2012高考试卷-理数-含答案及解析
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012新课标全国卷理科数学试题及详细解答
2012年新课标全国卷理科数学试题详细解答第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.每小题有且只有一个选项是符合题目要求的.1.已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( ) A .3 B .6 C .8 D .10 【解析】由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2), (5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D 。
【点评】本题主要考察复数的运算,属简单题。
2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种B .10种C .9种D .8种【解析】先安排甲组,共有122412C C ⋅=种,再安排乙组,将剩余的1名教师和2名学生安排到乙组即可,共有1种,根据乘法原理得不同的安排方案共有12种,故选择A 。
【点评】本题主要考集合的基础知识,子集的含意。
3.下面是关于复数21z i=-+的四个命题:1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1-。
其中的真命题为( ) A .2p ,3p B .1p ,2p C .2p ,4pD .3p ,4p【解析】因为22(1)11(1)(1)i z i ii i --===---+-+--,所以||z =,22(1)2z i i =--=,z 的共轭复数为1i -+,z 的虚部为1-,所以2p ,4p 为真命题,故选择C 。
【点评】本题主要考察椭圆的简单几何性质,标准方程的求解。
4.设1F 、2F 是椭圆E :2222x y ab+(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F P F ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45【解析】如图所示,21F P F ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==, 260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2a F Q c =-,所以32a c c -=,解得34c a =,因此34c e a==,故选择C 。
2012年高考真题——数学理全国卷解析版
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页.考试结束,务必将试卷和答题卡一并上交. 第I 卷注意事项:全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C. 【答案】C2、已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.【答案】B3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-c a ,所以842==c a ,448222=-=-=c a b ,所以椭圆的方程为14822=+y x ,选C.【答案】C4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B3 C 2 D 1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.【答案】D(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 【解析】由15,555==S a ,得1,11==d a ,所以n n a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1011001011110111001312121111110110021=-=-++-+-=+ a a a a ,选A.【答案】A(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)【解析】在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即b a b a AB AD 5454)(5454-=-==,选D. 【答案】D(7)已知α为第二象限角,33cos sin =+αα,则cos2α= (A) 5-3 (B )5-9 (C) 59 (D)53【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 【答案】A(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 【答案】C(9)已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e ,所以x z y <<,选D.【答案】D(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.【答案】A(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种【解析】第一步先排第一列有633=A ,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有1226=⨯种,选A.【答案】A(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 【答案】B2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 第Ⅱ卷 注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效......... 3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)若x ,y 满足约束条件则z=3x-y 的最小值为_________.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z . 【答案】1-(14)当函数取得最大值时,x=___________.【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 【答案】65π=x (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.【解析】因为展开式中的第3项和第7项的二项式系数相同,即62n n C C =,所以8=n ,所以展开式的通项为k k k kk k x C xxC T 288881)1(--+==,令228-=-k ,解得5=k ,所以2586)1(x C T =,所以21x的系数为5658=C .【答案】56(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等, BAA 1=CAA 1=60°则异面直线AB 1与BC 1所成角的余弦值为____________.【解析】如图设,,,1c AC b AB a AA ===设棱长为1,则,1b a AB +=b c a BC a BC -1+=+=,因为底面边长和侧棱长都相等,且01160=∠=∠CAA BAA 所以21=•=•=•c b c a b a ,所以3)(21=+=b a AB ,2)-(21=+=b c a BC ,2)-()(11=+•+=•b c a b a BC AB ,设异面直线的夹角为θ,所以36322cos 1111=⨯=•=BC AB BC AB θ. 【答案】36 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y )2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2 x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考理科数学(全国卷)含答案及解析
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
2012年新课标高考试题(理数,word解析版)
绝密*启用前2012年普通高等学校招生全国统一考试(新课标)科数学理注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i--===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C∆21F P F 是底角为30 的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年理数高考试题答案及解析-新课标
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种 (3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考理科数学试卷及答案全国卷word版
2012年高考理科数学试卷及答案全国卷word版2012年高考理科数学试卷及答案全国卷word版第一部分:选择题1. 根据分式的定义,下列分式正确的是()A. 0/1B. -1/0C. 1/-1D. 0/0答案: A解析: 根据分式的定义,分母不能为0,所以选项B、C均不正确;0/0是不确定的数,所以选项D也不正确。
2. 在(1,2)处的切线方程是()A. y=x-1B. y=x+1C. y=2x-3D. y=2x-1答案: D解析: 函数y=x^2-1在点(1,0)处的切线斜率为2,因此在(1,2)处的切线斜率也为2,即y=2x+b。
同时,该点在函数图像上,所以代入函数方程可得b=0-1=-1,因此切线方程为y=2x-1。
3. 若x, y>0,且log3x-log3y=log9x-log9y,则x/y等于()A. 1/3B. 1/9C. 3D. 9答案: B解析: 按照对数的性质,log9x=log3( x^(1/2) ),所以原式可以变形为log3(x/y)=log3( x^(1/2)/y^(1/2) )。
然后两边取3的指数,得到x/y=(x/y)^(1/2),解得x/y=1/9。
4. 如图,在正方形ABCD中,点P在AC边上,$AP=\frac{1}{3}AC$,点Q在AD边上,$AQ=\frac{1}{4}AD$,则三角形CPQ的面积是正方形ABCD的面积的()A. 1/12B. 1/16C. 1/24D. 1/36答案: C解析: 因为AP:AC=1:3、AQ:AD=1:4,所以$$\frac{AP}{AC}=\frac{AQ}{AD}=\frac{1}{12}$$因此,三角形APQ与三角形ACD相似。
可以设正方形边长为a,则AC=AD=a√2,AP=1/3×a√2=√2/3a,AQ=1/4×a√2=√2/4a,因此PQ=AP+AQ=7√2/12a,h=AC×PQ/2=49/72a^2,所以三角形CPQ的面积为S=h×PQ/2=7/144a^2,也就是正方形ABCD面积的1/24。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国统一高考数学试卷(理科)(新课标)(含解析版)
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x 对称得:|PQ |最小值为.故选:B .【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分. 13.(5分)已知向量夹角为45°,且,则= 3.【考点】9O :平面向量数量积的性质及其运算;9S :数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题. 【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得 故答案为:3【点评】本题主要考查了向量的数量积 定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x ,y 满足约束条件:;则z=x ﹣2y 的取值范围为 .【考点】7C :简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y﹣z=0在y 轴上的截距,截距越大,z 越小,结合函数的图形可求z 的最大与最小值,从而可求z 的范围【解答】解:作出不等式组表示的平面区域 由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y ﹣z=0在y 轴上的截距,截距越大,z 越小结合函数的图形可知,当直线x ﹣2y ﹣z=0平移到B 时,截距最大,z 最小;当直线x ﹣2y ﹣z=0平移到A 时,截距最小,z 最大由可得B (1,2),由可得A (3,0)∴Z max =3,Z min =﹣3则z=x ﹣2y ∈[﹣3,3] 故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【考点】CP :正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii )购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD ﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD ∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln (a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.祝福语祝你考试成功!。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考全国2卷理数试题(解析版)-打印
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B -- 得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y +=(4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101 (C )99100 (D )101100(6)ABC D 中,AB 边的高为CD ,若CB a =uuu r r ,CA b =uuu r r ,0a b ×=r r ,||1a =r ,||2b =r ,则AD =uuu r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知a 为第二象限角,sin cos 3a a +=,则cos 2a =(A )3-(B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF Ð=(A )14 (B )35 (C )34 (D )45(9)已知ln x p =,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012高考新课标数学全国卷答案解析(理科)
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=-471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( ) ()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考数学(理)真题(Word版)——新课标卷(试题+答案解析)
(2)求二面角A1-BD-C1的大小.
图1-5
20.·设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.
(1)若∠BFD=90°,△ABD的面积为4 ,求p的值及圆F的方程;
(2)若ABF三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
11.A[解析]设三角形ABC的中心为M,球心为O,则OM⊥平面ABC,且OM= = .所以此棱锥的高h=2OM= .所以此棱锥的体积V= × ×1× × = .故选A.
12.B[解析]因为y= ex和y=ln(2x)互为反函数,关于直线y=x对称,所以当曲线y= ex和y=ln(2x)的切线的斜率都为1时,两条切线间的距离即为|PQ|的最小值.令y′= ex=1,得x=ln2.所以y= ex的斜率为1的切线的切点是(ln2,1),所以切点(ln2,1)到直线y=x的距离为d= = .所以|PQ|min=2d=2 = (1-ln2).故选B.
a4n=a4n-1+2(4n-1)-1,
a4n+1=-a4n+2×4n-1,
a4n+2=a4n+1+2(4n+1)-1,
a4n+3=-a4n+2+2(4n+2)-1,
a4n+4=a4n+3+2(4n+3)-1,
所以a4n+4=a4n+3+2(4n+3)-1=-a4n+2+2(4n+2)-1+2(4n+3)-1
即bn+1=bn+16.故数列{bn}是等差数列.
又a2-a1=2×1-1,①
a3+a2=2×2-1,②
a4-a3=2×3-1,③
②-①得a3+a1=2;②+③得a2+a4=8,
2012年高考数学试题及答案(全国卷理数2套)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符
合题目要求的.
1.(5 分)(2012•新课标)已知集合 A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A}, 则 B 中所含元素的个数为( )
A.
B.
C.
D.
12.(5 分)(2012•新课标)设点 P 在曲线
上,点 Q 在曲线 y=ln(2x)上,则|PQ|
最小值为( )
A.1﹣ln2
B.
C.1+ln2
二.填空题:本大题共 4 小题,每小题 5 分.
13.(5 分)(2012•新课标)已知向量
夹角为 45°,且
=
.
D. ,则
14.(5 分)(2012•新课标)设 x,y 满足约束条件:
A.A+B 为 a1,a2,…,an 的和 B. 为 a1,a2,…,an 的算术平均数
C.A 和 B 分别是 a1,a2,…,an 中最大的数和最小的数 D.A 和 B 分别是 a1,a2,…,an 中最小的数和最大的数 7.(5 分)(2012•新课标)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的 三视图,则此几何体的体积为( )
21.(12 分)(2012•新课标)已知函数 f(x)满足 f(x)=f′(1)ex﹣1﹣f(0)x+ x2;
(1)求 f(x)的解析式及单调区间;
(2)若
,求(a+1)b 的最大值.
四、请考生在第 22,23,24 题中任选一题作答,如果多做,则按所做的第一题计分,作答 时请写清题号. 22.(10 分)(2012•新课标)如图,D,E 分别为△ABC 边 AB,AC 的中点,直线 DE 交△
2012年高考理数真题试卷(新课标卷)及解析
绝密★启用前2012年高考理数真题试卷(新课标卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)3,4,5},B={(x ,y )|x∈A,y∈A,x ﹣y∈A},则B 中所含元素的个数为( ) A.3 B.6 C.8 D.102.下面是关于复数z= 2−1+i 的四个命题:其中的真命题为( ),p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i , p 4:z 的虚部为﹣1. A.p 2 , p 3 B.p 1 , p 2 C.p 2 , p 4 D.p 3 , p 43.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=﹣8,则a 1+a 10=( ) A.7 B.5 C.﹣5 D.﹣74.如果执行右边的程序框图,输入正整数N (N≥2)和实数a 1 , a 2 , …,a n , 输出A ,B ,则( )答案第2页,总12页○…………外…………○…………装…………○…………订…………○…………线…………○※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○A.A+B 为a 1 , a 2 , …,a n 的和B.A+B2为a 1 , a 2 , …,a n 的算术平均数C.A 和B 分别是a 1 , a 2 , …,a n 中最大的数和最小的数D.A 和B 分别是a 1 , a 2 , …,a n 中最小的数和最大的数5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.186.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=4√3 ,则C 的实轴长为( )A.√2B.2√2C.4D.87.已知ω>0,函数 f(x)=sin(ωx +π4) 在 (π2,π) 上单调递减.则ω的取值范围是( ) A.[12,54]B.[12,34]C.(0,12]D.(0,2]8.已知三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此三棱锥的体积为( ) A.14B.√24 C.√26 D.√2129.设点P 在曲线 y =12e x 上,点Q 在曲线y=ln (2x )上,则|PQ|最小值为( )A.1﹣ln2B.√2(1−ln2)C.1+ln2D.√2(1+ln2)第II 卷(非选择题)二、填空题(题型注释)10.已知向量 a →,b 夹角为45°,且 |a →|=1,|2a →−b →|=√10 ,则 |b →| =答案第4页,总12页…………○…………订…………要※※在※※装※※订※※线※※内※※答※※题※※…………○…………订…………11.设x,y满足约束条件:{x≥0,y≥0x−y≥−1x+y≤3;则z=x﹣2y的取值范围为(﹣1)n an =2n﹣1,则{an}的前60项和为.三、解答题(题型注释)13.已知a,b,c分别为△ABC三个内角A,B,C的对边,c= √3 asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.14.如图,直三棱柱ABC﹣A1B1C1中,AC=BC= 12AA1, D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.15.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+ 12x2;(1)求f(x)的解析式及单调区间;(2)若f(x)≥12x2+ax+b,求(a+1)b的最大值.16.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是{x=2cosϕy=3sinϕ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.○…………外…………○………装…………○…………订………○…………线……学校:_______姓名:___________班级:___________考号:_______○…………内…………○………装…………○…………订………○…………线……参数答案1.D【解析】1.解:由题意,x=5时,y=1,2,3,4, x=4时,y=1,2,3, x=3时,y=1,2, x=2时,y=1综上知,B 中的元素个数为10个 故选D【考点精析】认真审题,首先需要了解元素与集合关系的判断(对象与集合的关系是,或者,两者必居其一).2.C【解析】2.解:∵z= 2−1+i = 2(−1−i)(−1+i)(−1−i) =﹣1﹣i , ∴ p 1:|z|=√2 ,p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为﹣1, 故选C .【考点精析】通过灵活运用命题的真假判断与应用和复数的定义,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;形如的数叫做复数,和分别叫它的实部和虚部即可以解答此题.3.D【解析】3.解:∵a 4+a 7=2,由等比数列的性质可得,a 5a 6=a 4a 7=﹣8 ∴a 4=4,a 7=﹣2或a 4=﹣2,a 7=4 当a 4=4,a 7=﹣2时, q 3=−12 ,∴a 1=﹣8,a 10=1, ∴a 1+a 10=﹣7当a 4=﹣2,a 7=4时,q 3=﹣2,则a 10=﹣8,a 1=1 ∴a 1+a 10=﹣7综上可得,a 1+a 10=﹣7 故选D【考点精析】认真审题,首先需要了解等比数列的通项公式(及其变式)(通项公式:),还要掌握等比数列的基本性质({a n}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {a n}是各项不为零的常数列)的相答案第6页,总12页………外…………○※………内…………○4.C【解析】4.解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知,该程序的作用是:求出a 1 , a 2 , …,a n 中最大的数和最小的数其中A 为a 1 , a 2 , …,a n 中最大的数,B 为a 1 , a 2 , …,a n 中最小的数 故选:C .【考点精析】认真审题,首先需要了解算法的循环结构(在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构). 5.B【解析】5.解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3; 底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V= 13×12 ×6×3×3=9.故选B .【考点精析】本题主要考查了由三视图求面积、体积的相关知识点,需要掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积才能正确解答此题. 6.C【解析】6.解:设等轴双曲线C :x 2﹣y 2=a 2(a >0), y 2=16x 的准线l :x=﹣4,∵C 与抛物线y 2=16x 的准线l :x=﹣4交于A ,B 两点, |AB|=4√3 ∴A(﹣4,2 √3),B (﹣4,﹣2 √3),将A 点坐标代入双曲线方程得 a 2=(−4)2−(2√3)2=4, ∴a=2,2a=4. 故选C . 7.A【解析】7.解:法一:令:不合题意 排除(D )合题意 排除(B )(C )法二: ,得: .故选A . 8.C……○…………订…………○…………线…………○…______班级:___________考号:___________……○…………订…………○…………线…………○…【解析】8.解:根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1 , 则OO 1⊥平面ABC , 延长CO 1交球于点D ,则SD⊥平面ABC . ∵CO 1= 23×√32= √33 , ∴OO 1= √1−13 = √63 , ∴高SD=2OO 1=2√63, ∵△ABC 是边长为1的正三角形, ∴S △ABC = √34 , ∴V 三棱锥S ﹣ABC = 13×√34×2√63 = √26. 故选:C .9.B【解析】9.解:∵函数 y =12e x 与函数y=ln (2x )互为反函数,图象关于y=x 对称,函数 y =12e x 上的点 p(x 12e x ) 到直线y=x 的距离为 d =|12e x −x|√2,设g (x )= 12e x −x (x >0),则 g ′(x)=12e x −1 , 由 g ′(x)=12e x −1 ≥0可得x≥ln2, 由 g ′(x)=12e x −1 <0可得0<x <ln2,∴函数g (x )在(0,ln2)单调递减,在[ln2,+∞)单调递增, ∴当x=ln2时,函数g (x )min =1﹣ln2,d min =√2, 由图象关于y=x 对称得:|PQ|最小值为 2d min =√2(1−ln2) . 故选B .答案第8页,总12页…………○线…………○【考点精析】解答此题的关键在于理解点到直线的距离公式的相关知识,掌握点到直线的距离为:.10.3 √2【解析】10.解:∵ <a →,b →>=450 , |a →| =1 ∴ a →⋅b →=|a →||b →|=cos450= √22|b →|∴|2 a →−b →|= √(2a →−b →)2= √4a →2−4a →⋅b →+b →2= √4−2√2|b →|+|b →|2= √10解得 |b →|=3√2 所以答案是:3 √211.[﹣3,3]【解析】11.解:作出不等式组表示的平面区域由z=x ﹣2y 可得,y= 12x −12z ,则﹣ 12z 表示直线x ﹣2y ﹣z=0在y 轴上的截距,截距越大,z 越小结合函数的图形可知,当直线x ﹣2y ﹣z=0平移到B 时,截距最大,z 最小;当直线x ﹣2y ﹣z=0平移到A 时,截距最小,z 最大 由 {x −y =−1x +y =3 可得B (1,2),由 {x +y =3y =0可得A (3,0)∴Z max =3,Z min =﹣3则z=x ﹣2y∈[﹣3,3]…○…………装…………○…………订…………○…………线…………○…学校:___________姓名:___________班级:________考号:___________…○…………装…………○…………订…………○…………线…………○…所以答案是:[﹣3,3]12.1830【解析】12.解:∵ a n+1+(−1)na n =2n −1 , ∴ a n+1=2n −1−(−1)na n令b n+1=a 4n+1+a 4n+2+a 4n+3+a 4n+4 , a 4n+1+a 4n+3=(a 4n+3+a 4n+2)﹣(a 4n+2﹣a 4n+1)=2, a 4n+2+a 4n+4=(a 4n+4﹣a 4n+3)+(a 4n+3+a 4n+2)=16n+8,则b n+1=a 4n+1+a 4n+2+a 4n+3+a 4n+4=a 4n ﹣3+a 4n ﹣2+a 4n ﹣1+a 4n +16=b n +16∴数列{b n }是以16为公差的等差数列,{a n }的前60项和为即为数列{b n }的前15项和 ∵b 1=a 1+a 2+a 3+a 4=10 ∴ s =10×15+15×142×16 =1830【考点精析】本题主要考查了数列的前n 项和和数列的通项公式的相关知识点,需要掌握数列{a n }的前n 项和s n 与通项a n 的关系;如果数列a n 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题. 13.(1)解:c= √3 asinC ﹣ccosA ,由正弦定理有:√3 sinAsinC ﹣sinCcosA ﹣sinC=0,即sinC•( √3 sinA ﹣cosA ﹣1)=0, 又,sinC≠0,所以 √3 sinA ﹣cosA ﹣1=0,即2sin (A ﹣ π6 )=1, 所以A= π3 ;答案第10页,总12页(2)解:S △ABC = 12 bcsinA= √3 ,所以bc=4,a=2,由余弦定理得:a 2=b 2+c 2﹣2bccosA ,即4=b 2+c 2﹣bc , 即有 {bc =4b 2+c 2−bc =4,解得b=c=2【解析】13.(1)由正弦定理有: √3 sinAsinC ﹣sinCcosA ﹣sinC=0,可以求出A ;(2)有三角形面积以及余弦定理,可以求出b 、c . 14.(1)证明:在Rt△DAC 中,AD=AC ,∴∠ADC=45° 同理:∠A 1DC 1=45°,∴∠CDC 1=90° ∴DC 1⊥DC,DC 1⊥BD ∵DC∩BD=D ∴DC 1⊥面BCD ∵BC ⊂面BCD ∴DC 1⊥BC(2)解:∵DC 1⊥BC,CC 1⊥BC,DC 1∩CC 1=C 1,∴BC⊥面ACC 1A 1, ∵AC ⊂面ACC 1A 1,∴BC⊥AC取A 1B 1的中点O ,过点O 作OH⊥BD 于点H ,连接C 1O ,OH ∵A 1C 1=B 1C 1,∴C 1O⊥A 1B 1,∵面A 1B 1C 1⊥面A 1BD ,面A 1B 1C 1∩面A 1BD=A 1B 1, ∴C 1O⊥面A 1BD 而BD ⊂面A 1BD ∴BD⊥C 1O ,∵OH⊥BD,C 1O∩OH=O,∴BD⊥面C 1OH∴C 1H⊥BD,∴点H 与点D 重合且∠C 1DO 是二面角A 1﹣BD ﹣C 1的平面角 设AC=a ,则 c 1o =√2a2, C 1D =√2a =2C 1O ,∴sin∠C 1DO= 12∴∠C 1DO=30°即二面角A 1﹣BD ﹣C 1的大小为30°第11页,总12页…………线…………○……………线…………○…【解析】14.(1)证明DC 1⊥BC,只需证明DC 1⊥面BCD ,即证明DC 1⊥DC,DC 1⊥BD;(2)证明BC⊥面ACC 1A 1 , 可得BC⊥AC 取A 1B 1的中点O ,过点O 作OH⊥BD 于点H ,连接C 1O ,C 1H ,可得点H 与点D 重合且∠C 1DO 是二面角A 1﹣BD ﹣C 1的平面角,由此可求二面角A 1﹣BD ﹣C 1的大小.【考点精析】掌握空间中直线与直线之间的位置关系是解答本题的根本,需要知道相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点. 15.(1)解: f(x)=f ′(1)e x−1−f(0)x +12x 2⇒f ′(x)=f(1)e x−1−f(0)+x令x=1得:f (0)=1∴ f(x)=f ′(1)e x−1−x +12x 2 令x=0,得f (0)=f'(1)e ﹣1=1解得f'(1)=e故函数的解析式为 f(x)=e x −x +12x 2令g (x )=f'(x )=e x ﹣1+x∴g'(x )=e x +1>0,由此知y=g (x )在x∈R 上单调递增 当x >0时,f'(x )>f'(0)=0;当x <0时,有 f'(x )<f'(0)=0得:函数 f(x)=e x −x +12x 2 的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)解: f(x)≥12x 2+ax +b ⇔ℎ(x)−(a +1)x −b ≥0 得h′(x )=e x﹣(a+1)①当a+1≤0时,h′(x )>0⇒y=h (x )在x∈R 上单调递增,x→﹣∞时,h (x )→﹣∞与h (x )≥0矛盾②当a+1>0时,h′(x )>0⇔x >ln (a+1),h'(x )<0⇔x <ln (a+1)得:当x=ln (a+1)时,h (x )min =(a+1)﹣(a+1)ln (a+1)﹣b≥0,即(a+1)﹣(a+1)ln (a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln (a+1),(a+1>0) 令F (x )=x 2﹣x 2lnx (x >0),则F'(x )=x (1﹣2lnx ) ∴ F ′(x)>0⇔0<x <√e,F ′(x)<0⇔x >√e答案第12页,总12页外…………○………订…………○…………线※※请※※内※※答※※题※※内…………○………订…………○…………线当 x =√e 时, F(x)max=e2即当 a =√e −1,b =√e 2时,(a+1)b 的最大值为 e2【解析】15.(1)对函数f (x )求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意 f(x)≥12x 2+ax +b ⇔ℎ(x)=e x −(a +1)x −b ≥0 ,借助导数求出新函数的最小值,令其大于0即可得到参数a ,b 所满足的关系式,再研究(a+1)b 的最大值【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题. 16.(1)解:点A ,B ,C ,D 的极坐标为 (2,π3),(2,5π6),(2,4π3),(2,11π6)点A ,B ,C ,D 的直角坐标为 (1,√3),(−√3,1),(−1,−√3),(√3,−1)(2)解:设P (x 0,y 0),则 {x 0=2cosϕy 0=3sinϕ(ϕ 为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x 2+4y 2+16=32+20sin 2φ ∵sin 2φ∈[0,1] ∴t∈[32,52]【解析】16.(1)确定点A ,B ,C ,D 的极坐标,即可得点A ,B ,C ,D 的直角坐标;(2)利用参数方程设出P 的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点精析】关于本题考查的椭圆的参数方程,需要了解椭圆的参数方程可表示为才能得出正确答案.。
2012年高考理数真题试卷(全国卷)及解析
2012年高考理数真题试卷(全国卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A.0或√3B.0或3C.1或√3D.1或32.椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.x216+y212=1B.x212+y28=1C.x28+y24=1D.x212+y24=13.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2 √2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.√3C.√2D.14.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{1a n a n+1}的前100项和为()A.100101B.99101C.99100D.101100答案第2页,总16页5.△ABC 中,AB 边的高为CD ,若 CB →= a →, CA → = b →, a →• b →=0,| a →|=1,| b →|=2,则 AD →=( )A.13a →−13b →B.23a →−23b →C.35a →−35b →D.45a →−45b →6.已知α为第二象限角, sinα+cosα=√33,则cos2α=( )A.﹣ √53 B.﹣ √59 C.√59 D.√537.已知F 1、F 2为双曲线C :x 2﹣y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2=( ) A.14 B.35 C.34 D.458.已知函数y=x 3﹣3x+c 的图象与x 轴恰有两个公共点,则c=( ) A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或19.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( ) A.12种 B.18种 C.24种 D.36种…外…………○…………装…………学校:___________姓名:________…内…………○…………装…………10.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上, AE =BF =37,动点P从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ) A.16 B.14 C.12 D.10第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.若x ,y 满足约束条件 {x −y +1≥0x +y −3≤0x +3y −3≥0则z=3x ﹣y 的最小值为 .12.当函数y=sinx ﹣ √3(0≤x<2π)取得最大值时,x= . 13.若 (x+1x )n的展开式中第3项与第7项的二项式系数相等,则该展开式中 1x 2 的系数为 .14.三棱柱ABC ﹣A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为三、解答题(题型注释)15.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A ﹣C )+cosB=1,a=2c ,求C . 16.如图,四棱锥P ﹣ABCD 中,底面ABCD 为菱形,PA⊥底面ABCD , AC =2√2 ,PA=2,E 是PC 上的一点,PE=2EC .(1)证明:PC⊥平面BED ;(2)设二面角A ﹣PB ﹣C 为90°,求PD 与平面PBC 所成角的大小. 17.设函数f (x )=ax+cosx ,x∈[0,π]. (1)讨论f (x )的单调性;(2)设f (x )≤1+sinx,求a 的取值范围.答案第4页,总16页18.已知抛物线C :y=(x+1)2与圆 M:(x −1)2+(y −12)2=r 2 (r >0)有一个公共点A ,且在A 处两曲线的切线为同一直线l . (1)求r ;(2)设m ,n 是异于l 且与C 及M 都相切的两条直线,m ,n 的交点为D ,求D 到l 的距离. 19.函数f (x )=x 2﹣2x ﹣3,定义数列{ x n }如下:x 1=2,x n+1是过两点P (4,5),Q n ( x n , f (x n ))的直线PQ n 与x 轴交点的横坐标. (1)证明:2≤x n <x n+1<3; (2)求数列{ x n }的通项公式.○…………外…………○…………装………○…………订…………○学校:___________姓名:_______班级:___________考号:___________○…………内…………○…………装………○…………订…………○参数答案1.B【解析】1.解:由题意A∪B=A,即B ⊆A ,又 A ={1,3,√m} ,B={1,m}, ∴m=3或m= √m ,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求, 故选:B . 2.C【解析】2.解:由题意,椭圆的焦点在x 轴上,且 2c =4,=4 ∴c=2,a 2=8 ∴b 2=a 2﹣c 2=4 ∴椭圆的方程为 x 28+y 24=1故选C .【考点精析】利用椭圆的标准方程对题目进行判断即可得到答案,需要熟知椭圆标准方程焦点在x 轴:,焦点在y 轴:.3.D【解析】3.解:如图:连接AC ,交BD 于O ,在三角形CC 1A 中,易证OE∥C 1A ,从而C 1A∥平面BDE ,∴直线AC 1与平面BED 的距离即为点A 到平面BED 的距离,设为h , 在三棱锥E ﹣ABD 中,V E ﹣ABD = 13 S △ABD ×EC= 13 × 12 ×2×2× √2 =2√23在三棱锥A ﹣BDE 中,BD=2 √2 ,BE= √6 ,DE= √6 ,∴S △EBD = 12 ×2 √2 × √6−2 =2 √2 ∴V A ﹣BDE = 13 ×S △EBD ×h= 13 ×2 √2 ×h= 2√23∴h=1 故选 D【考点精析】利用空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知已答案第6页,总16页…………○…………订线…………○要※※在※※装※※订※※线※※内…………○…………订线…………○知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,则.4.A【解析】4.解:设等差数列的公差为d 由题意可得, {a 1+4d =55a 1+10d =15解方程可得,d=1,a 1=1由等差数列的通项公式可得,a n =a 1+(n ﹣1)d=1+(n ﹣1)×1=n∴ 1an a n+1= 1n(n+1) = 1n −1n+1S 100=1−12+12−13+⋯+1100−1101=1﹣ 1101 = 100101故选A【考点精析】关于本题考查的等差数列的前n 项和公式和数列的前n 项和,需要了解前n 项和公式:;数列{a n }的前n 项和s n 与通项a n 的关系才能得出正确答案.5.D【解析】5.解:∵ a →• b →=0, ∴CA⊥CB ∵CD⊥AB∵| a →|=1,| b →|=2 ∴AB= √5由射影定理可得,AC 2=AD•AB ∴ AD →=√5=4√55 ∴ AD AB=4√55√5=45∴ AD →=45AB → = 45(CB →−CA →) = 45(a →−b →)…………○…………订…………○…………线…………○…:___________班级:___________考号:___________…………○…………订…………○…………线…………○…故选D6.A【解析】6.解:∵sinα+cosα= √33 ,两边平方得:1+sin2α= 13 , ∴sin2α=﹣ 23 ,①∴(sinα﹣cosα)2=1﹣sin2α= 53 , ∵α为第二象限角, ∴sinα>0,cosα<0, ∴sinα﹣cosα=√153,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα) =(﹣√153)× √33=﹣ √53 .故选A .【考点精析】利用二倍角的余弦公式对题目进行判断即可得到答案,需要熟知二倍角的余弦公式:.7.C【解析】7.解:将双曲线方程x 2﹣y 2=2化为标准方程 x 22 ﹣ y 22 =1,则a= √2,b= √2,c=2,设|PF 1|=2|PF 2|=2m ,则根据双曲线的定义,|PF 1|﹣|PF 2|=2a 可得m=2 √2 , ∴|PF 1|=4 √2 ,|PF 2|=2 √2 , ∵|F 1F 2|=2c=4,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1||PF 2|=2×4√2×2√2 = 2432 = 34 .故选C . 8.A【解析】8.解:求导函数可得y′=3(x+1)(x ﹣1),令y′>0,可得x >1或x <﹣1;令y′<0,可得﹣1<x <1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,答案第8页,总16页………○…………线…………○※※题※※………○…………线…………○∵函数y=x 3﹣3x+c 的图象与x 轴恰有两个公共点, ∴极大值等于0或极小值等于0. ∴1﹣3+c=0或﹣1+3+c=0, ∴c=﹣2或2. 故选:A .【考点精析】利用函数的极值与导数和函数的零点与方程根的关系对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点. 9.A【解析】9.解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a ,b ,c 的全排列,共有 A 33种, 再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况, 当第二列一行确定时,第二列第2,3行只能有1种情况; 所以排列方法共有: A 33×2×1×1=12种,故选A 10.B【解析】10.解:根据已知中的点E ,F 的位置,可知第一次碰撞点为F ,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G ,且CG= 1621 ,第二次碰撞点为H ,且DH= (1−1621)×34=528,作图,可以得到回到E 点时,需要碰撞14次即可. 故选B .………外…………○…………装…………○………订…………○…………线…………○…学校:___________姓名:___________班级:_______考号:___________………内…………○…………装…………○………订…………○…………线…………○…【考点精析】掌握一般式方程是解答本题的根本,需要知道直线的一般式方程:关于的二元一次方程(A ,B 不同时为0).11.-1【解析】11.解:作出不等式组 {x −y +1≥0x +y −3≤0x +3y −3≥0表示的平面区域,如图所示由z=3x ﹣y 可得y=3x ﹣z ,则﹣z 表示直线3x ﹣y ﹣z=0在y 轴上的截距,截距越大z 越小 结合图形可知,当直线z=3x ﹣y 过点C 时z 最小 由 {x +3y −3=0x −y +1=0可得C (0,1),此时z=﹣1所以答案是:﹣112.5π6答案第10页,总16页……订…………○…………线…………○线※※内※※答※※题※※……订…………○…………线…………○【解析】12.解:∵y=sinx﹣ √3 cosx=2( 12 sinx ﹣ √32 cosx )=2sin (x ﹣ π3 ). ∵0≤x<2π,∴﹣ π3 ≤x﹣ π3 < 5π3 , ∴y max =2,此时x ﹣ π3 = π2 , ∴x= 5π6 . 所以答案是: 5π6 .【考点精析】本题主要考查了两角和与差的正弦公式和三角函数的最值的相关知识点,需要掌握两角和与差的正弦公式:;函数,当时,取得最小值为;当时,取得最大值为,则,,才能正确解答此题.13.56【解析】13.解:由题意可得, C n 2=C n 6∴n=8展开式的通项 T r+1=C 8r x 8−2r (1x )r = C 8r x8−2r 令8﹣2r=﹣2可得r=5 此时系数为 C 85=56 所以答案是:56 14.√66【解析】14.解:如图,设 AA 1→= c →, AB →=a →, AC →=b →,棱长均为1, 则 a →⋅b →= 12 , c →⋅b → = 12 , a→⋅c →= 12∵ AB 1→=a →+c →, BC 1→=BC →+BB 1→=b →−a →+c →∴ AB 1→⋅BC 1→=( a →+c →)•( b →−a →+c →)= a →⋅b →﹣ a →2+ a →⋅c →+ c →⋅b →﹣ a →⋅c →+ c →2= a →⋅b →﹣ a →2+ c →⋅b →+ c →2= 12 ﹣1+ 12 +1=1| AB 1→|= √(a →+c →)2= √1+1+1 = √3外…………○……订…………○…………线…………○…学校:_____考号:___________内…………○……订…………○…………线…………○…| BC 1→ |= √(b →−a →+c →)2= √1+1+1−1−1+1 = √2 ∴cos< AB 1→, BC 1→>=AB 1→⋅BC 1→|AB 1→|⋅|BC 1→|=√2×√3= √66∴异面直线AB 1与BC 1所成角的余弦值为 √66【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系. 15.解:由B=π﹣(A+C )可得cosB=﹣cos (A+C )∴cos(A ﹣C )+cosB=cos (A ﹣C )﹣cos (A+C )=2sinAsinC=1 ∴sinAsinC= 12 ①由a=2c 及正弦定理可得sinA=2sinC② ①②联立可得, sin 2C =14 ∵0<C <π ∴sinC= 12 a=2c 即a >cC =π【解析】15.由cos (A ﹣C )+cosB=cos (A ﹣C )﹣cos (A+C )=1,可得sinAsinC= 12 ,由a=2c 及正弦定理可得sinA=2sinC ,联立可求C【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:.16. (1)证明:以A 为坐标原点,建立如图空间直角坐标系A ﹣xyz , 设D ( √2 ,b ,0),则C (2 √2 ,0,0),P (0,0,2),E ( 4√23 ,0, 23),B ( √2 ,﹣b ,答案第12页,总16页○…………外…………○…※※○…………内…………○…∴ PC → =(2 √2 ,0,﹣2), BE →=(√23 ,b , 23 ), DE → =( √23 ,﹣b , 23) ∴ PC →• BE →= 43 ﹣ 43 =0, PC → • DE → =0∴PC⊥BE,PC⊥DE,BE∩DE=E ∴PC⊥平面BED(2)解: AP →=(0,0,2), AB →=( √2 ,﹣b ,0) 设平面PAB 的法向量为 m →=(x ,y ,z ),则 {m →⋅AP →=2z =0m →⋅BE →=√2x −by =0取 m →=(b , √2 ,0)设平面PBC 的法向量为 n →=(p ,q ,r ),则 {n →⋅PC →=2√2p −2r =0n →⋅BE →=√23p +bp +23r =0取 n →=(1,﹣ √2b , √2 )∵平面PAB⊥平面PBC ,∴ m → • n →=b ﹣ 2b =0.故b= √2 ∴ n →=(1,﹣1, √2 ), DP →=(﹣ √2 ,﹣ √2 ,2) ∴cos< DP →, n →>= n →⋅DP→|n →|⋅|DP →|= 12设PD 与平面PBC 所成角为θ,θ∈[0, π2 ],则sinθ= 12 ∴θ=30°∴PD 与平面PBC 所成角的大小为30°订…………○…………线…………考号:___________订…………○…………线…………【解析】16.(1)先由已知建立空间直角坐标系,设D ( √2 ,b ,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(2)先求平面PAB 的法向量,再求平面PBC 的法向量,利用两平面垂直的性质,即可求得b 的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【考点精析】利用直线与平面垂直的判定和向量语言表述线面的垂直、平行关系对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可;设直线的方向向量是,平面内的两个相交向量分别为,若. 17. (1)解:求导函数,可得f'(x )=a ﹣sinx ,x∈[0,π],sinx∈[0,1]; 当a≤0时,f'(x )≤0恒成立,f (x )单调递减;当a≥1 时,f'(x )≥0恒成立,f (x )单调递增;当0<a <1时,由f'(x )=0得x 1=arcsina ,x 2=π﹣arcsina 当x∈[0,x 1]时,sinx <a ,f'(x )>0,f (x )单调递增 当x∈[x 1,x 2]时,sinx >a ,f'(x )<0,f (x )单调递减 当x∈[x 2,π]时,sinx <a ,f'(x )>0,f (x )单调递增;(2)解:由f (x )≤1+sinx 得f (π)≤1,aπ﹣1≤1,∴a≤ 2π . 令g (x )=sinx ﹣ 2π (0≤x ≤π2),则g′(x )=cosx ﹣ 2π当x ∈(0,arcos 2π) 时,g′(x )>0,当 x ∈(arcos 2π,π2) 时,g′(x )<0∵ g(0)=g(π2)=0 ,∴g(x )≥0,即 2πx ≤sinx (0≤x ≤π2),当a≤ 2π 时,有 f(x)≤2πx +cosx①当0≤x ≤π2时, 2πx ≤sinx ,cosx≤1,所以f (x )≤1+sinx; ②当 π2≤x ≤π 时, f(x)≤2πx +cosx =1+ 2π(x −π2)−sin(x −π2) ≤1+sinx综上,a≤ 2π .答案第14页,总16页…………○…………线…………○答※※题※※…………○…………线…………○【解析】17.(1)求导函数,可得f'(x )=a ﹣sinx ,x∈[0.π],sinx∈[0,1],对a 进行分类讨论,即可确定函数的单调区间;(2)由f (x )≤1+sinx 得f (π)≤1,aπ﹣1≤1,可得a≤ 2π ,构造函数g (x )=sinx ﹣ 2π (0≤x ≤π2),可得g (x )≥0(0≤x ≤π2),再考虑:①0≤x ≤π2;② π2≤x ≤π ,即可得到结论.【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2) 将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值. 18. (1)解:设A (x 0,(x 0+1)2), ∵y=(x+1)2,y′=2(x+1) ∴l 的斜率为k=2(x 0+1)当x 0=1时,不合题意,所以x 0≠1 圆心M (1, 12 ),MA的斜率 k ′=(x 0+1)2−12x 0−1.∵l⊥MA,∴2(x 0+1)× (x 0+1)2−12x 0−1=﹣1∴x 0=0,∴A(0,1), ∴r=|MA|= √52 ;(2)解:设(t ,(t+1)2)为C 上一点,则在该点处的切线方程为y ﹣(t+1)2=2(t+1)(x ﹣t ),即y=2(t+1)x ﹣t 2+1若该直线与圆M 相切,则圆心M 到该切线的距离为 √52 ∴|2(t+1)×1−12−t 2+1|√[2(t+1)]+1=√52∴t 2(t 2﹣4t ﹣6)=0∴t 0=0,或t 1=2+ √10 ,t 2=2﹣ √10抛物线C 在点(t i ,(t i +1)2)(i=0,1,2)处的切线分别为l ,m ,n ,其方程分别为 y=2x+1①,y=2(t 1+1)x ﹣ t 12+1 ②,y=2(t 2+1)x ﹣ t 22+1 ③②﹣③:x=t 1+t 22=2订…………○…………线__考号:___________订…………○…………线代入②可得:y=﹣1 ∴D(2,﹣1), ∴D 到l 的距离为√5=65√5【解析】18.(1)设A (x 0 , (x 0+1)2),根据y=(x+1)2 , 求出l 的斜率,圆心M (1,12),求得MA 的斜率,利用l⊥MA 建立方程,求得A 的坐标,即可求得r 的值;(2)设(t ,(t+1)2)为C 上一点,则在该点处的切线方程为y ﹣(t+1)2=2(t+1)(x ﹣t ),即y=2(t+1)x ﹣t 2+1,若该直线与圆M 相切,则圆心M 到该切线的距离为 √52 ,建立方程,求得t 的值,求出相应的切线方程,可得D 的坐标,从而可求D 到l 的距离. 【考点精析】掌握点到直线的距离公式是解答本题的根本,需要知道点到直线的距离为:.19. (1)证明:①n=1时,x 1=2,直线PQ 1的方程为 y −5=f(2)−52−4(x −4)当y=0时,∴ x 2=114,∴2≤x 1<x 2<3; ②假设n=k 时,结论成立,即2≤x k <x k+1<3,直线PQ k+1的方程为 y −5=f(x k+1)−5x k+1−4(x −4)当y=0时,∴ x k+2=3+4x k+12+x k+1∵2≤x k <x k+1<3,∴ x k+2=4−52+x k+1<4−52+3=3x k+2−x k+1=(3−x k+1)(1+x k+1)2+x k+1>0∴x k+1<x k+2∴2≤x k+1<x k+2<3 即n=k+1时,结论成立由①②可知:2≤x n <x n+1<3;(2)解:由(1),可得 x n+1=3+4x n2+x n设b n =x n ﹣3,∴ 1b n+1=5b n+1∴ 1bn+1+14=5(1b n+14)∴ {1b n+14} 是以﹣ 34 为首项,5为公比的等比数列答案第16页,总16页∴ 1b n+14=(−34)×5n−1∴ b n =−43×5n−1+1∴ x n =b n +3=3−43×5n−1+1.【解析】19.(1)用数学归纳法证明:①n=1时,x 1=2,直线PQ 1的方程为 y −5=f(2)−52−4(x −4) ,当y=0时,可得 x 2=114;②假设n=k 时,结论成立,即2≤x k <x k+1<3,直线PQ k+1的方程为 y −5=f(x k+1)−5x k+1−4(x −4) ,当y=0时,可得 x k+2=3+4x k+12+x k+1,根据归纳假设2≤x k<x k+1<3,可以证明2≤x k+1<x k+2<3,从而结论成立.(2)由(1),可得 x n+1=3+4x n2+x n,构造b n =x n ﹣3,可得 {1b n+14} 是以﹣ 34 为首项,5为公比的等比数列,由此可求数列{ x n }的通项公式.【考点精析】认真审题,首先需要了解数列的通项公式(如果数列a n 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高。
锥体的体积公式为13V Sh =,其中S 为锥体的底面积,h 为锥体的高。
一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 【答案】D2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =, 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6} 【答案】C3. 若向量(2,3)BA =u u u r ,(4,7)CA =u u u r,则BC uuu rA .(2,4)--B .(3,4)C .(6,10)D .(6,10)-- 【答案】A4. 下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+B .1y x =-+C .1()2x y =D .1y x x=+ 【答案】A5. 已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1 【答案】B6. 某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π【答案】C7. 从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A .49 B .13 C .29 D .19【答案】D8. 对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅o 。
若平面向量,a b 满足||||0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b o 和b a o 都在集合{|}2∈nn Z 中,则a b o = A .12 B. 1 C. 32 D. 52【解析】:因为||cos cos ||2θθ⋅==≥>⋅o a b a a b b b b ,||cos cos 1||θθ⋅==≤<⋅o b a b b a a a a 且a b o 和b a o 都在集合{|}2∈n n Z 中 所以,||1cos ||2θ==o b b a a ,||1||2cos θ=b a ,所以2||cos 2cos 2||θθ==<o a a b b所以22≤<o a b ,故有1=o a b 【答案】B二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9. 不等式|2|||1x x +-≤的解集为_____。
【答案】1{|}2x x ≤10. 261()x x+的展开式中3x 的系数为______。
(用数字作答)【答案】2011. 已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =____。
【答案】21n a n =-12. 曲线33y x x =-+在点(1,3)处的切线方程为 。
【答案】21y x =+13. 执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为 。
【答案】8(二)选做题(14-15题,考生只能从中选做一题)14,(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty t =⎧⎪⎨=⎪⎩(t 为参数)和2cos 2sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 和2C 的交点坐标为_______。
【答案】(1,1)15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC =30°,过点A 做圆O 的切线与OC 的延长线交于点P ,则P A =_____________。
【答案】3三、解答题:本大题共6小题,满分80分。
解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分) 已知函数()2cos()6f x x πω=+,(其中0ω>,x R ∈)的最小正周期为10π。
(1)求ω的值; (2)设,[0,]2παβ∈,56(5)35f απ+=-,516(5)617f βπ-=,求cos()αβ+的值。
【答案】(1)15ω=;(2)13cos()85αβ+=-17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50],[50,60],[60,70],[70,80],[80,90],[90,100]。
(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ得数学期望。
【答案】(1)0.024x =;(2)25E ξ=ξ12()P ξ2235 1235 13518.(本小题满分13分)如图5所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE 。
(1) 证明:BD ⊥平面PAC ;(2) 若PH=1,AD=2,求二面角B-PC-A 的正切值;【答案】(1)略;(2)tan 3θ=19. (本小题满分14分)设数列{}n a 的前n 项和为n S ,满足1221n n n S a +=-+,*n N ∈,且1a ,25a +,3a 成等差数列。
(1) 求1a 的值;(2) 求数列{}n a 的通项公式。
(3) 证明:对一切正整数n ,有123111132n a a a a ++++<L . 【解答】(1)11a =;(2)32n nn a =-;(3)当3n ≥时32(12)2n n n n n a =-=+-12211122222n n n n n n n C C C --=+⋅+⋅++⋅+-L 122111222n n n n n C C C --=+⋅+⋅++⋅L 2222(1)n C n n >⋅=-又因为2522(21)a =>⨯⨯- 所以,2(1),2n a n n n >-≥ 所以,11111()2(1)21n a n n n n<=--- 所以,12311111111111131(1)1(1)2234122n a a a a n n n ++++<+-+-++-=+-<-L L20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =圆C 上的点到(0,2)Q 的距离的最大值为3。
(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB V 的面积最大?若存在,求出点M 的坐标及相对应的OAB V 的面积;若不存在,请说明理由。
【解答】:(1)由2223c e c a a ===,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b +=,所以222222(1)3y x a a y b=-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:22132x y += (2)因为(,)M m n 在椭圆C 上,所以22132m n +=,22332m n =- 设11(,)A x y ,22(,)B x y由2211mx ny x y +=⎧⎨+=⎩,得2222()210m n x mx n +-+-= 所以,222222222144()(1)4(1)4(2)02m m n n n m n n n ∆=-+-=+-=->,可得24n < 并且:12222mx x m n+=+,212221n x x m n -=+ 所以,2212121212222111()1mx mx m x x m x x m y y n n n m n---++-=⋅==+所以,||AB ==== 设点O 到直线AB 的距离为h ,则h =所以1||2OAB S AB h =⋅=V 设221t m n =+,由204n <<,得22213(1,3)2m n n +=-∈,所以,1(,1)3t ∈OAB S ==V 1(,1)3t ∈所以,当12t =时,OAB S V 面积最大,最大为12。
此时,(0,M21.(本小题满分14分)设1a <,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =I 。
(1)求集合D (用区间表示)(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点。
【解答】:(1)对于方程223(1)60x a x a -++= 判别式29(1)483(3)(31)a a a a ∆=+-=-- 因为1a <,所以30a -<① 当113a <<时,0∆<,此时B =∅,所以D =∅; ② 当13a =时,0∆=,此时{|1}B x x =≠,所以(0,1)(1,)D =+∞U ;当13a <时,0∆>,设方程223(1)60x a x a -++=的两根为12,x x 且12x x <,则1x =,2x =12{|}B x x x x x =<>或③ 当103a <<时,123(1)02x x a +=+>,1230x x a =>,所以120,0x x >> 此时,12(,)(,)D x x x =+∞U)=+∞U④ 当0a ≤时,1230x x a =≤,所以120,0x x ≤>此时,2(,))D x =+∞=+∞(2)2()66(1)66(1)()f x x a x a x x a '=-++=--,1a <所以函数()f x 在区间[,1]a 上为减函数,在区间(,]a -∞和[1,)+∞上为增函数① 当113a <<时,因为D =∅,所以()f x 在D 内没有极值点; ② 当13a =时,(0,1)(1,)D =+∞U ,所以()f x 在D 内有极大值点13a =;③ 当103a <<时,)D =+∞U由103a <<,很容易得到1a <<<(可以用作差法,也可以用分析法) 所以,()f x 在D 内有极大值点a ; ④ 当0a ≤时,)D =+∞由0a ≤1>此时,()f x 在D 内没有极值点。