实验八炉温控制系统的设计

合集下载

加热炉温度控制系统设计

加热炉温度控制系统设计

加热炉温度控制系统设计一、引言加热炉是一种常见的工业设备,用于将物体加热至一定温度。

在许多工业过程中,加热炉的温度控制至关重要,它直接影响到产品的质量和生产效率。

因此,设计一个稳定可靠的温度控制系统对于提高工业生产的效益十分重要。

本文将介绍一个基于控制理论的加热炉温度控制系统的设计。

二、控制系统设计原理1.温度传感器:温度传感器是测量加热炉内部温度的重要组成部分。

常用的温度传感器包括热电偶和热敏电阻。

传感器将温度信号转换为电信号,并将其发送给控制器。

2.控制器:控制器接收温度传感器发送的信号,并与设定值进行比较。

根据比较结果,控制器将控制信号发送给加热器以调整加热功率。

控制器通常使用PID控制算法,它根据偏差、积分和微分项来计算控制信号。

3.加热器:加热器是加热炉温度控制系统中的执行器。

根据控制信号,加热器可以调整加热功率,从而控制加热炉的温度。

三、温度传感器选择温度传感器的选择对于温度控制系统的性能至关重要。

常见的温度传感器有热电偶和热敏电阻。

在选择传感器时需要考虑以下因素:1.测量范围:根据加热炉的工作温度范围选择合适的传感器。

不同的传感器有不同的工作温度范围。

2.精度:传感器的精度对于控制系统的准确性非常重要。

一般来说,热电偶的精度比热敏电阻高。

3.响应时间:加热炉温度的变化通常需要快速响应。

因此,传感器的响应时间也是一个重要的考虑因素。

四、控制器设计1.控制算法选择:常见的控制算法有比例控制、积分控制和微分控制。

PID控制算法结合了这三种控制算法,被广泛应用于温度控制系统。

2. 参数调节:根据具体的应用场景和系统性能要求,需要对PID控制器进行参数调节。

常见的调节方法有Ziegler-Nichols方法和临时增减法。

3.控制信号输出:控制信号输出给加热器,影响加热功率。

一般来说,控制信号越大,加热功率越高,温度升高的速度越快。

五、系统测试和优化完成控制系统的设计后,需要进行系统测试和优化。

加热炉过程自动控制系统的设计

加热炉过程自动控制系统的设计

加热炉过程自动控制系统的设计以下是一个加热炉过程自动控制系统的设计方案,详细描述了系统的组成、工作原理及控制策略:一、系统组成:1.传感器:用于检测加热炉的温度、湿度、压力、流量等参数。

2.执行器:负责控制加热炉的加热功率、燃料供给、风量等。

3.控制器:根据传感器信号,通过计算和判断,产生相应的控制命令,控制执行器的动作。

4.人机界面:提供对加热炉过程的监控、设置和操作功能,使操作员能够方便地对加热炉进行调试和控制。

二、工作原理:1.传感器采集加热炉的各项参数,并将数据传输给控制器。

2.控制器根据传感器数据进行计算和分析,将所需的控制命令传输给执行器。

3.执行器根据控制命令控制相应设备的动作,如调节加热功率、燃料供给量、风量等。

4.执行器调整加热炉的工作状态,使其达到预定的温度、湿度、压力、流量等参数。

5.人机界面可以通过可视化界面显示加热炉的运行状态和参数,操作员可以通过界面进行参数设置和调整。

三、控制策略:1.温度控制:根据加热炉的加热需求,设置温度控制器的目标温度,并通过加热功率的控制来调节温度,使其尽量趋近目标温度。

2.湿度控制:根据加热炉的加热需求,设置湿度控制器的目标湿度,并通过蒸汽量或喷雾量的控制来调节湿度,使其尽量趋近目标湿度。

3.压力控制:根据加热炉的加热需求,设置压力控制器的目标压力,并通过调节燃料供给量和风量的控制来调节压力,使其尽量趋近目标压力。

4.流量控制:根据加热炉的加热需求,设置流量控制器的目标流量,并通过调节燃料供给量和风量的控制来调节流量,使其尽量趋近目标流量。

5.故障诊断与安全保护:系统可以检测加热炉的异常状态和故障情况,并进行相应的故障诊断和安全保护措施,如当温度超过安全范围时,自动切断燃料供给等。

电加热炉温度控制系统设计说明

电加热炉温度控制系统设计说明

电加执八、、炉温度控制系统设计电加热炉温度控制系统设计1. 设计的意义:在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。

工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。

2. 方案的设计:要求利用所学过的知识设计一个温度控制系统, 加热炉温度检测,到设定温度后,进行保温控制. 要想达到技术要求的内容,用到的器件有:单片机、温度传感器、LCD 显示屏、直流电动机等。

其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD 显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断电停止加热。

原理图如下图1:图1 电加热炉温度控制系统原理图2.1 硬件选择:1. 单片机这里选用AT89C52 单片机作为控制系统的处理器。

AT89C52 是一种带4K 字节闪存可编程可擦除只读存储器的低电压、高性能CMOS 8 位微处理器。

2. 温度传感器温度传感器有很多种型号,这里我选用DS18B20 温度传感器。

数字温度传感器DS18B20 具有独特的单总线接口方式,支持多节点,使分布式温度传感器设计大为简化。

测温时无需任何外围原件,可以通过数据线直接供电,具有超低功耗工作方式。

测温范围为-55 到+125 摄氏度,可直接将温度转换值以16 位二进制数字码的方式串行输出,因此特别适合单线多点温度测量系统。

由于传输的是串行数据,可以不需要放大器和A/D 转换器,因而这种测温方式大大提高了各种温度测控系统的可靠性,降低了成本,缩小了体积。

3.开关器件由于单片机与电动机之间需要用开关器件连接,并且前者用弱电控制,后者由强电控制,这就尤其需要注意安全问题。

于是我想到了在课本中学过的高性能安全开关器件光电耦合器。

实验八炉温控制系统的设计

实验八炉温控制系统的设计

实验八 炉温控制系统的设计一、设计目的1、了解被控对象数学模型建立的方法;2、掌握PID 控制的基本原理; 4、掌握PID 参数整定的两种方法;3、掌握Matlab/Simulink 在控制系统设计中的应用。

二、设计要求电炉是一个特性参数随炉温变化的被控对象,炉温控制具有单向性、大惯性、大滞后、时变性的特点。

设计PID 控制器,当系统处于平衡状态时,通过调节PID 控制器的比例系数p K 、积分时间系数i T 和微分时间D τ,炉温稳定在给定值,从而实现了电炉的温度控制。

三、设计任务3.1电炉数学模型一般将电阻炉视为一阶惯性环节加滞后的对象,其传递函数为s e Ts K s G τ-+=1)(。

其中:T 为电炉的时间常数,T=RC (C 为电炉热容,R 为热阻);K 为比例系数;τ为纯滞后时间,单位s ;S 为复频域连续函数。

系数T 、K 、S 对于不同的被控对象,其数值有所不同。

现有一台50kW 箱式电阻炉,其T=360、K=8、τ=180s 。

3.2电炉控制系统框图常用电阻炉炉温控制系统如图1所示,其中PID 控制器是应用最广泛、最成熟的一种调节器。

图一 电阻炉炉温控制系统 3.3 PID 校正前系统响应分析(要求:采用Matlab/simulink 建立模型,绘制阶跃响应曲线,分析系统是否稳定) 1、 Matlab/simulink 建立模型 2、 绘制阶跃响应曲线 3、 分析系统是否稳定?3.4 PID 控制器设计PID 控制器的传递函数为)11()(s sT K s G D i p c τ++=,其中,p K 为比例常数,i T 为积分时间常数,D τ为微分时间常数。

一、Ziegler-Nichols 整定---反应曲线法反应曲线法是根据系统在开环状态下的动态特性,估算对象特性参数。

其中K 为控制 对象的增益,L 为等效滞后时间,T 为等效时间常数,然后根据表1的经验值选取控制器参数。

试验电炉的温度控制系统

试验电炉的温度控制系统

1 方案的确定本次设计是通过冷热风机的双循环工作对温度的控制,运用晶闸管对加热压控制,运用PLC程序控制整个自动过程。

实验电阻炉自动系统控制是在线控制,通过各环节的配合进行全方面的控制。

运用:数据收集、逻辑分析、精确计算,等几步便洁的进为了提高系统的可靠性,本次设计采用手动,自动的两种控制式。

通过显示的参数值进行自动控制,根据仪表可凭经验进行能手动控制。

加热和制冷风机的分别工作可以提高控制控制的精确程度,只用单风道冷热的能量损失很大而且还不易进行精确的控制,运用双风道很少有能量的损失,也能使温度的升降一致,同时也提高了控制精度降低了成本从而经济效益增加。

采用晶闸管控制电压是因为:晶闸管可以控制连续的变化热量的产生也是续的。

这样炉火就可以按给定的温度变化了。

温变化曲线如下图:1.1图1.1温变化曲线如果采用变阻器来控制电压,不是连续的这样炉火不能按给定温度变化了以我们采用晶闸管来控制电阻丝两端的电压。

采用PLC控制技术来控制工作过程,因为有一定的可靠性又提高了控制。

2 选择设备类型及参数计算2.1风机电动机的确定:根据炉膛的容积:15立方米;最低温度:0℃;最高温度:90℃;由实际情况与以前的经验确定风机的功率为2.2KW。

查电工手册得到:型号:YEJ100L1---------4;额定功率:2.2KW;锭子电流:5.0A转速:1420r/min满载时:功率:85功率因数:0.85堵转电流/额定电流:7.0堵转转距/额定转距:2.3最大转距/额定转距:2.3●风机电动机保护元件及动作开关的选择电动机的额定功率为:2.3KW电动机的额定电压为;380V由公式P=√3UIcos¢∴I=3A考虑到电动机不是纯电阻元件,有一定的功率因数,一般要增加30%,所以I=3×(1+0.3)=4A查电工手册和低电压电器有:型号:DZ30--------5123极数:3额定工作电压:380V空气开关:分断能力:5200A机械寿命:3000次电寿命:8000次●熔断器:一般要求把电动机的额定电流扩大2倍来确定容断器的额定电流,所以I=8A型号:RL1----15/10额定工作的电压:380V熔断器额定工作电流:15A熔断器额定工作电压:10V熔断体额定工作电流:10A额定分断电流: 25KACOS¢: 0.35●交流接触器:一般要求电动机的额定电流扩大2倍来确定交流接触器的额定电流,所以I=8A型号:CJ0--------10A额定工作电压:380V额定工作电流:10A可控制三相笼型电动机最大额定功率:4KW额定操作频率:1200次/小时通电持续率:40%吸引线圈消耗功率:12VA一般把电动机的额定电流扩大0.95~1.05倍来确定热过载继电器的额定电流。

电加热炉温度自动控制系统

电加热炉温度自动控制系统

电加热炉温度自动控制系统一、任务设计并制作一个温度自动控制系统,控制电加热炉的温度在某一温度范围。

系统的示意图如图1所示。

电加热炉顶部置入深度不一的两温度传感器,用于检测加热炉内的温度,炉内温度取其平均值;单片机通过键盘对加热炉的温度进行设定。

根据炉内温度与设定温度值的差别程度,有不同的提示信号。

炉内的温度和当前设定温度通过显示设备实时显示。

图1 温度自动控制系统示意图二、要求⒈基本要求(1)温度可调节范围为60℃~200℃,最小设定分度为1℃。

(2)温度显示功能,分辨率为0.1℃。

(3)当温度达到某一设定值并稳定后,炉内温度的波动控制在±2℃以内。

要求温度调控未达到和达到稳定状态,均给出声或光提示信号。

(4)当设定的调节温差为15℃时, 要求达到稳定状态的调节时间小于等于2分钟,稳定状态下的温度波动在±2℃以内。

⒉发挥部分(1)当温度达到某一设定值并稳定后,、炉内温度的波动控制在±1℃以内。

(2)当设定的调节温差为15℃时, 尽量减少达到稳定状态的调节时间,并要求超调量不超过3℃,稳定状态下的温度波动在±1℃以内。

(3)能记录并实时显示温度调节过程的曲线, 显示的误差绝对值小于2℃。

(4)其他。

三、说明(1)炉内温度检测采用具有温度测量功能的数字万用表(测评时自带)。

(2)当温度达到稳定状态的提示信号出现后立即检测调控的温度值,每次检测时间延续60s,以记录温度波动的最大值。

(3)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。

完整的电路原理图、重要的源程序用附件给出。

(C3)智能窗系统一、任务对下雨等情况进行自我监测,并自动控制窗户关闭。

当室内烟雾、可燃性气体超过指标时可自动开启窗户,通风换气。

二、要求⒈基本要求1)防盗报警功能如果有人要强行从窗户进入室内,智能窗便会用喇叭播放“捉贼啦,在*单元*号”,连续播放5分钟。

2)防毒报警功能室内的煤气、天然气等可燃气体或烟雾的浓度超标时,智能窗便会报警,并开启窗户,启动排风扇,让有毒气体散发到室外,可有效防止中毒或火灾事故的发生,确保室内空气清新,身体不受伤害。

炉温控制系统设计

炉温控制系统设计

过程控制系统课程设计作者姓名:作者学号:指导教师:学院名称:专业名称:温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

温度控制是控制系统中最为常见的控制类型之一。

最为常见的就是工业上使用电阻炉(本课程设计中的电烤箱即为电阻炉)处理和生产工业产品,最基本的要求是要保持炉内温度的恒定,并且在一定的扰动下,炉内的温度经过一定的调节时间能自动恢复正常值,从而保证所生产的产品质量.本设计基于单回路控制系统和PID控制器,使用计算机、铂电阻Pt100、控制箱、加热炉体和“组态王"软件设计电烤箱的炉温控制系统,使炉内温度基本保持在80℃不变,完成了系统所用到的设备的选型和组装接线,利用“组态王”软件编制上位机监控软件对炉内温度的采集和显示。

文中首先介绍了设计的背景和要求,接着对单回路控制系统做了简单的介绍,大致描述了通过组态王编制采集并绘制温度与时间曲线的步骤,并且介绍了整定PID控制器参数的步骤和结果,最终完成了利用单回路控制系统设计基于电烤箱的炉温控制系统,使其炉内温度经过一定的过渡过程始终维持在80℃。

关键词:电烤箱,单回路控制系统,PID控制,“组态王”软件,Pt100热电阻,CD901智能控制仪表,交流固态继电器摘要 (I)目录 (1)第一章引言 (3)1.1设计目的 (3)1。

2 设计背景及意义 (3)1。

3 设计任务及要求 (4)第二章单回路控制系统 (5)2.1 单回路控制系统简介 (5)2。

2 单回路控制系统的设计 (5)2。

2。

1 被控变量的选择 (6)2.2.2 操纵变量(控制参数)的选择 (6)2.2。

3测量变送问题和执行器的选择 (7)第三章硬件电路设计及原理 (8)3.1 系统设计 (8)3。

1。

1 方案论述 (8)3.1.2 系统原理图及工作原理 (9)3。

2 智能控制仪表设计 (10)3。

2.1 规格型号说明 (10)3。

课程设计炉温控制系统的设计

课程设计炉温控制系统的设计

课程设计--炉温控制系统的设计二○一三~二○一四学年第一学期信息科学与工程学院课程设计报告书课程名称:计算机控制与接口技术课程设计班级:学号:姓名:指导教师:二○一三年十一月一、 设计题目和设计要求1.设计题目炉温控制系统的设计2.设计任务和要求设计一个炉温控制系统,对象的传递函数: s e s s G 021158)(-+=,炉子为电炉结构,单相交流220V 供电。

温度设定值:室温~100℃,可以任意调节。

要求: (1) 画出电路原理图,包括:给定值、反馈、显示的电路及主电路; (2) 阐述电路的工作原理;(3) 采用对象为大滞后的算法,求出u(k); (4) 定出闭环数学控制的程序框图。

二、 设计任务分析(一)系统设计:在工业化生产中,需要有大量的加热设备,如用于熔化金属的坩埚炉、用于热处理的加热炉,以及各种不同用途的反应炉,加热炉,温度控制成为制约工业发展的重要环节。

随着计算机技术的不断发展,用于工业生产中炉温控制的微机控制系统更加成熟。

实践证明,它具有功能强、精度高,经济性好的特点,无论在提高产品质量还是产品数量,能源环保,还是改善劳动条件等方面都显示出无比的优越性。

该系统以MCS-51单片机为核心构成一个炉温控制系统,该系统具有对电炉温度的实时控制,定时检测和调节,温度数据显示并打印,存储必要的信息等功能。

由外部操作键盘,输入给定数值,进行相应的参数设定,并可以根据需要进行手动、自动之间的切换。

本系统主要由单片机应用系统主机板、晶闸管主电路及电气控制、温度检测与信号放大模块、数字控制与同步触发模块等部分组成。

单片机应用系统主机板采用模块式结构,功口线和各信号设计成总线形式,应用系统的各部分都通过总线插座方便地与单片机接口。

Ⅰ.典型的反馈式温度控制系统通常由下图(a )所示的几部分组成,其中调节器 由微型机来完成。

图a 单片机炉温控制系统结构图Ⅱ.给定信号如何给计算机温度给定值可以通过计算机键盘输入(键盘与单片机连接),也可以通过数学表达式由程序自动设定,还可以用拨码盘,一般拨码盘常用于过程控制的控制柜(化工企业)。

电加热炉温度自动控制系统

电加热炉温度自动控制系统

电加热炉温‎度自动控制‎系统一、任务设计并制作‎一个温度自‎动控制系统‎,控制电加热‎炉的温度在‎某一温度范‎围。

系统的示意‎图如图1所‎示。

电加热炉顶‎部置入深度‎不一的两温‎度传感器,用于检测加‎热炉内的温‎度,炉内温度取‎其平均值;单片机通过‎键盘对加热‎炉的温度进‎行设定。

根据炉内温‎度与设定温‎度值的差别‎程度,有不同的提‎示信号。

炉内的温度‎和当前设定‎温度通过显‎示设备实时‎显示。

图1 温度自动控‎制系统示意‎图二、要求⒈基本要求(1)温度可调节‎范围为60‎℃~200℃,最小设定分‎度为1℃。

(2)温度显示功‎能,分辨率为0‎.1℃。

(3)当温度达到‎某一设定值‎并稳定后,炉内温度的‎波动控制在‎±2℃以内。

要求温度调‎控未达到和‎达到稳定状‎态,均给出声或‎光提示信号‎。

(4)当设定的调‎节温差为1‎5℃时, 要求达到稳‎定状态的调‎节时间小于‎等于2分钟‎,稳定状态下‎的温度波动‎在±2℃以内。

⒉发挥部分(1)当温度达到‎某一设定值‎并稳定后,、炉内温度的‎波动控制在‎±1℃以内。

(2)当设定的调‎节温差为1‎5℃时, 尽量减少达‎到稳定状态‎的调节时间‎,并要求超调‎量不超过3‎℃,稳定状态下‎的温度波动‎在±1℃以内。

(3)能记录并实‎时显示温度‎调节过程的‎曲线, 显示的误差‎绝对值小于‎2℃。

(4)其他。

三、说明(1)炉内温度检‎测采用具有‎温度测量功‎能的数字万‎用表(测评时自带‎)。

(2)当温度达到‎稳定状态的‎提示信号出‎现后立即检‎测调控的温‎度值,每次检测时‎间延续60‎s,以记录温度‎波动的最大‎值。

(3)设计报告正‎文中应包括‎系统总体框‎图、核心电路原‎理图、主要流程图‎、主要的测试‎结果。

完整的电路‎原理图、重要的源程‎序用附件给‎出。

(C3)智能窗系统‎一、任务对下雨等情‎况进行自我‎监测,并自动控制‎窗户关闭。

电炉温度控制系统的设计

电炉温度控制系统的设计

电炉温度控制系统的设计电炉温度控制系统的设计摘要:自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。

随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。

一、前言自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。

随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。

本设计要求用单片机设计一个电炉温度控制系统。

二、电炉温度控制系统的特性温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1所示。

被控制对象是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性,在工程上往往近似为包含有纯滞后的二阶容积迟后;由于被控对象电容量大,通常采用可控硅作调节器的执行器,其具体的电路图如图2所示。

执行器的特性:电炉的温度调节是通过调节剂(供电能源)的断续作用,改变电炉丝闭合时间Tb 与断开时间Tk的比值α,α=Tb/Tk。

调节加热炉的温度,在工业上是通过在设定周期范围内,将电路接通几个周波,然后断开几个周波,改变晶闸管在设定周期内通断时间的比例,来调节负载两端交流平均电压即负载功率,这就是通常所说的调功器或周波控制器;调功器是在电源电压过零时触发晶闸管导通的,所以负载上得到的是完整的正弦波,调节的只是设定周期Tc 内导通的电压周波。

如图3所示,设周期Tc内导通的周期的波数为n,每个周波的周期为T,则调功器的输出功率为P=n×T×Pn /Tc,Pn为设定周期Tc内电压全通过时装置的输出功率。

三、电炉的电加热原理当电流在导体中流过时,因为任何导体均存在电阻,电能即在导体中形成损耗,转换为热能,按焦耳楞次定律:Q=0.2412 Rt Q—热能,卡;I一电流,安9R一电阻,欧姆,t一时间,秒。

(毕业设计)电炉控温系统设计[管理资料]

(毕业设计)电炉控温系统设计[管理资料]

电炉控温系统设计白荣腾摘要本论文介绍了以AT89S52单片机为核心的温控系统设计,采用温度传感器和固体继电器控温电路,实现对电炉温度的控制。

采用基于PWM控制的温控系统的设计和实现方法,采用5档控制:最大档、较大档、中间档、较小档、最小档,控制方法简单实用。

温控系统由AT89S52单片机、行列式操作键盘、显示、继电器控温电路等部分组成,使用AT89S52单片机对温度进行实时的检测和控制,显示电路采用74164芯片进行动态扫描,能够同时显示当前温度和设定温度值。

本设计介绍的单片机温控系统的主要内容包括:系统方案、硬件设计、软件设计及系统调试,并配有必要的流程图和电路图,从硬件和软件方面做了较详尽的阐述。

温控系统经过调试运行,可对电炉温度进行控制,工作稳定可靠,实现控制精度的要求,可使温度保持在设定值,具有硬件成本低、控温精度较高、可靠性好等优点。

关键词:电炉;温度控制;单片机;固体继电器AbstractThis paper introduces a temperature control system that is based on the AT89S52 single-chip microcomputer,and the temperature control of electric furnace is realized by temperature sensor and a temperature control circuit of solid state relay. The design and implementation of the temperature control system based on PWM control uses five different scopes : the biggest scope, the bigger scope, the center scope, the smaller scope, minimum scope, and controlling method is simple and temperature control system consists of AT89S52 single-chip microcomputer, cortege type keyboard unit , display unit and temperature control circuit of solid state relay,using microprocessor AT89S52 to collect and control temperature in real time.The temperature control system based on Single-Chip Microcomputer is described in the article including system scheme, hardware and software system testing ,and it also goes with debug routine, essential flow chart and circuit this part , The hardware composition and software design are described in detail parameters.The temperature control system can control the temperature of electric furnace with debugging ,and make it keep in the enacted control system has such advantages as low cost、high control accuracy、good reliability and so on.Keywords:Electric furnace ;Temperature control; Single-Chip Microcomputer ;Solid state relay目录摘要 (I)Abstract (II)0前言 (5) (5) (6) (7)1系统硬件设计 (8) (8) (9) (10)固体继电器及其驱动电路 (14)固体继电器介绍 (14) (14) (15) (15) (17)按键控制电路 (17)2系统软件结构设计 (17) (19) (20) (22)3系统调试 (23) (23) (24)总结 (25)参考文献 (26)致谢 (27)附录A 系统设计原理图 (28)附录B 系统实物图 (29)附录C 系统程序 (30)附录D 英文文献1原文 (34)附录E 英文文献1翻译 (38)附录F 英文文献2原文 (42)附录G 英文文献2翻译 (44)附件1 毕业设计任务书 (47)附件2 开题报告 (48)附件3 验收登记表 (54)附件4 答辩记录表 (55)附件5 评语表 (56)0前言温度作为工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

锅炉温度控制系统的设计

锅炉温度控制系统的设计

锅炉温度控制系统的设计
一、系统概述
二、系统结构
该锅炉温度控制系统分为三个主要部分,分别为监测部分、控制部分和调节部分。

具体结构如下:
监测部分:监测部分由温度传感器、温度控制器和显示器组成,用来测量当前锅炉的环境温度,并将温度信息传送至温度控制器进行处理,然后将反馈的温度信息显示在显示器上,提醒用户注意温度的变化,以便及时发现异常情况的发生,实现安全的控制。

控制部分:控制部分是整个系统的核心部分,它由温度控制器组成,用于处理传入的温度信息,根据预设温度值,自动控制温度,以达到实现温度的精确控制。

调节部分:调节部分由执行器和报警系统组成,执行器是用来控制锅炉的温度的直接运行装置,它根据控制器发出的控制信号自动调节锅炉的温度,以达到温度的精确控制。

电热炉温度控制系统的设计

电热炉温度控制系统的设计

电热炉温度控制系统的设计一、引言电热炉是在电能的作用下将电能转化为热能的一种热源设备。

电热炉的主要作用是把电能转化为热能,用于加热介质或加温设备,广泛应用于电子、电气、机械、化工等各个领域。

为了保证电热炉正常运行,需要对其温度进行控制,以避免过温或过冷,影响电热炉的正常工作。

电热炉控制系统的设计目的是实现对电热炉温度的控制和调节,及时反馈温度变化并进行调整,保证电热炉的正常运行。

其基本原理是根据电热炉温度变化的反馈信号,通过电路调整加热功率,控制电热炉的加热与降温,以达到预设温度的目的。

电热炉的温度控制系统主要由温度传感器、比例放大器、输出控制器、执行器、电源等组成。

其中,温度传感器用于检测电热炉内部的温度,将温度信号转换为电信号,并输出给比例放大器。

比例放大器将检测到的温度信号放大并通过输出控制器输出一个带有占空比的脉冲信号。

输出控制器通过分析带有占空比的脉冲信号,控制负载执行器的工作,实现对电热炉温度的调节。

电热炉温度控制系统的设计流程包括需求分析、系统方案设计、系统硬件设计、系统软件设计和实验测试等几个阶段。

1. 需求分析需求分析阶段主要是明确系统的功能要求和性能指标,制定系统设计方案。

根据电热炉的加热特性和控制要求,可设置设备温度范围、温度控制点、温度精度、升温/降温速率等指标,以便为系统的硬件设计和软件设计提供依据。

2. 系统方案设计在系统方案设计阶段,应该对系统设计进行整体规划,明确系统所需硬件和软件的配置。

具体的设计内容包括硬件结构选择、传感器选型、控制器选型、温度控制算法选择等方案设计,最终确定方案。

根据系统方案设计,确定相关硬件的型号、规格和数量等,设计出电热炉温度控制器的电路原理图和PCB板。

硬件设计应重点考虑信号传输的稳定性和精度以及控制器的稳定性和可靠性,提高系统的性能和稳定性。

在系统软件设计阶段,需要完成控制器的程序设计、参数调整和运行测试等工作。

具体工作包括系统软件的设计、参数设置、程序调试和测试,通过实验测试对电热炉的温度控制系统进行评估,确保系统的正确性和稳定性。

加热炉温度串级控制系统设计

加热炉温度串级控制系统设计

加热炉温度串级控制系统设计引言:加热炉是工业生产中常用的设备之一,用于加热物体到目标温度。

为了确保加热炉的温度能够稳定地达到所需温度并且尽量减小温度误差,本文将就一种串级控制系统的设计进行阐述。

串式控制系统使用了两组控制器,一个主控制器 (Master Controller) 和一个从控制器 (Slave Controller),通过对系统的不同层次进行控制,实现了温度的快速、准确地调节。

本文将针对主控制器和从控制器的设计进行详细说明。

一、主控制器设计:主控制器的作用是通过对从控制器的输出进行调节,以实现加热炉温度的稳定。

主控制器采用PID控制算法,其中P代表比例控制,I代表积分控制,D代表微分控制。

PID控制算法充分考虑了温度调节系统的动态和静态特性,并能够在不同的工作条件下自动调整参数,以保证系统的稳定性和快速响应。

在主控制器设计中,首先需要确定温度传感器的位置,将温度传感器安装在加热炉的合适位置,以获取准确的温度信息。

接下来,需要对主控制器的参数进行设置。

主控制器的参数设置对系统的稳定性和响应时间有着重要影响。

在设置主控制器的参数时,可以采用经验法或者试探法。

经验法是根据历史数据和经验对主控制器参数进行初始化,然后通过不断实际运行和调节参数,直到系统达到理想状态。

试探法则是在实际运行过程中,逐步调节参数,观察系统响应并作出相应调整。

两种方法都可以达到主控制器参数的最优化,但试探法的调试过程可能会相对较长。

二、从控制器设计:从控制器的作用是根据主控制器的输出对加热炉的加热功率进行调节。

从控制器也采用PID控制算法来实现。

从控制器的设计需要考虑如下因素:1.从控制器对主控制器的输出进行调节,以实现稳定的加热功率控制。

根据实际需要和经验,设置从控制器的参数,使得从控制器能够快速、准确地响应主控制器的输出。

2. 考虑到加热炉的动态特性,可以利用先进的控制算法,如模型预测控制 (Model Predictive Control)等,将从控制器的参数调整为非线性和时变的。

电加热炉温度控制系统的设计

电加热炉温度控制系统的设计

电加热炉温度控制系统的设计1. 本文概述随着现代工业的快速发展,电加热炉在许多工业生产领域扮演着至关重要的角色。

电加热炉的温度控制系统,作为其核心部分,直接关系到生产效率和产品质量。

本文旨在设计并实现一种高效、精确的电加热炉温度控制系统,以满足现代工业生产中对温度控制精度和稳定性的高要求。

本文首先对电加热炉温度控制系统的需求进行了详细分析,明确了系统设计的目标和性能指标。

接着,本文对现有的温度控制技术进行了全面的综述,包括传统的PID控制方法以及先进的智能控制策略。

在此基础上,本文提出了一种结合PID控制和模糊逻辑控制的新型温度控制策略,以实现更优的控制效果。

本文还详细阐述了系统的硬件设计和软件实现。

在硬件设计方面,本文选择了适合的传感器、执行器和控制器,并设计了相应的电路和保护措施。

在软件实现方面,本文详细描述了控制算法的实现过程,包括数据采集、处理、控制决策和输出控制信号等环节。

本文通过实验验证了所设计温度控制系统的性能。

实验结果表明,本文提出的温度控制系统能够实现快速、准确的温度控制,且具有较好的鲁棒性和稳定性,能够满足实际工业生产的需求。

本文从理论分析到实际设计,全面探讨了一种适用于电加热炉的温度控制系统的设计方法。

通过结合传统和先进的控制技术,本文提出了一种高效、稳定的温度控制策略,为提高电加热炉的温度控制性能提供了新的思路和实践参考。

2. 电加热炉的基本原理与构造电加热炉作为一种高效、清洁且精准的热能产生设备,其工作原理基于电磁感应和电阻加热两种基本方式,而构造则包括电源系统、加热元件、温控系统、隔热保温结构以及安全防护装置等关键组成部分。

电磁感应加热:在特定类型的电加热炉中,尤其是应用于金属工件加热的场合,电磁感应加热原理占据主导地位。

这种加热方式利用高频交流电通过感应线圈产生交变磁场,当金属工件置于该磁场中时,由于电磁感应现象,会在工件内部产生涡电流(又称涡流)。

涡电流在工件内部形成闭合回路,并依据焦耳定律产生热量,即电流通过电阻时产生的热效应。

炉温的单闭环控制系统的设计

炉温的单闭环控制系统的设计

过程控制系统课程设计设计题目:炉温的单闭环控制系统的设计摘要温度是工业对象中一种重要的参数,特别在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉和反应炉等。

由于炉子的种类不同,因此所采用的加热方法及燃料也不同,如煤气、天然气、油和电等。

但是就其控制系统本身的动态特性来说,基本上属于一阶纯滞后环节,因而在控制算法上亦基本相同。

随着社会的发展,在生活和工业中已经广泛的使用温度控制,而现代化炉温控制已经开始自动化PID控制时代了。

控制炉温恒定是满足生产、提高效率和节能减耗的关键技术,其具有很多优势,能够进一步提高控制精度,同时使得加热时间大大降低,不短提高能源的利用,因此也是越来越受到重视。

为了更好的确保加热炉的安全运行,因此加强炉温控制系统的设计与实现的研究非常有必要。

基于此本文分析了基于PID算法的炉温控制系统的设计与实现。

关键词:比例;积分;微分;炉温控制目录摘要 (I)一、概述 (1)二、课程设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)三、理论设计 (3)3.1方案论证 (3)3.2 系统设计 (3)3.3炉温控制系统硬件工作原理 (6)3.3.1前向通道工作过程 (6)3.3.2 反馈通道工作过程 (6)四、系统设计 (7)4.1 PID算法设计 (7)4.2软件设计 (9)4.2.1 画面的制作 (9)4.2.2 建立数据词典 (10)4.2.3 建立动画连接 (11)五、调试过程与结果 (12)5.1 调解P参数 (12)5.2 调节I参数 (13)5.3 调节D参数 (14)5.4 综合调试P、I、D三个参数 (15)六、实验中所用仪器设备清单 (16)七、收获与体会 (20)一、概述近年来随着热处理工艺广泛应用于加工过程,热处理中温度的控制精度和控制规律的优劣直接影响到热处理工艺的好坏。

电阻炉是热处理工艺中应用最多的加热设备,研究电阻炉温度控制方法具有重要意义。

课程设计--炉温控制系统的设计

课程设计--炉温控制系统的设计

课程设计--炉温控制系统的设计二○一三~二○一四学年第一学期信息科学与工程学院课程设计报告书课程名称:计算机控制与接口技术课程设计班级:学号:姓名:指导教师:二○一三年十一月一、 设计题目和设计要求1.设计题目炉温控制系统的设计2.设计任务和要求设计一个炉温控制系统,对象的传递函数: s e s s G 021158)(-+=,炉子为电炉结构,单相交流220V 供电。

温度设定值:室温~100℃,可以任意调节。

要求: (1) 画出电路原理图,包括:给定值、反馈、显示的电路及主电路; (2) 阐述电路的工作原理;(3) 采用对象为大滞后的算法,求出u(k); (4) 定出闭环数学控制的程序框图。

二、 设计任务分析(一)系统设计:在工业化生产中,需要有大量的加热设备,如用于熔化金属的坩埚炉、用于热处理的加热炉,以及各种不同用途的反应炉,加热炉,温度控制成为制约工业发展的重要环节。

随着计算机技术的不断发展,用于工业生产中炉温控制的微机控制系统更加成熟。

实践证明,它具有功能强、精度高,经济性好的特点,无论在提高产品质量还是产品数量,能源环保,还是改善劳动条件等方面都显示出无比的优越性。

该系统以MCS-51单片机为核心构成一个炉温控制系统,该系统具有对电炉温度的实时控制,定时检测和调节,温度数据显示并打印,存储必要的信息等功能。

由外部操作键盘,输入给定数值,进行相应的参数设定,并可以根据需要进行手动、自动之间的切换。

本系统主要由单片机应用系统主机板、晶闸管主电路及电气控制、温度检测与信号放大模块、数字控制与同步触发模块等部分组成。

单片机应用系统主机板采用模块式结构,功口线和各信号设计成总线形式,应用系统的各部分都通过总线插座方便地与单片机接口。

Ⅰ.典型的反馈式温度控制系统通常由下图(a )所示的几部分组成,其中调节器 由微型机来完成。

图a 单片机炉温控制系统结构图Ⅱ.给定信号如何给计算机温度给定值可以通过计算机键盘输入(键盘与单片机连接),也可以通过数学表达式由程序自动设定,还可以用拨码盘,一般拨码盘常用于过程控制的控制柜(化工企业)。

电加热炉温度自动控制系统

电加热炉温度自动控制系统

电加热炉温度自动控制系统一、任务设计并制作一个温度自动控制系统,控制电加热炉的温度在某一温度范围。

系统的示意图如图1所示。

电加热炉顶部置入深度不一的两温度传感器,用于检测加热炉内的温度,炉内温度取其平均值;单片机通过键盘对加热炉的温度进行设定。

根据炉内温度与设定温度值的差别程度,有不同的提示信号。

炉内的温度和当前设定温度通过显示设备实时显示。

图1 温度自动控制系统示意图二、要求⒈基本要求(1)温度可调节范围为60℃~200℃,最小设定分度为1℃。

(2)温度显示功能,分辨率为0.1℃。

(3)当温度达到某一设定值并稳定后,炉内温度的波动控制在±2℃以内。

要求温度调控未达到和达到稳定状态,均给出声或光提示信号。

(4)当设定的调节温差为15℃时, 要求达到稳定状态的调节时间小于等于2分钟,稳定状态下的温度波动在±2℃以内。

⒉发挥部分(1)当温度达到某一设定值并稳定后,、炉内温度的波动控制在±1℃以内。

(2)当设定的调节温差为15℃时, 尽量减少达到稳定状态的调节时间,并要求超调量不超过3℃,稳定状态下的温度波动在±1℃以内。

(3)能记录并实时显示温度调节过程的曲线, 显示的误差绝对值小于2℃。

(4)其他。

三、说明(1)炉内温度检测采用具有温度测量功能的数字万用表(测评时自带)。

(2)当温度达到稳定状态的提示信号出现后立即检测调控的温度值,每次检测时间延续60s,以记录温度波动的最大值。

(3)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。

完整的电路原理图、重要的源程序用附件给出。

(C3)智能窗系统一、任务对下雨等情况进行自我监测,并自动控制窗户关闭。

当室内烟雾、可燃性气体超过指标时可自动开启窗户,通风换气。

二、要求⒈基本要求1)防盗报警功能如果有人要强行从窗户进入室内,智能窗便会用喇叭播放“捉贼啦,在*单元*号”,连续播放5分钟。

2)防毒报警功能室内的煤气、天然气等可燃气体或烟雾的浓度超标时,智能窗便会报警,并开启窗户,启动排风扇,让有毒气体散发到室外,可有效防止中毒或火灾事故的发生,确保室内空气清新,身体不受伤害。

加热炉温度控制系统设计本科毕业设计

加热炉温度控制系统设计本科毕业设计

控制系统综合设计报告题目: 加热炉温度控制系统设计报告题目:加热炉温度控制系统设计一、 课程的要求和意义(一 )课程设计的具体要求 1、加热炉温度单回路反馈控制系统。

2、以加热炉温度为主变量,夹套温度为副变量,构成加热炉出口温度与夹套温度的串级控制系统。

被加热物料流过排列炉膛四周的夹套后,加热到炉出口工艺所要求的温度。

在加热用的装有一个调节阀,用以控制夹套温度控制,以达到控制出口温度的目的。

为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。

3、利用Simulink 实现单回路系统仿真和串级系统仿真,得出系统输出响应曲线,根据两种系统仿真结果分析串级控制系统的优缺点,验证串级系统是否能提高控制的精度。

本设计是通过加热炉两种控制方案的对比并利用MATLAB 中的Simulink 进行系统仿真,采用衰减曲线法进行参数的整定,通过比较两种方案,最终说明加热炉串级控制系统的设计方案在实际控制中的优越性。

4、要求设计的系统满足快速、准确、稳定,且超调量8%≤δ≤10%。

5、给定各传递函数如下:主控制对象加热炉温度传递函数:011()(301)(31)G s s s =++副对象对象夹套温度传递函数:0221()(101)(1)G s s s =++主PID 控制器的传递函数为:111()(1)c I G s K T s=+副PID 控制器的传递函数为:22()c G s K =二、 加热温度控制系统设计(一) 加热炉单回路温度控制系统结构图加热炉温度单回路控制系统结构框图 (二) 加热炉温度串级控制系统结构图加热炉温度串级控制系统结构框图图3加热炉温度串级控制系统结构图图1加热炉单回路温度控制系统结构图PID 调节器调节装置夹套加热炉温度反馈 1()t+- ++ + 干扰 干扰 图2 加热炉温度单回路控制系统结构框图 +(三)衰减曲线法参数整定的相关资料(1)衰减曲线法是在系统闭环情况下,将控制器积分时间TI放在最大,微分时间T D 放到最小,比例放大倍数KC设为1;(2)然后使KC 由小往大逐步改变,并且每改变一次KC值时,通过改变给定值给系统施加一个阶跃干扰,同时观察过渡过程变化情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八 炉温控制系统的设计
一、设计目的
1、了解被控对象数学模型建立的方法;
2、掌握PID 控制的基本原理; 4、掌握PID 参数整定的两种方法;
3、掌握Matlab/Simulink 在控制系统设计中的应用。

二、设计要求
电炉是一个特性参数随炉温变化的被控对象,炉温控制具有单向性、大惯性、大滞后、时变性的特点。

设计PID 控制器,当系统处于平衡状态时,通过调节PID 控制器的比例系数p K 、积分时间系数i T 和微分时间D τ,炉温稳定在给定值,从而实现了电炉的温度控制。

三、设计任务
3.1电炉数学模型
一般将电阻炉视为一阶惯性环节加滞后的对象,其传递函数为s e Ts K s G τ-+=
1
)(。

其中:T 为电炉的时间常数,T=RC (C 为电炉热容,R 为热阻);K 为比例系数;τ为纯滞后时间,单位s ;S 为复频域连续函数。

系数T 、K 、S 对于不同的被控对象,其数值有所不同。

现有一台50kW 箱式电阻炉,其T=360、K=8、τ=180s 。

3.2电炉控制系统框图
常用电阻炉炉温控制系统如图1所示,其中PID 控制器是应用最广泛、最成熟的一种调节器。

图一 电阻炉炉温控制系统 3.3 PID 校正前系统响应分析
(要求:采用Matlab/simulink 建立模型,绘制阶跃响应曲线,分析系统是否稳定) 1、 Matlab/simulink 建立模型 2、 绘制阶跃响应曲线 3、 分析系统是否稳定?
3.4 PID 控制器设计
PID 控制器的传递函数为)1
1()(s s
T K s G D i p c τ++=,其中,p K 为比例常数,i T 为
积分时间常数,D τ为微分时间常数。

一、Ziegler-Nichols 整定---反应曲线法
反应曲线法是根据系统在开环状态下的动态特性,估算对象特性参数。

其中K 为控制 对象的增益,L 为等效滞后时间,T 为等效时间常数,然后根据表1的经验值选取控制器参数。

表1 反应曲线法PID 控制器参数整定表
(要求:分别采用P 、PI 、PID 控制建立Simulink 模型,整定相关参数,绘制各响应曲线,进而分析各响应性能指标之间的区别)
1、 P 、PI 、PID 校正器的参数计算
2、 Simulink 模型
3、 绘制阶跃响应曲线
4、观察性能指标,分析不同控制方法对系统性能的影响 二、Ziegler-Nichols 整定---临界比例度法
临界比例度法适合于已知对象传递函数的场合,用系统的等幅振荡曲线来整定控制器的参数。

先使闭环系统只受纯比例作用,将积分时间调到最大(∞=i T ),微分时间调到最小(0=D T ),而将比例增益K 的值调到较小值,然后逐渐增大K 值,直到系统出现等幅振荡的临界稳定状态,此时比例增益的K 作为临界比例K m ,等幅振荡周期为临界周期T m ,根据表2可整定PID 控制器的参数。

表2 临界比例度法PID 控制器参数整定
(要求:分别采用P、PI、PID控制建立simulink模型,整定相关参数,绘制各响应曲线,进而分析各响应性能指标之间的区别)
1、P、PI、PID校正器的参数计算
2、Simulink模型
3、绘制阶跃响应曲线
4、观察性能指标,分析不同控制方法对系统性能的影响
三、不同整定方法PID控制比较
(要求:采用PID控制,分别通过比较反应曲线法和临界比例度法整定参数,绘制各响应曲线,通过分析各响应性能指标之间的区别比较两种方法的优缺点。


1、Simulink模型
2、绘制阶跃响应曲线
3、观察性能指标,分析不同整定方法对系统性能的影响。

相关文档
最新文档