解三角形2012高考试题及解答

合集下载

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题。

每小题5分。

共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2。

4}。

B={2。

4。

6}.则A∪B={1.2。

4。

6}.考点: 并集及其运算.专题:集合.分析:由题意。

A.B两个集合的元素已经给出。

故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1。

2.4}。

B={2.4。

6}.∴A∪B={1.2.4.6}故答案为{1.2.4。

6}点评:本题考查并集运算。

属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本。

则应从高二年级抽取 15名学生.考点:分层抽样方法.专题: 概率与统计.分析:根据三个年级的人数比。

做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例。

得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例。

这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点: 复数代数形式的乘除运算;复数相等的充要条件.专题: 数系的扩充和复数.分析:由题意。

可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值。

从而得到所求的答案解答:解:由题.a。

b∈R.a+bi=所以a=5.b=3。

故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算。

高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。

2012年天津市高考数学试卷(理科)答案与解析

2012年天津市高考数学试卷(理科)答案与解析

2012 年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.( 3 分)( 2012?天津) i 是虚数单位,复数=()A . 2+i B. 2﹣ i C.﹣ 2+i D.﹣ 2﹣ i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项解答:解:故选 B点评:本题考查复合代数形式的乘除运算,属于复数中的基本题型,计算题,解题的关键熟练掌握分母实数化的化简规则2.( 3 分)( 2012?天津)设φ∈R,则“φ=0 ”是“f( x)=cos(x+ φ)( x∈R)为偶函数”的()A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;函数奇偶性的判断.专题:简易逻辑.分析:直接把φ=0 代入看能否推出是偶函数,再反过来推导结论即可.解答:解:因为φ=0 时, f( x)=cos( x+ φ) =cosx 是偶函数,成立;但f( x) =cos(x+ φ)( x∈R)为偶函数时,φ=kπ, k∈Z,推不出φ=0.故“φ=0”是“f( x)=cos( x+ φ)( x∈R)为偶函数”的充分而不必要条件.故选: A.点评:判断充要条件的方法是:①若 p? q 为真命题且q? p 为假命题,则命题p 是命题 q 的充分不必要条件;②若 p? q 为假命题且q? p 为真命题,则命题p 是命题 q 的必要不充分条件;③若 p? q 为真命题且q? p 为真命题,则命题p 是命题 q 的充要条件;④若 p? q 为假命题且q? p 为假命题,则命题p 是命题 q 的即不充分也不必要条件.⑤判断命题 p 与命题 q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题 p 与命题 q 的关系.3.( 3 分)(2012?天津)阅读程序框图,运行相应的程序,当输入x 的值为﹣ 25 时,输出x 的值为()A .﹣1B . 1C . 3D . 9考点 :循环结构.专题 :算法和程序框图.分析:根据题意,按照程序框图的顺序进行执行,当 |x|≤1 时跳出循环,输出结果.解答:解:当输入 x= ﹣ 25 时,|x|> 1,执行循环, x= ﹣ 1=4;|x|=4 > 1,执行循环, x= ﹣1=1,|x|=1 ,退出循环,输出的结果为 x=2×1+1=3 . 故选: C .点评:本题考查循环结构的程序框图, 搞清程序框图的算法功能是解决本题的关键,按照程序框图的顺序进行执行求解,属于基础题.4.( 3 分)( 2012?天津)函数 f (x ) =2 x +x 3﹣2 在区间( 0, 1)内的零点个数是( )A . 0B . 1C . 2D . 3考点 :函数的零点与方程根的关系.专题 :函数的性质及应用.分析:根据函数 f ( x ) =2x +x 3﹣ 2 在区间( 0, 1)内单调递增, f ( 0)f ( 1)< 0,可得函数在区间( 0, 1)内有唯一的零点解答:解:由于函数 f ( x )=2x +x 3﹣ 2 在区间( 0,1)内单调递增,又 f (0)=﹣1< 0,f ( 1)=1>0,故函数 f ( x) =2 x+x3﹣2 在区间( 0, 1)内有唯一的零点,故选 B.点评:本题考查函数零点的定义以及函数零点判定定理的应用,属于中档题.5.( 3 分)( 2012?天津)在( 2x2﹣)5的二项展开式中,x 项的系数为()A .10B.﹣10C. 40D.﹣40考点:二项式定理的应用.专题:二项式定理.分析:由题意,可先由公式得出二项展开式的通项T r+1==,再令10﹣3r=1,得r=3 即可得出x 项的系数解答:解:( 2x 2﹣)5的二项展开式的通项为T r+1==令10﹣ 3r=1,得 r=3故 x 项的系数为=﹣ 40故选 D点评:本题考查二项式的通项公式,熟练记忆公式是解题的关键,求指定项的系数是二项式考查的一个重要题型,是高考的热点,要熟练掌握6.(3 分)( 2012?天津)在△ ABC 中,内角 A ,B ,C 所对的边分别是a,b,c.已知 8b=5c ,C=2B ,则 cosC=()A .B.C.D.考点:正弦定理的应用;三角函数中的恒等变换应用.专题:解三角形.分析:直接利用正弦定理以及二倍角公式,求出sinB,cosB,然后利用平方关系式求出cosC 的值即可.解答:解:因为在△ ABC 中,内角 A ,B, C 所对的边分别是 a, b,c.已知 8b=5c,C=2B ,所以 8sinB=5sinC=5sin2B=10sinBcosB ,所以 cosB= ,B 为三角形内角,所以 B∈( 0,).C.所以 sinB==.所以 sinC=sin2B=2 ×=,cosC= = .故选: A .点评:本题考查正弦定理的应用,三角函数中的恒等变换应用,考查计算能力,注意角的范围的估计.7.( 3 分)( 2012?天津)已知 △ABC 为等边三角形, AB=2 .设点 P , Q 满足,, λ∈R .若=﹣ ,则 λ=()A .B .C .D .考点 :平面向量的综合题.专题 :平面向量及应用.分析: 根据向量加法的三角形法则求出,进而根据数量积的定义求出再根据=﹣ 即可求出 λ.解答:解:∵,, λ∈R∴,∵△ ABC 为等边三角形, AB=2∴=+λ+( 1﹣ λ)=2 ×2×cos60°+λ×2×2×cos180°+( 1﹣λ) ×2×2×cos180°+λ( 1﹣λ) ×2×2×cos60°2=2 ﹣ 4λ+4λ﹣ 4+2λ﹣ 2λ,2=﹣ 2λ+2λ﹣ 2∵=﹣2∴ 4λ﹣ 4λ+1=02∴( 2λ﹣ 1) =0∴故选 A点评:本题主要考查了平面向量数量级的计算,属常考题,较难.解题的关键是根据向量加法的三角形法则求出然后再结合数量积的定义和条件 △ABC 为等边三角形,AB=2 , =﹣ 即可求解!28.( 3 分)( 2012?天津)设 m ,n ∈R ,若直线( m+1)x+ (n+1 )y ﹣ 2=0 与圆( x ﹣ 1) +( y﹣1) 2=1 相切,则 m+n 的取值范围是( ) A .[1﹣ , 1+ ] B . ( ﹣∞, 1﹣ ]∪[1+ , +∞)C . [ 2﹣2 ,2+2 ]D .(﹣∞,2﹣2] ∪ [2+2, +∞)考点 :直线与圆的位置关系.专题 :直线与圆.分析:由圆的标准方程找出圆心坐标和半径 r ,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设 m+n=x ,得到关于 x 的不等式,求出不等式的解集得到x 的范围,即为 m+n 的范围.2 21, 1),半径 r=1 ,解答:解:由圆的方程( x ﹣ 1) +(y ﹣ 1) =1,得到圆心坐标为(∵直线( m+1) x+ ( n+1) y ﹣2=0 与圆相切,∴圆心到直线的距离 d==1,整理得: m+n+1=mn ≤,设 m+n=x ,则有 x+1 ≤ ,即 x 2﹣ 4x ﹣ 4≥0,∵ x 2﹣ 4x ﹣ 4=0 的解为: x 1=2+2,x 2=2﹣ 2,∴不等式变形得: (x ﹣ 2﹣2 )( x ﹣ 2+2 ) ≥0,解得: x ≥2+2 或 x ≤2﹣ 2,则 m+n 的取值范围为(﹣ ∞, 2﹣ 2] ∪[2+2, +∞).故选 D点评:此题考查了直线与圆的位置关系, 涉及的知识有: 点到直线的距离公式, 基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.二、填空题9.( 3 分)(2012?天津)某地区有小学 150 所,中学 75 所,大学 25 所.先采用分层抽样的 方法从这些学校中抽取 30 所学校对学生进行视力调查,应从小学中抽取 18 所学校,中学中抽取9所学校.考点 :分层抽样方法. 专题 :概率与统计.分析:从 250 所学校抽取 30 所学校做样本, 样本容量与总体的个数的比为3:25,得到每个个体被抽到的概率, 根据三个学校的数目乘以被抽到的概率, 分别写出要抽到的数目,得到结果.解答:解:某城地区有学校150+75+25=250 所,现在采用分层抽样方法从所有学校中抽取 30 所,每个个体被抽到的概率是=,∵某地区有小学150 所,中学 75 所,大学 25 所.∴用分层抽样进行抽样,应该选取小学×150=18 人,选取中学×75=9人.故答案为: 18, 9.点评:本题主要考查分层抽样,解题的关键是理解在抽样过程中每个个体被抽到的概率相等,属于基础题.10.( 3 分)( 2012?天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为18+9π m3.考点:由三视图求面积、体积.专题:立体几何.分析:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位: m),下部为两个半径均为的球体.分别求体积再相加即可.解答:解:由三视图可知该几何体为上部是一个长方体,长、宽、高分别为6,3,1(单位:m),体积 6×3×1=18.下部为两个半径均为的球体,体积 2×3π?()=9故所求体积等于18+9π故答案为: 18+9 π点评:本题考查三视图求几何体的体积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键11.( 3 分)( 2012?天津)已知集合 A={x ∈R||x+2|<3} ,集合 B={x ∈R|( x﹣ m)( x﹣ 2)<0} ,且 A ∩B= (﹣ 1,n),则 m= ﹣ 1 ,n= 1 .考点:集合关系中的参数取值问题.专题:集合.分析:由题意,可先化简A 集合,再由 B 集合的形式及 A ∩B=(﹣ 1, n)直接作出判断,即可得出两个参数的值.解答:解: A={x ∈R||x+2|< 3}={x ∈R|﹣ 5<x< 1} ,又集合 B={x ∈R|( x﹣m)( x﹣ 2)< 0} ,A ∩B= (﹣ 1,n).如图由图知 m= ﹣1, n=1,故答案为﹣ 1, 1.点评:本题考查集合关系中的参数取值问题,解题的关键是理解交的运算及一元二次不等式的解集的形式,本题一定的探究性,考查分析判断推理的能力12.( 3 分)( 2012?天津)已知抛物线的参数方程为( t 为参数),其中 p> 0,焦点为 F,准线为 l .过抛物线上一点 M 作 l 的垂线,垂足为E.若 |EF|=|MF|,点 M 的横坐标是3,则 p= 2 .考点:抛物线的参数方程;圆锥曲线的综合.专题:圆锥曲线的定义、性质与方程;坐标系和参数方程.分析:把抛物线的参数方程化为普通方程为2,则由抛物线的定义可得及 |EF|=|MF| ,可y =2px得△ MEF 为等边三角形,设点M 的坐标为( 3,m ),则点 E(﹣,m),把点M的坐标代入抛物线的方程可得p=.再由|EF|=|ME|,解方程可得p 的值.解答:解:抛物线的参数方程为( t 为参数),其中 p> 0,焦点为 F,准线为l,消去参数可得 x=2p,2x 轴的抛物线,化简可得 y =2px ,表示顶点在原点、开口向右、对称轴是故焦点 F(, 0),准线 l 的方程为 x= ﹣.则由抛物线的定义可得|ME|=|MF| ,再由 |EF|=|MF| ,可得△ MEF 为等边三角形.设点 M 的坐标为( 3, m ),则点 E(﹣, m).把点 M 的坐标代入抛物线的方程可得m 2=2×p×3,即 p=.再由 |EF|=|ME|,可得222+3p ,解得 p=2,或 p=﹣ 6 p +m =,即 p +6p=9+(舍去),故答案为2.点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,把参数方程化为普通方程的方法,属于中档题.13.( 3 分)( 2012?天津)如图,已知 AB 和 AC 是圆的两条弦,过点 B 作圆的切线与 AC 的延长线相交于点 D ,过点 C 作 BD 的平行线与圆相交于点 E,与 AB 相交于点 F, AF=3 ,FB=1 ,EF=,则线段CD 的长为.考点:与圆有关的比例线段.专题:直线与圆.分析:由相交弦定理求出FC,由相似比求出BD ,设 DC=x ,则 AD=4x ,再由切割线定理,2BD =CD ?AD 求解.解答:解:由相交弦定理得到AF?FB=EF ?FC,即 3×1=×FC,FC=2,在△ ABD中AF:AB=FC:BD ,即 3:4=2: BD ,BD=,设 DC=x ,则 AD=4x ,再由切割线定理,22, x= BD =CD ?AD ,即 x?4x=()故答案为:点评:本题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.14.( 3 分)( 2012?天津)已知函数y=的图象与函数y=kx ﹣ 2 的图象恰有两个交点,则实数k 的取值范围是(0,1)∪(1,4).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:先化简函数的解析式,在同一个坐标系下画出函数y=的图象与函数y=kx﹣ 2 的图象,结合图象,可得实数k 的取值范围.解答:解: y===函数 y=kx ﹣ 2 的图象恒过点(0,﹣ 2)在同一个坐标系下画出函数y=的图象与函数y=kx ﹣ 2 的图象结合图象可实数k 的取值范围是(0,1)∪( 1, 4)故答案为:( 0, 1)∪( 1,4)点评:本题主要考查了根的存在性及根的个数判断,同时考查了作图能力和分类讨论的数学思想,属于基础题.三、解答题15.( 2012?天津)已知函数 f ( x) =sin( 2x+) +sin( 2x﹣2)+2cos x﹣ 1, x∈R.(1)求函数f( x)的最小正周期;(2)求函数f( x)在区间 [] 上的最大值和最小值.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;三角函数的最值.专题:三角函数的图像与性质.分析:( 1)利用正弦函数的两角和与差的公式与辅助角公式将f( x)=sin(2x+)+sin( 2x2sin( 2x+),即可求得函数 f( x)的最小正周期;﹣)+2cos x﹣ 1 化为 f( x)=( 2)可分析得到函数f( x)在区间 [] 上是增函数,在区间 [,] 上是减函数,从而可求得f( x)在区间 [] 上的最大值和最小值.解答:解:( 1)∵ f ( x) =sin2x ?cos+cos2x ?sin+sin2x ?cos﹣ cos2x?sin+cos2x=sin2x+cos2x=sin( 2x+ ),∴函数 f ( x)的最小正周期T==π.( 2)∵函数f( x)在区间 [] 上是增函数,在区间[,] 上是减函数,又 f(﹣)=﹣1,f()=,f()=1,∴函数 f ( x)在区间 [] 上的最大值为,最小值为﹣1.点评:本题考查三角函数中的恒等变换应用,着重考查正弦函数的两角和与差的公式与辅助角公式的应用,考查正弦函数的性质,求得 f ( x) =sin(2x+)是关键,属于中档题.16.(2012?天津)现有 4 个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为 1 或 2 的人去参加甲游戏,掷出点数大于 2 的人去参加乙游戏.(1)求这 4 个人中恰有 2 人去参加甲游戏的概率;(2)求这 4 个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用 X, Y 分别表示这 4 个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:概率与统计.分析:依题意,这 4 个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这 4 个人中恰有 i 人去参加甲游戏”为事件A i(i=0,1,2,3,4),故P(A i)=( 1)这 4 个人中恰有 2 人去参加甲游戏的概率为P( A 2);( 2)设“这 4 个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪ A4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为 0, 2, 4,由于 A 1与 A 3互斥, A 0与 A 4互斥,求出相应的概率,可得ξ的分布列与数学期望.解答:解:依题意,这 4 个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这 4 个人中恰有 i 人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴ P(A i)=( 1)这 4 个人中恰有 2 人去参加甲游戏的概率为P( A2)=;( 2)设“这 4 个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪ A4,∴P( B) =P(A 3)+P( A4) =( 3)ξ的所有可能取值为0, 2, 4,由于 A 1与 A 3互斥, A 0与 A 4互斥,故 P(ξ=0)=P(A2)=P(ξ=2)=P( A1) +P(A 3) =, P(ξ=4) =P( A 0) +P( A 4)=∴ ξ的分布列是ξ024P数学期望Eξ=点评:本题考查概率知识的求解,考查互斥事件的概率公式,考查离散型随机变量的分布列与期望,属于中档题.17.( 2012?天津)如图,在四棱锥P﹣ ABCD 中, PA⊥平面 ABCD , AC ⊥AD , AB ⊥ BC ,∠B AC=45 °,PA=AD=2 ,AC=1 .(1)证明: PC⊥AD ;(2)求二面角 A ﹣ PC﹣ D 的正弦值;(3)设 E 为棱 PA 上的点,满足异面直线BE 与 CD 所成的角为30°,求 AE 的长.考点:用空间向量求平面间的夹角;用空间向量求直线间的夹角、距离;二面角的平面角及求法.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:解法一( 1)以 A 为原点,建立空间直角坐标系,通过得出? =0,证出 PC⊥AD .( 2)求出平面PCD,平面 PCD 的一个法向量,利用两法向量夹角求解.( 3)设 E( 0, 0,h),其中 h∈[0, 2],利用 cos<>=cos30°=,得出关于h的方程求解即可.解法二:(1)通过证明AD ⊥平面 PAC 得出 PC⊥AD .( 2)作 AH ⊥PC 于点 H ,连接 DH ,∠ AHD 为二面角 A﹣ PC﹣ D 的平面角.在 RT△ DAH中求解( 3)因为∠ ADC < 45°,故过点 B 作 CD 的平行线必与线段AD 相交,设交点为F,连接 BE , EF,故∠ EBF (或其补角)为异面直线BE 与 CD 所成的角.在△ EBF 中,因为 EF< BE,从而∠ EBF=30 °,由余弦定理得出关于h 的方程求解即可.解答:解法一:如图,以 A 为原点,建立空间直角坐标系,则 A ( 0,0, 0),D( 2,0,0),C( 0, 1, 0),B (﹣,, 0), P( 0, 0, 2).( 1)证明:易得=(0,1,﹣ 2), =(2,0,0),于是? =0,所以 PC⊥AD .( 2)解:=( 0,1,﹣ 2), =(2,﹣ 1,0),设平面 PCD 的一个法向量为=( x,y, z),则即取 z=1,则以=( 1, 2,1).又平面 PAC 的一个法向量为=( 1, 0, 0),于是 cos <> ==, sin<> =所以二面角A﹣ PC﹣D 的正弦值为.( 3)设 E(0,0,h),其中 h∈[0,2],由此得=(,﹣,h).由=( 2,﹣ 1,0),故 cos<>===所以=cos30°=,解得 h=,即 AE=.解法二:(1)证明:由 PA⊥平面 ABCD ,可得 PA⊥ AD ,又由 AD ⊥AC , PA∩AC=A ,故 AD ⊥平面 PAC,又PC? 平面 PAC,所以 PC⊥ AD .( 2)解:如图,作 AH ⊥ PC 于点 H,连接 DH ,由 PC⊥ AD ,PC⊥AH ,可得 PC⊥平面 ADH ,因此 DH ⊥ PC,从而∠ AHD 为二面角A﹣PC﹣D 的平面角.在 RT△ PAC 中, PA=2 ,AC=1 ,所以 AH=,由(1)知,AD⊥ AH,在RT△ DAH 中, DH==,因此sin∠ AHD==.所以二面角 A ﹣ PC﹣ D 的正弦值为.( 3)解:如图,因为∠ ADC < 45°,故过点 B 作 CD 的平行线必与线段 AD 相交,设交点为 F,连接 BE, EF,故∠ EBF(或其补角)为异面直线 BE 与 CD 所成的角.由于 BF∥ CD,故∠ AFB= ∠ ADC ,在 RT△ DAC 中, CD=,sin∠ ADC=,故sin ∠AFB=.在△ AFB 中,由,AB=,sin∠ FAB=sin135°=,可得BF=,222由余弦定理, BF =AB +AF ﹣ 2ABAFcos∠ FAB ,得出 AF=,设 AE=h ,在 RT△ EAF 中, EF==,在 RT△ BAE 中, BE==,在△ EBF 中,因为 EF< BE,从而∠ EBF=30°,由余弦定理得到, cos30°=,解得 h=,即 AE=.点评:本题考查线面关系,直线与直线所成的角、二面角等基础知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题能力.18.( 2012?天津)已知 nn , {b n} 是等比数列,且1 1,{a } 是等差数列,其前 n 项和为 Sa =b =2 a 4+b 4=27 , s 4﹣ b 4=10 .( 1)求数列 {a n } 与 {b n } 的通项公式;( 2)记 T n =a n b 1+a n ﹣ 1b 2+⋯+a 1b n , n ∈N * ,证明: T n +12=﹣ 2a n +10b n ( n ∈N * ).考点 :等差数列与等比数列的综合;等差数列的通项公式;等比数列的通项公式. 专题 :等差数列与等比数列.分析:( 1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.( 2)先写出 T n 的表达式;方法一:借助于错位相减求和;方法二:用数学归纳法证明其成立.解答:解:( 1)设等差数列的公差为d ,等比数列的公比为q ,由 a 1=b 1=2,得 a 4=2+3d , b 4=2q 3, s 4=8+6d ,由条件 a 4+b 4=27 , s 4﹣ b 4 =10,得方程组,解得 ,故 a n =3n ﹣ 1, b n =2n , n ∈N *.( 2)证明:方法一,由( 2 3 n① ;1)得, T n =2a n +2 a n ﹣1+2 a n ﹣ 2+⋯+2 a 1;23 n n+1② ;2T n =2 a n +2 a n ﹣ 1+⋯+2 a 2+2 a 1;n n+2由 ② ﹣ ① 得, T n =﹣232( 3n ﹣ 1)+3×2 +3×2 +⋯+3 ×2 +2=+2n+2﹣ 6n+2n=10 ×2 ﹣ 6n ﹣ 10;而﹣ 2a n +10b n ﹣ 12= ﹣ 2( 3n ﹣ 1)+10 ×2n ﹣12=10 ×2n﹣ 6n ﹣ 10;故 T n +12=﹣ 2a n +10b n( n ∈N *).方法二:数学归纳法,③ 当 n=1 时, T 1+12=a 1b 1+12=16 ,﹣ 2a 1+10b 1=16,故等式成立,④ 假设当 n=k 时等式成立,即 T k +12= ﹣ 2a k +10b k ,则当 n=k+1 时有,T k+1 =a k+1b 1+a k b 2+a k ﹣ 1b 3+⋯+a 1b k+1 =a k+1b 1+q (a k b 1+a k ﹣ 1b 2+⋯+a 1b k ) =a k+1b 1+qT k=a k+1b 1+q (﹣ 2a k +10b k ﹣12)=2a k+1 ﹣ 4(a k+1﹣ 3)+10b k+1﹣ 24 =﹣ 2a k+1 +10b k+1﹣ 12.即 T k+1+12= ﹣ 2a k+1+10b k+1 ,因此 n=k+1 时等式成立. ③④ 对任意的 n ∈N *, T n +12= ﹣ 2a n +10b n 成立.点评:本题主要考察等差数列和等比数列的综合问题. 解决这类问题的关键在于熟练掌握基础知识,基本方法.并考察计算能力.19.( 2012?天津)设椭圆的左右顶点分别为 A ,B ,点 P 在椭圆上且异于 A , B 两点, O 为坐标原点.(1)若直线 AP 与 BP 的斜率之积为,求椭圆的离心率;(2)若 |AP|=|OA| ,证明直线 OP 的斜率 k 满足 |k|>.考点 :圆锥曲线的综合;椭圆的简单性质.专题 :圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题. 分析:( 1)设 P ( x 0, y 0),则 ,利用直线 AP 与 BP 的斜率之积为,即可求得椭圆的离心率;( 2)依题意,直线 OP 的方程为 y=kx ,设 P ( x 0,kx 0),则,进一步可得,利用 AP|=|OA| , A (﹣ a , 0),可求得 ,从而可解答:( 1)解:设P( x0, y0),∴①∵椭圆的左右顶点分别为 A , B,∴ A (﹣ a, 0),B( a, 0)∴,∵直线 AP 与 BP 的斜率之积为,∴代入① 并整理得2 2∵y0≠0,∴ a =2b∴∴∴椭圆的离心率为;( 2)证明:依题意,直线OP 的方程为y=kx ,设 P( x0, kx 0),∴∵a> b> 0, kx 0≠0,∴∴②∵|AP|=|OA| , A (﹣ a, 0),∴∴∴代入②得∴k 2> 3∴直线 OP 的斜率 k 满足 |k|>.点评:本题考查椭圆的几何性质,考查直线的斜率,考查学生的计算能力,属于中档题.20.( 2012?天津)已知函数 f ( x ) =x ﹣ ln ( x+a )的最小值为 0,其中 a > 0.( 1)求 a 的值;( 2)若对任意的 x ∈[0 , +∞),有 f ( x ) ≤kx 2成立,求实数 k 的最小值;(3)证明:( n ∈N *).考点 :导 数在最大值、最小值问题中的应用;利用导数求闭区间上函数的最值.专题 :导 数的综合应用.分析:( 1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数 f ( x )=x ﹣ ln ( x+a )的最小值为 0,即可求得 a 的值;(2)当 k ≤0 时,取 x=1,有 f (1) =1﹣ ln2>0,故 k ≤0 不合题意;当 k >0 时,令 g( x ) =f ( x )﹣ kx 2,即 g (x ) =x ﹣ln (x+1 )﹣ kx 2,求导函数,令 g ′(x ) =0,可得 x 1=0 ,,分类讨论: ① 当 k ≥ 时,,g ( x )在( 0,+∞)上单调递减, g ( x )≤g ( 0)=0 ;② 当 0< k < 时, ,对于,g ′(x )> 0,因此 g ( x )在上单调递增,由此可确定k 的最小值;( 3)当 n=1 时,不等式左边 =2﹣ ln3 < 2=右边,不等式成立;当n ≥2 时,,在( 2)中,取 k=,得 f ( x )≤ x 2,从而可得,由此可证结论.解答:1)解:函数的定义域为(﹣a , +∞),求导函数可得(令 f ′( x ) =0 ,可得 x=1 ﹣ a >﹣ a令 f ′( x )> 0, x >﹣ a 可得 x > 1﹣ a ;令 f ′(x )< 0,x >﹣ a 可得﹣ a < x <1﹣ a∴ x=1﹣ a 时,函数取得极小值且为最小值∵函数 f ( x ) =x ﹣ ln ( x+a )的最小值为 0,∴ f ( 1﹣ a ) =1﹣ a ﹣ 0,解得 a=1( 2)解:当 k ≤0 时,取 x=1,有 f ( 1)=1 ﹣ ln2> 0,故 k ≤0 不合题意当 k > 0 时,令 g (x ) =f ( x )﹣ kx 2,即 g ( x ) =x ﹣ln ( x+1 )﹣ kx 2,求导函数可得 g ′( x ) =g ′(x ) =0,可得 x 1=0,① 当 k ≥ 时,, g ′( x )< 0 在( 0, +∞)上恒成立,因此 g ( x )在( 0,+∞)上单调递减, 从而对任意的x ∈[0,+∞),总有 g ( x )≤g (0)=0,即对任意的 x ∈[0,+∞),有 f ( x ) ≤kx 2成立;② 当 0< k < 时, ,对于,g ′( x )> 0,因此 g ( x )在 上单调递增,因此取时, g ( x ) ≥g (0) =0,即有 f ( x ) ≤kx2 不成立;0 0综上知, k ≥ 时对任意的x ∈[0, +∞),有 f (x ) ≤kx 2成立, k 的最小值为( 3)证明:当 n=1 时,不等式左边 =2 ﹣ ln3< 2= 右边,所以不等式成立当 n ≥2 时,在( 2)中,取 k= ,得 f ( x ) ≤ x 2,∴( i ≥2, i ∈N *).∴=f ( 2)+ <2﹣ln3+ =2 ﹣ ln3+1 ﹣< 2综上,( n ∈N *).点评:试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.。

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}考点:交集及其运算.专题:计算题.分析:求出集合N,然后直接求解M∩N即可.解答:解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.点评:本题考查集合的基本运算,考查计算能力,送分题.2.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.3.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题4.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.5.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.6.(5分)(2012•湖南)函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2]B.[﹣,]C.[﹣1,1]D.[﹣,]考点:三角函数中的恒等变换应用;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.解答:解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.点评:本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.7.(5分)(2012•湖南)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.考点:解三角形;向量在几何中的应用.专题:计算题;压轴题.分析:设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.解答:解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.8.(5分)(2012•湖南)已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在X轴上的投影长度分别为a,b,当m变化时,的最小值为()A.16B.8C.8D.4考点:基本不等式在最值问题中的应用;对数函数图象与性质的综合应用;平行投影及平行投影作图法.专题:计算题;综合题;压轴题.分析:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,依题意可求得为x A,x B,x C,x D的值,a=|x A﹣x C|,b=|x B﹣x D|,利用基本不等式可求得当m变化时,的最小值.解答:解:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,则﹣log2x A=m,log2x B=m;﹣log2x C=,log2x D=;∴x A=2﹣m,x B=2m,x C=,x D=.∴a=|x A﹣x C|,b=|x B﹣x D|,∴==||=2m•=.又m>0,∴m+=(2m+1)+﹣≥2﹣=(当且仅当m=时取“=”)∴≥=8.故选B.点评:本题考查对数函数图象与性质的综合应用,理解平行投影的概念,得到=是关键,考查转化与数形结合的思想,考查分析与运算能力,属于难题.二、填空题(共8小题,考生作答7小题,每小题0分,满分35分,9,10,11三题任选两题作答;12~16必做题)9.(2012•湖南)在直角坐标系xoy 中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0 )有一个公共点在X轴上,则a等于.考点:椭圆的参数方程;直线的参数方程.专题:计算题.分析:化参数方程为普通方程,利用两曲线有一个公共点在x轴上,可得方程,即可求得结论.解答:解:曲线C1:(t为参数)化为普通方程:2x+y﹣3=0,令y=0,可得x=曲线C2:(θ为参数,a>0 )化为普通方程:∵两曲线有一个公共点在x轴上,∴∴a=故答案为:点评:本题考查参数方程化为普通方程,考查曲线的交点,属于基础题.10.(5分)(2012•湖南)不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:由不等式|2x+1|﹣2|x﹣1|>0⇔不等式|2x+1|>2|x﹣1|⇔(2x+1)2>4(x﹣1)2即可求得答案.解答:解:∵|2x+1|﹣2|x﹣1|>0,∴|2x+1|>2|x﹣1|≥0,∴(2x+1)2>4(x﹣1)2,∴x>.∴不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.故答案为:{x|x>}.点评:本题考查绝对值不等式的解法,将不等式|2x+1|﹣2|x﹣1|>0转化为(2x+1)2>4(x ﹣1)2是关键,着重考查转化思想与运算能力,属于中档题.11.(5分)(2012•湖南)如图,过点P的直线与圆⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于.考点:与圆有关的比例线段.专题:计算题.分析:设出圆的半径,根据切割线定理推出PA•PB=PC•PD,代入求出半径即可.解答:解:设圆的半径为r,且PO与圆交于C,D两点∵PAB、PCD是圆O的割线,∴PA•PB=PC•PD,∵PA=1,PB=PA+AB=3;PC=3﹣r,PD=3+r,∴1×3=(3﹣r)×(3+r),r2=6∴r=,故答案为:.点评:本题主要考查切割线定理等知识点,熟练地运用性质进行计算是解此题的关键.12.(5分)(2012•湖南)已知复数z=(3+i)2(i为虚数单位),则|z|=10.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.13.(5分)(2012•湖南)()6的二项展开式中的常数项为﹣160(用数字作答).考点:二项式定理.专题:计算题.分析:根据题意,利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.解答:解:()6展开式的通项为T r+1=C6r•(2)6﹣r•(﹣)r=(﹣1)r•C6r•26﹣r•x3﹣r,令3﹣r=0,可得r=3,其常数项为T4=(﹣1)r•C6r•26﹣r=﹣160;故答案为﹣160.点评:本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=﹣1,n=3,则输出的数S=﹣4.考点:循环结构.专题:计算题.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:判断前x=﹣1,n=3,i=2,第1次判断后循环,S=﹣6+2+1=﹣3,i=1,第2次判断后S=5,i=0,第3次判断后S=﹣4,i=﹣1,第4次判断后﹣1≥0,不满足判断框的条件,结束循环,输出结果:﹣4.故答案为:﹣4.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.15.(5分)(2012•湖南)函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若φ=,点P的坐标为(0,),则ω=3;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为.考点:导数的运算;几何概型;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;压轴题.分析:(1)先利用导数的运算性质,求函数f(x)的导函数f′(x),再将φ=,f′(0)=代入导函数解析式,即可解得ω的值;(2)先利用定积分的几何意义,求曲线段与x轴所围成的区域面积,再求三角形ABC的面积,最后利用几何概型概率计算公式求面积之比即可得所求概率.解答:解:(1)∵函数f(x)=sin (ωx+φ)的导函数y=f′(x)=ωcos(ωx+φ),其中φ=,过点P(0,),∴ωcos=∴ω=3.故答案为:3.(2)∵f′(x)=ωcos(ωx+φ),∴曲线段与x轴所围成的区域面积为[﹣f′(x)]dx=﹣f(x)=﹣sin﹣(﹣sin)=2,三角形ABC的面积为=,∴在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为P==.故答案为:.点评:本题主要考查了f(x)=Asin (ωx+φ)型函数的图象和性质,导数运算及导函数与原函数的关系,定积分的几何意义,几何概型概率的计算方法,属基础题.16.(5分)(2012•湖南)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,x N依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…x N.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…x N﹣1x2x4…x N,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2,当2≤i≤n ﹣2时,将P i分成2i段,每段个数,并对每段作C变换,得到P i+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第6个位置;(2)当N=2n(n≥8)时,x173位于P4中的第3×2n﹣4+11个位置.考点:演绎推理的基本方法;进行简单的演绎推理.专题:压轴题.分析:(1)由题意,可按照C变换的定义把N=16时P2列举出,从中查出x7的位置即可;(2)根据C变换的定义及归纳(1)中的规律可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16,再173=16×10+13,即可确定出x173位于P4中的位置.解答:解:(1)当N=16时,P0=x1x2…x16.由C变换的定义可得P1=x1x3…x15x2x4…x16,又将P1分成两段,每段个数,并对每段作C变换,得到P2,故P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,由此知x7位于P2中的第6个位置;(2)考察C变换的定义及(1)计算可发现,第一次C变换后,所有的数分为两段,每段的序号组成公差为2的等差数列,且第一段序号以1为首项,第二段序号以2为首项;第二次C变换后,所有的数据分为四段,每段的数字序号组成以4公差的等差数列,且第一段的序号以1为首项,第二段序号以3为首项,第三段序号以2为首项,第四段序号以4为首项,依此类推可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,9,5,13,…,由于173=16×10+13,故x173位于以13为首项的那一段的第11个数,由于N=2n(n≥8)故每段的数字有2n﹣4个,以13为首项的是第四段,故x173位于第3×2n﹣4+11=3×2n﹣4+11个位置.故答案为3×2n﹣4+11点评:本题考查演绎推理及归纳推理,解题的关键是理解新定义,找出其规律,本题是探究型题,运算量大,极易出错,解题进要严谨认真,避免马虎出错三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次性购物量1至4件 5 至8件9至12件13至16件17件及以上顾客数(人)x 30 25 y 10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:应用题.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,故可得结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;将频率视为概率可得P(X=1)==0.15;P(X=1.5)==0.3;P(X=2)==0.25;P(X=2.5)==0.2;P(X=3)==0.1X的分布列X 1 1.5 2 2.5 3P 0.15 0.3 0.25 0.2 0.1X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,所以P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.点评:本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;证明题.分析:解法一:(Ⅰ)先根据条件得到CD⊥AE;再结合PA⊥平面ABCD即可得到结论的证明;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA=BF,进而得到四边形BCDG是平行四边形,在下底面内求出BF的长以及下底面的面积,最后代入体积计算公式即可.法二:(Ⅰ)先建立空间直角坐标系,求出各点的坐标,进而得到=0以及•=0.即可证明结论;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA 的长,再求出下底面面积,最后代入体积计算公式即可.解答:解法一:(Ⅰ)连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,又AD=5,E是CD得中点,所以CD⊥AE,PA⊥平面ABCD,CD⊂平面ABCD.所以PA⊥CD,而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,由CD⊥平面PAE知,BG⊥平面PAE,于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.由题意∠PBA=∠BPF,因为sin∠PBA=,sin∠BPF=,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD.所以四边形BCDG是平行四边形,故GD=BC=3,于是AG=2.在RT△BAG中,AB=4,AG=2,BG⊥AF,所以BG==2,BF===.于是PA=BF=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.解法二:以A为坐标原点,AB,AD,AP所在直线分别为X轴,Y轴,Z轴建立空间直角坐标系,设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).(Ⅰ)=(﹣4,2,0),=(2,4,0),=(0,0,h).因为=﹣8+8+0=0,•=0.所以CD⊥AE,CD⊥AP,而AP,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)由题设和第一问知,,分别是平面PAE,平面ABCD的法向量,而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以:|cos<,>|=|cos<,>|,即||=||.由第一问知=(﹣4,2,0),=((0,0,﹣h),又=(4,0,﹣h).故||=||.解得h=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.点评:本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.(12分)(2012•湖南)已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式.(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.考点:等差数列的性质;充要条件;等比关系的确定.专题:计算题;证明题.分析:(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,整理即可得数列{a n}是首项为1,公差为4的等差数列,从而可得a n.(2)必要性:由数列{a n}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0,即充分性成立,于是结论得证.解答:解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,∴B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,亦即a n+2﹣a n+1=a2﹣a1=4.故数列{a n}是首项为1,公差为4的等差数列,于是a n=1+(n﹣1)×4=4n﹣3.(2)证明:(必要性):若数列{a n}是公比为q的等比数列,对任意n∈N*,有a n+1=a n q.由a n>0知,A(n),B(n),C(n)均大于0,于是===q,===q,即==q,∴三个数A(n),B(n),C(n)组成公比为q的等比数列;(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则B(n)=qA(n),C(n)=qB(n),于是C(n)﹣B(n)=q[B(n)﹣A(n)],即a n+2﹣a2=q(a n+1﹣a1),亦即a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0.∵a n>0,∴==q.故数列{a n}是首项为a1,公比为q的等比数列.综上所述,数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.点评:本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.20.(13分)(2012•湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.考点:函数模型的选择与应用.专题:综合题.分析:(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,;(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解.解答:解:(1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x)∴,,其中x,kx,200﹣(1+k)x均为1到200之间的正整数(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x)①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{}∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x=∵,,,f(44)<f(45)∴x=44时,完成订单任务的时间最短,时间最短为②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{}∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x=∵,,∴完成订单任务的时间大于③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{}∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x=类似①的讨论,此时完成订单任务的时间为,大于综上所述,当k=2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68. 点评:本题考查函数模型的构建,考查函数的单调性,考查分类讨论的数学思想,解题的关键是确定分类标准,有难度. 21.(13分)(2012•湖南)在直角坐标系xoy 中,曲线C 1上的点均在C 2:(x ﹣5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程 (Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别于曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.考点:直线与圆锥曲线的综合问题;轨迹方程. 专题:综合题;压轴题. 分析:(Ⅰ)设M 的坐标为(x ,y ),根据对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值,可得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧,从而可得曲线C 1的方程;(Ⅱ)当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),设切线方程为kx ﹣y+y 0+4k=0,利用直线与圆相切可得,从而可得过P 所作的两条切线PA ,PC 的斜率k 1,k 2是方程的两个实根,设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,从而可得;同理可得,由此可得当P 在直线x=﹣4上运动时,四点A ,B ,C ,D的纵坐标之积为定值为6400.解答:(Ⅰ)解:设M 的坐标为(x ,y ),由已知得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C 1的方程为y 2=20x(Ⅱ)证明:当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),∵y 0≠±3,∴过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y ﹣y 0=k (x+4),即kx ﹣y+y 0+4k=0, ∴,整理得①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根 ∴②由,消元可得③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4, ∴y 1,y 2是方程③的两个实根 ∴④同理可得⑤由①②④⑤可得==6400∴当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值为6400. 点评: 本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题. 22.(13分)(2012•湖南)已知函数f (x )=e ax ﹣x ,其中a ≠0. (1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合.(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2)(x 1<x 2),记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.考点: 导数在最大值、最小值问题中的应用;函数恒成立问题. 专题: 压轴题. 分析:(1)先确定a >0,再求导函数,确定函数的单调性,可得时,f (x )取最小值故对一切x ∈R ,f (x )≥1恒成立,则,构建新函数g (t )=t ﹣tlnt ,则g ′(t )=﹣lnt ,确定函数的单调性,求出函数的最大值,由此即可求得a 的取值集合;(2)由题意知,,构建新函数φ(x)=f′(x)﹣k=,则,,构建函数F(t)=e t﹣t﹣1,从而可证明φ(x1)<0,φ(x2)>0,由此即可得到存在x0∈(x1,x2),使f′(x0)>k成立.解答:解:(1)若a<0,则对一切x>0,函数f(x)=e ax﹣x<1,这与题设矛盾,∵a≠0,∴a>0∵f′(x)=ae ax﹣1,令f′(x)=0,可得令f′(x)<0,可得,函数单调减;令f′(x)>0,可得,函数单调增,∴时,f(x)取最小值∴对一切x∈R,f(x)≥1恒成立,则①令g(t)=t﹣tlnt,则g′(t)=﹣lnt当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减∴t=1时,g(t)取最大值g(1)=1∴当且仅当=1,即a=1时,①成立综上所述,a的取值集合为{1};(2)由题意知,令φ(x)=f′(x)﹣k=,则令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;∴t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0∴,∵>0,∴φ(x1)<0,φ(x2)>0∴存在c∈(x1,x2),φ(c)=0∵φ(x)单调递增,故这样的c是唯一的,且当且仅当x∈(,x2)时,f′(x)>k综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为(,x2)点评:本题考查导数知识的运用,考查函数的单调性与极值,考查构建新函数确定函数值的符号,从而使问题得解.。

解三角形专题(高考题)练习【附答案】

解三角形专题(高考题)练习【附答案】

解三角形专题1、在ABC ∆中,已知内角3A π=,边23BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值.4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。

(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。

5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.6、在ABC ∆中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ; (Ⅱ)设2AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。

9、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小; (II )△ABC 最短边的长.10、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c =7,且.272cos 2sin 42=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积.11、已知△ABC 中,AB=4,AC=2,23ABC S ∆=.(1)求△ABC 外接圆面积. (2)求cos(2B+3π)的值.12、在ABC ∆中,角A B C 、、的对边分别为a b c 、、,(2,)b c a =-m ,(cos ,cos )A C =-n ,且⊥m n 。

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则A∪B={1,2,4,6}.考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f (x)=其中a,b∈R.若=,则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx ﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e 可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.点评:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c 化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC 的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF 1|=×|0﹣y 1|=①同理|BF 2|=②(i )由①②得|AF 1|﹣|BF 2|=,∴,解得m 2=2.∵注意到m >0,∴m=. ∴直线AF 1的斜率为.(ii )证明:∵直线AF 1与直线BF 2平行,∴,即.由点B 在椭圆上知,,∴.同理.∴PF 1+PF 2==由①②得,,,∴PF 1+PF 2=.∴PF 1+PF 2是定值.点评: 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n }和{b n }满足:a n+1=,n ∈N *,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.考点:数列递推式;等差关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)=.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k 为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义。

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

(做)全国卷历年高考三角函数及解三角形真题

(做)全国卷历年高考三角函数及解三角形真题

全国卷历年高考三角函数及解三角形真题归类分析(2015-2019年共14套)三角函数(共20小题)一、三角恒等变换(6题)1.(2015年1卷2) =()(A)(B)(C)(D)2.(2018年3卷4)若,则A. B. C. D.3.(2016年3卷7)若3tan4α=,则2cos2sin2αα+=()(A)6425(B)4825(C) 1 (D)16254.(2016年2卷9)若π3cos45α⎛⎫-=⎪⎝⎭,则sin2α=()(A)725(B)15(C)15-(D)725-5.(2018年2卷15)已知,,则__________.6.(2019年2卷10)已知a∈(0,π2),2sin2α=cos2α+1,则sinα=()A. 153o o o osin20cos10cos160sin10-2-212-12二、三角函数性质(11题)1.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减 2.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . 3.(2015年1卷8)函数=的部分图像如图所示,则的单调递减区间为( )(A )(B ) (C ) (D ) 4.(2018年3卷15)15. 函数在的零点个数为________.5.(2019年2卷9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │6.(2018年2卷10)若在是减函数,则的最大值是( )A. B. C. D.()f x cos()x ωϕ+()f x 13(,),44k k k Z ππ-+∈13(2,2),44k k k Z ππ-+∈13(,),44k k k Z -+∈13(2,2),44k k k Z -+∈7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x.将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为( )8.(2019年1卷11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数;②f (x )在区间(2π,π)单调递增;③f (x )在[,]ππ-有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A. ①②④B. ②④C. ①④D. ①③9.(2019年3卷12)设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点;②()f x 在(0,2π)有且仅有2个极小值点;③()f x 在(0,10π)单调递增;④ω的取值范围是[1229510,),其中所有正确结论的编号是( ) A. ①④B. ②③C. ①②③D. ①③④10.(2018年1卷16)已知函数,则的最小值是_____________.11.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11????????(B )9?????(C )7????????(D )5 三、三角函数图像变换(3题)1.(2016年3卷14)函数sin y x x =-的图像可由函数sin y x x =+的图像至少向右平移_____________个单位长度得到.2.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为(A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 3.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 22π3π6π1212π6D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2解三角形(12题,4小题8大题)一、解三角形(知一求一、知三可解)(6题)1.(2016年2卷13)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .2.(2019年2卷15)△ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则△ABC 的面积为__________.3. (2017年2卷17)的内角的对边分别为,已知. (1)求;(2)若,的面积为2,求12π12ABC △,,A B C ,,a b c ()2sin 8sin 2B AC +=cos B 6a c +=ABC △.b4.(2016年1卷17)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II)若c ABC =∆求ABC 的周长.5. (2017年1卷17)ABC △的内角,,的对边分别为,,,已知的面积为.A B C a b c ABC△23sin a A(1)求的值;(2)若,,求的周长.6.(2019年1卷17)△ABC的内角A,B,C的对边分别为a,b,c,设22(sin sin)sin sin sinB C A B C-=-.(1)求A;(2)若2b c+=,求sin C.sin sinB C6cos cos1B C=3a=ABC△二、解三角形(知二求范围、最值)(2题)1. (2015年1卷16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围 .2.(2019年3卷18)ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c .已知sinsin 2A Ca b A +=, (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围。

2012年高考数学试题分类汇编第六部分解三角形

2012年高考数学试题分类汇编第六部分解三角形

第六部分 解三角形(2012湖南卷文)8 . 在△ABC 中,AC=7 ,BC=2,B =60°,则BC 边上的高等于A .32 B.332 C.362+ D.3394+【答案】B【解析】设AB c =,在△ABC 中,由余弦定理知2222cos AC AB BC AB BC B =+-⋅⋅,即27422cos60c c =+-⨯⨯⨯,2230,(-3)(1)c c c c --=+即=0.又0, 3.c c >∴=设BC 边上的高等于h ,由三角形面积公式11sin 22ABCSAB BC B BC h ==,知 1132sin 60222h ⨯⨯⨯=⨯⨯,解得332h =. 1. (2012年福建卷理已知ABC ∆的三边长成公比为2的等比数列,则其最大角的余弦值为_________。

(2012年天津卷文)在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ ∈R 。

若BQ•CP=-2,则λ=(A )13(B )23C )43(D )2【解析】 如图,设c AC b AB ==, , 则0,2,1=•==c b c b ,又c b AQ BA BQ )1(λ-+-=+=,b c AP CA CP λ+-=+=, 由2-=•CP BQ 得2)1(4)1()(])1([22-=--=--=+-•-+-λλλλλλb c b c c b ,即32,23==λλ,选B. 【答案】B(2012年天津卷文)(16)(本小题满分13分)在△ABC 中,内角A ,B ,C 所对的分别是a,b ,c 。

已知a=2.c=2,cosA=2-4. (I )求sinC 和b 的值; (II )求cos (2A+3д)的值。

(2012年天津卷理)(6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725(B)725- (C)725± (D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8sin =10sin cos B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=72517、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定 (2012年北京卷理)11.在△ABC 中,若a =2,b+c=7,cosB=41-,则b=_______。

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

 2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x 对称得:|PQ |最小值为.故选:B .【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分. 13.(5分)已知向量夹角为45°,且,则= 3.【考点】9O :平面向量数量积的性质及其运算;9S :数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题. 【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得 故答案为:3【点评】本题主要考查了向量的数量积 定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x ,y 满足约束条件:;则z=x ﹣2y 的取值范围为 .【考点】7C :简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y﹣z=0在y 轴上的截距,截距越大,z 越小,结合函数的图形可求z 的最大与最小值,从而可求z 的范围【解答】解:作出不等式组表示的平面区域 由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y ﹣z=0在y 轴上的截距,截距越大,z 越小结合函数的图形可知,当直线x ﹣2y ﹣z=0平移到B 时,截距最大,z 最小;当直线x ﹣2y ﹣z=0平移到A 时,截距最小,z 最大由可得B (1,2),由可得A (3,0)∴Z max =3,Z min =﹣3则z=x ﹣2y ∈[﹣3,3] 故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【考点】CP :正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii )购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD ﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD ∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln (a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.祝福语祝你考试成功!。

2012年上海市高考数学试卷(文科)答案与解析

2012年上海市高考数学试卷(文科)答案与解析

2012年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).考点: 复数代数形式的乘除运算.专题: 计算题.分析:由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案解答:解:故答案为1﹣2i点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(4分)(2012•上海)若集合A={x|2x﹣1>0},B={x||x|<1},则A∩B=(,1).考点:交集及其运算.专题:计算题.分析:由题意,可先化简两个集合A,B,再求两个集合的交集得到答案解答:解:由题意A={x|2x﹣1>0}={x|x>},B={x|﹣1<x<1},∴A∩B=(,1)故答案为(,1)点评:本题考查交的运算,是集合中的基本题型,解题的关键是熟练掌握交集的定义3.(4分)(2012•上海)函数的最小正周期是π.考点: 二阶矩阵;三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:计算题.分析:先根据二阶行列式的公式求出函数的解析式,然后利用二倍角公式进行化简,最后根据正弦函数的周期公式进行求解即可.解答:解:=sinxcosx+2=sin2x+2∴T==π∴函数的最小正周期是π故答案为:π点评:本题主要考查了二阶行列式,以及三角函数的化简和周期的求解,同时考查了运算求解能力,属于基础题.4.(4分)(2012•上海)若是直线l的一个方向向量,则l的倾斜角的大小为arctan(结果用反三角函数值表示)考点: 平面向量坐标表示的应用.专题: 计算题.分析:根据直线的方向向量的坐标一般为(1,k)可得直线的斜率,根据tanα=k,最后利用反三角可求出倾斜角.解答:解:∵是直线l的一个方向向量∴直线l的斜率为即tanα=则l的倾斜角的大小为arctan故答案为:arctan点评:本题主要考查了直线的方向向量,解题的关键是直线的方向向量的坐标一般为(1,k),同时考了反三角的应用,属于基础题.5.(4分)(2012•上海)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为6π.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:求出圆柱的底面半径,然后直接求出圆柱的表面积即可.解答:解:因为一个高为2的圆柱,底面周长为2π,所以它的底面半径为:1,所以圆柱的表面积为S=2S底+S侧=2×12×π+2π×2=6π.故答案为:6π.点评:本题考查旋转体的表面积的求法,考查计算能力.6.(4分)(2012•上海)方程4x﹣2x+1﹣3=0的解是x=log23.考点: 有理数指数幂的运算性质.专题:计算题.分析:根据指数幂的运算性质可将方程4x﹣2x+1﹣3=0变形为(2x)2﹣2×2x﹣3=0然后将2x 看做整体解关于2x的一元二次方程即可.解答:解:∵4x﹣2x+1﹣3=0∴(2x)2﹣2×2x﹣3=0∴(2x﹣3)(2x+1)=0∵2x>0∴2x﹣3=0∴x=log23故答案为x=log23点评:本题主要考差了利用指数幂的运算性质解有关指数类型的方程.解题的关键是要将方程4x﹣2x+1﹣3=0等价变形为(2x)2﹣2×2x﹣3=0然后将2x看做整体再利用因式分解解关于2x的一元二次方程.7.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.考点: 数列的极限;棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求解答:解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:点评:本题主要考查了等比数列的求和公式及数列极限的求解,属于基础试题8.(4分)(2012•上海)在的二项式展开式中,常数项等于﹣20.考点:二项式定理的应用.专题:计算题.分析:研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.解答:解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣1)r x6﹣2r令6﹣2r=0可得r=3 常数项为(﹣1)3=﹣20故答案为:﹣20点评:本题主要考查了二项式定理的应用,解题的关键是写出展开式的通项公式,同时考查了计算能力,属于基础题.9.(4分)(2012•上海)已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)=3.考点: 函数奇偶性的性质;函数的值.专题:计算题.分析:由题意y=f(x)是奇函数,g(x)=f(x)+2得到g(x)+g(﹣x)=f(x)+2+f(﹣x)+2=4,再令x=1即可得到1+g(﹣1)=4,从而解出答案解答:解:由题意y=f(x)是奇函数,g(x)=f(x)+2∴g(x)+g(﹣x)=f(x)+2+f(﹣x)+2=4又g(1)=1∴1+g(﹣1)=4,解得g(﹣1)=3故答案为:3点评:本题考查函数奇偶性的性质,解题的关键是利用性质得到恒成立的等式,再利用所得的恒等式通过赋值求函数值10.(4分)(2012•上海)满足约束条件|x|+2|y|≤2的目标函数z=y﹣x的最小值是﹣2.考点: 简单线性规划.分析:作出约束条件对应的平面区域,由z=y﹣x可得y=x+z,则z为直线在y轴上的截距,解决越小,z越小,结合图形可求解答:解:作出约束条件对应的平面区域,如图所示由于z=y﹣x可得y=x+z,则z为直线在y轴上的截距,截距越小,z越小结合图形可知,当直线y=x+z过C时z最小,由可得C(2,0),此时Z=﹣2最小故答案为:﹣2点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是(结果用最简分数表示)考点: 古典概型及其概率计算公式;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2种选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.12.(4分)(2012•上海)在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则的取值范围是[1,4].考点:平面向量数量积的运算.专题: 计算题.分析:先以所在的直线为x轴,以所在的直线为x轴,建立坐标系,写出要用的点的坐标,根据两个点的位置得到坐标之间的关系,表示出两个向量的数量积,根据动点的位置得到自变量的取值范围,做出函数的范围,即要求得数量积的范围.解答:解:以所在的直线为x轴,以所在的直线为x轴,建立坐标系如图,∵AB=2,AD=1,∴A(0,0),B(2,0),C(2,1),D(0,1),设M(2,b),N(x,1),∵,∴b=∴,=(2,),∴=,∴1,即1≤≤4故答案为:[1,4]点评:本题主要考查平面向量的基本运算,概念,平面向量的数量积的运算,本题解题的关键是表示出两个向量的坐标形式,利用函数的最值求出数量积的范围,本题是一个中档题目.13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.考点: 分段函数的解析式求法及其图象的作法.专题:计算题;压轴题.分析:先利用一次函数的解析式的求法,求得分段函数f(x)的函数解析式,进而求得函数y=xf(x)(0≤x≤1)的函数解析式,最后利用定积分的几何意义和微积分基本定理计算所求面积即可解答:解:依题意,当0≤x≤时,f(x)=2x,当<x≤1时,f(x)=﹣2x+2∴f(x)=∴y=xf(x)=y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣+x2)=+=故答案为:点评:本题主要考查了分段函数解析式的求法,定积分的几何意义,利用微积分基本定理和运算性质计算定积分的方法,属基础题14.(4分)(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.考点: 数列与函数的综合.专题:综合题;压轴题.分析:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.解答:解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:点评:本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.二、选择题(本大题共有4题,满分20分)15.(5分)(2012•上海)若i是关于x的实系数方程x2+bx+c=0的一个复数根,则() A.b=2,c=3 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣2,c=3考点:复数代数形式的混合运算;复数相等的充要条件.专题:计算题.分析:由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项解答:解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0,即∴,解得b=﹣2,c=3故选D点评:本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.(5分)(2012•上海)对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆"的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn >0,即可得到结论.解答:解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn >0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.点评:本题主要考查充分必要条件,考查椭圆的方程,注意对于椭圆的方程中,系数要满足大于0且不相等,本题是一个基础题.17.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定考点: 三角形的形状判断.专题:三角函数的图像与性质.分析:利用正弦定理将sin2A+sin2B<sin2C,转化为a2+b2<c2,再结合余弦定理作出判断即可.解答:解:∵在△ABC中,sin2A+sin2B<sin2C,由正弦定理===2R得,a2+b2<c2,又由余弦定理得:cosC=<0,0<C<π,∴<C<π.故△ABC为钝角三角形.故选A.点评:本题考查三角形的形状判断,着重考查正弦定理与余弦定理的应用,属于基础题.18.(5分)(2012•上海)若(n∈N*),则在S1,S2,…,S100中,正数的个数是()A.16 B.72 C.86 D.100考点:数列与三角函数的综合.专题: 计算题;综合题;压轴题.分析:由于sin>0,sin>0,…sin>0,sin=0,sin<0,…sin<0,sin=0,可得到S1>0,…S13>0,而S14=0,从而可得到周期性的规律,从而得到答案.解答:解:∵sin>0,sin>0,…sin>0,sin=0,sin<0,…sin<0,sin=0,∴S1=sin>0,S2=sin+sin>0,…,S8=sin+sin+…sin+sin+sin=sin+…+sin+sin>0,…,S12>0,而S13=sin+sin+…+sin+sin+sin+sin+…+sin=0,S14=S13+sin=0+0=0,又S15=S14+sin=0+sin=S1>0,S16=S2>0,…S27=S13=0,S28=S14=0,∴S14n﹣1=0,S14n=0(n∈N*),在1,2,…100中,能被14整除的共7项,∴在S1,S2,…,S100中,为0的项共有14项,其余项都为正数.故在S1,S2,…,S100中,正数的个数是86.故选C.点评:本题考查数列与三角函数的综合,通过分析sin的符号,找出S1,S2,…,S100中,S14n=0,S14n=0是关键,也是难点,考查学生分析运算能力与冷静坚持的态度,属于难题.﹣1三、解答题(本大题共有5题,满分74分)19.(12分)(2012•上海)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,D是PC的中点,已知∠BAC=,AB=2,,PA=2,求:(1)三棱锥P﹣ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示)考点:异面直线及其所成的角;棱柱、棱锥、棱台的体积.专题:常规题型;综合题.分析:(1)首先根据三角形面积公式,算出直角三角形ABC的面积:S△ABC=,然后根据PA⊥底面ABC,结合锥体体积公式,得到三棱锥P﹣ABC的体积;(2)取BP中点E,连接AE、DE,在△PBC中,根据中位线定理得到DE∥BC,所以∠ADE(或其补角)是异面直线BC、AD所成的角.然后在△ADE中,利用余弦定理得到cos∠ADE=,所以∠ADE=arccos是锐角,因此,异面直线BC与AD所成的角的大小arccos.解答:解:(1)∵∠BAC=,AB=2,,∴S△ABC=×2×=又∵PA⊥底面ABC,PA=2∴三棱锥P﹣ABC的体积为:V=×S△ABC×PA=;(2)取BP中点E,连接AE、DE,∵△PBC中,D、E分别为PC、PB中点∴DE∥BC,所以∠ADE(或其补角)是异面直线BC、AD所成的角.∵在△ADE中,DE=2,AE=,AD=2∴cos∠ADE==,可得∠ADE=arccos(锐角)因此,异面直线BC与AD所成的角的大小arccos.点评:本题给出一个特殊的三棱锥,以求体积和异面直线所成角为载体,考查了棱柱、棱锥、棱台的体积和异面直线及其所成的角等知识点,属于基础题.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.考点:函数的周期性;反函数;对数函数图象与性质的综合应用.专题:计算题.分析:(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.解答:解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].点评:本题考查对数的运算以及反函数与原函数的定义域和值域相反等知识,属于易错题.21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?考点:圆锥曲线的综合.专题:应用题.分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解答:解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C:2x2﹣y2=1.(1)设F是C的左焦点,M是C右支上一点,若,求点M的坐标;(2)过C的左焦点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积; (3)设斜率为k()的直线l交C于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ.考点: 直线与圆锥曲线的综合问题;直线与圆的位置关系;双曲线的简单性质.专题:计算题;综合题;压轴题;转化思想.分析:(1)求出双曲线的左焦点F的坐标,设M(x,y),利用|MF|2=(x+)2+y2,求出x 的范围,推出M的坐标.(2)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出平行四边形的面积.(3)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=k2+1,通过求解=0.证明PO⊥OQ.解答:解:(1)双曲线C1:的左焦点F(﹣),设M(x,y),则|MF|2=(x+)2+y2,由M点是右支上的一点,可知x≥,所以|MF|==2,得x=,所以M().(2)左焦点F(﹣),渐近线方程为:y=±x.过F与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求平行四边形的面积为S=.(3)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=k2+1…①,由,得(2﹣k2)x2﹣2bkx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(kx1+b)(kx2+b).所以=x1x2+y1y2=(1+k2)x1x2+kb(x1+x2)+b2==.由①式可知,故PO⊥OQ.点评:本题考查直线与圆锥曲线的综合问题,圆锥曲线的综合,向量的数量积的应用,设而不求的解题方法,点到直线的距离的应用,考查分析问题解决问题的能力,考查计算能力.23.(18分)(2012•上海)对于项数为m的有穷数列{a n},记b k=max{a1,a2,…,a k}(k=1,2,…,m),即b k为a1,a2,…,a k中的最大值,并称数列{b n}是{a n}的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n}的控制数列为2,3,4,5,5,写出所有的{a n}.(2)设{b n}是{a n}的控制数列,满足a k+b m﹣k+1=C(C为常数,k=1,2,…,m),求证:b k=a k (k=1,2,…,m).(3)设m=100,常数a∈(,1),a n=a n2﹣n,{b n}是{a n}的控制数列,求(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100).考点: 数列的应用.专题:综合题;压轴题;点列、递归数列与数学归纳法.分析:(1)根据题意,可得数列{a n}为:2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4,;2,3,4,5,5;(2)依题意可得b k+1≥b k,又a k+b m﹣k+1=C,a k+1+b m﹣k=C,从而可得a k+1﹣a k=b m﹣k+1﹣b m﹣k≥0,整理即证得结论;(3)根据,可发现,a4k﹣3=a(4k﹣3)2+(4k﹣3),a4k=a(4k﹣2)2+(4k﹣2),a4k﹣1=a(4k﹣1)2﹣(4k﹣1),a4k=a(4k)2﹣4k,通过比较﹣2大小,可得a4k﹣2>a4k﹣1,a4k>a4k﹣2,而a4k+1>a4k,a4k﹣1﹣a4k﹣2=(a﹣1)(8k﹣3),从而可求得(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100)=(a2﹣a3)+(a6﹣a7)+…+(a98﹣a99)=(a4k﹣2﹣a4k﹣1)=2525(1﹣a).解答:解:(1)数列{a n}为:2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4,;2,3,4,5,5;…4分(2)∵b k=max{a1,a2,…,a k},b k+1=max{a1,a2,…,a k+1},∴b k+1≥b k…6分∵a k+b m﹣k+1=C,a k+1+b m﹣k=C,∴a k+1﹣a k=b m﹣k+1﹣b m﹣k≥0,即a k+1≥a k,…8分∴b k=a k…10分(3)对k=1,2,…25,a4k﹣3=a(4k﹣3)2+(4k﹣3),a4k﹣2=a(4k﹣2)2+(4k﹣2),a4k﹣1=a(4k﹣1)2﹣(4k﹣1),a4k=a(4k)2﹣4k,…12分比较大小,可得a4k﹣2>a4k﹣1,∵<a<1,∴a4k﹣1﹣a4k﹣2=(a﹣1)(8k﹣3)<0,即a4k﹣2>a4k﹣1;a4k﹣a4k﹣2=2(2a﹣1)(4k﹣1)>0,即a4k>a4k﹣2,又a4k+1>a4k,从而b4k﹣3=a4k﹣3,b4k﹣2=a4k﹣2,b4k﹣1=a4k﹣2,b4k=a4k,…15分∴(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100)=(a2﹣a3)+(a6﹣a7)+…+(a98﹣a99)=(a4k﹣2﹣a4k﹣1)=(1﹣a)(8k﹣3)=2525(1﹣a)…18分点评:本题考查数列的应用,着重考查分析,对抽象概念的理解与综合应用的能力,对(3)观察,分析寻找规律是难点,是难题.。

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)答案与解析

2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).>﹣(﹣,,3.(4分)(2012•上海)函数f(x)=的值域是.sin2x≤sin2x≤﹣﹣的值域是故答案为:4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).=5.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.(﹣)r36.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V2,…,V n,…,则(V1+V2+…+V n)═.由题意可得,正方体的体积为公比的等比是以为首项,以(故答案为:7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1].8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.所以圆锥的体积为:故答案为:9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=﹣1.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.故答案为:11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).有且仅有两人选择的项目完全相同有××=18表示个同学选择的项目,表示从三种组合中选一个,故有且仅有两人选择的项目完全相同的概率是故答案为:12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5].(==))13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.S=dx+××+10×﹣.故答案为:.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.EB=,EF=×=故答案为:二、选择题(20分):2的方程组ii bi+c=0222CosC=cosC=17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的=(,=(+18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个的周期=sin的周期sin sin单调递减三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.PD=2各点的坐标,从而=2,利用空间向量数量积的公式,得到与夹角所成的角的大小为;AEF=所成的角的大小为,PD==2.×DC=2,,=,,,与夹角为=,所成的角的大小为.PC=PC=2EF=BC=AF=PB=AEF=所成的角的大小为.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.=lg<<,得:21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?的横坐标,代入抛物线方程|AP|=vt=,整理得=7t=,代入抛物线方程|AP|=,得救援船速度的大小为OAP=,故救援船速度的方向为北偏东弧vt=,整理得,当且仅当22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.的距离为.,利用,求出,d=左顶点(﹣±x x+,解得与已知圆相切,故,由,|OM|=的距离为.>y=,.,=.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.中取中与垂直的元素必)取=)根据==等价于B={可得=()选取=中与)取=,满足==,满足=时,显然有满足,所以有=,使得,从而,并设,由此可得,不可能==等价于B={|s<对以下三角形数阵:<<<<<…<>>>,所以=)。

高中解三角形试题及答案

高中解三角形试题及答案

高中解三角形试题及答案一、选择题1. 若三角形ABC的三个内角A、B、C满足sinA = 2sinBcosC,则三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形答案:A2. 在三角形ABC中,若a = 3, b = 4, c = 5,则三角形ABC的面积S是()A. 3√3B. 4√3C. 5√3D. 6√3答案:B二、填空题3. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为______。

答案:75°4. 若三角形ABC的三边长分别为a = 2, b = 3, c = 4,则三角形ABC的外接圆半径R为______。

答案:√10/2三、解答题5. 已知三角形ABC的三边长分别为a = 5, b = 12, c = 13,求三角形ABC的面积。

答案:根据余弦定理,可得cosA = (b² + c² - a²) / (2bc) = (144 + 169 - 25) / (2 × 12 × 13) = 1/2,因此∠A = 60°。

根据正弦定理,S = 1/2 × b × c ×sinA = 1/2 × 12 × 13 × √3/2 = 39√3。

6. 已知三角形ABC中,∠A = 30°,∠B = 45°,求边长b和c的关系。

答案:根据三角形内角和定理,可得∠C = 180° - 30° - 45° = 105°。

设边长b = x,则根据正弦定理,有a/sinA = b/sinB,即a/sin30° = x/sin45°,解得a = x√2/2。

再根据正弦定理,有a/sinA = c/sinC,即x√2/2 / sin30° = c/sin105°,解得c = x√2/2 × (√6 + √2) / 2。

2012年江西省高考数学(理)试题及答案解析

2012年江西省高考数学(理)试题及答案解析

2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。

满分150分,考试时间120分钟。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。

3.1A .5 2.A .3.4.若A .155.A.B .z 1C.若D .对于任意n ∈N,C °+C 1.…+C °。

都是偶数6.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10= A.28 B.76 C.123 D.1997.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则A.2B.4C.5D.10 8.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜4吨1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A.50,0 B.30.0 C.20,30 D.0,509.样本(x1,x2…,x n)的平均数为x,样本(y1,y2,…,y n)的平均数为。

若样本(x1,x2…,x n,y1,y2,…,y n)的平均数,其中0<α<12,则n,m的大小关系为A.n<mB.n>mC.n=mD.不能确定10.如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分。

2012年高考数学试题

2012年高考数学试题

2012年全国统一高考数学试卷(新课标版)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种考点:排列、组合及简单计数问题.专题:计算题.分析:将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果解答:解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A点评:本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4考点:复数的基本概念;命题的真假判断与应用.专题:计算题.分析:由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.解答:解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.解答:解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.点评:本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题5.(5分)已知{a n} 为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数考点:循环结构.专题:计算题.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.解答:解:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12 D.18考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.解答:解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选B.点评:本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8考点:圆锥曲线的综合.专题:计算题.分析:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.解答:解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)(2012•黑龙江)已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.解答:解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.点评:本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数;则y=f(x )的图象大致为()A.B.C.D.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题.分析:考虑函数f(x )的分母的函数值恒小于零,即可排除A,C,D,这一性质可利用导数加以证明解答:解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,D故选B点评:本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径,∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.考点:点到直线的距离公式;反函数.专题:计算题.分析:由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求解答:解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称函数上的点到直线y=x的距离为设g(x)=,(x>0)则由≥0可得x≥ln2,由<0可得0<x<ln2∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增∴当x=ln2时,函数g(x)min=1﹣ln2由图象关于y=x对称得:|PQ|最小值为故选B点评:本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].考点:简单线性规划.专题:计算题.分析:先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围解答:解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]点评:平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.考点:解三角形.专题:计算题.分析:(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA 可求b+c,进而可求b,c解答:解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2点评:本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点:概率的应用;离散型随机变量的期望与方差.专题:综合题.分析:(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.解答:解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7X的分布列为X 60 70 80P 0.1 0.2 0.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4 ∵76.4>76,∴应购进17枝点评:本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:综合题.分析:(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.解答:(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.考点:圆锥曲线的综合;圆的标准方程;抛物线的简单性质.专题:综合题.分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD 的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;探究型;转化思想.分析:(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值解答:解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为点评:本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,难度较大,计算量也大,易马虎出错四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•黑龙江)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.考点:综合法与分析法(选修).专题:证明题.分析:(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,根据等弧对等角,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.解答:证明:(1)∵AB∥CF,∴∠DAE=∠ECF.根据等弧对等角可知,,∴∠BDC=∠ADF.∵D,E分别为△ABC边AB,AC的中点∴DE∥BC∴∠ADF=∠DBC.∴∠BDC=∠DBC∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.点评:本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.考点:椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:综合题.分析:(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解答:解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]点评:本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:计算题.分析:(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.解答:解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;刘长柏;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2013年5月30日。

解三角形高考试题及答案

解三角形高考试题及答案

解三角形高考试题及答案高考数学题中,三角形相关的内容一直以来都是考点之一。

解三角形题目需要运用几何图形的性质和相关定理,是对学生综合运用知识的考察。

下面将通过几个常见的三角形题目,来分析解题的思路和方法。

题目一:已知三角形ABC,∠B=50°,∠C=70°,AB=5 cm,BC=3 cm,求AC的长度。

解题思路:根据三角形的内角和定理,得知∠A=180°-∠B-∠C=60°。

通过已知的两边和一个夹角,我们可以运用正弦定理或余弦定理来求解。

这里我们选择使用余弦定理。

根据余弦定理,有:AC²=AB²+BC²-2×AB×BC×cos∠A。

将已知数值带入公式计算,得到AC≈5.98 cm。

题目二:已知三角形ABC,∠B=45°,AB=12 cm,BC=8 cm,求∠A和AC的长度。

解题思路:我们先通过已知条件来求∠A。

根据三角形的内角和定理,有∠A+∠B+∠C=180°,即∠A+45°+∠C=180°,从而可以得出∠A=135°。

然后,根据余弦定理,可以得到AC²=AB²+BC²-2×AB×BC×cos∠A。

代入已知数值,计算得到AC≈12.24 cm。

题目三:已知三角形ABC,AB=3 cm,BC=4 cm,AC=5 cm,求∠A、∠B和∠C的大小。

解题思路:根据余弦定理,我们可以得到cos∠A=(BC²+AC²-AB²)/(2×BC×AC),cos∠B=(AC²+AB²-BC²)/(2×AC×AB),cos∠C=(AB²+BC²-AC²)/(2×AB×BC)。

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形【知识网络构建】【重点知识整合】一、三角恒等变换与三角函数1.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sincos 1αα+=;(3)切弦互化:弦的齐次式可化为切; (4)角的替换:2()()ααβαβ=++-, ()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=21cos 2sin2αα-=tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):22sin cos sin()(tan )ba b a b aαααϕϕ+=++=.二、解三角形1.正弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).2.余弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc,另外两个同样.3.面积公式已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则 (1)三角形的面积等于底乘以高的12;(2)S =12ab sin C =12bc sin A =12ac sin B =abc 4R (其中R 为该三角形外接圆的半径);(3)若三角形内切圆的半径是r ,则三角形的面积S =12(a +b +c )r ;(4)若p =a +b +c2,则三角形的面积S =p p -a p -b p -c .【高频考点突破】【变式探究】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35D.45【方法技巧】1.用三角函数定义求三角函数值有时反而更简单;2.同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式的应用条件. 考点二 三角函数的性质 三角函数的单调区间:y =sin x 的递增区间是[2k π-π2,2k π+π2](k ∈Z),递减区间是[2k π+π2,2k π+3π2](k ∈Z); y =cos x 的递增区间是[2k π-π,2k π](k ∈Z),递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z).例2、已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图像对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.【变式探究】已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z) B.[k π,k π+π2](k ∈Z)C .[k π+π6,k π+2π3](k ∈Z) D.[k π-π2,k π](k ∈Z)考点三 函数y =A sin(ωx +φ)的图像及变换 函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x ―――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的AA >0倍横坐标不变y =A sin(ωx +φ).例3、已知函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像经过点(0,1),如图所示.(1)求f 1(x )的表达式;(2)将函数f 1(x )的图像向右平移π4个单位长度得到函数f 2(x )的图像,求y =f 1(x )+f 2(x )的最大值,并求出此时自变量x 的集合.【变式探究】已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)= ( )A .2+ 3 B. 3 C.33D .2- 3考点四 三角变换及求值 三角函数求值有以下类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变 换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的 其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角. 例1、已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (0)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65.求sin(α+β)的值.【变式探究】已知:cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β的值为________. 考点五 正、余弦定理的应用【变式探究】△ABC 中,B =120°,AC =7,AB =5, 则△ABC 的面积为________. 考点 六 解三角形与实际应用问题在实际生活中,测量底部不可到达的建筑物的高度、不可到达的两点的距离及航行中的方位角等问题,都可通过解三角形解决. 例6、如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【难点探究】难点一 简单的三角恒等变换例1 、(1)若0<α<π2,-π2<β<0,cos (π4+α)=13,cos (π4-β2)=33,则cos (α+β2)=( )A.33 B .-33 C.539 D .-69(2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【点评】 在进行三角恒等变换时,一个重要的技巧是进行角的变换,把求解的角用已知角表示出来,把求解的角的三角函数使用已知的三角函数表示出来,常见的角的变换有,把π2+2α变换成2⎝⎛⎭⎫π4+α,α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·α+β2,α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β等;在进行三角函数化简或者求值时,如果求解目标较为复杂,则首先要变换这个求解目标,使之简化,以便看出如何使用已知条件.难点二 三角函数的图象例2 (1)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝⎛⎭⎫π24=________.(2)要得到函数y =cos (2x +π3)的图象,只需将函数y =12sin2x +32cos2x 的图象( )A .向左平移π8个单位 B .向右平移π2个单位 C .向右平移π3个单位 D .向左平移π4个单位难点三 三角函数的性质例3已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z)B.⎣⎡⎦⎤k π,k π+π2(k ∈Z)C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎡⎦⎤k π-π2,k π(k ∈Z)【规律方法】1.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数的性质,如最小正周期、最值,首先确定函数解析式中的部分系数,再根据函数图象上的特殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,同时要注意解析式中各个字母的范围.2.进行三角函数的图象变换时,要注意无论进行的什么样的变换都是变换的变量本身,特别在平移变换中,如果这个变量的系数不是1,在进行变换时变量的系数也参与其中,如把函数y =sin ⎝⎛⎭⎫2x +π4的图象向左平移π12个单位时,得到的是函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π4=sin2x +5π12的图象. 3.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.难点四 正余弦定理的应用例4 、(1)在△A BC 中,若b =5,∠B =π4,sin A =13,则a =________.(2)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A ⎝⎛⎦⎤0,π6 B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π 难点五 函数的图象的分析判断例5 、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【点评】 本题的难点是变换cos A -2cos C cos B =2c -a b 时,变换方向的选取,即是把角的函数转化为边的关系,还是把边转化为角的三角函数,从已知式的结构上看,把其中三个内角的余弦转化为边的关系是较为复杂的,而根据正弦定理把其中边的关系转化为角的正弦,则是较为简单的,在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.探究点六 解三角形的实际应用例6、如图6-1,渔政船甲、乙同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km 的C 处,渔政船乙在渔政船甲的南偏西20°方向的B 处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C 处沿直线AC 航行前去救援,渔政船乙仍留在B 处执行任务,渔政船甲航行30 km 到达D 处时,收到新的指令另有重要任务必须执行,于是立即通知在B 处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC 航行前去救援渔船丙),此时B 、D 两处相距42 km ,问渔政船乙要航行多少千米才能到达渔船丙所在的位置C 处实施营救?45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船?并指出巡逻艇航行方向.图6-2【规律技巧】1.使用正弦定理能够解的三角形有两类,一类是已知两边及其中一边的对角,一类已知一边和两个内角(实际就是已知三个内角),其中第一个类型也可以根据余弦定理列出方程求出第三边,再求内角.在使用正弦定理求三角形内角时,要注意解的可能情况,判断解的情况的基本依据是三角形中大边对大角.2.当已知三角形的两边和其中一个边的对角求解第三边时,可以使用正弦定理、也可以使用余弦定理,使用余弦定理就是根据余弦定理本身是一个方程,这个方程联系着三角形的三个边和其中的一个内角.3.正弦定理揭示了三角形三边和其对角正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系. 【历届高考真题】 【2012年高考试题】 一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320xx -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )33.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010B 、1010C 、510D 、5157.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 22-(C)22(D) 18.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 129.【2012高考真题湖南理6】函数f (x )=sinx-c os(x+6π)的值域为 A .3332,32]10.【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin<+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定13.【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) 5-3 (B )5-9 (C)59(D)53二、填空题14.【2012高考真题湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,332),则ω= ; (2)若在曲线段¼ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .17.【2012高考真题安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333ab c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2ab c a b +<;则3C π>18.【2012高考真题福建理13】已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_________.19.【2012高考真题重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c = 20.【2012高考真题上海理4】若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形2012高考试题及解答
1.(2012年高考(重庆文))设△ABC 的内角A B C 、、 的对边分别为a b c 、、,且
1
cos 4
a b C =
=1,=2,,则sin B =____
2.(2012年高考(天津理))在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知
8=5b c ,=2C B ,则cos C =( )
A .725
B .725
-
C .7
25
±
D .
2425
3.(2012年高考(陕西理))在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,
则cos C 的最小值为( )
A B C .12 D .1
2
- 【答案】C
【解析】:由余弦定理得,222221
cos 242
a b c a b C ab ab +-+==≥当且仅当a b =时取“=”,选
C.
4.(2012年高考(湖北文))设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长
为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )
A .4∶3∶2
B .5∶6∶7
C .5∶4∶3
D .6∶5∶4
5.(2012年高考(陕西文))在三角形ABC 中,角A,B,C 所对应的长分别为a,b,c,若
a=2 ,B=6
π
则b=______
【答案】2
【解析】:由余弦定理得,2222cos 4b a c ac B =+-=,所以2b =.
6.(2012年高考(福建文))在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=
,则
AC =_______.
【解析】由正弦定理得
sin 45AC AC =⇒=︒
7.(2012年广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )
A .
B .
C
D
8.(2012年高考(重庆理))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且
35
cos ,cos ,3,513
A B b ===则c =______
【答案】14
5
c =
【解析】由35412
cos ,cos sin ,sin 513513
A B A B ==⇒==,
由正弦定理sin sin a b A B
=
得4
3sin 13512sin 513
b A a B ⨯
===, 由余弦定理2222142cos 25905605
a c
b b
c A c c c =+-⇒-+=⇒=
9.(2012年高考(北京理))在△ABC 中,若2a =,7b c +=,1cos 4
B =-
,则b =
___________.
10.(2012年高考(湖南文))在△ABC 中
,BC=2,B =60°,则BC 边上的高等于( )
A
B
C
D
11.(2012年高考(北京文))在△ABC 中,若3a =
,b =,3
A π
∠=,则C ∠的大小为
___________.
【答案】
2
π
【解析】222cos 2b c a A c bc +-=⇒=,而sin sin c a C A =
,故sin 12
C C π
=⇒=. 12.(2012年高考(湖北理))设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若
()()a b c a b c ab +-++=,则角C =_________.
13.(2012年高考(安徽文))设ABC ∆的内角,,A B C 所对的边为,,a b c ,且有
2sin cos sin cos cos sin B A A C A C =+
(Ⅰ)求角A 的大小;
(II) 若2b =,1c =,D 为BC 的中点,求AD 的长
.
14.(2012年高考(江西文))△ABC 中,角A,B,C 的对边分别为a,b,c.已知
3cos(B-C)-1=6cosBcosC. (1)求cosA;
(2)若a=3,△ABC
的面积为求b,c.
【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()1
1cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪
+=-⎨⎪
⎪-=-
⎪⎩
则1cos 3A =. (2) 由(1)
得sin A =
,由面积可得bc=6①,则根据余弦定理 2222291
cos 2123
b c a b c A bc +-+-===则2213b c +=②,
①②两式联立可得32b a =⎧⎪⎨=⎪⎩或3
2
a b =⎧⎪⎨=⎪⎩.
15.(2012年高考(课标文))已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对
边,sin sin c C c A =-.
(Ⅰ)求A ;
(Ⅱ)若a =2,ABC ∆,求b ,c .
16.(2012年高考(天津文))在ABC ∆中,内角,,A B C 所对的分别是,,a b c .已知
2,a c A ===. (I)求sin C 和b 的值; (II)求cos(2)3
A π
+
的值.
17.(2012年高考(江苏))在ABC ∆中,已知3AB AC BA BC ∙=∙
.
(1)求证:tan 3tan B A =;
(2)若cos C =
求A 的值.
18.(2012年高考(大纲文))
ABC ∆中,内角A.B.C 成等差数列,其对边,,a b c 满足223b ac =,求A .
中,角A、B、C的对边分别为a,b,c.角A,B,C成等19.(2012年高考(辽宁理))在ABC
差数列.
(Ⅰ)求cos B的值;
A C的值.
(Ⅱ)边a,b,c成等比数列,求sin sin。

相关文档
最新文档