂直方向分力。

根据三角函数的定义,水平方向分力等于力的大小乘以力的水平方向的正弦值,垂直方向分力等于力的大小乘以力的垂直方向的余弦值。

第1页/共3页锲而不舍,金石可镂。

二、力的分解力的分解是指将一个力分解成两个或多个部分力的过程。

分解力的目的是分析力的作用效果,常用的分解方法有水平方向分解和垂直方向分解。

1. 水平方向分解将一个力的大小和方向分解成水平方向分力和垂直方向分力,可以用以下公式表示:水平分力 = 力的大小× cosθ垂直分力 = 力的大小× sinθ其中,θ为力的方向与水平方向之间的夹角。

2. 垂直方向分解将一个力的大小和方向分解成水平方向分力和垂直方向分力,可以用以下公式表示:水平分力 = 力的大小× sinθ垂直分力 = 力的大小× cosθ其中,θ为力的方向与水平方向之间的夹角。

力的合成与分解

力的合成与分解

力的合成与分解力是物体之间相互作用的结果,可以改变物体的状态和运动情况。

力的合成与分解是力学中基础而重要的概念,它们对于解决各种力的问题具有重要的意义。

一、力的合成力的合成是指将两个或多个力合成为一个力的过程。

合成后的力称为合力,通常用F来表示。

合成力的大小与方向的确定可以通过力的几何法求解。

力的几何法有两种主要方法:平行四边形法则和三角法则。

1. 平行四边形法则平行四边形法则适用于力的合成问题,其中已知两个力A和B的大小和方向,要求合成力C的大小和方向。

将两个力A和B的起点相连,并且保持它们在同一直线上,得到一个平行四边形。

在平行四边形中,从力A的终点引一条平行于力B的线段,从力B的终点引一条平行于力A的线段。

这两条线段的交点即为合力C的起点。

然后从合力C的起点引一条线段,连接到力A和力B的终点,即可得到合力C。

2. 三角法则三角法则适用于力的合成问题,其中已知两个力A和B的大小和方向,要求合成力C的大小和方向。

将两个力A和B的起点相连,并且保持它们在同一直线上。

以力A 为向量基础,在力A的尾部画一条与力B方向相同的延长线,之后在力A和力B的尾部之间连一条线段,该线段即为合力C。

二、力的分解力的分解是指将一个力分解为两个或多个力的过程。

分解后的力称为分力,通常用Fx、Fy来表示。

分解力的大小与方向的确定可以通过力的几何法求解。

力的几何法有两种主要方法:正交分解法和平行分解法。

1. 正交分解法正交分解法适用于力的分解问题,其中已知一个力F的大小和方向,要求将其分解为Fx和Fy两个正交的力。

在力F的起点上引一条与x轴平行的线段,以该线段为边,画一个与力F方向相同的直角三角形。

根据三角函数的定义,可以得到力F在x轴上的分力Fx,以及力F在y轴上的分力Fy。

2. 平行分解法平行分解法适用于力的分解问题,其中已知一个力F的大小和方向,要求将其分解为Fx和Fy两个平行的力。

以力F的起点为起点,在力F的方向上画一条与x轴平行的线段,该线段的长度即为力F在x轴上的分力Fx。

最新人教版初中物理第七章《力的合成与分解》知识点大全

最新人教版初中物理第七章《力的合成与分解》知识点大全

最新人教版初中物理第七章《力的合成与分解》知识点大全本文档将介绍最新人教版初中物理第七章《力的合成与分解》的知识点。

该章节是初中物理中的重要内容,主要涉及力的合成和分解的基本概念和计算方法。

1. 力的合成- 力的合成是指将两个或多个力合并为一个力的过程。

- 合成力的大小等于合成力的力矢量的代数和。

- 合成力的方向可以通过力的平行四边形法则或三角形法则来确定。

2. 力的分解- 力的分解是指将一个力分解为两个或多个力的过程。

- 分解力的大小等于原始力在分解方向上的投影。

- 分解力的方向可以通过力的平行四边形法则或三角形法则来确定。

3. 力的合成与分解的应用- 力的合成与分解在实际生活中有许多应用,例如:- 航空航天中的力的合成与分解用于飞行器的稳定与控制。

- 运动员在体育项目中通过合成力与分解力来提高运动效果和技巧。

- 工程师在设计建筑物和桥梁时需要考虑合成力与分解力对结构的作用。

4. 力的合成与分解的计算方法- 力的合成与分解的计算方法包括向量法和三角函数法。

- 向量法适用于力的大小和方向已知的情况,通过向量加法来求解合成力或分解力。

- 三角函数法适用于已知力的大小和夹角的情况,通过三角函数的计算来求解合成力或分解力。

5. 相关公式和定理- 力的合成公式:若力 $ \mathbf{F_1} $ 和 $ \mathbf{F_2} $ 的合成力为 $ \mathbf{F} $,则有 $ \mathbf{F} = \mathbf{F_1} +\mathbf{F_2} $。

- 力的分解公式:已知力 $ \mathbf{F} $ 在 $ x $ 和 $ y $ 方向的分解力分别为 $ \mathbf{F_x} $ 和 $ \mathbf{F_y} $,则有$ \mathbf{F_x} = F \cos \theta $ 和 $ \mathbf{F_y} = F \sin \theta $。

- 平行四边形法则:根据已知的力的大小和方向在平行四边形上进行绘制,合成力的大小和方向为对角线的大小和方向。

力的合成和分解

力的合成和分解
则F=5.44 cm×10 N/cm=54.4N 用量角器测得合力F与力F1的夹角为54°。 合力的大小为54.4N,方向与力F1的夹角为54°。
典型例题
解法2:计算法
F F12 F22
F F2
322 442 N 54.4 N
tan
F2 F1
44 32
1.3 7 5
54
O
F1
合力的大小为54.4N,方向与力F1的夹角为54°。
新知讲解
五、矢量和标量
1、力的合成,按平行四边形定则来确定合力的大小和方向。
2、位移合成时也遵从平行四边形定则。 C
一个人从A走到B,发生的位移
是AB,又从B走到C,发生的位移是 B
BC。在整个运动过程中,这个人的
位移是AC,AC是合位移。 A
新知讲解
3、矢量 既有大小又有方向,相加时遵从平行四边形定则的物理量叫作矢量。 4、标量 只有大小,没有方向,相加时遵从算术法则的物理量叫作标量。
3.(2018秋•沂水县期末)将一个l0N的力分解为两个分力,两个分 力的大B 小可能为( C ) A.30N和5N B.10N和26N C.5N和10N D.100N和115N
课堂总结
1、力的合成符合平行四边形定则 (1)合力大小范围:︱F1 - F2︱ ≤ F ≤ F1 + F2 (2)合力有可能大于或小于或等于任何一个分力。 (3)互成角度的二个共点力如果保持大小不变,它们的合力将 随夹角的增大而减小; 2、力的分解符合平行四边形定则 力的分解方法——按作用效果
究这三个力的大小及方向的关系。
新知讲解
实验注意事项: ①弹簧秤使用前要先调零; ②弹簧秤拉长方向和所测拉力方向应保持与木板平行; ③弹簧、指针、拉杆都不要与刻度板和刻度板末端的限位卡 发生磨擦。

高二物理《力的合成与分解》知识点总结

高二物理《力的合成与分解》知识点总结

高二物理《力的合成与分解》知识点总结
一、共点力的合成
1. 合力的大小范围
(1)两个共点力的合成:|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,合力最大。

(2)三个共点力的合成
①最大值:三个力共线且同向时,其合力最大,为F1+F2+F3.
②最小值:任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小的力的大小之和.
2.共点力合成的方法
(1)作图法.
(2)计算法.
3. 几种特殊情况的共点力的合成
二、力分解的两种常用方法
1. 效果分解法
按力的作用效果分解(思路图) 2. 正交分解法
(1)定义:将已知力按互相垂直的两个方向进行分解的方法.
(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.
(3)方法:物体受到多个力F 1、F 2、F 3、…作用,求合力F 时,可把各力向相互垂直的x 轴、y 轴分解.
x 轴上的合力F x =F x 1+F x 2+F x 3+…
y 轴上的合力F y =F y 1+F y 2+F y 3+…
合力大小F =F 2x +F 2y
合力方向:与x 轴夹角为θ,则tan θ=F y F x
.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力的合成与分解【学习目标】1.知道合力与分力的概念2.知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3.知道共点力,知道平行四边形定则只适用于共点力4.理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5.会用作图法求分力,会用直角三角形的知识计算分力6.能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。

②合力与分力的关系。

a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。

b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。

2.力的合成①定义:求几个力的合力的过程叫做力的合成。

②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。

3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。

说明:平行四边形定则是矢量运算的基本法则。

②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。

要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。

2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。

说明:①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。

②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。

3.合力与分力的大小关系:由平行四边形可知:F i、F2夹角变化时,合力F的大小和方向也发生变化。

(1)合力F 的范围:| F1-F2 |< FWF 1+F2。

①两分力同向时,合力F最大,F=F1+F2。

②两分力反向时,合力F最小,F= | F1-F2丨。

③两分力有一夹角0时,如图甲所示,在平行四边形OABC中,将F2平移到F i末端,则F i、F2、F围成一个闭合三角形。

如图乙所示,由三角形知识可知;| F1-F2 | < Fv F1+F2。

综合以上三种情况可知:①| F i-F 2 |w FWF 1+F20②两分力夹角越大,合力就越小。

③合力可能大于某一分力,也可能小于任一分力甲乙要点三、力的分解要点诠释:1.分力:几个力,如果它们产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力.注意:几个分力与原来那个力是等效的,它们可以相互替代,并非同时存在.2.力的分解:求一个已知力的分力叫力的分解.3.力的分解定则:平行四边形定则,力的分解是力的合成的逆运算.两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示)•即同一个力F可以分解成无数对大小、方向不同的分力.要点四、实际分解力的方法要点诠释:1.按效果进行分解在实际分解中,常将一个力沿着该力的两个效果方向进行分解,效果分解法的方法步骤:①画出已知力的示意图;②根据此力产生的两个效果确定出分力的方向;③以该力为对角线作出两个分力方向的平行四边形,即作出两个分力.2.利用平行四边形定则求分力的方法①作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向.②计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向.由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题•因此其解题的基本思路可表示为3.力按作用效果分解的几个典型实例实例分析地面上物体受斜向上的拉力F,拉力F —方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F i和竖直向上的力F2质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F i;二是使物体压紧斜面的分力F2, F-|= mg sin:, F2= mg cos:质量为m的光滑小球被竖直挡板挡住而静止于斜面上时•其重力产生两个效果:一是使球压紧板的分力F i;二是使球压紧斜mgF2 = -------面的分力F2, F i= mg tan_, , cos:质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F i;二是使球拉紧悬线F2 = mg的分力F2, F-I= mg tan:, cos:A B两点位于同一平面上,质量为m的物体由AO B0两线拉住,其重力产生两个效果:一是使物体拉紧A0线的分力F2;二是使物体拉紧B0线的分力质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F i;二是压缩BC的分力F2, F i = F2 =mg2sin二质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F i;二是压缩BC的分力F2, R ^mgtan〉,F2 = mg cos®要点五、力的分解中定解条件要点诠释:将一个力F分解为两个分力,根据力的平行四边形定则,是以这个力F为平行四边形的一条对角线作一个平行四边形,在无附加条件限制时可作无数个不同的平行四边形,这说明两个力的合力可唯一确定,一个力的分力不是唯一的,要确定一个力的两个分力,一定要有定解条件.(i)已知合力(大小、方向)和两个分力的方向,则两个分力有唯一确定的值•如图甲所示,要求把已知力F分解成沿OA 0B方向的两个分力,可从F的矢(箭头)端作OA 0B的平行线,画出力的平行四边形得两个分力F i、F2.⑵已知合力(大小、方向)和一个分力(大小、方向),则另一个分力有唯一确定的值.如图乙所示,已知F(合力),分力F i,则连接F和F i的矢端,即可作出力的平行四边形得另一个分力F2.甲乙⑶ 已知合力(大小、方向)和两分力大小,则两分力有两组解,如图所示,分别以0点和F的矢端为圆心, 以F i、F2大小为半径作圆,两圆交于两点,作出三角形如图.⑷ 已知合力(大小、方向)和一个分力的方向,则另一分力无确定值,且当两分力垂直时有最小值.如图所示,假设F i与F 的夹角为0,分析方法如下:以F的尾端为圆心,以F2的大小为半径画圆,看圆与F1的交点即可确定解释的情形.①当F2V Fsin 0时,圆(如圆①)与F i无交点,无解;②当F2= Fsin 0时,圆(如圆②)与F i有一交点,故有唯一解,且F2最小;③当Fsin 0v F2V F时,圆(如圆③)与F i有两交点,有两解;④当F2> F时,圆(如圆④)与F i有一交点,有唯一解.要点六、实验验证力的平行四边形定则要点诠释:1.实验目的:验证力的平行四边形定则2.实验器材:方木板、白纸、弹簧测力计(两个)、橡皮筋、细绳套(两个)、铅笔、三角板、刻度尺、图钉3.实验原理:结点受三个共点力作用处于平衡状态,则F i、F2之合力必与F s平衡,改用一个拉力F'使结点仍到0,则F必与F i、F2的合力等效,与F s平衡,以F i、F2为邻边作平行四边形求出合力F,比较F'与F的大小和方向,以验证力合成时的平行四边形定则。

4.实验步骤:(1)用图钉把白纸钉在方木板上。

(2)把方木板平放在桌面上,用图钉把橡皮条的一端固定在A亡:咚圧条門出-洛产:细湄心:.(3)用两只弹簧秤分别钩住细绳套,互成角度的拉橡皮条,使橡皮条伸长到某一位置0(如图所示)用铅笔描下0点的位置和两条细绳的方向,并记录弹簧秤的读数。

注意在使用弹簧秤的时候,要使细绳与木板平面平行。

(4)用铅笔和刻度尺从力的作用点(位置0)沿着两条绳套的方向画直线,按选定的标度作出这两只弹簧秤的拉力F i和F2的图示,以F i和F2为邻边利用刻度尺和三角板作平行四边形,过0点画平行四边形的对角线,即为合力F的图示。

(5)只用一只弹簧秤通过细绳套把橡皮条的结点拉到同样的位置0,记下弹簧秤的读数和细绳的方向,用刻度尺从0点按选定的标度沿记录的方向作出这只弹簧秤的拉力F'的图示。

(6)比较一下,力F'与用平行四边形法则求出的合力F在大小和方向上是否相同。

(7)改变两个力F i、F2的大小和夹角,再重复实验两次。

5.注意事项:(1)弹簧测力计在使用前应检查、校正零点,检查量程和最小刻度单位。

(2)用来测量F i和F2的两个弹簧测力计应用规格、性能相同,挑选的方法是:将两只弹簧测力计互相钩着,向相反方向拉,若两弹簧测力计对应的示数相等,则可同时使用。

(3)使用弹簧测力计测拉力时,拉力应沿弹簧测力计的轴线方向,弹簧测力计、橡皮筋、细绳套应位于与木板平行的同一平面内,要防止弹簧卡壳,防止弹簧测力计或橡皮筋与纸面摩擦。

拉力应适当大一些,但拉伸时不要超出量程。

(4)选用的橡皮筋应富有弹性,能发生弹性形变,实验时应缓慢地将橡皮筋拉伸到预定的长度•同一次实验中,橡皮筋拉长后的结点位置必须保持不变。

(5)准确作图是本实验减小误差的重要一环,为了做到准确作图,拉橡皮筋的细绳要长一些;结点口的定位应力求准确;画力的图示时应选用恰当的单位标度;作力的合成图时,应尽量将图画得大些。

(6)白纸不要过小,并应靠木板下边缘固定,A点选在靠近木板上边的中点为宜,以使0点能确定在纸的上侧。

【典型例题】类型一、合力与分力的关系例1、关于F i、F2及它们的合力F,下列说法中正确的是()A •合力F —定与F i、F2共同作用产生的效果相同B .两力F i、F2一定是同种性质的力C .两力F i、F2一定是同一个物体受到的力D .两力F i、F2与F是物体同时受到的三个力【思路点拨】合力与分力之间满足平形四边形定则。

【答案】AC【解析】只有同一个物体受到的力才能合成,分别作用在不同物体上的力不能合成.合力是对原来几个分力的等效替代,两力可以是不同性质的力,但合力与分力不能同时存在.所以,正确选项为 A C.【点评】解答本题的关键是明确合力的作用效果与几个分力同时作用的效果相同,合力与分力是等效替代关系.举一反三【高清课程:力的合成与分解例题2】【变式i】若两个共点力F i、F2的合力为F,则有()A.合力F 一定大于任何一个分力B. 合力F 至少大于其中的一个分力C. 合力F 可以比F i 、F 2都大,也可以比 F i 、F 2都小D. 合力F 不可能与F i 、F 2中的一个大小相等【答案】C【变式2】两个共点力的合力为 F ,如果它们之间的夹角0固定不变,使其中一个力增大,则()A. 合力F 一定增大B. 合力F 的大小可能不变C. 合力F 可能增大,也可能减小D. 当0 ° <0 <90°时,合力 F 一定减小【答案】BC 类型二、两个力合力的范围例2、力F i = 4N,方向向东,力 F 2 = 3N,方向向北.求这两个力合力的大小和方向. 【思路点拨】通过作图和计算即可计算出合力的大小和方向。

相关文档
最新文档